
Changeloads: a Fundamental Piece on the SASO
Systems Benchmarking Puzzle

Position Paper

Raquel Almeida and Marco Vieira
CISUC, Department of Informatics Engineering

University of Coimbra
Coimbra, Portugal

{rrute, mvieira}@dei.uc.pt

Abstract—Benchmarks have been traditionally tailored to static,
unchangeable systems, functioning in well-known and controlled
environments. Thus, established benchmarks (and benchmarking
approaches) are becoming progressively less representative of
real world scenarios, as change is gaining emphasis as a
fundamental player in computing systems runtime conditions. As
today’s systems are becoming, at the very least, reactive to
changes (either endogenous or exogenous) at some level, if not
even proactive in reaching their goals more efficiently and
effectively, we believe that benchmarks must also evolve,
becoming applicable to systems that react to change, adapt,
evolve, and have the capability to improve their own
performance. In this position paper, we argue that representative
changeloads are now as vital as representative workloads, and
that changeload-based benchmarks will become a key part in the
development and evaluation of SASO systems. We present and
discuss some applications of benchmarks in this area, proposing
some directions for research.

Keywords- benchmarking; changeload; resilience;
performance; self-adaptive; self-organizing; autonomic systems

I. INTRODUCTION
Over the last decades, the computing systems world has

changed: computers are now expected to proactively deal with
faults and failure in components, exhaustion of resources, user
errors, and are immersed in changing environments, facing
changing user needs, peak load problems, or insufficient
bandwidth in networks, just to name a few [1]. In the near
future, autonomic characteristics will help systems dealing with
their own increased complexity, and that of the surrounding
environment. Unfortunately, the provision of flexibility and the
ability to handle changes during runtime comes at the price of
reducing the predictability the impact of adaptation on the
system itself, especially with respect to its non-functional
requirements. How can one assess if a system will maintain
expected dependability or availability at runtime in spite of
changes that may occur in the system or in its environment? Is
there a way to determine if a particular alternative for
adaptation is better than another, or that a particular repair will
not make the situation worse? Although major advances have
been made, existing approaches in self-adaptation do not
systematically address the need to determine if an adaptive
system can deliver a service that can justifiably be trusted when
facing changes (i.e., that it will be resilient [2]). This lack of
assurances is a critical issue, as it may end up hindering the

widespread adoption of self-adaptive and self-organizing
(SASO) systems, often regarded as not being dependable and
reliable by the final users [3].

Established benchmarking approaches seem to fall short of
what is expected from them when evaluating and comparing
adaptive systems. In fact, over the last decades benchmarks
have been tailored to unchangeable and manageable systems,
predominantly running in static (slow-changing) or predictable
environments. The problem is that this approach is becoming
ever less representative of real world scenarios, as change
further becomes a fundamental player in runtime conditions for
computing systems. In practice, well-known performance
benchmarks and metrics are no longer sufficient for describing
all relevant aspects related to today’s systems, as qualities like
reliability, availability, energy consumption, scalability, among
others, have gained more relevance in many contexts. Even if
we maintain the focus on performance evaluation, we need new
processes to describe and assess the ability of systems to solve
runtime-specific problems, as they deal with variability and
unexpected events. Change is now a constant, if not of the
system itself, at least of its executing environment in the real
world, and this will surely impact its runtime performance.
Furthermore, vendors and users will soon need ways to
compare previous state-of-the-art systems to new systems with
self-* characteristics in a fair head-to-head evaluation, so that
good and reliable insight into the cost-to-benefit relationship of
using the new proposed solutions is provided.

