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Abstract—Benchmarks have been traditionally tailored to static, 
unchangeable systems, functioning in well-known and controlled 
environments. Thus, established benchmarks (and benchmarking 
approaches) are becoming progressively less representative of 
real world scenarios, as change is gaining emphasis as a 
fundamental player in computing systems runtime conditions. As 
today’s systems are becoming, at the very least, reactive to 
changes (either endogenous or exogenous) at some level, if not 
even proactive in reaching their goals more efficiently and 
effectively, we believe that benchmarks must also evolve, 
becoming applicable to systems that react to change, adapt, 
evolve, and have the capability to improve their own 
performance. In this position paper, we argue that representative 
changeloads are now as vital as representative workloads, and 
that changeload-based benchmarks will become a key part in the 
development and evaluation of SASO systems. We present and 
discuss some applications of benchmarks in this area, proposing 
some directions for research. 
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I.  INTRODUCTION 
Over the last decades, the computing systems world has 

changed: computers are now expected to proactively deal with 
faults and failure in components, exhaustion of resources, user 
errors, and are immersed in changing environments, facing 
changing user needs, peak load problems, or insufficient 
bandwidth in networks, just to name a few [1]. In the near 
future, autonomic characteristics will help systems dealing with 
their own increased complexity, and that of the surrounding 
environment. Unfortunately, the provision of flexibility and the 
ability to handle changes during runtime comes at the price of 
reducing the predictability the impact of adaptation on the 
system itself, especially with respect to its non-functional 
requirements. How can one assess if a system will maintain 
expected dependability or availability at runtime in spite of 
changes that may occur in the system or in its environment? Is 
there a way to determine if a particular alternative for 
adaptation is better than another, or that a particular repair will 
not make the situation worse? Although major advances have 
been made, existing approaches in self-adaptation do not 
systematically address the need to determine if an adaptive 
system can deliver a service that can justifiably be trusted when 
facing changes (i.e., that it will be resilient [2]). This lack of 
assurances is a critical issue, as it may end up hindering the 

widespread adoption of self-adaptive and self-organizing 
(SASO) systems, often regarded as not being dependable and 
reliable by the final users [3]. 

Established benchmarking approaches seem to fall short of 
what is expected from them when evaluating and comparing 
adaptive systems. In fact, over the last decades benchmarks 
have been tailored to unchangeable and manageable systems, 
predominantly running in static (slow-changing) or predictable 
environments. The problem is that this approach is becoming 
ever less representative of real world scenarios, as change 
further becomes a fundamental player in runtime conditions for 
computing systems. In practice, well-known performance 
benchmarks and metrics are no longer sufficient for describing 
all relevant aspects related to today’s systems, as qualities like 
reliability, availability, energy consumption, scalability, among 
others, have gained more relevance in many contexts. Even if 
we maintain the focus on performance evaluation, we need new 
processes to describe and assess the ability of systems to solve 
runtime-specific problems, as they deal with variability and 
unexpected events. Change is now a constant, if not of the 
system itself, at least of its executing environment in the real 
world, and this will surely impact its runtime performance. 
Furthermore, vendors and users will soon need ways to 
compare previous state-of-the-art systems to new systems with 
self-* characteristics in a fair head-to-head evaluation, so that 
good and reliable insight into the cost-to-benefit relationship of 
using the new proposed solutions is provided.  

In this position paper, we argue that a new construct is 
required in the evaluation and comparison of adaptive systems: 
a changeload. As a significant and adequate workload 
(typically a representative use-case within a domain) is 
fundamental for a reliable and sustained evaluation and 
comparison of systems, by allowing the examination of the 
system response to the type and amount of work that will be 
typically expected of it, so must be a representative 
changeload. Such an element will submit the system under 
evaluation to relevant stimulus (potential changes that might 
trigger adaptation mechanisms of particular interest) to probe 
and assess how the system responds to them. In a way, while a 
workload simulates the service stress that a system may face in 
the field, the changeload would be responsible for modeling the 
variations and fluctuations in the overall stress (either from an 
endogenous or exogenous source), providing a more realistic 
execution use-case. As adaptation mechanisms are aimed at 
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endowing systems with abilities to deal with fluctuations and 
changes, we argue that representative changeloads are the best 
way to accurately evaluate their relevance and effectiveness, 
and their impact on the service provided as perceived by the 
user. 

The outline of the paper is as follows. The next section 
discusses how adaptive computing systems are emphasizing 
the importance of characterizing the systems’ prospective 
executing scenarios. Section 3 discusses issues and current 
research challenges in the definition of changeloads for the 
evaluation of adaptive systems. Section 4 presents some 
directions for benchmarking systems with self-adaptive 
characteristics and features, proposing two examples of 
changeload-based benchmarking use in the evaluation of 
SASO systems. Finally, Section 5 concludes the paper, 
presenting our view regarding the future of benchmarking and 
the importance of more investment in changeloads research. 

