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Abstract. Generalization is the ability of a model to perform well on
cases not seen during the training phase. In Genetic Programming gen-
eralization has recently been recognized as an important open issue, and
increased efforts are being made towards evolving models that do not
overfit. In this work we expand on recent developments that showed that
using a small and frequently changing subset of the training data is ef-
fective in reducing overfitting and improving generalization. Particularly,
we build upon the idea of randomly choosing a single training instance at
each generation and balance it with periodically using all training data.
The motivation for this approach is based on trying to keep overfitting
low (represented by using a single training instance) and still presenting
enough information so that a general pattern can be found (represented
by using all training data). We propose two approaches called interleaved
sampling and random interleaved sampling that respectively represent
doing this balancing in a deterministic or a probabilistic way. Experi-
ments are conducted on three high-dimensional real-life datasets on the
pharmacokinetics domain. Results show that most of the variants of the
proposed approaches are able to consistently improve generalization and
reduce overfitting when compared to standard Genetic Programming.
The best variants are even able of such improvements on a dataset where
a recent and representative state-of-the-art method could not. Further-
more, the resulting models are short and hence easier to interpret, an
important achievement from the applications’ point of view.

Keywords: Genetic Programming, Overfitting, Generalization, Phar-
macokinetics, Drug Discovery.

1 Introduction

Genetic Programming (GP) [13] is now a mature technique that routinely pro-
duces results that have been characterized as human-competitive [8]. However,
a few open issues remain, one of them being the lack of generalization, or over-
fitting, of the evolved models [12]. Overfitting is said to occur when a model
performs well on the training cases but poorly on unseen cases. This indicates
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that the underlying relationships of the whole data were not learned, and instead
a set of relationships existing only on the training cases were learned, but these
have no correspondence over the whole known cases. Notably, in Koza [7] most
of the problems presented did not use separate training and testing datasets, so
performance was never evaluated on unseen cases [9]. Other non-evolutionary
machine learning methods have dedicated a larger amount of research effort to
generalization than GP, although the number of publications dealing with over-
fitting in GP has been increasing in the past few years. For a review of the
state-of-the-art in avoiding overfitting in GP the reader is referred to [4].

Part of the lack of generalization efforts can be related to another issue occur-
ring in GP - bloat. Bloat can be defined as an excess of code growth without a
corresponding improvement in fitness [14]. This phenomenon occurs in GP as in
most other progressive search techniques based on discrete variable-length repre-
sentations. Bloat was one of the main areas of research in GP, not only because
its occurrence hindered the search progress but also because it was hypothesized,
in light of theories such as Occam’s razor and the Minimum Description Length,
that a reduced code size could lead to better generalization ability. Researchers
had a common agreement that these two issues were related and that counter-
acting bloat would lead to positive effects on generalization. This, however, has
been recently challenged. Contributions show that, on the same problem, bloat
free GP systems can still overfit, while highly bloated solutions may generalize
well [16]. This leads to the conclusion that bloat and overfitting are in most
part two independent phenomena. In light of this finding, new approaches to
improve GP generalization ability are needed, particularly ones not based on
merely biasing the search towards shorter solutions.

In this work we build on recent developments in this domain. We explore how
we can balance keeping overfitting low and still reaching models with general
patterns. We do that by interleaving the usage of the training data between a
single instance and all the instances. This approach is inspired by a state-of-the-
art method to control overfitting called Random Sampling Technique (RST) [4].
In order to experimentally validate our approach, we apply it to hard high-
dimensional problems in the field of pharmacokinetics, comparing the results
with the ones obtained by standard GP and by RST. The three problems ad-
dressed are the prediction of median lethal dose, protein-plasma binding levels,
and human oral bioavailability of medical drugs [1]. Section 2 describes the
proposed approaches and the experiments conducted. Section 3 presents and
discusses the results and section 4 concludes.

2 Approaches and Experiments

This section describes the motivation, the proposed approaches, the experimental
parameters and the datasets used.

