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Ivo Gonçalves1, Sara Silva2,1, Joana B. Melo3, and João M.B. Carreiras3

1 ECOS/CISUC, DEI/FCTUC, University of Coimbra, Portugal
2 INESC-ID Lisboa, IST, Technical University of Lisbon, Portugal
3 GeoDES, Tropical Research Institute (IICT), Lisbon, Portugal

icpg@dei.uc.pt, sara@kdbio.inesc-id.pt,
joana.lx.bm@gmail.com, jmbcarreiras@iict.pt

Abstract. One of the areas of Genetic Programming (GP) that, in com-
parison to other Machine Learning methods, has seen fewer research ef-
forts is that of generalization. Generalization is the ability of a solution to
perform well on unseen cases. It is one of the most important goals of any
Machine Learning method, although in GP only recently has this issue
started to receive more attention. In this work we perform a comparative
analysis of a particularly interesting configuration of the Random Sam-
pling Technique (RST) against the Standard GP approach. Experiments
are conducted on three multidimensional symbolic regression real world
datasets, the first two on the pharmacokinetics domain and the third
one on the forestry domain. The results show that the RST decreases
overfitting on all datasets. This technique also improves testing fitness
on two of the three datasets. Furthermore, it does so while producing
considerably smaller and less complex solutions. We discuss the possi-
ble reasons for the good performance of the RST, as well as its possible
limitations.
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1 Introduction

Genetic Programming (GP) is an evolutionary computation paradigm that auto-
matically solves problems without needing to know the structure of the solution
in advance [1]. One of the areas in GP that has been recently recognized as an
open issue that needs to be addressed in order for GP to realize its full poten-
tial is the one of generalization [2]. Generalization is the ability of a solution to
perform well on unseen cases. Achieving good generalization is one of the most
important goals of any Machine Learning (ML) method such as GP. Overfitting
is said to occur when a solution performs well on the training cases but poorly on
the testing cases. This indicates that the underlying relationships of the whole
data were not learned, and instead a set of relationships existing only on the
training cases were learned, but these have no correspondence over the whole
known cases.
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Other non-evolutionary ML methods have dedicated a far larger amount of
research effort to generalization than GP, although the number of publications
dealing with overfitting in GP has been increasing in the past few years. Notably,
in Koza [3] most of the problems presented did not use separate training and
testing data sets, so performance was never evaluated on unseen cases [4]. Part
of the lack of generalization efforts can be related to another issue occurring in
GP - bloat. Bloat can be defined as an excess of code growth without a corre-
sponding improvement in fitness [5]. This phenomenon occurs in GP as in most
other progressive search techniques based on discrete variable-length represen-
tations. Bloat was one of the main areas of research in GP, not only because its
occurrence hindered the search progress but also because it was hypothesized,
in light of theories such as Occam’s razor and the Minimum Description Length,
that a reduced code size could lead to better generalization ability. Researchers
had a common agreement that these two issues were related and that counter-
acting bloat would lead to positive effects on generalization. This, however, has
been recently challenged. Contributions show that bloat free GP systems can
still overfit, while highly bloated solutions may generalize well [6]. This leads to
the conclusion that bloat and overfitting are in most part two independent phe-
nomena. In light of this finding, new approaches to improve GP generalization
ability are in need, particularly those not based on merely biasing the search
toward shorter solutions.

In this work we study the potential of a simple technique, the Random Sam-
pling Technique (RST), to control overfitting in hard real world applications.
Recently used with success on a simple benchmark problem [31], the RST is
based on the idea of never using the entire training set in any given generation
of the search process.

Section 2 reviews the state of the art of generalization in GP. Section 3 de-
scribes the RST and the experimental settings. Section 4 presents and discusses
the results, advancing ideas for future work. Section 5 concludes.

2 State of the Art

The most common approaches to reducing overfitting in GP are those based on
biasing the search toward shorter solutions. Becker and Seshadri [7] proposed
adding a complexity penalty factor to the fitness function. Mahler et al. [8]
explored to what extent Tarpeian bloat control affects GP generalization ability.
Gagné et al. [9] tested the application of parsimony pressure. Cavaretta and
Chellapilla [10] used a low-complexity-bias algorithm that uses a modification in
the fitness function meant to penalize larger individuals. Zhang et al. [11] also
addressed the relationship between size and generalization performance by using
a fitness function with two components: fitting error and size.