II. THE PROMINENCE OF PROSPECTIVE EXECUTION 
SCENARIOS IN SASO SYSTEMS DEVELOPMENT & EVALUATION 

A. A decisive player in runtime execution scenarios: Change  
Highly complex infrastructures, composed of 

heterogeneous applications running on a variety of platforms 
and operating systems, combining hundreds of system 
components, with thousands of tuning parameters, are now a 
reality. Furthermore, today’s information society creates highly 
variable and somewhat unpredictable workloads on those 
interconnected, distributed, heterogeneous systems, and more 
than ever many business models depend on their IT 
infrastructure being available and performing its best 24/7. 
System components and software have to evolve to deal with 
the increased complexity of control and operational 
management [4], and existing paradigms based on static 
requirements, interactions, compositions and behaviors are 
becoming no longer suitable [5], as industry and researchers 
acknowledge the need for development and optimization (at 
design time and runtime) for changing runtime settings. As a 
consequence, the importance of evaluation of systems 
characteristics and quality attributes under changing conditions 
is gaining strength. 

We believe there is consensus in recognizing that the most 
determining factor for success of SASO systems is their 
capability to operate and adapt under dynamic circumstances, 
which allows them to provide the expected service and attain 
their goals (captured as functional and non-functional 
requirements) as best as possible, during their lifetime. As a 
result, the prospective execution scenarios of an adaptive 
computing system gain extreme relevance, as they are 
determinant in guiding decisions during both development and 
runtime, in an effort to provide the system with the adequate 
qualities and self-* characteristics that will empower it to 
effectively and efficiently face changing runtime circumstances 
and settings. In light of this, we argue that better knowledge 
and modeling of prospective execution scenarios is imperative. 

We propose the characterization of an execution scenario in 
terms of state (system and environment), system goals, and 
changes potentially applied to that state. An execution scenario 

is then a tuple (wl, oc, G, C), where: wl represents the 
workload (amount and type of work assigned to the system); oc 
are the operational conditions of the system (including software 
and hardware resources needed for the system to perform its 
service); G is a set of system goals; and C is a set of changes 
that the state determined by the workload and operational 
conditions may face. 

In the definition above, goals represent the quality 
attributes that the system should fulfill at runtime (e.g., 
maximum response time, minimum throughput, minimum 
availability, etc.), including a prioritization among potentially 
conflicting goals. Much research work has been dedicated to 
characterizing and modeling workloads and their fluctuations 
[6–8], but the major source of variations in execution settings is 
the set of potential changes in operational conditions (e.g., 
fluctuations in network performance, software updates or 
faults, variations in available resources, services or devices) 
and system goals (e.g., requirements modifications, different 
user preferences). We believe that there are many research 
paths yet unexplored in this direction. 

B. Change Scenarios and Changeloads 
Considering the execution scenarios as defined above, we 

may further distinguish between conventional scenarios, in 
which the system is executing without experiencing any 
anomalies, and scenarios associated with changes in the system 
or its environment that induce anomalies in the system, 
typically triggering adaptations. These can be designated as 
base and change scenarios, respectively. Here, we present a 
refined definition of these concepts, firstly introduced in [9]. 

A base scenario corresponds to the most common 
conditions of execution of the system. The workload should be 
representative of the typical amount and type of work assigned 
to (or expected from) the system in a specified time period, and 
operation conditions would comprise a typical setup of systems 
in the domain (including hardware and software resources 
typically used), as well as a representative characterization of 
the system’s environment. Hence, a base scenario reflects the 
operational characteristics of systems in the domain while 
running a typical workload and operating in the absence of 
changes, setting the baseline for comparison with situations 
when the system is faced with changes that may drive it into an 
adaptation process. It should be noted that by “typical” we do 
not mean static: the base scenario represents a stable state of 
the system with no abnormal or faulty conditions considered. 

Change scenarios are based on a base scenario, but include 
a representative sequence of changes that may affect the 
system and its ability to achieve and maintain the fixed goals 
specified in the base scenario. It can then be defined as a tuple 
(wlt, oct, G, C), where: wlt represents the typical workload; oct 
represents the typical operational conditions of the system; G is 
a set of system goals; and C ≠ ∅ is a set of changes applied to 
the state determined by the workload and operational 
conditions. A change scenario is then defined by a typical 
condition of the system followed by a non-empty set of 
changes, while a changeload is a set of change scenarios. 