In this position paper, we argue that a new construct is
required in the evaluation and comparison of adaptive systems:
a changeload. As a significant and adequate workload
(typically a representative use-case within a domain) is
fundamental for a reliable and sustained evaluation and
comparison of systems, by allowing the examination of the
system response to the type and amount of work that will be
typically expected of it, so must be a representative
changeload. Such an element will submit the system under
evaluation to relevant stimulus (potential changes that might
trigger adaptation mechanisms of particular interest) to probe
and assess how the system responds to them. In a way, while a
workload simulates the service stress that a system may face in
the field, the changeload would be responsible for modeling the
variations and fluctuations in the overall stress (either from an
endogenous or exogenous source), providing a more realistic
execution use-case. As adaptation mechanisms are aimed at

This work is partially supported by the ADAAS - Assuring Dependability
in Architecture-based Adaptive Systems project, in the context of the CMU-
Portugal program.

endowing systems with abilities to deal with fluctuations and
changes, we argue that representative changeloads are the best
way to accurately evaluate their relevance and effectiveness,
and their impact on the service provided as perceived by the
user.

The outline of the paper is as follows. The next section
discusses how adaptive computing systems are emphasizing
the importance of characterizing the systems’ prospective
executing scenarios. Section 3 discusses issues and current
research challenges in the definition of changeloads for the
evaluation of adaptive systems. Section 4 presents some
directions for benchmarking systems with self-adaptive
characteristics and features, proposing two examples of
changeload-based benchmarking use in the evaluation of
SASO systems. Finally, Section 5 concludes the paper,
presenting our view regarding the future of benchmarking and
the importance of more investment in changeloads research.

II. THE PROMINENCE OF PROSPECTIVE EXECUTION
SCENARIOS IN SASO SYSTEMS DEVELOPMENT & EVALUATION

A. A decisive player in runtime execution scenarios: Change
Highly complex infrastructures, composed of

heterogeneous applications running on a variety of platforms
and operating systems, combining hundreds of system
components, with thousands of tuning parameters, are now a
reality. Furthermore, today’s information society creates highly
variable and somewhat unpredictable workloads on those
interconnected, distributed, heterogeneous systems, and more
than ever many business models depend on their IT
infrastructure being available and performing its best 24/7.
System components and software have to evolve to deal with
the increased complexity of control and operational
management [4], and existing paradigms based on static
requirements, interactions, compositions and behaviors are
becoming no longer suitable [5], as industry and researchers
acknowledge the need for development and optimization (at
design time and runtime) for changing runtime settings. As a
consequence, the importance of evaluation of systems
characteristics and quality attributes under changing conditions
is gaining strength.

We believe there is consensus in recognizing that the most
determining factor for success of SASO systems is their
capability to operate and adapt under dynamic circumstances,
which allows them to provide the expected service and attain
their goals (captured as functional and non-functional
requirements) as best as possible, during their lifetime. As a
result, the prospective execution scenarios of an adaptive
computing system gain extreme relevance, as they are
determinant in guiding decisions during both development and
runtime, in an effort to provide the system with the adequate
qualities and self-* characteristics that will empower it to
effectively and efficiently face changing runtime circumstances
and settings. In light of this, we argue that better knowledge
and modeling of prospective execution scenarios is imperative.

We propose the characterization of an execution scenario in
terms of state (system and environment), system goals, and
changes potentially applied to that state. An execution scenario

is then a tuple (wl, oc, G, C), where: wl represents the
workload (amount and type of work assigned to the system); oc
are the operational conditions of the system (including software
and hardware resources needed for the system to perform its
service); G is a set of system goals; and C is a set of changes
that the state determined by the workload and operational
conditions may face.

In the definition above, goals represent the quality
attributes that the system should fulfill at runtime (e.g.,
maximum response time, minimum throughput, minimum
availability, etc.), including a prioritization among potentially
conflicting goals. Much research work has been dedicated to
characterizing and modeling workloads and their fluctuations
[6–8], but the major source of variations in execution settings is
the set of potential changes in operational conditions (e.g.,
fluctuations in network performance, software updates or
faults, variations in available resources, services or devices)
and system goals (e.g., requirements modifications, different
user preferences). We believe that there are many research
paths yet unexplored in this direction.

B. Change Scenarios and Changeloads
Considering the execution scenarios as defined above, we

may further distinguish between conventional scenarios, in
which the system is executing without experiencing any
anomalies, and scenarios associated with changes in the system
or its environment that induce anomalies in the system,
typically triggering adaptations. These can be designated as
base and change scenarios, respectively. Here, we present a
refined definition of these concepts, firstly introduced in [9].

