
Masters’ Degree in Informatics Engineering
Dissertation
Final Report

Swarm Intelligence Algorithms
for Cluster Geometry
Optimization

Nuno António Marques Lourenço
naml@student.dei.uc.pt

Advisors:
Francisco B. Pereira
Lúıs Paquete

This work was supported by Fundação para a Ciência (FCT), Portugal, under project
PTDC/QUI/ 69422/2006, which is financed by Programa Operacional Factores de
Competitividade (COMPETE) of QREN and FEDER programs. The author is grate-
ful to the Laboratory for Advanced Computing of the University of Coimbra for the
provision of supercomputer time on Milipeia (Project daion 10).

ii

Acknowledgements

I am grateful to my advisors, Francisco B. Pereira and Lúıs Paquete, who have
supported me with their knowledge throughout this dissertation while allowing
me the room to work in my own way.

I would like to express my regards to the ECOS (Evolutionary and Complex
Systems) group for the contributions and opinions.

I would like to show my gratitude to my colleagues, particularly Diogo Machado,
Fábio Pedrosa, Ivo Gonçalves and Marco Simões for all the time that we have
spent together, and the constant encouragement.

To my family and friends.

To all people who contributed to my education.

My final words are addressed to my parents. Thank you for the support and
encouragement. Without them I would not be who I am today and this work
would not be possible.

Nuno Lourenço
Coimbra, July 2011

iii

Abstract

The problem of cluster geometry optimization is relevant for many areas from
protein structure prediction to the field of nanotechnology. A cluster is an
aggregate of interacting atoms or molecules and it can hold a few or even mil-
lions of elements. Finding the organization for the atoms/molecules that has
the lowest potential energy is an NP-hard problem. In this dissertation we
propose an approach based on Swarm Intelligence algorithms. In particular
we describe the application of an algorithm based on Ant Colony Optimiza-
tion to the cluster geometry optimization problem. Results are promising,
since the the proposed approach is able to discover almost all the best-known
solutions for short-ranged Morse clusters between 30 and 50 atoms. A com-
parative analysis with some state-of-art algorithms is presented and it shows
that our approach can be as effective as the state-of-art algorithms. Moreover
we perform an experimental analysis to understand the effect of algorithms
components in the overall performance.

Keywords: Cluster geometry optimization, Morse Cluster, Swarm Intelli-
gence, Ant Colony Optimization

v

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Contributions . 2
1.2 Structure of the dissertation . 2

2 Cluster Geometry Optimization Problem 3
2.1 Atomic Clusters . 3
2.2 Morse Clusters . 4

3 Optimization Algorithms 7
3.1 Single-solution Methods . 7
3.2 Evolutionary Algorithms . 9
3.3 Swarm Intelligence . 9
3.4 Cluster Geometry Optimization 17

4 DACCO: Discrete Ant Colony Cluster Optimization 19
4.1 DACCO . 21

4.1.1 Construction of Search Space 21
4.1.2 Initialize Pheromones . 22
4.1.3 Construction of Solutions 23
4.1.4 Evaluate Solution in Continuous Space 27
4.1.5 Convert Solutions to Discrete Space 28
4.1.6 Apply Discrete Local Search 28
4.1.7 Update Pheromone Values 29

5 Results 33
5.1 Experimental Scenario . 33
5.2 DACCO: Experimental Results 35

vii

CONTENTS

5.3 Algorithm Comparison . 37
5.3.1 DACCO versus PSO . 37
5.3.2 DACCO versus EA . 41

5.4 Detailed Analysis . 43
5.4.1 Cell Size . 43
5.4.2 Neighborhoods . 44
5.4.3 Neighborhood Radius . 46
5.4.4 Discrete Local Search . 49
5.4.5 Pheromone Propagation 50

6 Conclusion 53
6.1 Future Work . 54

Bibliography 54

A Implementation Details 59
A.1 Technical Choices . 59
A.2 Architecture Overview . 60

viii

List of Figures

2.1 Calculation of the pairwise potential for two clusters with 6
atoms: Distances considered to calculate the potential energy
for each conformations are specified. 4

2.2 Morse Potential for different values of β 5

3.1 Example of a mixture of gaussian kernels - The dashed line is
mixture of all the other depicted gaussian functions 16

4.1 Overview of DACCO framework 20
4.2 Search Space. 22
4.3 Division of the search space in cells. 22
4.4 The grey cells represent the final M set, with r = 1 25
4.5 The grey cells represent the final M set, with r = 1 26
4.6 Pheromone Propagation . 30

5.1 Evolution of the MBF of DACCO and PSO. The results were
obtained with the Morse cluster of 50 atoms. 39

5.2 Evolution of the MBF of DACCO and EA. The results were
obtained with the Morse cluster of 50 atoms. 43

5.3 Evolution of the MBF of DACCO with different values of W .
Results were obtained with the Morse instance with 50 atoms. . 44

5.4 Evolution of the MBF of DACCO with different Neighborhoods.
Results were obtained with the Morse instance with 50 atoms. . 46

5.5 Evolution of the MBF of DACCO with different values of r.
Results were obtained with the Morse instance with 50 atoms. . 47

5.6 Evolution of the MBF of DACCO with and without Discrete
Local Search. Results were obtained with the Morse instance
with 50 atoms. 50

5.7 Pheromone distribution without pheromone propagation in the
final iteration of the optimization of a Morse cluster with 50
atoms. 51

ix

LIST OF FIGURES

5.8 Pheromone distribution with pheromone propagation in the fi-
nal iteration of the optimization of a Morse cluster with 50 atoms. 51

A.1 CGACO Class Diagram . 62

x

List of Tables

5.1 Parameter setting used in the experiments 34

5.2 Optimization results of Morse Clusters between 30 and 50 ob-
tained by DACCO . 36

5.3 Experimental results of Morse cluster between 30 and 50 atoms
obtained by the DACCO algorithm and the PSO 38

5.4 Statistical results of comparing DACCO and PSO 40

5.5 Experimental results of Morse cluster between 30 and 50 atoms
obtained by the DACCO algorithm and the EA 41

5.6 Statistical results of comparing DACCO and EA 42

5.7 Optimization results obtained by DACCO with different values
of W in the selected Morse cluster instances 44

5.8 Optimization results obtained by DACCO with different Neigh-
borhoods in the selected Morse cluster instances 45

5.9 Statistical results of comparing the different neighborhoods . . . 45

5.10 Optimization results obtained by DACCO with different values
of r in the selected Morse cluster instances 48

5.11 Statistical results of comparing the neighborhood radius 48

5.12 Optimization results obtained by DACCO with and without
Discrete Local Search in the selected Morse cluster instances . . 49

5.13 Statistical results of comparing DACCO and DACCO without
local search . 49

5.14 Optimization results obtained by DACCO with and without
Discrete Local Search in the selected Morse cluster instances . . 50

xi

Chapter 1

Introduction

Challenging optimization problems occur in many science and engineering
fields. In the Chemistry field, the problem of finding the lowest energy configu-
ration of an atomic/molecular cluster is one example of these type of problems.
For example, it seems that the native structure of a protein is related with the
lowest energy configuration of atoms that composes it. If the structure could be
effectively and reliably derived from the amino-acid sequence, this knowledge
would provide new insights into the nature of protein folding. Such insights
would be helpful, for example, for the development of drugs by pharmaceutical
companies [12].

The problem of finding the lowest energy configuration of an atomic/molecular
cluster is usually designated by Cluster Geometry Optimization. It addresses
how should a set of atoms/molecules be placed in a 3-dimensional space, to
get the minimal configuration energy. During the last years, some efforts have
been made to develop effective algorithms for this type of problem.

In this dissertation we present Discrete Ant Colony Cluster Optimization
(DACCO), a discrete Ant Colony Optimization algorithm, for the problem
of cluster geometry optimization. Ant Colony algorithms are powerful meta-
heuristics for discrete optimization and, in this work, we propose a novel ap-
proach to apply them to continuous domains. Firstly, DACCO discretizes the
domain. Then, the ants belonging to the colony build possible solutions in the
discrete domain. Thirdly, these solutions are moved back to the continuous
space using a local optimization procedure and are evaluated. This process is
repeated for several iterations.

To complement this work we review the state-of-art approaches to the prob-
lem, by focusing in algorithms that have been applied to the cluster geometry

1

CHAPTER 1. INTRODUCTION

optimization problem.

1.1 Contributions

The contributions of this work can be summed up into into three main points:

• We propose an ant colony algorithm that discretizes a continuous prob-
lem and allows the application of well-known discrete variants to solve it.
The approach comprises a set of mechanism that help to map solutions
from one space into another.

• Second, the proposed approach was implemented and tested. The result-
ing framework can be parameterized, and it has diagnostic tools in order
to assess what is happening during the evolution process.

• Finally, we performed a set of experiments with the proposed approach.
These experiments allowed us to make some conclusions about its ef-
fectiveness. The conclusions focus on the individual results, and on the
comparison with other approaches proposed in the literature.

1.2 Structure of the dissertation

The remainder of this document is as follows: In the next chapter we introduce
the problem of cluster geometry optimization. In Chapter 3 we describe some
optimization algorithms, and highlight the main achievements in what concerns
their application to cluster geometry optimization. In Chapter 4 we detail the
DACCO framework. Chapter 5 presents results of the application of DACCO
to the problem of cluster geometry optimization. Finally, Chapter 6 gathers
the main conclusions and points towards possible further work.

2

Chapter 2

Cluster Geometry Optimization
Problem

In this chapter we describe the problem of cluster geometry optimization. In
Section 2.1 we describe atomic clusters, and some of their properties. In Section
2.2 we introduce the potential used to measure the interactions of the elements
in the cluster.

2.1 Atomic Clusters

Understanding the properties of chemical clusters is relevant in many scientific
fields, from protein structure prediction to the field of the nanotechnology [12].
In simple terms a cluster is a set of a few to millions of atoms or molecules,
which may present distinct properties from those of a single particle. In order to
describe the interactions that occur in the cluster a multidimensional function
is used. This function, known as the Potential Energy Surface (PES), contains
all the relevant information about the chemical system, and models all the
interactions between the aggregate particles [39].

The goal of cluster geometry optimization is to determine the optimal struc-
tural organization for a set of particles that compose an aggregate. In other
words, the main goal is to discover the position of all the atoms, or molecules,
in a 3D space so that it corresponds to the lowest potential energy.

Since the PES are computationally heavy functions, model PES are adopted
when studying large clusters. Examples of simplified PES are the pairwise

3

CHAPTER 2. CLUSTER GEOMETRY OPTIMIZATION PROBLEM

Figure 2.1: Calculation of the pairwise potential for two clusters with 6 atoms:
Distances considered to calculate the potential energy for each conformations
are specified.

additive potentials that only consider the distance between every pair of parti-
cles composing the cluster to determine the energy of the cluster. For a given
number of particles different, conformations on the 3-Dimensional space usu-
ally lead to different energy values. An example, for a cluster with 6 atoms, is
shown in Fig. 2.1.