2.1 Motivation

Using a varying subset of the training data was previously shown to have positive
effects. In [2] it was shown that this type of approach could reduce the speed of
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a GP run and still achieve similar results to the standard GP approach of using
all training data in a static manner. In a particular configuration, it was even
possible to improve generalization. In [11] the usage of a varying subset of the
training data was shown to reduce overfitting in a software quality classification
task. [2] used between 10% and 15% of the total training data depending on the
variant, while [11] used 50%. More recently, even smaller percentages of the total
training data were shown to be able to reduce overfitting and improve general-
ization. In particular, even using only a single training instance and changing
it every generation was shown to be able to achieve these same outcomes. This
was shown in [4] in high-dimensional symbolic regression real-life datasets, as
well as in artificial datasets in [10] and [3]. In [4] besides the reduced overfitting
and improved generalization, it was also shown that the evolved solutions were
smaller than those from standard GP.

In this work, we are mainly interested in the idea of choosing the subset of
the training data randomly. This kind of approach is called Random Sampling
Technique (RST) or Random Subset Selection (RSS). Here, we will use the term
RST. Particularly, we build upon the idea of using a single randomly chosen
training instance at each generation and balance it with periodically using all
the training data. The motivation for this approach is based on trying to keep
overfitting low (represented by using a single training instance) and still pre-
senting enough information so that a general pattern can be found (represented
by using all training data). We propose two approaches called interleaved sam-
pling and random interleaved sampling that respectively represent doing this
balancing in a deterministic or a probabilistic way.

2.2 Interleaved Sampling

This approach is based on deterministically interleaving between using one or all
training instances. We propose three variants respectively naming them: inter-
leaved, interleaved single and interleaved all. The first variant is based on using
all training instances in the first generation, then changing to a single training
instance in the next generation and proceeding with the same interleaving for
the remaining generations. As such, and provided that the number of genera-
tions is even, this variant always evolves half of the generations with all training
instances and the other half with a single instance. The interleaved single vari-
ant is based on giving preference to using a single training instance and can
consequently be understood as interleaving with a bias towards a single training
instance. A parameter is added in order to define how many generations using
a single training instance are conducted for each generation where all training
instances were used. The values tested for this parameter were 5%, 10%, 15%,
20% and 25%, where each value represents the percentage over the total number
of generations. Conversely, the interleaved all variant is based on giving pref-
erence to using all training instances. The parameter for this variant is similar
to the previous, and in this case defines how many generations using all train-
ing instances are conducted for each generation where a single training instance
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was used. The values tested for this parameter are the same as in the interleaved
single variant.

2.3 Random Interleaved Sampling

This approach is based on probabilistically interleaving between using a single
or all training instances. At each generation the decision of how many training
instances to use is taken. The probability of using a single training instance
is given as a parameter. The values tested for this parameter were 5%, 25%,
50%, 75% and 95%. It should be noted that using 100% as a parameter would
be equivalent to the RST using a single training instance and changing it ev-
ery generation. Similarly, using 0% as a parameter would be equivalent to the
standard GP approach of always using all training data.

2.4 Parameters and Datasets

The experimental parameters used are provided in Table 1. Furthermore,
crossover and mutation points are selected with uniform probability. Fitness
is calculated as the Root Mean Squared Error between predicted and expected
outputs. Statistical significance of the null hypothesis of no difference was de-
termined with Mann-Whitney U tests at p = 0.05. Standard GP and RST 1/1
are used as baselines for comparison. Standard GP uses all the training data at
every generation. RST 1/1 is also used as a baseline because it is a representative
state-of-the-art method, as recently shown in [4]. It works by randomly choosing
a new single training instance at each generation. For each dataset 30 different
random partitions are used. Each method uses the same 30 partitions.