A base scenario corresponds to the most common
conditions of execution of the system. The workload should be
representative of the typical amount and type of work assigned
to (or expected from) the system in a specified time period, and
operation conditions would comprise a typical setup of systems
in the domain (including hardware and software resources
typically used), as well as a representative characterization of
the system’s environment. Hence, a base scenario reflects the
operational characteristics of systems in the domain while
running a typical workload and operating in the absence of
changes, setting the baseline for comparison with situations
when the system is faced with changes that may drive it into an
adaptation process. It should be noted that by “typical” we do
not mean static: the base scenario represents a stable state of
the system with no abnormal or faulty conditions considered.

Change scenarios are based on a base scenario, but include
a representative sequence of changes that may affect the
system and its ability to achieve and maintain the fixed goals
specified in the base scenario. It can then be defined as a tuple
(wlt, oct, G, C), where: wlt represents the typical workload; oct
represents the typical operational conditions of the system; G is
a set of system goals; and C ≠ ∅ is a set of changes applied to
the state determined by the workload and operational
conditions. A change scenario is then defined by a typical
condition of the system followed by a non-empty set of
changes, while a changeload is a set of change scenarios.

In this perspective, changeloads become decisive in the
evaluation of adaptive systems, both during design and

execution phases. They can provide a realistic mean to assess if
adaptation is being achieved in an efficient and effective
manner by subjecting the system to representative changes and
evaluating the systems response, enabling better well-informed
and substantiated choices among the existing adaptation
strategies, algorithms and architectures. Moreover,
representative changeloads subjected to refinement based on
system execution and adaptation history at runtime may be
instrumental in allowing a more sustained assessment (and
eventual review) of adaptation strategies (either devised at
design or runtime), as well as adaptation decisions taken by the
system itself during execution.

III. CHARACTERIZING AND DESIGNING CHANGELOADS
The first step towards the definition of a representative

changeload that can be used to evaluate and compare
alternative adaptation techniques and strategies or alternative
adaptive systems is determining which changes are more bound
to affect the system ability to attain its goals (eventually
triggering adaptations). The systematic identification and
classification of change types is then fundamental to support
the definition of change scenarios, as these rely on the
instantiation of types of changes for the considered application
domain, system type, and prospective execution settings.

A. Identifying and characterizing changes
The number of potential changes that the system and its

environment can go through at run-time is virtually unbounded.
Hence, we need to focus on identifying only the relevant
stimulus, the ones that may trigger adaptation mechanisms of
particular interest, and thus have the best potential of relevance
for the evaluation of how the system responds and behaves
under varying conditions and settings.

We define a change type as a tuple (src, A, B) that
characterizes a change, where: src identifies the source of the
change: environment (including human operators), resources
used by the system, or the system itself; A = ⟨a1,...,ak⟩ is a
vector of attributes that hold information about the specific
properties (variables) associated with the change type; and B =
⟨b1,...,bk⟩ describes the dynamics of the attributes in A (how
they evolve over time, e.g., through a polynomial, exponential,
or step function).

Research effort should be directed towards the
identification, collection and systematization of types of
changes that might impact and induce significant stress to
adaptive systems in distinct operational and application
domains, aiming at the compilation of change taxonomies for
different areas of SASO systems. These could then be used as a
starting point for the selection and instantiation of changes to
be included in change scenarios and changeloads for specific
systems and application domains.

We believe that one promising approach to accomplish the
identification of representative change types is to use historical
data and logs to correlate basic system indicators and resources
fluctuations (e.g. CPU, memory and disk usage, network
traffic, system response time, etc.) with identifiable service
level events, resulting on the identification of change instances
faced by systems in real situations. Our assumption is that even

though some system mechanisms may mask service level
impact of some changes, this impact is still identifiable in the
basic resources indicators. We are presently working on
evaluating the validity of this approach by analyzing one year
worth of indicators collected from a server DBMS within an
academic context, in an effort to identify change instances that
impacted the system, and eventually classify them into
representative change types for this type of systems based on
data from the real world.