In this perspective, changeloads become decisive in the 
evaluation of adaptive systems, both during design and 



execution phases. They can provide a realistic mean to assess if 
adaptation is being achieved in an efficient and effective 
manner by subjecting the system to representative changes and 
evaluating the systems response, enabling better well-informed 
and substantiated choices among the existing adaptation 
strategies, algorithms and architectures. Moreover, 
representative changeloads subjected to refinement based on 
system execution and adaptation history at runtime may be 
instrumental in allowing a more sustained assessment (and 
eventual review) of adaptation strategies (either devised at 
design or runtime), as well as adaptation decisions taken by the 
system itself during execution. 

III. CHARACTERIZING AND DESIGNING CHANGELOADS 
The first step towards the definition of a representative 

changeload that can be used to evaluate and compare 
alternative adaptation techniques and strategies or alternative 
adaptive systems is determining which changes are more bound 
to affect the system ability to attain its goals (eventually 
triggering adaptations). The systematic identification and 
classification of change types is then fundamental to support 
the definition of change scenarios, as these rely on the 
instantiation of types of changes for the considered application 
domain, system type, and prospective execution settings. 

A. Identifying and characterizing changes 
The number of potential changes that the system and its 

environment can go through at run-time is virtually unbounded. 
Hence, we need to focus on identifying only the relevant 
stimulus, the ones that may trigger adaptation mechanisms of 
particular interest, and thus have the best potential of relevance 
for the evaluation of how the system responds and behaves 
under varying conditions and settings. 

We define a change type as a tuple (src, A, B) that 
characterizes a change, where: src identifies the source of the 
change: environment (including human operators), resources 
used by the system, or the system itself; A = ⟨a1,...,ak⟩ is a 
vector of attributes that hold information about the specific 
properties (variables) associated with the change type; and B = 
⟨b1,...,bk⟩ describes the dynamics of the attributes in A (how 
they evolve over time, e.g., through a polynomial, exponential, 
or step function). 

Research effort should be directed towards the 
identification, collection and systematization of types of 
changes that might impact and induce significant stress to 
adaptive systems in distinct operational and application 
domains, aiming at the compilation of change taxonomies for 
different areas of SASO systems. These could then be used as a 
starting point for the selection and instantiation of changes to 
be included in change scenarios and changeloads for specific 
systems and application domains. 

We believe that one promising approach to accomplish the 
identification of representative change types is to use historical 
data and logs to correlate basic system indicators and resources 
fluctuations (e.g. CPU, memory and disk usage, network 
traffic, system response time, etc.) with identifiable service 
level events, resulting on the identification of change instances 
faced by systems in real situations. Our assumption is that even 

though some system mechanisms may mask service level 
impact of some changes, this impact is still identifiable in the 
basic resources indicators. We are presently working on 
evaluating the validity of this approach by analyzing one year 
worth of indicators collected from a server DBMS within an 
academic context, in an effort to identify change instances that 
impacted the system, and eventually classify them into 
representative change types for this type of systems based on 
data from the real world. 

B. Defining and selecting representative changeloads 
Each possible change scenario for the systems in the 

evaluation domain is characterized by a base scenario and a set 
of representative changes that may affect the system’s ability to 
achieve and maintain its goals (i.e., as specified in the base 
scenario). Each change included in the change scenario is an 
instantiation of a general change type (as defined in III.A). 
Given a set of change types CT, a change is a tuple (ct, srcinst, 
Ainst, Binst, ti, d) that corresponds to an instantiation of a change 
type, where: ct = (src, A, B) ∈ CT determines the change type 
to be instanced as a change; srcinst is the instance of the source 
of change (i.e., where it actually occurs); Ainst = ⟨a1inst,...,akinst⟩ 
is a vector of attribute values instantiating the attributes in A; 
Binst = ⟨b1inst,...,bkinst⟩ of behavior instances of the elements in 
B; ti determines the time instant in which the change instance is 
triggered; and d is the duration associated with the change. 

The trigger instant assigned to each specific change 
instantiation determines the sequence of changes in a change 
scenario. Also, the combination of trigger instant and duration 
for different changes may result in a combined effect of 
changes on the system. It is worth observing that while some 
specific changes may be transient, impacting the system during 
a particular amount of time (e.g., a temporary peak in 
workload), the duration can be considered equal to ∞ if the 
change is permanent, or 0 if non-applicable (i.e., instantaneous 
change). 

Structuring and identifying changeloads of interest for a 
particular area of application or type of SA or SO system 
presents several significant challenges, which include, but are 
not limited to: 

1) Selecting specific changes: for each underlying context, 
the relevant changes must be identified. This challenge is 
related to the second. 

