

Automatic Reading and Learning from Text

Ana Oliveira
Instituto Superior de Engenharia de Coimbra

Quinta da Nora, Coimbra, Portugal
aalves@isec.pt

Francisco Câmara Pereira

Departamento de Engenharia Informática da Universidade de Coimbra
Pinhal de Marrocos, Coimbra, Portugal

camara@dei.uc.pt

Amílcar Cardoso
Departamento de Engenharia Informática da Universidade de Coimbra

Pinhal de Marrocos, Coimbra, Portugal
amilcar@dei.uc.pt

Keys:
Natural Language Processing, Text Analysis, Case-based Reasoning, Dialogue, Concept Maps

Technical Area:
Information Retrieval

2

Abstract

This paper presents our more recent research on the area of text reading and

understanding and knowledge extraction. More specifically, we give an overview

of TextStorm and Clouds: two modules for the construction of concept maps. The

first one deals with the task of extracting relations between concepts from a text

file, while the latter concentrates on completing these relations and extrapolating

rules about the knowledge in hand. This is a hybrid framework that applies two

different areas of Artificial Intelligence: Natural Language Processing (in

TextStorm) and Machine Learning (in Clouds). We show an example and draw

conclusions.

1. Introduction

This paper presents a framework that aims at extracting concept maps [Novak

and Gowin, 84] from Natural Language texts. This representation, the concept

maps, is a simple subtype of semantic networks that consists of graphs in which

nodes are concepts and arc are relations. In this simplified semantic network there

is no additional features for arcs (i.e., no inheritance or equal arcs, e.g. “isa” or

“ako”). This work is composed of two different autonomous modules: TextStorm,

a text reader that extracts concept relations through the parsing process; Clouds, a

concept map constructor that uses Machine Learning inspired algorithms to

complete the map through dialogue with the user.

Seen from the point of view of a user that wants to build a concept map about

a given domain, he/she must give TextStorm a file with relevant facts about it, and

then answer Clouds’ questions. In the end, he/she will get a concept map and a set

of learned rules about the information involved.

3

As shown in [omitted reference], these concept maps are very important to the

project Dr. Divago, a system that uses metaphor mappings [Veale and Keane, 93]

to search for solutions in a multi-domain environment. Apart from this central

motivation of TextStorm and Clouds, we think this project can add promising

perspectives on text analysis and understanding. Furthermore, concept maps are

considered by some educational psychologists [Novak and Gowin, 84] as a very

important tool to improve learning. If this were so, wouldn’t it be interesting to

have a teacher contrasting his own concept maps with his students’? With this

system, it is possible to have several users having a dialogue with a computer

about a domain, starting with a common initial Knowledge Base (read and

converted by TextStorm).

The system is at the moment on a stable development version, and we will

show later in this paper, in section 4, an example of its current performance.

Previously, we will present TextStorm in detail, after which an overview of

Clouds will be done (sections 2 and 3). The final sections (5 and 6) will be

dedicated to a discussion of the limitations and conclusions.

2. TextStorm

One important part of the process of understanding a text consists on

apprehending its underlying interrelations of concepts. Furthermore, a tool able to

extract automatically such information will fit the needs of several knowledge

dependent systems, like those oriented towards translation, intelligent search,

concept learning, ontology extraction and others. Among those related to concept

learning, we can find Clouds, a concept map building tool which will be explained

4

later. TextStorm was initially thought about as a simple add-on Natural Language

interface to facilitate user’s work with Clouds.

Soon after the beginning of its development, and since we didn’t find any

similar work (at least, in which respects to its applicability to our project), we

decided to invest on this work as a potentially autonomous module. In fact, in the

initial survey phase, prior to TextStorm development, we mostly found

applications and projects that relied almost entirely on extra-textual information

(like lexical databases) to generate a model of understanding (e.g. some tools of

summarization and statistics-based text analysis). We believe some of the

difficulties in this area may be softened through an equal concentration of efforts

on the text itself. We refer to the work at [Hahn, Klenner & Schattinger, 96] and

[Ciravegna et al, 99] as interesting projects towards this goal.

In the work of [Hahn, Klenner & Schattinger, 96], beyond the information

underlying in a text, they suggest using a suitable knowledge base of a specific

domain. Thus, new concepts are inferred not only from text, but also from an

initial set of other domain concepts.

Ciravegna and colleagues propose to extract, from the parsing process of text

files, relations between inherent constituents. They represent these relations in a

Quasi Logical Form (QLF) and summarize the relevant information in normalized

templates that are adaptable to different user needs.