More recent approaches bias the search process toward less complex solutions.
In these approaches complexity is not simply defined as solution size. Vladislavl-
eva et al. [12] proposed a complexity measure called order of nonlinearity. This
measure adopts the notion of the minimal degree of the best-fit polynomial, ap-
proximating an analytical function with a certain precision. The main objective
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behind the proposed complexity measure is to favor smooth and extrapolative
behavior of the response surface and to discourage highly nonlinear behavior,
which is unstable toward minor changes in inputs and is dangerous for extrap-
olation. Vanneschi et al. [13] proposed a functional complexity measure based
on the classic mathematical concept of curvature. Informally, the curvature of
a function can be defined as the amount by which its geometric representation
deviates from being straight. This complexity measure expresses the complexity
of a function by counting the number of different slopes.

Also recently, approaches based on similarities between solutions have started
to appear. Uy et al. [15] proposed a Semantic Similarity based Crossover ap-
proach which is based on the Sampling Semantics Distance between two trees
(or subtrees), which is calculated by choosing N random points (fitness cases)
and calculating the mean absolute difference between each corresponding points
on the two trees. The authors argue that the exchange of subtrees is most likely
to be beneficial if the two subtrees are not too similar or too dissimilar. Van-
neschi and Gustafson [16] proposed avoiding solutions similar to already known
overfitted solutions. The proposed method (repGP) keeps a list of overfitting
individuals (called repulsors) and prevents any new individual to enter the next
generation if they are similar to any of the known repulsors.

Various other approaches were proposed. A simple and elegant idea was pro-
posed by Da Costa and Landry [17]. The idea is to relax the training set by
allowing a wider definition of the desired solution which translates into consid-
ering not only the desired output y correct but allow a more broader range to
be considered, i.e. allow any output in the range [ymin, ymax]. Chan et al. [18]
proposed a statistical method called Backward Elimination that works by elim-
inating insignificant terms in polynomials models such as those produced by
GP. Nikolaev et al. [19] proposed several techniques to balance the statistical
bias and variance. In the context of financial applications, Chen and Kuo [20]
proposed a measure of degree of overfitting based on the extracted signal ra-
tio. Foreman and Evett [21] proposed Canary Functions, where the idea is to
measure overfitting during the run by using a validation set. When overfitting
starts to occur the search process is stopped. Vanneschi et al. [22] argued that
using GP with a multi-optimization approach can enhance the generalization
ability of the resulting solutions. This approach uses two other criteria besides
the traditional sum of errors. These are: the correlation between outputs and
targets (to maximize) and the diversity of pairwise distances between outputs
and targets (to minimize). Robilliard and Fonlupt [23] applied a method called
Backwarding that goes back as much as needed in the evolution process until
the point that overfitting is not yet very relevant. This is achieved by saving
two copies of the solutions: one copy for the best solution on the training set
and another copy for the best solution on the validation set. At the end of the
GP process the best saved solution for the validation set is returned. Finally, in
the context of the Compiling Genetic Programming System, Banzhaf et al. [24]
showed the positive influence of the mutation operator in generalization ability.
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Although these and a number of other works have addressed the issue of
overfitting in GP, they appear as a set of isolated efforts scattered along the
years and among different applications. Nevertheless, as GP matures and slowly
becomes a mainstreamML approach, also the overfitting issue is slowly becoming
a central research subject.

3 Experiments

This section describes the datasets used, the Random Sampling Technique and
the experimental parameters used.

3.1 Datasets

Experiments are conducted on three multidimensional symbolic regression real
world datasets, the first two on the pharmacokinetics domain and the third one
on the forestry domain.

Toxicity. The goal of this application is to predict, in the context of a drug
discovery study, the median lethal dose (LD50) of a set of candidate drug com-
pounds on the basis of their molecular structure. LD50 refers to the amount of
compound required to kill 50% of the considered test organisms (cavies). Reliably
predicting this and other pharmacokinetics parameters would permit to reduce
the risk of late stage research failures in drug discovery, and enable to decrease
the number of experiments and cavies used in pharmacological research [25]. The
LD50 dataset consists of 234 instances, where each instance is a vector of 626
molecular descriptor values identifying a drug. This dataset is freely available at
http://personal.disco.unimib.it/Vanneschi/toxicity.txt.