Usually PES functions define highly roughed landscapes, with multiple valleys
[35]. It has been proved that global minimization of atomic PES is a NP-hard
problem [14, 38]. Moreover the number of local minima increases exponentially
as the cluster grows in size.

2.2 Morse Clusters

As described above, model PES are regularly adopted to understand chem-
ical properties of real materials and as benchmarks of new optimization al-
gorithms. The most widely adopted pairwise models are the Lennard-Jones
[21] and Morse potentials [28]. Since the Morse potential provides accurate

4

2.2. MORSE CLUSTERS

Figure 2.2: Morse Potential for different values of β

approximations of real materials, and define a more challenging benchmark
[3, 32], we focus our attention on the later. The energy function of a N -atom
Morse cluster is obtained by the sum of all pairwise contributions that occur
between the atoms. Following [13, 28] we can formulate this as:

VMorse = ε
N−1∑
i=1

N∑
j=i+1

(
exp−2β(rij−r0)−2 exp−β(rij−r0)

)
(2.1)

where rij is the distance between particles i and j in the aggregate, ε is the bond
dissociation energy, r0 is the equilibrium bond and β is the range exponent of
the potential. Following [13], ε and r0 are both set to 1.0, leading to a scaled
version of the Morse function without specific atom interactions. Thus, the
potential has a single parameter β that establishes the shape of the energy
contribution of every pair of atoms [11]. Fig. 2.2 illustrates how the pair-
wise contribution is modeled as a function of distance between atoms. Two
different values of β are depicted: β = 6.0, which corresponds to the long-
ranged potential, and β = 14.0, which corresponds to a short-ranged version.
As we can see, in both cases, the optimal potential energy is achieved when the
atoms are placed at a distance of 1. This value corresponds to the equilibrium
bond value. Fig.2.2 also reveals that if we move from a long-ranged potential
(β = 6.0) to a short-ranged version (β = 14.0), we get a narrower potential
curvature, promoting the appearance of roughed search landscapes, with a
higher number of local minima [11].

5

Chapter 3

Optimization Algorithms

In this chapter we describe some approximation methods for global optimiza-
tion. We do not aim to provide a comprehensive presentation of optimization
algorithms. We offer just a brief description of several methods that focus on
global, unbiased, iterative, approximation algorithms (a class usually known as
metaheuristics). The reason for this choice is that current state-of-art meth-
ods for cluster geometry optimization belong to this class. In Section 3.1 we
briefly highlight single-solution methods, followed by Evolutionary Algorithms
in Section 3.2. In Section 3.3, we describe example of swarm intelligence algo-
rithms, focused on ant colony optimization methods. Finally, in Section 3.4,
we give a brief description of how some of the presented methods were applied
to the problem of cluster geometry optimization.

3.1 Single-solution Methods

Single-solution algorithms generate one initial solution and try to improve it
iteratively. A remarkable example is Simulated Annealing in which has been
applied to the cluster geometry optimization problem. However, it is not the
only single-solution method. Hill-Climbing (HC), Tabu Search (TS), Iterated
Local Search (ILS) or Variable Neighborhood Search (VNS) are also other
examples of single-solution methods. For details on these methods, the reader
can see, e.g., [25].

7

CHAPTER 3. OPTIMIZATION ALGORITHMS

Simulated Annealing

Simulated Annealing (SA) [19] is a generic probabilistic metaheuristic. The
inspiration to this method comes from annealing in metallurgy, a technique
involving heating and controlled cooling of a material. The heat causes the
atoms constituting the material to become unstuck from their initial positions
(a local minimum) and wander randomly through space. Then, the slow cool-
ing gives them more chances of gradually finding configurations with a lower
internal energy than the initial one.

Analogously with this physical process, each step of the SA selects a nearby
solution. If the new solution is better than the current one, the new solution
replaces the current. However, if the new solution is worse than the current it
can still be selected. Acceptance depends of two criteria:

1. How worse is the new solution.

2. How many steps have been performed.

The number of steps of the algorithm is controlled by T , which is called tem-
perature. It starts with an initial high value, that decreases over time, until
it reaches the minimum value of Tmin. The generic behavior is shown in Algo-
rithm 1.

Algorithm 1 Simulated Annealing
define a random initial solution s
best solution← s
while termination condition not met do

choose a neighbor solution snew
if accept(s,snew,T) then
s← snew

end if
if is better(best solution,s) then
best solution← s

end if
decrease(T)

end while
return best solution

The accept() procedure checks if the new solution is to be accepted. is better()
check if the current solution is better than the best solution found until that
moment.

8

3.2. EVOLUTIONARY ALGORITHMS

3.2 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a family of algorithms whose main inspi-
ration is the biological evolution [15]. EAs use the reproduction, mutation,
recombination and selection mechanisms, which play an important role in bio-
logical evolution. EAs maintain a population of individual solutions, which can
be selected for reproduction. Selection is probabilistic and biased by the fitness
of the individuals. In reproduction, two selected individuals exchange informa-
tion about their solutions. This process is called crossover and it creates two
new solutions. Since the parents are promising solutions, with crossover we
aim to create two new solutions that, hopefully, are promising as well. Next,
mutation slightly modifies the offspring. The application of the mutation op-
erator is probabilistic and it aims to maintain diversity in the population. In
the last step, offsprings replace the old population, and a new iteration starts.
The general algorithm is presented in Algorithm 2.

Algorithm 2 General Evolutionary Algorithm
randomly generate initial population
evaluate initial population
while termination condition not met do

select parents
crossover
mutation
evaluate offspring
replacement

end while
return best individual in the population

For more details on evolutionary algorithms see, e.g., [15].

3.3 Swarm Intelligence

The idea of swarm intelligence is to develop algorithms that model the behav-
ior of a group of animals that engage in social interactions. Some examples
are synchronous bird flocking, ants gathering food or fish shoals escaping from
a predator [18]. In the following sections we describe the Ant Colony Opti-
mization (ACO) framework, which is inspired by the behavior of foraging ants
searching for food.

9

CHAPTER 3. OPTIMIZATION ALGORITHMS

Traveling Salesman Problem

The Traveling Salesman Problem (TSP) will be used to help explain the ACO
algorithms described. We choose this problem, due to its relevance, and be-
cause it is a benchmark for all ACO algorithms.

The TSP is the problem of a salesman, who starting from a initial city, wants
to find the shortest tour that visits a set of cities. More formally, we have
a fully connected, undirected graph G = (C,E), where C contains the cities
that the salesman has to visit, and E are the arcs connecting the cities. The
problem consists of finding the minimum length Hamiltonian circuit of the
graph, where an Hamiltonian circuit is a closed path visiting each node c ∈ C
exactly once.

Ant Colony Optimization Algorithms

Ant colonies are distributed systems [10] composed by a large amount of simple
agents. They maintain a highly structured social organization, which allows the
colonies to accomplish complex tasks. The individuals in the colony communi-
cate with each other, via stigmergy, which is a form of indirect communication
mediated by modifications in the environment where the ants are working. In
concrete, they have a chemical called pheromone that they deposit in the en-
vironment, which will be sensed by other ants, and help them in their work.
One example of pheromones is the “trail pheromone”, that is very important
for the social life of some ant species. This specific type of pheromone allows
ants to mark paths, for example, from the nest to food source.

The idea behind ant algorithms is then to use a form of“artificial stigmergy”, to
coordinates artificial ant colonies. With this in mind, Marco Dorigo proposed
an ACO algorithm in 1992 [7].

Algorithm 3 presents the general idea behind the ACO algorithm.

Algorithm 3 General ACO Algorithm
while termination condition not met do

ConstructSolutions()
UpdatePheromones()
DaemonActions() {optional}

end while

In ACO a problem is represented as a graph G that artificial ants will cross

10

3.3. SWARM INTELLIGENCE

when building solutions. G is composed composed by a set of solution compo-
nents C, connected by a set E of edges. The specific composition of G depends
on the problem being solved. Using the TSP as an example, the cities that
the salesman has to visit correspond to C and the routes that he has to travel
correspond to E. In the ConstructSolutions() procedure, each ant navigates
the graph G, and constructs a solution. This solution is built incrementally
by stochastic local decisions that make use of pheromone trails and heuristic
information about the problem. Once an ant has built a solution, or while the
solution is being built, it evaluates the (partial) solution.

The UpdatePheromones() is the process by which the pheromone trails are up-
dated. The trails values can either increase, as ants deposits pheromone in the
components or edges that they use, or decrease, due to pheromone evaporation.
In practice, the deposit of pheromone trails increases the probability that those
components/edges, which belonged to good solutions, will be selected again.
Differently, pheromone evaporation implements a forgetting method: it avoids
early convergence to a suboptimal region, therefore favoring exploration of new
areas of the search space.

Finally DaemonActions() procedure corresponds to actions that are not per-
formed by ants. Examples of this daemon actions are the local search proce-
dures, or the collection of global information to be used whether it is useful
or not to deposit additional pheromone to bias the search process from a non
local perspective.

During the years several ACO algorithms were proposed. Next we introduce
and describe the some of these proposed algorithms.

Ant System

Ant System (AS) was first proposed in 1992 by Marco Dorigo [7, 9]. Initially,
the pheromone trails are initialized according to a simple rule: the initial value
must be higher than the total amount of pheromone that an ant will deposit
in one iteration. Heuristics to calculate this value are commonly used.

Each ant in AS constructs a complete solution to the problem in question.
For instance, in the TSP, an ant must construct a tour. At each construction
step, an ant uses a probabilistic rule to decide which new component it should
add to the current solution. Following [9], the probability with which ant k,
currently at city i, chooses to go to city j is given as follows:

pkij =
[τij]

α[ηij]
γ∑

l∈Nk
i
[τil]α[ηil]γ

, j ∈ Nk
i , (3.1)

11

CHAPTER 3. OPTIMIZATION ALGORITHMS

where τij is the pheromone trail in edge (i, j), η is an heuristic value that is
problem related (e.g. for the TSP: η = 1

dij
, where dij is the distance between

city i and city j), Nk
i is the feasible neighborhood when the ant k is in the

node i (e.g. in TSP is the set of cities that ant k has not visited yet), α, γ
are parameters of the algorithm. The α parameter determines the relative
influence of the pheromone trail, and γ determines the relative influence of the
heuristic information.

After all ants have constructed their solutions, the pheromone trails must be
updated. First, and if we consider pheromone evaporation [9], we must update
the trail by taking into account the percentage of pheromone to evaporate:

τij = (1− ρ)τij, ∀(i, j) ∈ E, (3.2)

where 0 ≤ ρ ≤ 1 is a parameter that determines the quantity of pheromones
to evaporate.