B. Defining and selecting representative changeloads
Each possible change scenario for the systems in the

evaluation domain is characterized by a base scenario and a set
of representative changes that may affect the system’s ability to
achieve and maintain its goals (i.e., as specified in the base
scenario). Each change included in the change scenario is an
instantiation of a general change type (as defined in III.A).
Given a set of change types CT, a change is a tuple (ct, srcinst,
Ainst, Binst, ti, d) that corresponds to an instantiation of a change
type, where: ct = (src, A, B) ∈ CT determines the change type
to be instanced as a change; srcinst is the instance of the source
of change (i.e., where it actually occurs); Ainst = ⟨a1inst,...,akinst⟩
is a vector of attribute values instantiating the attributes in A;
Binst = ⟨b1inst,...,bkinst⟩ of behavior instances of the elements in
B; ti determines the time instant in which the change instance is
triggered; and d is the duration associated with the change.

The trigger instant assigned to each specific change
instantiation determines the sequence of changes in a change
scenario. Also, the combination of trigger instant and duration
for different changes may result in a combined effect of
changes on the system. It is worth observing that while some
specific changes may be transient, impacting the system during
a particular amount of time (e.g., a temporary peak in
workload), the duration can be considered equal to ∞ if the
change is permanent, or 0 if non-applicable (i.e., instantaneous
change).

Structuring and identifying changeloads of interest for a
particular area of application or type of SA or SO system
presents several significant challenges, which include, but are
not limited to:

1) Selecting specific changes: for each underlying context,
the relevant changes must be identified. This challenge is
related to the second.

2) Reducing the change space: systematized approaches
must be devised to deal with the exponential growth of the
number of possible changes that might afect the system.

3) Identifying relevant sequences of changes: combining
distinct change events in a same change scenario seems
imperative for real-world situations representativeness, but
also presents itself as a complex and difficult task.

4) Scheduling and timing: deciding on triggering instant
and duration for each change, as well as orchestrating the
execution of changeload with the workload during system
evaluation also poses significant challenges.

In [9] we have proposed an approach based on risk analysis
to identify and select the most realistic and relevant (sequences
of) changes (i.e., change scenarios) to be included in resilience

benchmarking of self-adaptive systems, but this approach
mostly tries to tackle challenges 1) and 2).

IV. BENCHMARKS FOR SASO SYSTEMS
In a previous work [10], we presented and discussed some

research challenges and perspectives on the design of
benchmarks for self-adaptive systems. Although mainly
intended for the evaluation of resilience and comparison of
similar self-adaptive software systems (i.e., systems
implementing similar functional requirements and intended to
execute in comparable environments), the ideas and concepts
presented, specifically referent to benchmark components, can
be extended and refined to be applicable in diverse evaluation
situations for SASO systems. Two examples of application of
changeload-based benchmarks are given in the following
subsections, illustrating the potential relevance and
applicability of such benchmarks in distinct phases of the
lifecycle of an adaptive system.

A. Comparing adaptive solutions for the same problem
As research on SASO systems advances, developers need

validated and reliable ways to evaluate and compare alternative
approaches during the system development lifecycle. The
availability of changeload-based benchmarks, incorporating
procedures and metrics to reflect timeliness of adaptation,
overheads, robustness of strategies, among others, would be a
key tool to realistically evaluate different versions of a system.
We are working on an experimental approach to evaluate and
compare diverse adaptation strategies for a self-adaptive
software system, using as case study Rainbow (architecture-
based platform for self-adaptation) and Znn.com. This work
will rely on the identification of representative changeloads,
which will be used in a run-time stimulation of the system.