On its hand, TextStorm is a Natural Language tool that extracts binary

predicates1 from a text file using syntactic and discourse knowledge. These

predicates will feed another module, named Clouds, that infers knowledge based

on machine learning.

1 These predicates have the common Prolog form: functor(Argument 1, Argument 2)

5

TextStorm doesn’t need any preview knowledge about the discussed domain.

It receives a text as initial base of the information extraction. After TextStorm

tagged a text file using the external lexicon (WordNet base), it builds predicates

that map relations between two concepts from parsing of sentences. Its practical

goal is to be able to extract from utterances like “Cows, as well as rabbits, eat only

vegetables, while humans eat also meat”, the predicates {eat(cow, vegetables),

eat(rabbit, vegetables), eat(human, vegetables), eat(human, meat)} which will

form its concept map. As we will show later, then Clouds will be able to produce

rules like “isa(X, vegetarian):-eat(X, vegetables)”2. Although we feel the limit of 2

arguments per predicate as highly restrictive, we imposed ourselves this constraint

as a development condition.

Tagging Parsing

Co-Reference
Desambiguation

Augmented
Grammar

Clouds

Text File

TextStorm

WordNet

Anaphora
Resolution

Predicate
Building

Raw Conceptual Map

...
...

...

User

Figure 2.1 -TextStorm Architecture

2 These rules have the common Prolog form Conclusion:- premisse1, premisse2, ..., premisseN

6

As the above figure suggests, the program includes a tagging module to find

all parts of speech to which a word may belong. For this task, it accesses the

WordNet [Miller et al, 1993] database. Then, the text is parsed using an

augmented grammar.

 A fact about two concepts specifies an existent relation between them.

Generally, this relation is identified by the main verb in a sentence. And where

can we find the binary predicate concepts? Generally, the subject represents a

concept whose relation, or property, is passed in a sentence. Thus, an object, or

qualifier, that is in the Verbal Phrase shall be considered as the second concept in

a binary predicate. For example, in the sentence “Jupiter is a big planet”, there is a

relationship between the concept ‘Jupiter’ and ‘planet’: isa. This originates the

predicate “isa(jupiter, planet)”. Furthermore, ‘Jupiter’ has the ‘big’ property,

leading to the predicate ”property(Jupiter, big)”.

Sometimes, finding concepts in a dependent sentence isn’t clear for an

automatic tool. If some ambiguity arises in this process, TextStorm shall apply

Anaphora Resolution and/or Context-Dependent Analysis at the Co-Reference

Disambiguation Module. Traditional text disambiguation through Anaphora

Resolution is essentially founded on a model of Anaphora Resolution based on

History Lists [Allen 1995]. A history list is a list of discourse entities generated

from the preceding sentences, where the most recent is given much more

importance than the first sentence that was analyzed. Internally, there is a history

list that is supplied with new predicates produced in the previous iteration.

Since the knowledge base in the beginning of the TextStorm’s session

contains no data, the text concepts are formalized depending on the context where

7

they are found. Thus it may be possible, in another session, that the same concepts

have different interrelations inferring different knowledge.

By now, WordNet [Miller et al, 93] gives TextStorm only a lexical

classification of the words in the parsing process, leaving out other WordNet

information such as antonyms, hyponyms, hypernyms, meronyms, etc. I.e.,

Wordnet is just used to supply lexical verification of words present in sentences.

Since, in real world, concepts in a text are not named every time by the same way,

TextStorm uses synonymy semantic relationship from WordNet to identify the

concepts that were already referred before with a different name. It is important to

say that WordNet itself is organized according to synonymy: words are joined

together in lots called synsets (essential structures of this database).

As will be seen in the section dedicated to experiments, the result of this

whole process is a list of predicates that represent the concept interrelations

TextStorm has detected. This list is then the input to Clouds, which, through

dialogue with the user, will try to clarify as much important points as it can.

At present time, TextStorm only uses affirmative and declarative sentences.

An interesting point would be to analyze negative sentences as negative examples

of the knowledge database, as well as to include temporal reference to establish a

non-monotonic database.

For a future improvement, we propose a mapping of n dimension predicates

according to syntactic structures of related sentences.