Then we perform the pheromone trails update [9]:

τij = τij +
m∑
k=1

∆τ kij, ∀(i, j) ∈ E, (3.3)

where m is the total number of ants, ∆τ k is calculated using 1
Lk , where Lk is

the fitness of the solution of the kth-ant.

This algorithm had a poor performance when applied to larger instances of
optimization problems [10], like the TSP. Therefore, there have been attempts
to improve the algorithm. Elitist Ant System(EAS) [7, 9], Rank-Based Ant
System(ASrank) [4], Ant Colony System [8], and Max-Min Ant System (MMAS)
[36] are the most relevant contributions.

Elitist Ant System

The main idea behind Elitist Ant System (EAS) [7, 9] is that the edges be-
longing to the best solution found since the beginning of the algorithm should
receive more pheromones. Adding an additional parameter that reinforces
pheromones if an edge belongs to the best tour so far to Eq. (3.3) [7, 9], the
final equation will be:

τij = τij +
m∑
k=1

∆τ kij + e∆τ bs, (3.4)

12

3.3. SWARM INTELLIGENCE

where e is the weight given to the best tour so far, and ∆τ bs is determined
using 1

Lbs , where Lbs is the fitness of the best solution so far.

Rank-Based Ant System

In ASrank each ant deposits pheromones according to its rank, when compared
to other ants of the colony. Besides the best-so-far-ant deposits an additional
amount of pheromone.

Before the updating of pheromones, ants are sorted, by ascending order, of the
quality of the current solution. In each iteration, only the (w− 1) best ranked
ants, and the best ant so far, can deposit pheromone, where w is a parameter.
Thus, the ASrank pheromone update rule is as follow [4]:

τij = τij +
w−1∑
r=1

(w − r)∆τ rij + w∆τ bsij , (3.5)

.

Ant Colony System

This algorithm [8], despite of being inspired by the AS, differs from it in three
main aspects:

1. It exploits the accumulated search experience, through the use of a more
aggressive action choice rule: Eq. 3.6.

2. Pheromone update and pheromone deposit takes place only on the edges
belonging to the best-so-far solution;

3. It uses an online pheromone update strategy. Each time an ant, while
building solutions, uses an edge (i, j), it removes some pheromone from
it. This increase the exploration of alternative solutions.

In Ant Colony System(ACS), when an ant is building a solution, it chooses to
move from component i to component j according to the following pseudoran-
dom proportional rule [8]:

j =

{
arg maxl∈Nk

i
(τil[η

γ
il]), if q ≤ q0

P, otherwise,
(3.6)

13

CHAPTER 3. OPTIMIZATION ALGORITHMS

where q is a uniformly distributed variable in the range [0, 1], q0, 0 ≤ q0 ≤ 1,
is a parameter, P is a random variable selected according to Eq. (3.1), and
γ is a parameter. The q0 parameter defines the degree of exploration and the
choice of whether to concentrate the search around the best-so-far, or explore
other locations.

MAX −MIN Ant System

MAX −MIN Ant System (MMAS) introduces four main modifications to
the traditional AS [36]:

1. only the best-so-far or the iteration-best ants are allowed to deposit
pheromones:

τij = τij + ∆τ bestij (3.7)

where ∆τ best is the computed using 1
Lbest , L

best is the fitness of the best
solution so far or the fitness of the best solution in the iteration, depend-
ing of which one is used. In most cases best-so-far and iteration-best
according to a schedule, that can be based, for example, in the number
of iterations.

2. Introduction of a limit to pheromone trails [τmin, τmax]. This modification
intends to counteract the effect of stagnation, that is the situation where
all ants build the same solution.

3. In the beginning, all the pheromone trails are initialized with τmax. Thus,
and with small pheromone evaporation rate, the exploration is increased
in the early stages of the search.

4. Pheromone trails are reinitialized every time the system approaches stag-
nation, or when no improved tours have been generated for a certain
number of consecutive generations.

Multi-colony ant algorithm

The main idea behind this algorithm is to have a set of identical colonies solving
the same problem. In [27] they used a variant of ACS with multiple colonies
working in different locations of the search space, where the best colonies share
information with the worst. This information sharing is made by passing along,
to the worst colony, the best-so-far solution. Every time a migration occurs,
the worst colony uses the new solution as if it was found by it.

14

3.3. SWARM INTELLIGENCE

Approximate Nondeterministic Tree Search

Approximate nondeterministic tree search (ANTS) is an ACO algorithm which
exploits the ideas from mathematical programming [26]. ANTS computes lower
bounds every time it adds a new component to a partial solution, and then
uses it to define the heuristic information necessary to build solutions. The
use of this lower bounds has advantages, since we can discard a component
if it leads to partial solutions that have a larger cost than the best-so-far
solution. However calculating lower bounds at each step, can introduce a
higher computational overhead.

Hyper-Cube Framework for Ant Colony Optimization

The hyper-cube framework was introduced in [2] to automatically rescale the
values of pheromone trails, so they can stay in range [0, 1]. This choice was
inspired by other algorithms that used binary representation of the solutions.
In this type of representation, the decision variables typically correspond to
solution components as they are used by the ants, that is, if a component is in
the ant solution, it takes the value 1, else it takes the value 0. Thus, a solution
corresponds to one corner of a n-dimensional cube, where n is the number
of decision variables. The relationship with ACO lies in the normalization of
the pheromones to the interval [0,1]. In this case, the pheromone vector is a
point in the solution space; in case τ is a binary vector, which corresponds to
a solution of the problem.

Ant Colony Optimization for continuous domains

ACO algorithms were originally proposed to solve discrete problems. Yet there
are problems that are not discrete. Thus, and trying to keep the biological
inspiration, there are some proposals to solve continuous problems using an
ACO framework. Here we present one of the main approaches, proposed by
Socha et al.[33]. For other alternatives in ACO for continuous problems see
[1, 20, 37].

Ant Colony Optimization for continuous and Mixed-Variable Opti-
mization

ACO for continuous and Mixed-Variable Optimization(ACOR) uses a simple
approach: if a discrete probability distribution is used for discrete problems,

15

CHAPTER 3. OPTIMIZATION ALGORITHMS

Figure 3.1: Example of a mixture of gaussian kernels - The dashed line is
mixture of all the other depicted gaussian functions

then a continuous probability distribution function - the Probability Density
Function (PDF), should be adopted for continuous problems [33].

The most popular PDF is the normal (or gaussian) function, defined by,

f(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(3.8)

where µ is the mean and the σ is the variance. The use of the normal distri-
bution has one drawback, because it can not describe a situation where there
are two promising disjoint locations in the search space, as it only has one
maximum. To solve this problem, the algorithm uses a mixture of normal
distributions, as we can se in Fig. 3.1.

While building solutions, an ant, at a certain step i, generates a random num-
ber according to an PDF that composes the kernel mixture, and add it to
the solution. This process is repeated until a complete solution has been con-
structed. Then solutions are evaluated.

After the evaluation process we have to update the pheromone values. Hence
we have to reinforce the influence of functions that lead to good solutions, and
reduce the the influence of the function that lead to not so good solutions.
The reinforcement can be achieved by adding a new PDF function, and the
decrease can be achieved by removing PDFs from the kernel mixture. For more
details in the algorithm see [33, 34].

16

3.4. CLUSTER GEOMETRY OPTIMIZATION

3.4 Cluster Geometry Optimization

Here we present some algorithms that were proposed in the literature to tackle
the problem of Cluster Geometry Optimization, using the Morse potential as
a benchmark function.

One of the first attempts of global optimization of the Morse potential was
made by Wales et al. [12, 13]. In their work they used a Monte Carlo mini-
mization method [22] combined with a local search algorithm. This method is
known as Basin-Hopping (BH). In the work conducted by Wales et al., they
deform the surface of the PES, in a way that some of the valleys are removed.
This transformation does not affect the energies of the minima. They were
able to found almost all the known global optima for short-ranged (β = 14.0)
Morse clusters up to 80 atoms.

Roberts et al. [30] proposed the first EA to the optimization of Morse clusters.
They used a certain number of components that had been previously proposed:
real-valued representation of the Cartesian coordinates of the atoms, a local
search method to improve the solutions, and the Cut and Splice [6] crossover.
This crossover is a specific operator handling atomic clusters. First, it defines
a plane that passes through the center of mass of the clusters to be combined.
Then the clusters are cut by this plane and the complementary halves are joined
(spliced) together in order to form a new offspring. The mutation operator in
this work corresponds to assign random coordinates to a certain number of
atoms. The algorithm was applied to instances between 19 and 50 of the
Morse Potential with β = 6.0 and β = 14.0. The results showed that it was
able to discover nearly all the known global optima [30].

Grosso et al. [16] proposed Population Basin Hopping (PBH), a stochastic
method, in which different conformations of the clusters are maintained in
a population of solutions, hence ensuring a sufficient level of diversity. The
diversity is enforced through the definition of problem specific diversity mea-
sures. Moreover, in their work, Grosso et el. applied a two-phase local search
algorithm, in order to improve the efficiency of the method.

Dynamic lattice searching (DLS) is another effective approach for cluster ge-
ometry optimization [5]. It starts with a randomly generated local minimum
and iteratively applies a greedy strategy to search for better solutions in the
neighborhood. This search is aid by a Dynamic Lattice (DL). The DL is con-
structed adaptively, based on a starting local minimum, and then locating all
the possible locations for new atom. Afterwards, they perform a greedy search
for conformations with low potential energy values: it iteratively moves the

17

CHAPTER 3. OPTIMIZATION ALGORITHMS

atom located at the position with the highest energy (in the lattice) to the
vacant position with the lowest energy (in the lattice) [5, 31]. The method is
restarted several times to ensure proper exploration of the search space [5].

Pereira et al.[29] proposed a steady-state EA, with diversity control to the
problem of cluster geometry optimization. In a steady-state EA, after gener-
ating a new offspring it is necessary to decide if it will enter the population,
and if it does, which individual it will replace. In general, replacement strate-
gies are related with the fitness and/or the age of individuals. Fitness based
strategies check the quality of the individuals to decide who will be replaced.
In the age based strategies the oldest elements are replaced. Moreover, these
strategies can still be combined with other mechanisms, in order to keep a
suitable level of diversity in the populations. In Pereira et al.[29] they propose
a couple of mechanisms to keep the diversity in the population. They showed
that the diversity is important to improve the effectiveness of the EA. The
proposed EA was able to find all the known optima for short-ranged Morse
clusters up to 80 atoms.

More recently, Lourenço et al. [24] proposed a Particle Swarm Optimization
algorithm to the problem of cluster geometry optimization. The proposed algo-
rithm has several features that were specifically design to tackle this problem.
The most noteworthy are: the adoption of specific rules to update current po-
sition of particles, where the velocity is only applied to fraction of the solution;
and the embracing of a steady-state strategy to update the population parti-
cles. This strategy allows for a simultaneous exploration of the neighborhoods
of the current locations, and of the best ever seen solutions. Additionally it
has a diversity mechanism, to postpone convergence. The results presented
showed that the algorithm was able to find all the best-known solutions to
short-ranged Morse instances between 30 and 50 atoms.