Plasma Protein Binding. As in the toxicity application, also here the goal is
to predict the value of a pharmacokinetics parameter of a set of candidate drug
compounds on the basis of their molecular structure, this time the plasma pro-
tein binding level (%PPB). %PPB quantifies the percentage of the initial drug
dose that reaches the blood circulation and binds to the proteins of plasma. This
measure is fundamental for good pharmacokinetics, both because blood circula-
tion is the major vehicle of drug distribution into human body and since only
free (unbound) drugs can permeate the membranes reaching their targets [25].
This dataset consists of 131 instances, where each instance is a vector of 626
molecular descriptor values identifying a drug.

Biomass. The objective of this application is to estimate forest above-ground
biomass (AGB) as a function of several metrics derived from synthetic aper-
ture radar (SAR) data acquired by sensors on orbital platforms. Mapping and
understanding the spatial distribution of forest AGB is an important and chal-
lenging task [26,27,28]. As it relates to the carbon stocks of a given ecosystem,
these maps can be used to monitor forests and capture national deforestation
processes, forest degradation, and the effects of conservation actions, sustain-
able management and enhancement of carbon stocks. The dataset is composed
of 112 field measurements of forest AGB and corresponding 8 SAR metrics used
to model AGB. This dataset has never been used in any GP studies.

http://personal.disco.unimib.it/Vanneschi/toxicity.txt
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3.2 Random Sampling Technique

The Random Sampling Technique (RST) has been previously used to improve
the speed of a GP run [29], however in [30] it was used to reduce overfitting
in a classification task in the context of software quality assessment. In the
RST, the training set is never entirely used in the search process. Instead, at
each generation, a random subset of the training data is chosen and evolution
is performed taking into account the fitness of the solutions in this subset. This
implies that only individuals that perform well on various different subsets will
remain in the population. It is expected that, since these surviving individuals
perform reasonably well on different subsets, they have captured the underlying
relationships of the data instead of overfitting it. This work is a continuation of a
previous work [31] that was done with the RST on a simple benchmark problem.
In the mentioned work we have proposed a more flexible approach to the RST.
Firstly, the size of the random subset can be defined as any percentage of the
training set. Secondly, the rate at which a new random subset is chosen can be
defined as either being at each N generations or as a percentage of the total
number of generations. These two RST parameters are respectively labelled as
Random Subset Size (RSS) and Random Subset Reset (RSR). In this extended
approach they can be defined as any value, as opposed to their static nature
in [30]. In this paper we build upon the previous work by exploring the RST on
real world datasets with the best configuration found in that work (both RSS
and RSR set to value 1, i.e. in each generation a single new random sample is
chosen). Standard GP is used as the baseline for comparison.

3.3 Parameters and Statistical Tests

The experimental parameters used are provided in Table 3.3. Furthermore,
crossover and mutation points are selected with uniform probability. Fitness
is calculated as the Root Mean Squared Error (RMSE) between outputs and
targets.

Statistical significance of the null hypothesis of no difference was deter-
mined with pairwise Kruskal-Wallis non-parametric ANOVAs at p=0.05. A non-
parametric ANOVA was used because the data is not guaranteed to follow a
normal distribution. For the same reason, the median was preferred over the
mean in all the evolution plots shown in the next section. The median is also
more robust to outliers.

4 Results and Discussion

This section presents and discusses the results achieved. For the remainder of this
paper, the terms training and testing fitness are to be interpreted in the following
way: training fitness is the fitness of the best individual in the training set; testing
fitness is the fitness of that same individual in the testing set. For the purpose
of further comparisons we have defined a simple overfitting measure. According
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Table 1. GP parameters used in the experiments

Runs 30

Population 500

Generations 100

Training - Testing division 70% - 30%

Crossover operator Standard subtree crossover, probability 0.9

Mutation operator Standard subtree mutation, probability 0.1,

new branch maximum depth 6

Tree initialization Ramped Half-and-Half [1],

maximum depth 6

Function set +, -, *, and /, protected as in [1]