8

3. Clouds

Integrated on a wider framework named Dr. Divago [omitted reference],

Clouds [omitted reference] is responsible for the interactive construction of

concept maps. As told before, a concept map in this system consists on a set of

binary predicates that represent relations between concepts. Clouds was designed

to accept any relation and concept the user inputs, building gradually in parallel

the corresponding ontological “isa” tree and learning some particularities of the

domain. It applies two different techniques of Inductive Learning in order to

extract regularities on the relations and concepts of the map: a best current

hypothesis [Mill 1843] based algorithm to learn the categories of the arguments of

each relation; and an Inductive Logic Programming [Muggleton 1992] based

algorithm to learn the contexts that are recurrent in each relation. The input for

both algorithms consists on the binary relations of the concept map, each of them

being a new isolated example (positive or negative) to the process of learning.

Initial hypothesis: have(tiger, fur).
first positive example: have(cat, fur). ⇒ generalization: have(feline, fur).
second positive example: have(dog, fur). ⇒ generalization: have(mammals, fur).
negative example: ~have(human, fur). ⇒ specialization: have(canine, fur), have(feline, fur).
Final hypothesis: have(canine, fur), have(feline, fur).

mammals

canine primatefeline

isa isa

wolf

isa

tigerdog monkey humancat

isa isaisaisaisa isa

coverage

fur feather

isa isa

skin

isa

allThe "isa"-tree:

The examples:The examples: Hypotesis

first positive example: have(tiger,fur) ⇒have(tiger, fur).
second positive example: have(cat, fur) ⇒generalization: have(feline, fur).
third positive example: have(dog, fur) ⇒generalization: have(mammals, fur).
negative example: ~have(human, fur) ⇒specialization: have(canine, fur), have(feline, fur).

Figure 3.1 – Learning the relation “have”. An example of generalization and specialization in the

Clouds categorization-learning algorithm.

9

It is expected that gradually in a concept map construction session, Clouds will

get a more helpful performance by asking questions to the user about new

concepts and new relations it suspects to exist.

The Inductive Logic Programming based algorithm builds prolog-like rules

that aim at describing relations in terms of its context. We consider the context of

a relation to be the set of neighbour connections its arguments have, including the

“isa” relations. An example of such a context is shown in figure 3.2.

After introducing the new relations (positive examples) “property(dog, small)”

and “have(dog, fur)”, the algorithm could conclude that

property(X, friendly):-property(X, small), have(X, fur).

This conclusion is directly drawn from the fact that both contexts of

“property(cat, friendly)” and “property(dog, friendly)” have the relations “have(X,

fur)” and “property(X, small)” (with X={dog, cat}).

Specialization is obviously made in the opposite direction: if a negative

example is introduced, these rules are readapted to exclude it (by adding a new

premise and/or by dividing it into new more specific rules).

feline

fur have cat

isa

property friendly

dog

behaviour

isa

property

small

property

Context of property(cat, friendly):
isa(cat, feline).
have(cat, fur).
property(cat, small).
isa(friendly, property).
property(dog, friendly).

Figure 3.2. – The context of the relation “property(cat, friendly)”

This system is described in more detail in [omitted reference].

10

4. How does it work?

We will now show an example of a session, so that we can clear out some

points about this work.

Suppose we are interested in building a concept map concerning biological

kingdoms. We could go directly to Clouds, if we wanted to, and build it all from

scratch, but some additional dedication and patience would be required, since a

large set of primitive concepts would be necessary (e.g., What kinds of animals

are there?). TextStorm’s role on this framework is to bypass this step, becoming

much easier and interesting to interact with Clouds. If we input, for example, the

following text to TextStorm:

"A predator is an animal that eats other animals. For example, Lions eat

gazelles and zebras. These are the preys. Humans are predators, but they can be

preys too.

Vegetarian animals are usually preys, while predators are obviously

carnivores. Humans are omnivores, because they eat both animals and

vegetables.

Another difference between those two groups is that predators are small and

fast, while the preys are bigger and slower."

TextStorm analyzes each sentence to find inherent relations and concepts. In

the first sentence (“A predator is an animal that eats other animals.”), there is an

ambiguity to define the subject of the second sub-sentence (“eats other animals”).

Here, the program solved successfully this situation (concluding “eat(predator,

animal”). The second sentence contains two objects connected with “and”

(“gazelles” and “zebras”), which should supply the predicates “eat(lions,

11

gazelles)” and “eat(lions, zebras)”. Keywords like these and they that refer to

previous context (anaphora) generate several ambiguities (the word “These” in

the third sentence can refer to “gazelles”, “zebras”, “lions”, two of them, etc.), so

TextStorm postponed the correspondent choice to the user. In the fourth sentence,

it extracted the correct relations “isa(humans, predator)” and “isa(humans, prey)”.