18

Chapter 4

DACCO: Discrete Ant Colony
Cluster Optimization

In this chapter we present DACCO, the ACO algorithm that we used to tackle
the problem of Cluster Geometry Optimization. In this dissertation we are
interested in developing an effective ACO approach to the problem of cluster
geometry optimization. Yet, ACO algorithms were officially proposed for dis-
crete environments and currently there are many variants that are state-of-art
methods for different combinatorial optimization problems. Despite a few re-
search efforts [1, 20, 33, 37], existing ACO algorithms to continuous domains
are somehow incipient, particularly if compared with the most well-known dis-
crete variants such as MAX −MIN , Ant System or Ant Colony System.
Hence, in our research we decided to discretize our problem in order to use a
discrete variant of ACO. Fig. 4.1 presents an overview of the framework that
we propose.

A mapping operator converts the original search space into a discrete version.
Then, the ACO algorithm builds the solutions in the Discrete-Space. After,
the application of Local Optimization converts the solutions back to the Con-
tinuous Space where they are evaluated. Finally, the Mapping operator will
convert the evaluated solutions to the discrete space to allow the pheromone
update.

This framework poses some interesting research questions that will be ad-
dressed in the next sections:

1. How to model a real-valued problem in a such a way that it can be solved
by a discrete ACO algorithm (Mapping);

19

CHAPTER 4. DACCO: DISCRETE ANT COLONY CLUSTER
OPTIMIZATION

Figure 4.1: Overview of DACCO framework

2. Study the performance of an ACO algorithm in a problem that was not
originally discrete;

DACCO follows the MAX − MIN Ant System [36], since it was one of
the most successful ACO approaches. However, MAX − MIN has some
drawbacks:

1. It might be difficult to define the initial values to the pheromone limits;

2. Readjust the limits every time a new best solution is found;

3. The decision in what ant to use to update the pheromones;

To overcome these drawbacks, DACCO incorporates the modifications pro-
posed by the Hyper-Cube Framework (HCF) [2]. In the HCF the pheromones
values are always kept in the interval [0,1]. Hence, we do not have to define an
initial limit to the pheromones neither readjust them every time we find a new
best solution. Furthermore, the rule to update pheromones in [2] uses more
than one ant. They use weights to adjust the relative influence of each ant to
the pheromone values. These weights depend on the state of the algorithm.

DACCO is not an exactMAX−MIN / HCF variant as it incorporates some
modifications, in order to adapt it to our problem. The main modifications
are:

1. The pheromone update rule does not deposit all the pheromone in one
position;

2. We only use two ants to update the pheromones.

In the next sections we present a high level overview of our entire algorithm.
Thereafter we will split it in its main components and we will explain them in

20

4.1. DACCO

more detail.

4.1 DACCO

Here we present a high level description of our ACO algorithm for cluster
geometry optimization: DACCO. In the following sections, we break it into
smaller pieces, and explain them in detail.

Algorithm 4 DACCO
Construct Search Space
Initialize Pheromones
while termination condition not met do

Construct Solutions
Evaluate Solutions in Continuous Space
Convert Solutions to Discrete Space
Apply Discrete Local Search
Update Pheromone Values

end while
return best individual in the population

4.1.1 Construction of Search Space

In this procedure we discretize the search space, so that we can build a graph
G where the artificial ants can work. The search space is defined by a cube
of size N (1/3), where N is the number of atoms, as depicted in Fig. 4.2. To
transform it we decided to divide the cube of Fig. 4.2 into smaller cubes to
which we gave the name of cells. These cells have to be large enough to contain
one atom, but small enough to avoid having more than one atom. The final
result of this transformation is depicted in Fig. 4.3.

The Alg. 5 gives more details about the construction of the space. It receives
the cube size N (1/3), and the cell size W. In the first instruction we begin by
defining an empty search space. Then we define the maximum coordinate of
our problem. It is important to say that our cube is only defined in the non-
negative side of the xx, yy, zz axis (Fig. 4.2). After this we calculate the center
of each cell in terms of (x,y,z) components and add it to the new search space.
The return value is the discretized search space.

21

CHAPTER 4. DACCO: DISCRETE ANT COLONY CLUSTER
OPTIMIZATION

Figure 4.2: Search Space.
Figure 4.3: Division of the search space
in cells.

The cells that are part of the discretized search space are then used as com-
ponents C of G that the ants use to build solutions. The edges E are arcs
connecting all the components of the graph. In the following sections we will
use the name cells indistinctively.

4.1.2 Initialize Pheromones

Before we start the optimization process, we need to initialize the pheromone
matrix. This matrix contains the information about the quantity of pheromones
of a certain path, and therefore it plays an important role in process of building
solutions. For example, in the TSP the pheromone matrix contains informa-
tion about how many times a certain path from city i to city j has appeared
in a good solution.
In cluster geometry optimization problems what is important is the position
of atoms in space, and not the order in which they are placed. Therefore in
DACCO, we are not interested in building paths, but place atoms in cells.
Thus, instead of having information about how many times we have gone from
cell i to cell j, we have information about the desirability of having a certain
component i in a solution (i.e. placing an atom in a cell i).

In the beginning of the algorithm, all the cells have the same desirability of
being in a solution, and for that reason we initialize the pheromone matrix
with the value of 0.5, as in [2].

22

4.1. DACCO

Algorithm 5 Construct Search Space

discretized search space = {}
max coord = N (1/3)

cell center = W/2
total number of cells = ceil(max coord/W)
for x = 1→ total number of cells do
for y = 1→ total number of cells do
for z = 1→ total number of cells do
discretized search space+ = (x ∗ W + cell center, y ∗ W +
cell center, z ∗W + cell center)

end for
end for

end for
return discretized search space

4.1.3 Construction of Solutions

The construction of solutions is achieved by the method Construct Solutions.
An ant solution corresponds to a complete atomic cluster. The algorithm starts
by defining a start position for the ant, thus we have to place the ant in a cell
of our search space. Then the ant calculates which are the neighbors of it,
and chooses, in a probabilistic way, a new cell to move. After it knows which
cell is the next, it places the atom in the center of the current cell, adds it to
solution, and moves to next one. This process is repeated until each ant has
a cluster with all the atoms in place. The general algorithm that defines this
construction process is detailed in Alg. 6.

Algorithm 6 Construct Solutions
Given an ant do:
placed elements = 1
while placed elements < N do
neighbors = find feasible neighborhood(ant)
next cell = find next cell(ant, neighbors, pheromone matrix)
ant.solution[placed elements] = Atom(ant.current cell)
ant.current cell = next cell
placed elements = placed elements+ 1

end while

23

CHAPTER 4. DACCO: DISCRETE ANT COLONY CLUSTER
OPTIMIZATION

In the end of Alg. 6 an ant will have built a complete atomic cluster.

In the following we explain:
the find feasible neighborhood() and find next cell().

Find Feasible Neighborhood

This procedure determines the cells that are available in the neighbor of the
current position of an ant. To find these neighbors, we used some different
techniques:

1. Moore Neighborhood

2. Convex Hull

3. Full Moore Neighborhood

Moore Neighborhood This neighborhood is defined, in R3, by the cube
that is centered in a the current cell (x0, y0, z0). The Moore neighborhood
of range r can be defined by the set M of all points (x, y, z) that verify the
following condition:

M = {(x, y) : |x− x0| ≤ r ∧ |y − y0| ≤ r ∧ |z − z0| ≤ r} (4.1)

where r ≥ 0. However, in our approach the values of r are only in the range
r > 0, once we need to have at least one cell that is different from (x0, y0,
z0). Fig. 4.4 depicts the a Moore neighborhood with r = 1. We use a 2D
representation for simplicity.

The final M set will then be used to determine which cell will be the next.

Convex Hull With this technique we wanted to use more information about
the problem, in the choice of the neighbors. Since the Morse potential takes
in account the distance of all pair of atoms that composes the aggregate, we
thought that we should use the information of the partially constructed solution
to help choose the neighborhood. One of the first ideas that came into mind
was the following: build a convex hull, with the atoms that are in the partial
solution, and then determine all the cells that are at distance one from the
segments defined by the points of the convex hull. The process is detailed in
Alg. 7.

24

4.1. DACCO

Figure 4.4: The grey cells represent the final M set, with r = 1

Algorithm 7 Convex Hull
Given a partial solution of an ant do:
ch = find convex hull(partial solution)
for i = 1→ length(ch) do
for all cells CL of discretized search space do
if (distance(CL, segment(ch[i− i], ch[i])) = 1 then
neighbors = neighbors ∪ CL

end if
end for

end for
M = remove repeated cells(neighbors)
return M

The remove repeated cells() procedure removes the repeated cells that are in
the M set, since one cell can be in more the one atom neighborhood. The M
set will then be used to determine which cell should be added to the solution.

This technique uses the information of all the atoms that had already been
placed, but it demands a lot of computational resources. Every time we place
a new atom we have to calculate the Convex Hull of the current partial solution.
This, together with the additional time on the calculus of the distance of all
cells to the segments, we decided to consider other alternatives.

Full Moore Neighborhood This technique was another attempt to use
information about the partial constructed cluster. Here we iterate by all atoms

25

CHAPTER 4. DACCO: DISCRETE ANT COLONY CLUSTER
OPTIMIZATION

Figure 4.5: The grey cells represent the final M set, with r = 1

that are in the partial solution, and we look for the neighbors of them. The
neighborhood that we use is the Moore neighborhood with the same r for all
the atoms. The general idea is depicted in Fig. 4.5. We use a 2D representation
for simplicity. The following algorithm gives more details about this technique:

Algorithm 8 Full Moore Neighborhood
Given a partial solution of an ant do:
for i = 1→ length(ch) do
for all atoms AT of partial solution do
neighbors = neighbors ∪Moore Neighborhood(AT)

end for
end for
M = remove repeated cells(neighbors)
return M

Find Next Cell

This procedure receives the feasible neighborhood and determines the next
cell to be part of the solution. This means that, an ant, located in a cell
i should choose a new cell j to add to the solution. This choice is based
on the pheromone value of cell j, ταj and the heuristic information ηγj . It
is important to say that we do not use the heuristic component of the choice
function. The heuristic information is applied when we are building the feasible
neighborhood. In the case of our problem we want to place atoms that are
close to each other, and being so we can discard the cells that are too far away
from the current one. Taking this into account the choice function depends

26

4.1. DACCO

only of the pheromone value of cell j:

pj =
[τj]

α∑
l∈M [τl]α

(4.2)

Providing all values of the rule function are stored in an certain set V , the
iterative cell selection is determined by a roulette wheel algorithm.: each value
of the V determines a slice on a circular roulette wheel. Next, the wheel is
spun and the cell to which the marker points is chosen as the next cell for the
ant. In Alg. 9 we detail the find next cell procedure, and in Alg. 10 we detail
the roulette wheel selection method.