Table 1. GP parameters used in the experiments

Runs 30

Population 500

Generations 200

Training - Testing division 50% - 50%

Crossover operator Standard subtree crossover, probability 0.9

Mutation operator Point mutation, probability 0.1,

mutation probability per node 0.05

Tree initialization Ramped Half-and-Half,

maximum depth 6

Function set +, -, *, and /, protected as in [13]

Terminal set Input variables,

constants -1.0, -0.5, 0.0, 0.5 and 1.0

Selection for reproduction Tournament selection of size 10

Elitism Best individual always survives

Maximum tree depth 17
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Experiments are conducted on three multidimensional symbolic regression
real-life datasets, all of which on the pharmacokinetics domain. They have al-
ready been used in GP studies (e.g. [1]).

Toxicity. The goal of this application is to predict, in the context of a drug
discovery study, the median lethal dose (represented as LD50) of a set of candi-
date drug compounds on the basis of their molecular structure. LD50 refers to
the amount of compound required to kill 50% of the considered test organisms
(cavies). Reliably predicting this and other pharmacokinetics parameters would
permit to reduce the risk of late stage research failures in drug discovery, and
enable to decrease the number of experiments and cavies used in pharmacologi-
cal research [1]. The LD50 dataset consists of 234 instances, where each instance
is a vector of 627 elements (626 molecular descriptor values identifying a drug,
followed by the known LD50 for that drug). This dataset is freely available at
http://personal.disco.unimib.it/Vanneschi/toxicity.txt. We will refer
to this dataset as LD50.

Plasma Protein Binding. As in the toxicity application, also here the goal is
to predict the value of a pharmacokinetics parameter of a set of candidate drug
compounds on the basis of their molecular structure, this time the plasma protein
binding level. Protein-plasma binding level (represented as %PPB) quantifies the
percentage of the initial drug dose that reaches the blood circulation and binds
to the proteins of plasma. This measure is fundamental for good pharmacoki-
netics, both because blood circulation is the major vehicle of drug distribution
into human body and since only free (unbound) drugs can permeate the mem-
branes reaching their targets [1]. The %PPB dataset consists of 131 instances,
where each instance is a vector of 627 elements (626 molecular descriptor values
identifying a drug, followed by the known %PPB for that drug). We will refer
to this dataset as PPB.

Bioavailability. In this dataset the pharmacokinetics parameter to predict is
the human oral bioavailability. Human oral bioavailability (represented as %F)
is the parameter that measures the percentage of the initial orally submitted
drug dose that effectively reaches the systemic blood circulation after passing
through the liver. Being able to reliably predict the %F value for a potential
new drug is outstandingly important, given that the majority of failures in com-
pounds development from the early nineties to nowadays are due to a wrong
prediction of this pharmacokinetic parameter during the drug discovery pro-
cess [6,5]. The %F dataset consists of 359 instances, where each instance is a
vector of 242 elements (241 molecular descriptor values identifying a drug, fol-
lowed by the known value of %F for that drug). This dataset is freely available at
http://personal.disco.unimib.it/Vanneschi/bioavailability.txt. We
will refer to this dataset as Bio.

3 Results and Discussion

This section presents and discusses the results achieved. For the remainder of
this paper, the terms training and testing fitness are to be interpreted in the

http://personal.disco.unimib.it/Vanneschi/toxicity.txt
http://personal.disco.unimib.it/Vanneschi/bioavailability.txt
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following way: training fitness is the fitness of the best individual in the training
set; testing fitness is the fitness of that same individual in the testing set. For
the purpose of further comparisons we have considered the overfitting measure
described in [4]. According to this measure, overfitting is simply calculated as
the absolute value of the difference between testing and training fitness. This
measure is associated with the intuitive notion that overfitting is related to the
discrepancy between the performance of a model on the data seen during the
training phase and the unseen data. Tree size is calculated as the number of
nodes of a solution. The evolution plots present the results based on the median
of the fitness, overfitting, tree size and tree depth of the best individuals in
the training data at each generation over 30 runs. These plots can be found in
figures 1, 2 and 3.

3.1 Interleaved Single and Interleaved All Variants

The interleaved single and the interleaved all variants are not shown in the
evolution plots as they are very similar to, respectively, RST 1/1 and Standard
GP. These similarities apply regardless of the parameterization.