B. Comparing adaptive systems aimed at providing the same
service
Evaluation and comparison of SASO systems resiliency,

which we believe is the most relevant aspect from the users
point of view, and the most relevant to build trust among users
and boost the adoption of these systems, is a perfectly tailored
job for changeload-based benchmarks. In this specific case of
application, we advocate the use a black-box approach, which
ignores the subtleties of how the system works, and just
evaluates it for the outcome that is expected of it. With such an
approach, the applicability of the benchmark is not impacted by
how autonomic the system is, or which parts or components of
the system have self-* characteristics, as we do not need
knowledge of how the system is trying (or not) to deal with the
changeload during the benchmark. In fact, what we need is a
way to assess how well the system deals with possible (and
representative) varying scenarios it may face during its
operation from the service point-of-view: we pursue a simple
and practical way to assess how effective and efficient the
system is in “absorbing” the perturbations and maintain (or
return to) the best possible fulfillment of its goals, considering
the (internal and external) context at the time, by evaluating the
service provided from the user’s point of view. We can, then,
compare the resiliency of any system in the spectrum from
static to completely self-managed.

This approach, although promising, also presents new
challenges. For instance, specific goals of the compared
systems may differ (e.g., different values for maximum
response time, or minimum availability) or have distinct
priorities. This requires benchmark metrics to realistically
reflect each system’s degree of achievement, by combining not
only the impact of the (eventual) adaptation processes in
service the delivered, but also the weighted evaluation of how
close to their goals they were able to perform.

V. CONCLUSIONS
Considering new computing scenarios that include self-

adaptive and self-organizing systems, we argue that existing
benchmarking approaches have to evolve, in order to reaffirm
benchmarking as a reliable source of information on the
expected behavior of the systems in representative execution
conditions. Beyond traditional performance metrics and
workloads (which will still be needed), we claim that
benchmarks must now include new features that take into
account the changing nature of todays systems and runtime
environments, namely changeloads, and service and adaptivity
related metrics. In practice, these should focus on evaluating
and comparing the ability of systems to perform while facing
changeloads in their representative runtime scenarios. We
believe that the same focus and effort dedicated to research in
workloads characterization and modeling must be devoted to
research on topics related to changeloads, as these are indeed a
fundamental piece on the SASO systems benchmarking puzzle.

REFERENCES
[1] Y. Brun, “Improving impact of self-adaptation and self-management

research through evaluation methodology,” in Proc. of the 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’10), 2010, pp. 1-9.

[2] J.-C. Laprie, “From Dependability to Resilience,” in Proc. of the IEEE
International Conference on Dependable Systems and Networks
(DSN’08), Supplemental volume, 2008, p. G8-G9.

[3] J. A. McCann, R. de Lemos, M. Huebscher, O. F. Rana, and A.
Wombacher, “Can Self-managed systems be trusted? Some views and
trends,” The Knowledge Engineering Review, vol. 21, no. 03, p. 239,
Oct. 2006.

[4] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic
computing era,” IBM Systems Journal, vol. 42, no. 1, pp. 5-18, 2003.

[5] D. Garlan, “Software engineering in an uncertain world,” in
Proceedings of the FSE/SDP workshop on Future of software
engineering research - FoSER ’10, 2010, p. 125.

[6] M. Calzarossa, L. Massari, and D. Tessera, “Workload Characterization
Issues and Methodologies,” in Performance Evaluation: Origins and
Directions, G. Haring, C. Lindemann, and M. Reiser, Eds. Springer-
Verlag London, UK, 2000, pp. 459-481.

[7] P. Martin, S. Elnaffar, and T. Wasserman, “Workload Models for
Autonomic Database Management Systems,” in International
Conference on Autonomic and Autonomous Systems (ICAS’06), 2006.

[8] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for stateful
services,” in Proc. of the 1st ACM symposium on Cloud computing -
SoCC’10, 2010, p. 241.

[9] R. Almeida and M. Vieira, “Changeloads for Resilience Benchmarking
of Self-Adaptive Systems: A Risk-Based Approach,” in Proc. of the 9th
European Dependable Computing Conference (EDCC’12), 2012.

[10] R. Almeida and M. Vieira, “Benchmarking the resilience of self-
adaptive software systems,” in Proc. of the 6th international
symposium on Software engineering for adaptive and self-managing
systems (SEAMS’11), 2011, p. 190.