Algorithm 9 Find Next Cell
Given a set M of candidate cells do:
for all cells in M do
V = Apply Eq. 4.2 the probability of each cell

end for
return roullete wheel(V)

Algorithm 10 Roulette wheel
Given a set V of probabilities do:
index = 0
total = V [0]
pick a random value r uniformly from [0, 1]
while total < r do
index = index+ 1
total = total + V [index]

end while
return index

After finding the next cell, the ant will place the atom in its center, and then
repeat all this process until it has a complete solution, that is, all the atoms
have been placed.

4.1.4 Evaluate Solution in Continuous Space

The evaluation of the solutions built by the ants is made in this procedure.
Since we have the atoms in the center of the cell, which are represented by
(x, y, z), where x, y, z ∈ R, we do not have to make any additional computation
to pass from the discretized space to the continuous space.

27

CHAPTER 4. DACCO: DISCRETE ANT COLONY CLUSTER
OPTIMIZATION

The evaluation of the solutions proceeds in two steps. First, the Broyden-
Fletcher-Goldfarb-Shannon (L-BFGS) quasi-Newton method [23] move the so-
lution to the nearest local optimum. Then equation 2.1 is used to determine
the potential energy of the resulting cluster.

L-BFGS is an efficient local optimization method that combines the modest
storage and computational requirements of conjugate gradient methods with
the super linear convergence exhibited by full memory quasi-Newton strategies.
This local optimization algorithm is usually adopted by hybrid approaches for
cluster geometry optimization problems [16, 17, 29].

4.1.5 Convert Solutions to Discrete Space

In this procedure we convert the solutions, which were returned by Evaluate
Solutions in Continuous Space procedure, to the discrete space. This is very
important, because the solutions returned after their evaluation are different
from the ones that were given as parameters. To convert the cluster to the
discretized space, we apply the following algorithm: given a certain atom, we
move it to center of the nearest cell. This process is detailed in Alg. 11.

Algorithm 11 Convert Solution to Discrete Space
Given a solution CS in the continuous space do:
for all atoms AT of CS do
for all cels CL of discretized space do
distances[AT][CL] = distance(AT,CL)

end for
discrete solution = discrete solution ∪min dist cell(AT, distances)

end for
return discrete solution

The min dist cell() procedure receives an array distance of atom to cells, and
returns the cells that is closer to the atom in question.

After this, we move all the cluster to the origin of the axis. This allows us to
have the information concentrated in a place of the search space.

4.1.6 Apply Discrete Local Search

This procedure is responsible for applying some perturbations in the solutions
that were built by the ants, in an attempt to improve the search results.

28

4.1. DACCO

After the solutions have been converted to the discrete space, we look for the
atom that has the worst contribution to the Morse potential, and we move it
to a random cell. After this, we evaluate the solution again, and if the result
is a better solution, we keep it. This process is repeated for a given number of
tries. The Alg. 12 gives a description of the process:

Algorithm 12 Apply Discrete Local Search
Given an ant solution ASdo:
i = 0
best solution = AS
current solution = AS
while i < local search iterations do
worst atom cell = find atom worst contribution(current solution)
new position = random cell()
current solution[worst atom cell] = new position
evaluate(current solution)
if is better(current solution, best solution) then
best solution = current solution

else
current solution = best solution

end if
end while
return best solution

The local search iterations are the number of iterations that we make to try
improve the solutions. The random cell() procedure returns a random cell that
belongs to the search space, and that is not already occupied.mThe is better()
procedure checks if the first solution is better than the second one.

4.1.7 Update Pheromone Values

This procedure is responsible for the update of the pheromones. We start
by decreasing the current values of the pheromones, in a certain percentage,
simulating the pheromone evaporation in the nature. After we follow the rule
presented in [2] to deposit pheromones, with some minor differences. In the
cited approach, they used 3 ants to update the trails:

1. Iteration-best ant - which corresponds to the best ant in the current
iteration of the algorithm;

29

CHAPTER 4. DACCO: DISCRETE ANT COLONY CLUSTER
OPTIMIZATION

Figure 4.6: Pheromone Propagation

2. Restart-best ant - which corresponds to the best ant found since the
restart of the algorithm

3. Global-best ant - which corresponds to the best solution found since the
start of the algorithm

However, in our approach we do not have a restart mechanism, thus we do not
need to use the restart-best ant.

As was pointed out by [2], finding a schedule for the usage of the ants can
be a difficult task, and it requires a lot of experimentation. However in the
HyperCube Framework, we do not have this problem, because both iteration-
best and global-best ants are allowed to deposit pheromones. The influence of
each ant is measured by the weights that we assign to each one. The final rule
to update pheromones is depicted as follows:

τ = τ + ω (4.3)

where

ω = wib ∗ Fib + wgb ∗ Fgb (4.4)

where wib is the weight of the iteration-best ant, Fib is the quality of the
iteration-best ant, wgb is the weight of the global-best ant, Fgb is the quality
of the global best ant, and wib + wgb = 1.

After the update is applied, pheromone values that exceed τmax are set back
to τmax. A similar process is applied to τmin.

30

4.1. DACCO

The final important aspect of the pheromone update rule is that the pheromones
are not deposited in only in one cell. Instead, we only deposit a percentage p
in the main cell, and we propagate a percentage (1 − p) to the adjacent cells
(Fig. 4.6). This propagation is uniformly distributed among all the adjacent
cells. This means that the value that is given to each one of the adjacent cells
is (1 − p)/(number of adjacent cells). Such aspect is important to smooth
the transitions between components in the search space.

In appendix A we provide some technical decisions related with the implemen-
tation of this approach.

31

Chapter 5

Results

In this chapter we present an experimental analysis of the application of our
algorithm to several instances of short-ranged Morse Clusters. To perform
such analysis, we start by describing the scenario used in our experiments.
In Section 5.2 we present and discuss the results obtained by the DACCO
algorithm. In Section 5.3 we present a comparative analysis between DACCO
and other approaches of the literature. Finally, in Section 5.4 we present a
detailed analysis of some main components of the algorithm.

5.1 Experimental Scenario

In this study we focus our attention in several instances of short-ranged Morse
clusters. More precisely, we selected instances with a number of atoms that
ranges between 30 and 50. With this scenario we aim for two goals:

1. Assess the performance of the algorithm;

2. Gain insight into the influence of some components of the algorithm.

For the first objective, we present the results of the DACCO optimization for
all the aforementioned instances, and we analyze its performance based on two
criteria:

1. Ability to discover the known optima;

2. Mean Best Fitness (MBF) and deviation from the optimum;

The first criterion is a widely adopted performance measure in cluster geometry
optimization. Hence, for all instances, we show its success rate(number of

33

CHAPTER 5. RESULTS

Parameter Value
Runs 30
Population size Equal to the number of atoms N
Number of evaluations 5000000
Morse Potential range (β) 14.0
Cell size (W) 0.6
Number of Atoms (N) Between 30 and 50
Influence of the pheromones (α) 4
Continuous Local Search Iterations 1000
Continuous Local Search Accuracy 1.0E-8
Pheromone propagation value (p) 0.5
Neighborhood type Moore Neighborhood
Neighborhood radius (r) 3
Discrete Local Search Iteration 10

Table 5.1: Parameter setting used in the experiments

times that it found the best-known solution) of the algorithm. In case it does
not find the best-known solution we present the best solution found by the
algorithm. The second criterion aims to complement our study, as it will
provide information about the ability of DACCO to converge to promising
areas of the search space.
Later, to assess the absolute performance of the DACCO, we compare its
results with those achieved by two algorithms: a steady-state EA described
in Pereira et al. [29], and the Particle Swarm Optimization algorithm (PSO)
described in Lourenço et al. [24].

Experimental Settings

Table 5.1 lists the general parameters used in all of the experiments. We
performed a total of 30 runs to make possible a statistical analysis. In each run
we allowed our algorithm to perform 5000000 evaluations. It is important to
refer that each iteration made by L-BFGS procedure counts as one evaluation.
The size of the population depends on the size of the cluster being optimized.
This parameter was set based on the reviewed literature, and some preliminary
tests. The cell size (W) corresponds to size of each cell in our search space.
The neighborhood used is the Moore neighborhood with r = 3. The number of
iterations in the discrete local search is 10. The α value was set to 4, following
the reviewed literature, and after the analysis of some preliminary results.

34

5.2. DACCO: EXPERIMENTAL RESULTS

Statistical Analysis

While comparing our algorithm with the EA and the PSO we performed a
statistical analysis to validate the results. We assumed that our data did not
followed any distribution. Thus we applied the Mann-Whitney non-parametric
test, at a 0.05 level of significance, to assess the statistical differences of the
means, over the 30 runs of each of pair DACCO-EA and DACCO-PSO of
algorithms. Furthermore the same test is used to perform a detailed analysis
in the components of the algorithm. For multiple comparisons the p-value
(0.05) used was adjusted using the Bonferroni correction method. To perform
such correction we used used the following equation:

pB =
p

nc
(5.1)

where nc is the number of comparisons performed, and the pB is the p-value
to consider.

The hypothesis for comparing two algorithms were:

• H0 : u1 = u2 - means of the algorithms were equal, as the null hypothesis.

• H1 : u1 6= u2 - means of the algorithms were not equal, as the alternative
hypothesis.

Each time we applied a statistical test we looked for the results and concluded:
if the p-value of the statistical test was smaller than the level of confidence,
there was evidence to reject the null hypothesis H0, and we could accept the
alternative H1. This means that there was evidence that the means were
significantly different at the significance level of 0.05. In contrast, there was
not enough evidence to reject H0, and being so, we concluded that the means
were not significantly different.

In the tables where we make the statistical analysis we use the following no-
tation: “>” when the means are statistical different, and the first algorithm
presents an higher mean value than the second, “<” when the means are sta-
tistical different, and the second algorithm presents an higher mean value than
the first, and “∼” when there is no statistical differences in the means.

5.2 DACCO: Experimental Results

In Table 5.2 we present the optimization results of short-ranged Morse Clusters
between 30 and 50 obtained by the DACCO algorithm. The first column,

35

CHAPTER 5. RESULTS

Instance, identifies the number of atoms of each cluster. The second column,
Optimum, displays the potential energy of the best-known solution. The third
column, Best Solution Found, displays the potential energy of the best solution
found by the DACCO. The next two columns present the success rate (column
SR) and the Mean Best Fitness (column MBF). The last column measures of
how the MBF deviates, in percentage, from the best-known solution.