For the interleaved single, statistical results confirm that this variant is supe-
rior in terms of overfitting reduction, across all datasets, to standard GP, being
also superior in testing fitness on the LD50 and the PPB datasets. There is no
statistically significant difference in terms of testing fitness on the Bio dataset.
The comparisons between the RST 1/1 and standard GP reach the same conclu-
sions. Therefore, the interleaved single variant, in these tested parameterizations,
can be seen as equivalent to the RST 1/1. It seems that the effect of presenting
all training data with this periodicity to the algorithm is negligible. In terms of
tree size and tree depth, the interleaved single variant produces smaller and shal-
lower trees when compared to standard GP. These results are also statistically
significant across all datasets.

The interleaved all variant produced similar results to standard GP, across all
datasets, in terms of training and testing fitness and overfitting. The statistical
results show that there are almost no statistically significant differences between
these methods and standard GP. The only statistically significant differences in
testing fitness and overfitting occurred on the Bio dataset where standard GP is
superior in both measures when compared to parameterizations 15% and 25%.
From these results we conclude that providing a bias towards using all training
data and periodically using a single instance is not an effective approach of
improving generalization and reducing overfitting.

3.2 Interleaved and Random Interleaved Variants

As we can see from the evolution plots, the random interleaved approach has the
expected behavior in regard to its parameterization. The closer the parameter is
to 100%, the closer the method behaves as the RST 1/1. Conversely, the closer
the parameter is to 0%, the closer the method behaves as the standard GP ap-
proach. Statistical results confirm that the 5% parameterization is very similar to
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Fig. 1. Training fitness, testing fitness, overfitting, tree size and tree depth evolution
plots for: Standard GP, Interleaved, Random Interleaved (RI) 5% 25% 50% 75% 95%
and RST 1/1 on the LD50 dataset
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the standard GP approach and it is unable to improve generalization and reduce
overfitting. All other parameterizations are able, with statistical significance, to
improve generalization and reduce overfitting over the standard GP approach on
the LD50 and PPB datasets. However, only the 50% and the 75% parameteri-
zations can achieve an increase in generalization on the Bio dataset. The RST
1/1 is unable to achieve this same statistically significant result on this dataset.
This shows that depending on the dataset, different probabilities of choosing a
single training instance may be helpful. Nevertheless, from the results we can see
that the most promising area for looking for a good parameterization to a given
dataset revolves around the 50% parameterization. The interleaved results are
similar to the random interleaved 50%, having also the same statistical signifi-
cance over the standard GP approach. This was somewhat expected since both
methods use on average the same number of generations with a single training
instance. As we can see from the RST 1/1 results on the Bio dataset, although it
is able to avoid overfitting, it also presents a slow learning of both training and
testing data. In comparison, interleaved and random interleaved 50% and 75%
are able to increase the rate of learning of the training data while also improving
testing fitness. In terms of tree size and tree depth, the interleaved variant and
the random interleaved variant with 50%, 75% and 95% parameterizations, pro-
duce smaller and shallower trees when compared to standard GP. These results
are also statistically significant across all datasets.

3.3 Final Remarks

Overall, and across all the datasets, the methods that showed to be more con-
sistent were: interleaved and random interleaved 50% and 75%. These three
methods showed to be superior to standard GP in terms of reducing overfitting
and improving generalization. Furthermore, they have also improved generaliza-
tion where the RST 1/1 and the interleaved single methods could not: the Bio
dataset. This dataset showed to be the most difficult of the three in terms of
improving the testing fitness over standard GP. These facts allow us to conclude
that these three methods are superior to standard GP and more robust than the
RST 1/1 approach and hence contribute to an incremental improvement of the
state of the art in this field.