In the second paragraph, it started with an interesting choice (it “built” the

concept “vegetarian_animals”, which is more specific than “animals”) and solved

correctly an anaphora situation (“they” corresponds to “Humans”), although it

didn’t process correctly the concept “both”. Its output to Clouds will therefore be

the raw concept map in the figure 4.1.

isa(predator, animal) can_be(animal, prey) eat(predator, vegetable)
eat(animal, gazelle) can_be(lion, prey) eat(humans, vegetable)
eat(lion, gazelle) can_be(these, prey) eat(humans, vegetable)
eat(lion, zebra) eat(humans, animal) property(prey, bigger)
can_be(humans, prey) eat(predator, animal)
can_be(predator, prey) eat(animal, vegetable)

animal

vegetable

human
prey

predator
gazelle

bigger

lion

zebra

eat

eat

can_be

propertycan_be

can_be

eat

eat
eat

isa
can_be

eat

eat

eat

Figure 4.1. – Raw concept map generated by TextStorm

When Clouds receives this input, it will try to process each line as if it was an

example given directly by the user (such as there in fig 3.1), therefore it will

naturally start asking questions about missing knowledge that wasn’t acquired

12

from text (e.g., “what is an animal”?). Remember that Clouds has an initial

ontological “isa”-tree that contains some primitive generic concepts, so, in a first

phase, it will need user’s assistance to attach the new “isa” relations to the

primitive tree.

After the establishment of the “isa”-tree, it will then proceed to extract

conclusions from other relations. In the early example, we can see that there are

few non-“isa” relations (as said above, some of them should be “property”),

although there are sufficient “eat” relations to allow Clouds to start generalizing

(it needs only two examples to make a rough generalization). It will then interact

with the user, who is now free to introduce any new knowledge to the concept

map (allowing Clouds to keep improving its performance).

Some of the questions it asks will be:

Clouds: Define animal with the predicate "isa"
User: isa(animal, living_entity).
Clouds: Define lions with the predicate "isa"
User: isa(lions, animal).
Clouds: Define gazelle with the predicate "isa"
User: isa(gazelle, animal).
Clouds: Complete the relation eat(carnivore,animal)
User: eat(lions, humans).
Clouds: Complete the relation eat(animal,animal)
User: eat(humans, gazelle).

Then, proceeding with the session, and after introducing the following

relations (along with the necessary “isa” relations):

property(panther, black).
property(zebra, black).
property(zebra, white).
eat(gazelle, grass).
property(rabbit, white).
eat(rabbit, grass).

Clouds will arrive to the conclusions that:

13

ILP Algorithm:
eat(A,gazelle):-isa(A,predator).
eat(A,grass):-isa(A,prey) , isa(A,vegetarian_animals) , property(A,white).
property(A,B):-isa(A,prey) , isa(B,color).

Categorization algorithm:
[eat(predator,animal),eat(animal,animal),eat(animal,grass)]

And will ask questions like:

Clouds: Is it true that eat(zebra, grass)?
User: y.
Clouds: Complete the relation eat(panther, animal)?
User: eat(panther, zebra).

As this example has shown, the two modules have the complex task of

processing Natural Language text and understanding its domain through Machine

Learning. We think that TextStorm can facilitate the user’s concept map

construction, particularly if there is care in the choice of the text file.

We performed some tests with TextStorm using 21 small text files of size

varying between 319 and 12 557 bytes. Theses were pertaining to 3 different

types: 4 articles, 8 educative texts and 9 manuals:

articles educatives manuals

aerospace.txt antelope.txt animalrights.txt

cables.txt asteroids.txt cmulisp.txt

eclipse.txt cambodja cockroach.txt

sds.txt cicada.txt domviolence.txt

 culture.txt formz.txt

 insectos.txt grafic.txt

 otte.txt pci.txt

 whirling.txt thesis.txt

 win95.txt

The articles are characterized by representing complex information about a

scientific domain, while the educative texts introduce a subject by a simple and

14

direct way. Manuals are between these two types, since they are available for the

general public.

TextStorm analyzed this set of texts and the results are shown in fig. 4.2. We

mean correct predicates as those generated by TextStorm that were coherent with

the respective input text. Examining the graph, we can conclude that TextStorm

reached a correctness mean of 52%.