Instance Optimum Best Solution
Found

SR MBF Deviation

30 -106.835790 -106.835790 28 / 30 -106.831095 0.004
31 -111.760670 -111.760670 30 / 30 -111.760670 0.000
32 -115.767561 -115.767561 30 / 30 -115.767561 0.000
33 -120.741345 -120.741345 30 / 30 -120.741345 0.000
34 -124.748271 -124.748271 30 / 30 -124.748271 0.000
35 -129.737360 -129.737360 30 / 30 -129.737360 0.000
36 -133.744666 -133.744666 30 / 30 -133.744666 0.000
37 -138.708582 -138.708582 28 / 30 -138.682731 0.019
38 -144.321054 -144.321054 25 / 30 -144.053535 0.185
39 -148.327400 -148.327400 26 / 30 -148.243303 0.057
40 -152.333745 -152.333745 25 / 30 -152.228797 0.069
41 -156.633479 -156.633479 11 / 30 -156.483040 0.096
42 -160.641020 -160.641020 5 / 30 -160.449243 0.119
43 -165.634973 -165.634973 6 / 30 -165.361457 0.165
44 -169.642441 -169.642441 3 / 30 -169.383463 0.153
45 -174.511632 -174.511632 3 / 30 -174.295931 0.124
46 -178.519320 -178.519320 2 / 30 -178.371855 0.083
47 -183.508227 -183.411312 0 / 30 -183.095976 0.225
48 -188.888965 -188.888965 19 / 30 -188.402414 0.258
49 -192.898412 -192.898412 15 / 30 -192.675230 0.116
50 -198.455632 -198.455632 12 / 30 -197.853115 0.304

Table 5.2: Optimization results of Morse Clusters between 30 and 50 obtained
by DACCO

The results from Table 5.2 are encouraging, since the proposed approach was
able to find almost all the best-known solutions for short-ranged Morse clusters
between 30 and 50, missing only 1 instance. To the best of our knowledge, this
is the first work to apply ACO algorithm to the problem of cluster geometry
optimization, hence its results may play an important role in future proposals
that intend to use the same approach.

36

5.3. ALGORITHM COMPARISON

By analyzing the success rate of the algorithm we noticed that its variation
is irregular: whereas between 30 and 40 atoms the success rate is high, for
clusters between 41 and 50 atoms the algorithm has more difficulties to find
the optimum. This can in part be explained, by the fact the we keep the
number of evaluation fixed for all the clusters. With more atoms, we will get
a larger search space, and it is not surprising that the performance of the
algorithm declines.

Looking at the MBF values, they are always close to the optimum, as the
deviation values range between 0.000 % and 0.304 %. This result is interesting,
as it shows that even if DACCO converges to local optima, it can accurately
find low potential structures.

Another interesting aspect is that DACCO has a good performance while opti-
mizing the so called“magic instances”of 30 and 38 atoms [13]. These instances
define particularly rugged landscapes, and the majority of the unbiased algo-
rithms tend to converge to local optima [13, 16].

5.3 Algorithm Comparison

In this section we compare our approach with others described in the litera-
ture. A direct comparison with other ACO approaches its not possible, due to
absence of such approaches. Hence, we compare our approach with one of the
Swarm Intelligence algorithms family, and with an another of the Evolutionary
Algorithms family.

5.3.1 DACCO versus PSO

In Table 5.3 we compare the DACCO and PSO algorithms. The third and
fourth column represent the success rate (SR) and the MBF of DACCO. The
last two columns represent the SR and the the MBF of PSO.

The number of evaluations granted to the PSO algorithm were the same of the
DACCO.

Looking at the results, we can conclude that the DACCO is better than PSO.
We can see that, for almost all instances the SR of DACCO is higher than the
SR of the PSO. It misses only the 47 atoms instance. Furthermore, analyzing
the MBF values the DACCO presents the better values for all instances. These
MBF results are interesting because they show that the DACCO algorithm can

37

CHAPTER 5. RESULTS

DACCO PSO
Instance Optimum SR MBF SR MBF

30 -106.835790 28 / 30 -106.831095 4 / 30 -106.718221
31 -111.760670 30 / 30 -111.760670 19 / 30 -111.630904
32 -115.767561 30 / 30 -115.767561 20 / 30 -115.686360
33 -120.741345 30 / 30 -120.741345 19 / 30 -120.690258
34 -124.748271 30 / 30 -124.748271 15 / 30 -124.605299
35 -129.737360 30 / 30 -129.737360 6 / 30 -129.078905
36 -133.744666 30 / 30 -133.744666 14 / 30 -133.494812
37 -138.708582 28 / 30 -138.682731 12 / 30 -138.147442
38 -144.321054 25 / 30 -144.053535 8 / 30 -142.545537
39 -148.327400 26 / 30 -148.243303 7 / 30 -147.361971
40 -152.333745 25 / 30 -152.228797 7 / 30 -151.516586
41 -156.633479 11 / 30 -156.483040 2 / 30 -155.898689
42 -160.641020 5 / 30 -160.449243 4 / 30 -160.027062
43 -165.634973 6 / 30 -165.361457 4 / 30 -164.649840
44 -169.642441 3 / 30 -169.383463 3/ 30 -168.908517
45 -174.511632 3 / 30 -174.295931 3 / 30 -173.160552
46 -178.519320 2 / 30 -178.371855 1 / 30 -177.513539
47 -183.508227 0 / 30 -183.095976 1 / 30 -182.081130
48 -188.888965 19 / 30 -188.402414 2 / 30 -186.782038
49 -192.898412 15 / 30 -192.675230 4 / 30 -191.496032
50 -198.455632 12 / 30 -197.853115 1 / 30 -195.816027

Table 5.3: Experimental results of Morse cluster between 30 and 50 atoms
obtained by the DACCO algorithm and the PSO

38

5.3. ALGORITHM COMPARISON

Figure 5.1: Evolution of the MBF of DACCO and PSO. The results were
obtained with the Morse cluster of 50 atoms.

find solutions with better quality than the ones of the PSO. To confirm this,
in Fig. 5.1 we present the evolution of the MBF for DACCO and PSO. The
results are from the Morse cluster with 50 atoms, but the same trend is visible
for other instances. The information in the chart shows that the MBF of the
DACCO is lower during the whole optimization process.
Looking at Table 5.4, we can see that the means of DACCO are statistical
different and they have an higher value. Hence we can concluded that DACCO
performs better than the PSO.

39

CHAPTER 5. RESULTS

Instance DACCO-PSO
30 >
31 >
32 >
33 >
34 >
35 >
36 >
37 >
38 >
39 >
40 >
41 >
42 >
43 >
44 >
45 >
46 >
47 >
48 >
49 >
50 >

Table 5.4: Statistical results of comparing DACCO and PSO

40

5.3. ALGORITHM COMPARISON

5.3.2 DACCO versus EA

In Table 5.5 we compare the DACCO and EA algorithms. Like in the previous
section, the third and fourth column represent SR and the MBF of DACCO.
The last two columns represent the SR and the the MBF of EA. Again, the
number of evaluation granted to the EA, was the same of the DACCO. An

DACCO EA
Instance Optimum SR MBF SR MBF

30 -106.835790 28 / 30 -106.831095 22 / 30 -106.794747
31 -111.760670 30 / 30 -111.760670 30 / 30 -111.760670
32 -115.767561 30 / 30 -115.767561 29 / 30 -115.766686
33 -120.741345 30 / 30 -120.741345 28 / 30 -120.697611
34 -124.748271 30 / 30 -124.748271 28 / 30 -124.715475
35 -129.737360 30 / 30 -129.737360 27 / 30 -129.623232
36 -133.744666 30 / 30 -133.744666 28 / 30 -133.715154
37 -138.708582 28 / 30 -138.682731 25 / 30 -138.610585
38 -144.321054 25 / 30 -144.053535 8 / 30 -143.130422
39 -148.327400 26 / 30 -148.243303 14 / 30 -147.958055
40 -152.333745 25 / 30 -152.228797 9 / 30 -151.886095
41 -156.633479 11 / 30 -156.483040 15 / 30 -156.547928
42 -160.641020 5 / 30 -160.449243 12 / 30 -160.518149
43 -165.634973 6 / 30 -165.361457 14 / 30 -165.254805
44 -169.642441 3 / 30 -169.383463 7 / 30 -169.303639
45 -174.511632 3 / 30 -174.295931 5 / 30 -174.102119
46 -178.519320 2 / 30 -178.371855 9 / 30 -178.389713
47 -183.508227 0 / 30 -183.095976 2 / 30 -183.153610
48 -188.888965 19 / 30 -188.402414 14 / 30 -188.160694
49 -192.898412 15 / 30 -192.675230 18 / 30 -192.627890
50 -198.455632 12 / 30 -197.853115 5 / 30 -197.688978

Table 5.5: Experimental results of Morse cluster between 30 and 50 atoms
obtained by the DACCO algorithm and the EA

overview of the results presented in Table 5.5 reveal that DACCO has as good
results as those of EA for the considered Morse clusters. Moreover, looking
at the MBF values of both algorithms, we can see that they are very close,
revealing that the solutions found by DACCO are as good as the ones found by
the EA. To confirm this, in Fig. 5.2 we present the evolution of the MBF for
DACCO and the EA. The results are from the Morse cluster with 50 atoms,
but the same trend is visible for other instances. By observing it we see that

41

CHAPTER 5. RESULTS

the MBF of DACCO tends to converge more rapidly than the MBF of the EA.
However, at the end of the optimization process the MBF of DACCO and of
EA tend to get equal.
Table 5.6 shows that DACCO is as effective as the EA.

Instance DACCO-EA
30 >
31 ∼
32 ∼
33 ∼
34 ∼
35 ∼
36 ∼
37 ∼
38 >
39 >
40 >
41 ∼
42 ∼
43 ∼
44 ∼
45 ∼
46 ∼
47 ∼
48 ∼
49 ∼
50 ∼

Table 5.6: Statistical results of comparing DACCO and EA

It is important to note that in four Morse instances our approach has statisti-
cal differences in the means. Some of these Morse instances, the ones with 30
and 38 atoms, are particularly hard to optimize, as they define very roughed
landscapes, with many local minima [13].

Moreover, these results show that DACCO can compete with the EA, while
optimizing Morse clusters with a number of atoms between 30 and 50. This
is an important outcome since the EA used for comparison is a state-of-art
method, and the algorithm proposed in this dissertation performs as good as
it.

42

5.4. DETAILED ANALYSIS

Figure 5.2: Evolution of the MBF of DACCO and EA. The results were ob-
tained with the Morse cluster of 50 atoms.

5.4 Detailed Analysis

DACCO contains some components that enhance its effectiveness in cluster
geometry optimization problems. In this section we present a set of additional
tests to clarify the importance of some of these components. We selected clus-
ters with size N = {30, 38, 45, 50}, and changes range from simple parameter
setting variation to structural modifications in the DACCO framework. All
comparisons in this work are made between the final DACCO version. These
comparisons of results will help to clarify the influence of the different compo-
nents used.