From the point of view of the applications, the fact that these methods also
produce relatively short models is a major advantage. At the end of the run,
random interleaved 75% provides models with median size around 50 for the
LD50 and PPB problems, and around 150 for the Bio problem. These are very
short models when we consider the dimensionality of the data (626 features for
LD50 and PPB, 241 for Bio). For the Bio problem this size is similar to the sizes
obtained with the very successful bloat control technique Operator Equalisation
(OpEq) [15]. For LD50 it is actually better, i.e. lower, than the sizes obtained by
OpEq [16]. For PPB, to our knowledge no results are reported in the literature
for the median tree size of the best individual.
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4 Conclusions

In this work we expanded on recent developments in terms of overfitting re-
duction and generalization improvement. These developments have showed that
using a small and frequently changing subset of the training data is effective
in reducing overfitting and improving generalization. Particularly, we have built
upon the idea of using a single randomly chosen training instance at each gen-
eration and balance it with periodically using all training data. The motivation
for this approach is based on trying to keep overfitting low (represented by us-
ing a single training instance) and still presenting enough information so that a
general pattern can be found (represented by using all training data). We have
proposed two approaches called interleaved sampling and random interleaved
sampling that respectively represent doing this balancing in a deterministic or a
probabilistic way. Experiments were conducted in three high-dimensional real-
life problems on the pharmacokinetics domain. The results have shown that most
of the proposed approaches were able to consistently improve generalization and
reduce overfitting when compared to the standard GP approach. In particular,
three methods have shown these improvements even on a dataset where a state-
of-the-art technique failed. These results were confirmed as being statistically
significant. From the point of view of the applications, the winning methods
have the additional advantage of producing relatively short models, hence easier
to interpret.

In conclusion, we have found that both the deterministic and the probabilis-
tic approach of balancing the usage of training data were helpful in improving
generalization and reducing overfitting. We have also found that, in most cases,
and in order to achieve these improvements, a preference has to be given towards
using only a single training instance. The prevalence of this preference is depen-
dent on the dataset but, in general, using a single training instance in more or
less half of the generations is enough.
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4. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random Sampling Tech-
nique for Overfitting Control in Genetic Programming. In: Moraglio, A., Silva, S.,
Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp.
218–229. Springer, Heidelberg (2012)

5. Kennedy, T.: Managing the drug discovery/development interface. Drug Discovery
Today 2(10), 436–444 (1997)

6. Kola, I., Landis, J.: Can the pharmaceutical industry reduce attrition rates? Nat.
Rev. Drug Discov. 3(8), 711–716 (2004)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems), 1st edn. The MIT Press (1992)

8. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3-4), 251–284 (2010)

9. Kushchu, I.: An evaluation of evolutionary generalisation in genetic programming.
Artif. Intell. Rev. 18, 3–14 (2002)

10. Langdon, W.B.: Minimising testing in genetic programming. Tech. Rep. RN/11/10,
Computer Science, University College London, Gower Street, London WC1E 6BT,
UK (2011)

11. Liu, Y., Khoshgoftaar, T.: Reducing overfitting in genetic programming models for
software quality classification. In: Proceedings of the Eighth IEEE International
Conference on High Assurance Systems Engineering, HASE 2004, pp. 56–65. IEEE
Computer Society, Washington, DC (2004)

12. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genetic Programming and Evolvable Machines 11, 339–363 (2010)

13. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(2008)

14. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10, 141–179 (2009)

15. Silva, S., Vanneschi, L.: Bloat free genetic programming: Application to human
oral bioavailability prediction. International Journal of Data Mining and Bioinfor-
matics 6(6), 585–601 (2012)

16. Vanneschi, L., Silva, S.: Using Operator Equalisation for Prediction of Drug Toxic-
ity with Genetic Programming. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M.
(eds.) EPIA 2009. LNCS, vol. 5816, pp. 65–76. Springer, Heidelberg (2009)


	Balancing Learning and Overfittingin Genetic Programming 
with Interleaved Sampling of Training Data
	Introduction
	Approaches and Experiments
	Motivation
	Interleaved Sampling
	Random Interleaved Sampling
	Parameters and Datasets

	Results and Discussion
	Interleaved Single and Interleaved All Variants
	Interleaved and Random Interleaved Variants
	Final Remarks

	Conclusions
	References