Correct Predicates
(between produced predicates)

0

10

20

30

40

50

60

70

80

as
te

ro
id

an
te

lo
pe

cu
ltu

re

ec
lip

se

cm
ul

is
p

an
im

al
sr

ig
ht

s

do
m

vi
ol

en
ce

ae
ro

sp
ce

w
in

5

ca
bl

es

ca
p3

co
ck

ro
ac

h

sd
s

pc
i

ca
p2

ci
ca

da

th
es

is

gr
ap

hi
c

fo
rm

z

pe
rc

en
ta

ge

Figure 4.2. – Experiment results

The other predicates were not successfully extracted for some known reasons:

part of them correspond to sentences where binary predicates are not the ideal

representation, requiring predicates whit n-dimensions; the other part derives from

the ambiguity of words themselves (e.g. the word “will” may be a verb or noun).

Furthermore, as we could see, there are some current limitations in both modules

(TextStorm and Clouds), which will be discussed later.

15

5. Anaphora Resolution using CBR

Before implementing our anaphora resolution approach, we were conscious

that there are various techniques to solve part of the general problem [Allen 95,

Hahn & Strube 96]. Then, after reflecting about how humans naturally find a co-

reference in a text, we arrived to the conclusion that a paradigm such as case-

based reasoning can be applied. Indeed anaphora resolution has lots of “special

cases” that known techniques avoid solving. Part of this process depends on how

the problem was solved in the past. It seems for us that we can apply Case-Based

Reasoning (C.B.R.) on Anaphora Resolution.

We designed a first model of C.B.R. that aims to resolve some anaphora that

holds just simple cases. Each case consists of a problem, problem context and a

solution that was used to solve the problem. The problem is the co-reference

(anaphora) to resolve (sometimes identified by a pronoun), while the context is

represented by two sentences: the one in which the anaphora occurs and the

immediately previous sentence. This forced proximity seems a limitation, but after

analyzed several kinds of anaphora, when a co-reference is about a concept that is

not in the late sentence (i.e., the immediately previous sentence may include a co-

reference, too), first we resolve this previous sentence (if necessary). After

resolved, this previous sentence will influence the resolution of the current co-

reference. Finally the solution is the concept (antecedent) that was referred by

anaphora (e.g. see fig. 5.1). In other words, CBR is applied sequentially on

sentences; an identified solution can help resolution of subsequent cases.

16

Figure 5.1. – An example of a case

Basically, the model extracts the syntactic and part-of-speech classification for

main elements (subject, main verb or object) in the two sentences of a new case.

Then, it searches for a similar case that was resolved in the past. The solution of

this similar case is adapted to this new situation finding the word that has the same

syntactic function. If any case was encountered, the manual completion of this

new is required. This will increase the case base in a reliable way.

After some experiments, we concluded that case base size and CBR efficacy

are intimately connected. After several text analyses we can reach a considerable

case base. Thus, it is possible to have a dynamic method of anaphora resolution

that is continually improved as used.

6. Limitations

By now, we think TextStorm will improve considerably its performance after

adding the following capabilities:

• Complete integration with WordNet [Miller et al, 93]. If this program is

able to perceive hyponyms and hypernyms, then it will avoid some extra

work from the user on completing the isa-tree, WordNet may provide this

information.

John was hungry. He entered a restaurant
 problem solution

problem context

Problem: <he: subjectafter>

Before: <John: proper noun, be: simple past singular,
hungry:adjective>

After: <He:personal pronoun singular, entered: simple past
singular, restaurant: noun singular>

Solution: <John:subjectbefore>

17

• Clarification of the ambiguities associated to qualifiers, so that it can

produce “property” relations, or even more specific sub-classes (e.g.

“color”, “weight”, “speed”, etc.);

• Generation of n-dimension predicates according to syntactic structures of

related sentences in the input text. For this, we would need an exhaustive

study of verb types (transitive accompanied by direct or indirect object,

intransitive, linking, etc.) that WordNet doesn’t offer.

7. Conclusions

This paper presented a work centered on the idea of learning and

understanding from domain independent text. It consists on a two-module

framework, where TextStorm has the task of extracting as many concept

interrelations as possible. Its output is directly fed into the second module, Clouds,

which will use this knowledge to build a concept map with the help of the user. In

this paper, we focussed mainly on TextStorm, a module that uses parsing of

sentences to build binary predicates that represent domain knowledge from the

text in hand. Binary predicates are composed employing parsing with an

augmented grammar. The parameters of this grammar are the key factors in a

sentence that represent relations: verbs and adjectives. The first one tells us which

correlation exists between two concepts; and the second one brings us the notion

of property.