5.4.1 Cell Size

In this section we present the results of the variation of the cell size W . When
we have a big W our search space will be smaller, but we will start to have
more than on atom in one cell. Furthermore we have to be careful while
defining the cell size, because we need to guarantee that our cube can host
an entire cluster. Taking this into account it is important to assess how the
algorithm behaves with different cell sizes. Table 5.7 present results obtained
with additional setting W = {0.5, 0.6, 0.7}. A inspection of this table reveals
that the outcomes of the optimization, with different W are similar. There is

43

CHAPTER 5. RESULTS

Figure 5.3: Evolution of the MBF of DACCO with different values of W .
Results were obtained with the Morse instance with 50 atoms.

a slight trend for the W = 0.6 to obtain results of higher quality in both terms
of success rate and MBF (Fig. 5.3). We performed a statistical analysis to
confirm that there is no statistical evidence to which one of the W values is
better.

Instance W = 0.5 W = 0.6 W = 0.7
SR MBF SR MBF SR MBF

30 28 / 30 -106.831095 28 / 30 -106.831095 30 / 30 -106.835790
38 20 / 30 -143.786016 25 / 30 -144.053535 19 / 30 -143.732512
45 1 / 30 -174.304756 3 / 30 -174.295931 2 / 30 -174.331536
50 4 / 30 -197.694748 12 / 30 -197.853115 9 / 30 -197.831498

Table 5.7: Optimization results obtained by DACCO with different values of
W in the selected Morse cluster instances

5.4.2 Neighborhoods

In this section we compare two neighborhoods: the Moore Neighborhood and
the Full Moore Neighborhood. We used the same r = 3 for both neighbor-
hoods.

Table 5.8 present the results for both neighborhoods. Looking to the outcomes,
we can see that for small instances the two neighborhoods have similar results.

44

5.4. DETAILED ANALYSIS

However, looking for the results obtained in larger instances, the Moore Neigh-
borhood has better results. This may be explained by the fact that in the Full
Moore neighborhood we are taking into account much more cells, and thus,
the cell selection process can become to greedy.
Table 5.9 shows that for the bigger instances, the algorithm using the Moore
neighborhood has statistical differences in the means when compared to the
Full Moore neighborhood. Fig. 5.4 presents the evolution of the MBF, and
confirms that the Moore neighborhood achieves better results.

Instance Moore Full Moore
SR MBF SR MBF

30 28 / 30 -106.831095 25 / 30 -106.823627
38 25 / 30 -144.053535 23 / 30 -143.942889
45 3 / 30 -174.295931 1 / 30 -173.998727
50 12 / 30 -197.853115 3 / 30 -197.001784

Table 5.8: Optimization results obtained by DACCO with different Neighbor-
hoods in the selected Morse cluster instances

Instance Moore - Full Moore
30 ∼
38 ∼
45 >
50 >

Table 5.9: Statistical results of comparing the different neighborhoods

45

CHAPTER 5. RESULTS

Figure 5.4: Evolution of the MBF of DACCO with different Neighborhoods.
Results were obtained with the Morse instance with 50 atoms.

5.4.3 Neighborhood Radius

In this section we compare the radius of the two neighborhoods. Using the
Moore Neighborhood, we tried experimented values of r = {1, 2, 3, 4} while
optimizing the subset of instances.

Table 5.10 present the results of the optimization. Looking at the results, we
can observe that choosing a small radius (r = 1), the optimization process
becomes too greedy, in a way that it always tries to build compact clusters.
This works well for small instances, but for the large ones, we need some more
freedom to place the atoms. However, with a large radius the optimization
process starts to behave like the Full Moore Neighborhood.

Looking at these results, it is clear that we need to have a radius that is neither
to small that it only looks at the closest positions, neither too large, that it
starts destroying the cohesion of the cluster.

In Table 5.11 we present a statistical analysis of the radius used for experi-
mentation. It clearly confirms that small radius do not help the search.

Fig. 5.5 presents the evolution of the MBF for the different values of r. These
figures confirms that, with low values of r, the algorithm converges to local
optima of inferior quality when compared, for example, with r = 2 or r = 3.
Moreover, this chart shows that with r = 4 the MBF is smaller than the MBF
of the version that uses r = 3

46

5.4. DETAILED ANALYSIS

Figure 5.5: Evolution of the MBF of DACCO with different values of r. Results
were obtained with the Morse instance with 50 atoms.

47

C
H
A
P
T
E
R

5.
R
E
S
U
L
T
S

Instance r = 1 r = 2 r = 3 r = 4
SR MBF SR MBF SR MBF SR MBF

30 22 / 30 -106.816158 27 / 30 -106.828748 28 / 30 -106.831095 27 / 30 -106.828748
38 28 / 30 -144.211960 25 / 30 -144.052332 25 / 30 -144.053535 23 / 30 -143.946527
45 0 / 30 -173.593068 4 / 30 -174.338129 3 / 30 -174.295931 1 / 30 -174.338283
50 0 / 30 -196.105401 7 / 30 -197.387273 12 / 30 -197.853115 4 / 30 -197.605420

Table 5.10: Optimization results obtained by DACCO with different values of r in the selected Morse cluster instances

Instance r = 1 - r = 2 r = 1 - r = 3 r = 1 - r = 4 r = 2 - r = 3 r = 2 - r = 4 r = 3 - r = 4
30 ∼ ∼ ∼ ∼ ∼ ∼
38 ∼ ∼ ∼ ∼ ∼ ∼
45 < < < ∼ ∼ ∼
50 < < < ∼ ∼ ∼

Table 5.11: Statistical results of comparing the neighborhood radius

48

5.4. DETAILED ANALYSIS

5.4.4 Discrete Local Search

In this section we analyze the DACCO algorithm with and without the discrete
local search procedure.

The discrete local search procedure was designed to cluster geometry opti-
mization problems, and with this set of experiments we intend to show its
importance in the optimization process. Table 5.12 shows that without a local
search procedure in the discrete space, the algorithm has a poor performance.
These results show that the discrete local search is a vital component to the
success of the algorithm.

Table 5.13 presents a statistical analysis that confirms the importance of the
discrete local search. Fig. 5.6 shows the evolution of the MBF in the optimiza-
tion process. It clearly depicts that the MBF without discrete local search, is
inferior to the one with discrete local search.

Instance DACCO DACCO without
Discrete Local
Search

SR MBF SR MBF
30 28 / 30 -106.831095 2 / 30 -106.406177
38 25 / 30 -144.053535 1 / 30 -142.077711
45 3 / 30 -174.295931 0 / 30 -172.596377
50 12 / 30 -197.853115 2 / 30 -194.567170

Table 5.12: Optimization results obtained by DACCO with and without Dis-
crete Local Search in the selected Morse cluster instances

Instance DACCO - DACCO
without Discrete
Local Search

30 >
38 >
45 >
50 >

Table 5.13: Statistical results of comparing DACCO and DACCO without
local search

49

CHAPTER 5. RESULTS

Figure 5.6: Evolution of the MBF of DACCO with and without Discrete Local
Search. Results were obtained with the Morse instance with 50 atoms.

5.4.5 Pheromone Propagation

In this section we present the results of having a mechanism of pheromone prop-
agation. This mechanism allows a smoother distribution of the pheromones in
the search space (see Fig 5.7 and Fig.5.8).
Looking at Table 5.14, we can see that the results with and without pheromone
propagation are similar. Furthermore, we performed a statistical analysis and
confirmed that there was no statistical evidence to choose one of the methods.

Instance DACCO DACCO with-
out pheromone
propagation

SR MBF SR MBF
30 28 / 30 -106.831095 25 / 30 -106.824054
38 25 / 30 -144.053535 22 / 30 -143.893024
45 3 / 30 -174.295931 2 / 30 -174.311589
50 12 / 30 -197.853115 10 / 30 -197.652445

Table 5.14: Optimization results obtained by DACCO with and without Dis-
crete Local Search in the selected Morse cluster instances

50

5.4. DETAILED ANALYSIS

Figure 5.7: Pheromone distribution
without pheromone propagation in the
final iteration of the optimization of a
Morse cluster with 50 atoms.

Figure 5.8: Pheromone distribution
with pheromone propagation in the fi-
nal iteration of the optimization of a
Morse cluster with 50 atoms.

51

Chapter 6

Conclusion

The main goal of this dissertation is to propose a new algorithm to tackle
cluster geometry optimization problems. The proposed algorithm is based on
swarm intelligence, more specifically in a discrete variant of the Ant Colony
Optimization (ACO). In this dissertation we proposed some new components
to improve the effectiveness of the algorithm:

• Discretization of the search space. Cluster geometry optimization prob-
lems are continuous, and it was necessary to build a method to discretize
the problem so that a discrete version of ACO could be applied;

• Several methods to find feasible neighborhoods were tested. With these
methods we intended to introduce more information about the problem
while building the feasible neighborhoods;

• Application of a continuous local optimization method combined with
the ACO algorithm;

• The mapping between solutions in the continuous and discrete spaces.
With the mapping used we tried to keep as much information as possible
between spaces;

• The proposal of a discrete local search method, that ought to be crucial
in the achievement of good results.

Furthermore we studied the state-of-art in both ACO algorithms and in opti-
mization methods used to tackle the problem of cluster geometry optimization.

The proposed algorithm, DACCO, was tested in several instances of short-
ranged Morse clusters. Its performance was compared with two other ap-
proaches applied to the same problem instances: a Particle Swarm Optimiza-

53

CHAPTER 6. CONCLUSION

tion (PSO) algorithm and an Evolutionary Algorithm (EA). We concluded that
DACCO performed better than the PSO in all the tested instances. When com-
pared to the EA, DACCO obtained similar results, having a better performance
in four of the tested Morse instances.

We performed a detailed analysis in some of the proposed components, in order
to assess their importance in the algorithm.

6.1 Future Work

In this type of research there is always work to do. The first important aspect
that should be addressed is the application of the DACCO algorithm to bigger
instances of the short-ranged Morse clusters. Another aspect that should be
study is the application of heuristics to improve the optimization process. The
study and implementation of new mechanisms to find feasible neighborhoods,
should be of great interest, once this is one of the key aspects of the ACO
algorithms. The improvement of the discrete local search method should be
addressed as well, since it was proven that this component is vital to DACCO
succeed in the optimization process. The comparison of our results with other
approaches that are present in the literature is another aspect that should be
made in the near future in order to assess its effectiveness. Finally, study the
possible application of DACCO to the molecular cluster optimization. Cur-
rently there are no effective crossover operators for dealing with cluster that
are composed by molecules. Since ACO algorithms do not rely on these type of
operators, they might be a relevant method to tackle this optimization prob-
lem.