2) Reducing the change space: systematized approaches 
must be devised to deal with the exponential growth of the 
number of possible changes that might afect the system. 

3) Identifying relevant sequences of changes: combining 
distinct change events in a same change scenario seems 
imperative for real-world situations representativeness, but 
also presents itself as a complex and difficult task. 

4) Scheduling and timing: deciding on triggering instant 
and duration for each change, as well as orchestrating the 
execution of changeload with the workload during system 
evaluation also poses significant challenges. 

In [9] we have proposed an approach based on risk analysis 
to identify and select the most realistic and relevant (sequences 
of) changes (i.e., change scenarios) to be included in resilience 



benchmarking of self-adaptive systems, but this approach 
mostly tries to tackle challenges 1) and 2). 

IV. BENCHMARKS FOR SASO SYSTEMS 
In a previous work [10], we presented and discussed some 

research challenges and perspectives on the design of 
benchmarks for self-adaptive systems. Although mainly 
intended for the evaluation of resilience and comparison of 
similar self-adaptive software systems (i.e., systems 
implementing similar functional requirements and intended to 
execute in comparable environments), the ideas and concepts 
presented, specifically referent to benchmark components, can 
be extended and refined to be applicable in diverse evaluation 
situations for SASO systems. Two examples of application of 
changeload-based benchmarks are given in the following 
subsections, illustrating the potential relevance and 
applicability of such benchmarks in distinct phases of the 
lifecycle of an adaptive system. 

A. Comparing adaptive solutions for the same problem 
As research on SASO systems advances, developers need 

validated and reliable ways to evaluate and compare alternative 
approaches during the system development lifecycle. The 
availability of changeload-based benchmarks, incorporating 
procedures and metrics to reflect timeliness of adaptation, 
overheads, robustness of strategies, among others, would be a 
key tool to realistically evaluate different versions of a system. 
We are working on an experimental approach to evaluate and 
compare diverse adaptation strategies for a self-adaptive 
software system, using as case study Rainbow (architecture-
based platform for self-adaptation) and Znn.com. This work 
will rely on the identification of representative changeloads, 
which will be used in a run-time stimulation of the system. 

B. Comparing adaptive systems aimed at providing the same 
service 
Evaluation and comparison of SASO systems resiliency, 

which we believe is the most relevant aspect from the users 
point of view, and the most relevant to build trust among users 
and boost the adoption of these systems, is a perfectly tailored 
job for changeload-based benchmarks. In this specific case of 
application, we advocate the use a black-box approach, which 
ignores the subtleties of how the system works, and just 
evaluates it for the outcome that is expected of it. With such an 
approach, the applicability of the benchmark is not impacted by 
how autonomic the system is, or which parts or components of 
the system have self-* characteristics, as we do not need 
knowledge of how the system is trying (or not) to deal with the 
changeload during the benchmark. In fact, what we need is a 
way to assess how well the system deals with possible (and 
representative) varying scenarios it may face during its 
operation from the service point-of-view: we pursue a simple 
and practical way to assess how effective and efficient the 
system is in “absorbing” the perturbations and maintain (or 
return to) the best possible fulfillment of its goals, considering 
the (internal and external) context at the time, by evaluating the 
service provided from the user’s point of view. We can, then, 
compare the resiliency of any system in the spectrum from 
static to completely self-managed. 

This approach, although promising, also presents new 
challenges. For instance, specific goals of the compared 
systems may differ (e.g., different values for maximum 
response time, or minimum availability) or have distinct 
priorities. This requires benchmark metrics to realistically 
reflect each system’s degree of achievement, by combining not 
only the impact of the (eventual) adaptation processes in 
service the delivered, but also the weighted evaluation of how 
close to their goals they were able to perform. 

V. CONCLUSIONS 
Considering new computing scenarios that include self-

adaptive and self-organizing systems, we argue that existing 
benchmarking approaches have to evolve, in order to reaffirm 
benchmarking as a reliable source of information on the 
expected behavior of the systems in representative execution 
conditions. Beyond traditional performance metrics and 
workloads (which will still be needed), we claim that 
benchmarks must now include new features that take into 
account the changing nature of todays systems and runtime 
environments, namely changeloads, and service and adaptivity 
related metrics. In practice, these should focus on evaluating 
and comparing the ability of systems to perform while facing 
changeloads in their representative runtime scenarios. We 
believe that the same focus and effort dedicated to research in 
workloads characterization and modeling must be devoted to 
research on topics related to changeloads, as these are indeed a 
fundamental piece on the SASO systems benchmarking puzzle.   
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