From the example, we can conclude that by now it is able to extract an

interesting set of relations, although there are many improvements to make.

Furthermore, this system is already being useful to the Dr. Divago project, to

which Clouds belong.

18

After the development of the first implementation, we have already decided

the next milestones to fulfill, namely the complete connection to the WordNet

[Miller et al, 93] framework and a more precise anaphora resolution. After the

accomplishment of these tasks, we think TextStorm will be able to extract a

reasonably high amount of knowledge from a text file.

Furthermore, we think TextStorm is not limited to its current application as a

Clouds knowledge server, but also to tasks like text summarization, translation

intelligent search in the World Wide Web (WWW), knowledge elicitation and

automatic ontology extraction.

References

[Allen, 95] Allen, J.; Natural Language Understanding, The

Benjamin/Cummings Publishing Company, Inc.; pp. 429-465. 1995

[Ciravegna et al. 1999] F. Ciravegna, A. Lavelli, N. Mana , L. Gilardoni, S.

Mazza, J. Matiasek, W. Black, F. Rinaldi, D. Mowatt; Classifying Texts

Integrating Pattern Matching and Information Extraction. Sixteenth International

Joint Conference on Artificial Intelligence (IJCAI99), Stockholm, August, 1999

[Hahn , Klenner & Schnattinger 96] Hahn, U.; Klenner, M. & Schnattinger,

K.; Automatic Concept Acquisition from Real-World Texts. Working Notes of the

AAAI-96 Spring Symposium on ‘Machine Learning in Information Access’,

Stanford, USA. 1996

[Hahn & Strube 96] Hahn, U. and Strube, M.; ParseTalk about functional

anaphora. Advances in Artificial Intelligence. 11th Biennal Conference of

Canadian Society for Computational Studies of Intelligence (AI’96), 1996.

19

[Novak and Gowin, 84] J. D. Novak and D. B. Gowin. Learning How To

Learn, New York: Cambridge University Press. 1984.

[Mill, 1843] Mill, J. S.; A System for Logic, Ratiocinative and Inductive:

Being a Connected View of the Principles of Evidence, and Methods of Scientific

Investigation. J. W. Parker, London. 1843.

[Miller et al, 93] Miller, G. A.; Beckwith, R.; Fellbaum, C.; Gross, D. and

Miller, K.; Introduction to WordNet: An On-line Lexical Database; Available at

http://www.cogsci.princeton.edu/~wn/w3wn.html (Revised August 1993)

[Muggleton, 92] S. Muggleton, S.; Inductive Logic programming. Academic

Press. 1992.

[omitted reference] Pereira, F., Oliveira, A. and Cardoso, A.; Extracting

Concept Maps with Clouds. Argentine Symposium of Artificial Intelligence

(ASAI 2000), Buenos Aires, Argentina, 2000.

[Veale and Keane, 1993] Veale, T. & M. T. Keane (1993) A Connectionist

Model of Semantic Memory for Metaphor Interpretation, presented at the 1993

Workshop on Neural Architectures and Distributed AI, October 19-20, the Center

for Neural Engineering, S.C. California

[Warren, 99] Warren, D.; Programming in Tabled Prolog; Department of

Computer Science. Stony Brook, U.S.A. 1999

	Abstract
	1. Introduction
	2. TextStorm
	3. Clouds
	
	
	
	Integrated on a wider framework named Dr. Divago [omitted reference], Clouds [omitted reference] is responsible for the interactive construction of concept maps. As told before, a concept map in this system consists on a set of binary predicates that rep
	It is expected that gradually in a concept map construction session, Clouds will get a more helpful performance by asking questions to the user about new concepts and new relations it suspects to exist.
	The Inductive Logic Programming based algorithm builds prolog-like rules that aim at describing relations in terms of its context. We consider the context of a relation to be the set of neighbour connections its arguments have, including the “isa” relati
	After introducing the new relations (positive examples) “property(dog, small)” and “have(dog, fur)”, the algorithm could conclude that
	This conclusion is directly drawn from the fact that both contexts of “property(cat, friendly)” and “property(dog, friendly)” have the relations “have(X, fur)” and “property(X, small)” (with X={dog, cat}).
	Specialization is obviously made in the opposite direction: if a negative example is introduced, these rules are readapted to exclude it (by adding a new premise and/or by dividing it into new more specific rules).
	This system is described in more detail in [omitted reference].

	4. How does it work?
	5. Anaphora Resolution using CBR
	6. Limitations
	7. Conclusions
	References