Terminal set Input variables, no constants

Selection for reproduction Lexicographic Parsimony Pressure [32],

tournaments of size 10

Elitism Replication rate 0.1,

best individual always survives

Maximum tree depth 17

to this measure, overfitting is simply calculated as the difference between testing
and training fitness. This implies that if training fitness is better than testing
fitness then overfitting is occurring, i.e. the measure retrieves a positive value.
Negative values are allowed and occur when testing fitness is better than training
fitness. This is rather uncommon but can still happen. In the evolution plots we
have chosen not to take the absolute value of the difference between both fitness
values as not to lose this potentially interesting information. For the statistical
tests we take the absolute values since what we want is overfitting as close to zero
as possible and not to have negative overfitting. This also prevents the unwanted
effect of compensation between positive and negative overfitting values. Tree size
is calculated as the number of nodes of a solution. Complexity is calculated based
on the notion of curvature of a function as in [13]. The evolution plots present the
results based on the median of the fitness, overfitting, tree size and complexity
of the best individuals at each generation over 30 runs.

4.1 Results

The fitness and overfitting plots for Standard GP and RST can be found in
Figure 1. The corresponding tree size and complexity plots can be found in Fig-
ure 2. The statistical results comparing training and testing fitness, overfitting,
tree size and complexity between both techniques can be found in Table 4.1. In
this table, s+ indicates that the RST is statistically better than Standard GP,
while s- indicates the opposite, and ∼ indicates that no statistically significant
difference was found. As we can see in the table, the RST achieves statistically
better testing fitness on LD50 and on %PPB. On AGB the difference is not sta-
tistically significant. In training fitness, Standard GP is statistically better on
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Table 2. Statistical results

LD50 %PPB AGB

Training Fitness
s- s- s-

0.000000 0.000000 0.000000

Testing Fitness
s+ s+ ∼

0.000572 0.000058 0.208871

Overfitting
s+ s+ s+

0.000095 0.000000 0.000001

Tree Size
s+ s+ s+

0.000000 0.000002 0.000000

Complexity
s+ s+ s+

0.000000 0.000001 0.000000

all datasets. In overfitting the RST achieves statistically lower overfitting than
Standard GP on all datasets. The same statistical significance happens for tree
size and complexity also on all datasets.

Looking at the evolution plots in Figure 1 we can see, across all the datasets,
a constantly widening gap between training and testing fitness in Standard GP,
which means that overfitting is occurring. The widening of this gap is particularly
fast on the LD50 dataset. This gap is what our overfitting measure represents.
We can see that the overfitting increase is steeper on the LD50 dataset, with
AGB being the second most overfitted dataset and %PPB the least overfitted of
the three, although still with the referred widening gap present. RST, however,
can maintain a much smaller gap between training and testing fitness. This gap
is also much more constant across all generations. LD50 is the dataset where
the gap is smaller and in fact very close to zero. %PPB comes next in regard to
overfitting and ABG is comparatively the most overfitted of the datasets with
the RST.

Comparing the training fitness values of the Standard GP with the ones of the
RST, we can see that Standard GP learns the training data much faster. This
was expected, since in Standard GP each generation is allowed to see many more
fitness cases than RST, that sees only one. However, the testing fitness values
reveal that Standard GP is merely overfitting and not actually learning the
underlying relationships of the whole known instances, a fact that becomes even
clearer when looking at the corresponding overfitting plots. Despite being a slow
learner, RST compensates in terms of overfitting as it maintains considerably
lower values than Standard GP.

Besides achieving better testing fitness in two out of three datasets, and less
overfitting in all datasets, the RST does so while producing smaller and less
complex solutions. We can see from the tree size and complexity plots in Figure 2
that these present a similar behavior to the overfitting plots, i.e. RST presents
rather constant values while Standard GP presents a somewhat constant increase
in all values (overfitting, tree size and complexity). We have not yet explored
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Fig. 1. Standard GP and RST fitness and overfitting evolution plots for: LD50 a)
through c), %PPB d) through f) and AGB g) through i)

Fig. 2. Tree size and complexity evolution plots for: LD50 a) and d), %PPB b) and e)
and AGB c) and f)

the relationship between these three measurements, or between these and the
amount of bloat. At least one study has attempted it in the LD50 dataset [14] but
did not reach solid conclusions. From the practical point of view, it is sufficient
for now to state that the RST reveals clear advantages in the three real world
applications studied here.