54

Bibliography

[1] G. Bilchev and I. Parmee. The ant colony metaphor for searching contin-
uous design spaces. In Terence Fogarty, editor, Evolutionary Computing,
volume 993 of Lecture Notes in Computer Science, pages 25–39. Springer
Berlin / Heidelberg, 1995.

[2] C. Blum and M. Dorigo. The hyper-cube framework for ant colony op-
timization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 34(2):1161–1172, 2004.

[3] P. A. Braier, R. S. Berry, and D. J. Wales. How the range of pair inter-
actions governs features of multidimensional potentials. The Journal of
Chemical Physics, 93(12):8745–8756, 1990.

[4] B. Bullnheimer, R. F. Hartl, and C. Strauß. A new rank based version
of the ant system - a computational study. Central European Journal for
Operations Research and Economics, 7:25–38, 1997.

[5] L. Cheng and J. Yang. Global minimum structures of morse clusters as
a function of the range of the potential: 81 ≤ n ≤ 160. The Journal of
Physical Chemistry A, 111(24):5287–5293, 2007.

[6] D. M. Deaven and K. M. Ho. Molecular geometry optimization with a
genetic algorithm. Physical Review Letters, 75(2):288–291, 1995.

[7] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis,
Politecnico di Milano, Italy, 1992.

[8] M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. Evolutionary Com-
putation, IEEE Transactions on, 1(1):53–66, 1997.

[9] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics - Part B, 26(1):29–41, 1996.

55

BIBLIOGRAPHY

[10] M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Company,
Scituate, MA, USA, 2004.

[11] J. P. K. Doye, R. H. Leary, M. Locatelli, and F. Schoen. Global opti-
mization of morse clusters by potential energy transformations. Informs
Journal on Computing, 16(4):371–379, 2004.

[12] J. P. K. Doye and D. J. Wales. Global optimization by basin-hopping and
the lowest energy structures of lennard-jones clusters containing up to 110
atoms. The Journal of Physical Chemistry A, 101(28):5111–5116, 1997.

[13] J. P. K. Doye and D. J. Wales. Structural consequences of the range of the
interatomic potential: a menagerie of clusters. Journal Chemical Society,
Faraday Transactions, 93:4233–4243, 1997.

[14] J. P. K. Doye and D. J. Wales. Thermodynamics of global optimization.
Physical Review Letters, 80(7):1357–1360, 1998.

[15] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
SpringerVerlag, 2003.

[16] A. Grosso, M. Locatelli, and F. Schoen. A population-based approach
for hard global optimization problems based on dissimilarity measures.
Mathematical Programming, 110:373–404, 2007.

[17] R. L. Johnston. Evolving better nanoparticles: Genetic algorithms for op-
timising cluster geometries. Dalton Transactions, pages 4193–4207, 2003.

[18] J. Kennedy, Russell C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan
Kaufmann, 2001.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science Magazine, 220:671–680, 1983.

[20] M. Kong and P. Tian. A direct application of ant colony optimization to
function optimization problem in continuous domain. In Marco Dorigo,
Luca Gambardella, Mauro Birattari, Alcherio Martinoli, Riccardo Poli,
and Thomas Stützle, editors, Ant Colony Optimization and Swarm Intelli-
gence, volume 4150 of Lecture Notes in Computer Science, pages 324–331.
Springer Berlin / Heidelberg, 2006.

[21] J. E. Lennard-Jones. Cohesion. Proceedings of the Physical Society,
43(5):461, 1931.

[22] Z. Li and H. Scheraga. Monte Carlo-minimization approach to the
multiple-minima problem in protein folding. Proceedings of the National

56

BIBLIOGRAPHY

Academy of Sciences of the United States of America, 84(19):6611–6615,
1987.

[23] C. D. Liu and J. Nocedal. On the limited memory bfgs method for large
scale optimization. Mathematical Programming, 45:503–528, 1989.

[24] N. Lourenço and F. Pereira. PSO-CGO: A Particle Swarm Algorithm for
Cluster Geometry Optimization. International Journal of Natural Com-
puting Research, 2(1):1–20, 2011.

[25] S. Luke. Essentials of Metaheuristics. 2009. available at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[26] V. Maniezzo. Exact and approximate nondeterministic tree-search proce-
dures for the quadratic assignment problem. Informs Journal on Com-
puting, 11:358–369, 1999.

[27] L. Melo, F. Pereira, and E. Costa. MC-ANT: A multi-colony ant al-
gorithm. In Pierre Collet, Nicolas Monmarché, Pierrick Legrand, Marc
Schoenauer, and Evelyne Lutton, editors, Artifical Evolution, volume 5975
of Lecture Notes in Computer Science, pages 25–36. Springer Berlin / Hei-
delberg, 2010.

[28] P. M. Morse. Diatomic molecules according to the wave mechanics. ii.
vibrational levels. Physical Review, 34(1):57–64, 1929.

[29] F. Pereira and J. Marques. A study on diversity for cluster geometry
optimization. Evolutionary Intelligence, 2:121–140, 2009.

[30] C. Roberts, R. L. Johnston, and N. T. Wilson. A genetic algorithm for the
structural optimization of morse clusters. Theoretical Chemistry Accounts:
Theory, Computation, and Modeling (Theoretica Chimica Acta), 104:123–
130, 2000.

[31] X. Shao, L. Cheng, and W. Cai. A dynamic lattice searching method
for fast optimization of lennard–jones clusters. Journal of Computational
Chemistry, 25(14):1693–1698, 2004.

[32] B. M. Smirnov, A. Y. Strizhev, and R. S. Berry. Structures of large morse
clusters. The Journal of Chemical Physics, 110(15):7412–7420, 1999.

[33] K. Socha. ACO for continuous and mixed-variable optimization. In
Marco Dorigo, Mauro Birattari, Christian Blum, Luca M.Gambardella,
Francesco Mondada, and Thomas Stützle, editors, Ant Colony, Optimiza-
tion and Swarm Intelligence, volume 3172 of Lecture Notes in Computer
Science, pages 53–61. Springer Berlin / Heidelberg, 2004.

57

BIBLIOGRAPHY

[34] K. Socha and M. Dorigo. Ant colony optimization for continuous domains.
European Journal of Operational Research, 185(3):1155 – 1173, 2008.

[35] Frank H. Stillinger. Exponential multiplicity of inherent structures. Phys-
ical Review E, 59(1):48–51, 1999.

[36] T. Stützle and H. H. Hoos.MAX−MIN Ant system. Future Generation
Computer Systems, 16(8):889 – 914, 2000.

[37] S. Tsutsui. Ant colony optimisation for continuous domains with ag-
gregation pheromones metaphor. In Proceedings of the 5th International
Conference on Recent Advances in Soft Computing, pages 207–212, 2004.

[38] L. T. Wille and J Vennik. Computational complexity of the ground-state
determination of atomic clusters. Journal of Physics A: Mathematical and
General, 18(8):419–422, 1985.

[39] A. Zaslavski and J. P. K. Doye. Physical perspectives on the global op-
timization of atomic clusters. In Panos Pardalos and János D. Pintér,
editors, Global Optimization, volume 85 of Nonconvex Optimization and
Its Applications, pages 103–139. Springer US, 2006.

58

Appendix A

Implementation Details

Since this dissertation is part of the Masters Degree in Informatics Engineering,
it is important to refer some technical aspects about the implementation. In
this chapter we give a brief description of the technical choices made, and we
present a quick overview of the entire system.

A.1 Technical Choices

To implement the first versions of the system we decide to use the Python
language. One of the reasons for this is related with the simplicity of the
language, and easiness in making changes. The other reason is related with
the L-BFGS method, which is written in Fortran. With python it is easy to
connect modules made in Fortran with our code.

After we have a stable version, we decided to write it in C. The reason for this
was the performance of the python language.

The C language, despite being very fast, has some programming overhead,
when compared, for instance, with python. During the conversion of the
python code to C, some bugs appeared, as one should expect. They were
solved using the gdb debugging system.

We used Git as revision control system. As online repository our choice was
the Github platform, with private repositories.

59

APPENDIX A. IMPLEMENTATION DETAILS

A.2 Architecture Overview

We tried to keep our architecture simple and modular. In Fig.A.1 we present
a class diagram, which in our opinion gives a better insight in how the system
is organized.

DACCO – Main class that runs the ACO algorithm for a certain number of
populations.

Population – Class that contains a certain number of individuals, with com-
mon properties.

Ant – Class that simulates the real ant. It is responsible for the individual
methods of each ant. The main methods are:

• Construction of individual solutions:

– Choose feasible neighborhoods;

– Apply a probabilistic rule to choose which components should be
added to the solutions.

• It calls the Fitness Function, in order to assess the quality of the solution
that has been built;

• Mapping of the continuous solutions to the discrete space;

• Discrete local search. This local search works in the search space, and
tries to improve the ant solutions applying random changes to the current
solutions.

Utils – Class that has a set of procedures to help all the other classes accom-
plish their individual tasks. Examples of these methods are: the euclidean
distance method, that receives to points in the space and determines their
euclidean distance; the method to read the parameters file; methods to write
data to files, in order to allow us to see what is happening in the optimization
process.

Fitness Function – Class that is responsible for evaluate the quality of the
individuals that belong to our system. This class receives an ant solution,
that is already in the continuous space, and it performs the evaluation of the
solutions. The evaluation is performed by a Fortran function. In order to use
it, we applied two different techniques:

• To connect the Fortran code with C we created several object files and
the we compiled them together. One aspect that we had to take into

60

A.2. ARCHITECTURE OVERVIEW

account was that sometimes the Fortran functions have and “ ” after the
name.

• To connect Fortran with Python, we created a static library, using the
Cython 1 framework.

1http://cython.org/

61

APPENDIX A. IMPLEMENTATION DETAILS

Figure A.1: CGACO Class Diagram

62

	Acknowledgements
	Abstract
	Introduction
	Contributions
	Structure of the dissertation

	Cluster Geometry Optimization Problem
	Atomic Clusters
	Morse Clusters

	Optimization Algorithms
	Single-solution Methods
	Evolutionary Algorithms
	Swarm Intelligence
	Cluster Geometry Optimization

	DACCO: Discrete Ant Colony Cluster Optimization
	DACCO
	Construction of Search Space
	Initialize Pheromones
	Construction of Solutions
	Evaluate Solution in Continuous Space
	Convert Solutions to Discrete Space
	Apply Discrete Local Search
	Update Pheromone Values

	Results
	Experimental Scenario
	DACCO: Experimental Results
	Algorithm Comparison
	DACCO versus PSO
	DACCO versus EA

	Detailed Analysis
	Cell Size
	Neighborhoods
	Neighborhood Radius
	Discrete Local Search
	Pheromone Propagation

	Conclusion
	Future Work

	Bibliography
	Implementation Details
	Technical Choices
	Architecture Overview