4.2 Discussion

One important point that the RST made us realize is that, in order to overfit, a
solution does not necessarily need to find a set of relationships that occur across
most of the fitness cases in the training set. We believe that, in most cases, the
solutions that overfit are simply overfitting a few instances of the training set, but
this is enough to achieve lower error (better fitness) than a solution that learns
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the general trend of the training data without ever learning specific fitness cases
so well. A solution that perfectly maps (i.e. has zero error) the relationship of a
small number of fitness cases can have a much better fitness, thus higher chance
of survival, than other solutions not as much overfitted. This can be one of the
roots of the problem, since these overfitted, but low error solutions will likely
remain in the population for a long time. On the other hand, RST has shown
us that by using only one fitness case at the time and changing it frequently we
can ultimately avoid this pitfall of the traditional approach.

Figure 3 exemplifies the abovementioned situation. In this figure we have
a target and three possible solutions. In both examples solutions 2 and 3 have
lower RMSE error than solution 1. However, although shifted up from the target,
solution 1 represents the pattern of the target more precisely than solutions 2 or
3 and thus is more desirable to keep in the population. We can see that solutions
2 and 3 present a much higher risk of overfitting. However, in Standard GP they
would be preferred over solution 1, consequently filling up the population with
many similar solutions presenting the same overfitting risks. In RST, solution 1
is not necessarily discarded when compared to solutions 2 and 3, as the chosen
instance for the fitness calculation in each generation can be any, and hence
an instance where solutions 2 and 3 fail to fit can be chosen. This results in
keeping solution 1 in the population and possibly allowing the search to find
other more general solutions. In fact, a preliminary exploration of the population
characteristics of both Standard GP and RST, has revealed that the genotypical
diversity is generally higher with RST (with statistical significance), in particular
among the best ranked individuals of the population. Additional observations
have also revealed that the solutions produced by the RST tend to be smoother
than the ones produced by Standard GP, much like the examples presented
in Figure 3. Further investigation of these themes may help us develop better
methods to control overfitting in the future.

Another issue that deserves further attention is that of the amount of search
that is allowed to the RST when compared to Standard GP. One of the most
interesting facts observed in the results is the evolution of the RST testing and
training fitness in all datasets. These show that the RST is able to continually
improve training fitness while not degrading the testing fitness. The improvement
of its training fitness is much smaller than the improvement achieved by Standard
GP, but the fact that the testing fitness and the overfitting values are better
compensate for this fact. These results hint that the RST is indeed learning
the underlying relationships of the whole known data (testing and training sets)
instead of simply overfitting the training data. Even in the final generations the
overfitting of the RST is close to zero. However, care must be taken when drawing
conclusions, since it is not clear whether these low overfitting values can be kept
if the runs are allowed to continue for more generations. We have not performed
such experiments yet, but these will bring further insight on the full potential of
the RST. If indeed the RST is learning the underlying relationships of the whole
data, then similar overfitting values should occur in the extended runs. If not, we
may have to conclude that the RST is only delaying the occurrence of overfitting,
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Fig. 3. A possible target and three different candidate solutions

simply because it sees very little of the training set in each generation. Note that,
in a run of only 100 generations, it is not even possible for RST (with the settings
used, RSS=1) to see all the instances of the training set in the LD50 dataset.

5 Conclusions

In this work we have studied the potential of the RST to control overfitting in
hard real world applications. In the RST, the training set is never entirely used in
the search process. Instead, at each generation, a random subset of the training
data is chosen and evolution is performed taking into account the fitness of the
solutions in this subset. In two multidimensional symbolic regression problem
from the pharmacokinetics domain and one from the forestry domain, the RST
was able to continually improve training fitness while not degrading the testing
fitness, resulting in much lower overfitting values than the ones observed for
Standard GP. Furthermore, the RST did so while producing considerably smaller
and less complex solutions. From these facts we were able to claim that the RST,
with the settings used in this work, reveals clear advantages in the three real
world applications studied here.

Generalization has only recently been recognized as an important open issue
of GP. Another contribution of this work is a brief summary of the published
literature on this subject, which until now has been made of a series of isolated
efforts scattered along the years and among different applications. While dis-
cussing the possible reasons for the good performance of the RST, as well as its
possible limitations, we have advanced a few ideas for future research that we
hope may help to build new methods to control overfitting in the future, thus
contributing to the advancement of the state of the art of this subject.
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