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Abstract
Fitness landscape analysis techniques are used to better understand the influence of
genetic representations and associated variation operators when solving a combinato-
rial optimization problem.

Five representations are investigated for the Multidimensional Knapsack problem.
Common mutation operators (like bit-flip mutation) and classic 1-point and uniform
crossover are employed to generate fitness landscapes. Measures such as fitness dis-
tance correlation and autocorrelation are applied to examine the landscapes associated
with the tested genetic encodings. Furthermore, additional experiments are made to
observe the effects of adding heuristics and local optimization to the representations.

The goal of this work is to study the influence of representations on the design of effi-
cient evolutionary algorithms. A comprehensive set of experiments is performed to ac-
complish this task. Results show that the selection of a suitable representation is crucial
when solving combinatorial optimization problems. Encodings with a strong heuristic
bias are more efficient and the addition of local optimization techniques further en-
hance its performance. Finally, results show that, for the Multidimensional Knapsack
problem, the choice of a representation influences the selection of mutation.
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Representation, fitness landscape analysis, mutation, crossover, heuristic bias, local
optimization, multidimensional knapsack problem.
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1 Introduction

Evolutionary algorithms are efficient techniques to discover good quality solutions for
difficult combinatorial optimization problems. The choice of a suitable representation
plays a crucial role in the design of these biological inspired techniques and is a key
issue to improve search performance.

Most of the research in this area deals with the application of an evolutionary al-
gorithm to a specific problem. There are usually two lines of approach. The first one
is to apply a standard implementation of an evolutionary algorithm to a new problem.
The other deals with proposing a novel technique that improves the performance of
previous approaches. In most of these investigations, the focus is on showing how the
evolutionary algorithm was able to solve the problem, i.e., finding new or improved
candidate solutions, and not in why it was able to solve it. Describing and explaining
why the proposed approaches have that behavior, or how they affect its dynamics and
how they compare to different methods, is something not often explored.

The main goal of this work is to study the influence of representations on the de-
sign of efficient evolutionary algorithms for combinatorial optimization problems. The
Multidimensional Knapsack problem (MKP) will be used as a benchmark for our study.
We will use fitness landscape analysis to conduct a comprehensive investigation on
the properties of different representations commonly adopted when evolutionary al-
gorithms are applied to this class of problems.

Fitness landscapes (Wright, 1932) illustrate the association between the search
space and the fitness space. An evolutionary algorithm can be seen of as navigating
a landscape in order to find the highest peak. Higher points in the search space cor-
respond to solutions with higher fitness. A representation and associated variation
operators influence the search efficiency of an evolutionary algorithm. With this in
mind, the choice of a representation and operators can be made based on the study of
the difficulties of the corresponding fitness landscapes. Since fitness landscape analy-
sis techniques were introduced they have become a valuable tool to investigate why a
given evolutionary algorithm works.

The Multidimensional Knapsack problem is a well-known combinatorial opti-
mization problem for each several successful applications of evolutionary algorithms
exist, e.g. (Chu and Beasley, 1998). For this problem there is a large selection of repre-
sentations, which implies that a careful analysis of representation, variation operators
and other techniques, such as the use of heuristics and local optimization, is essential
to the design of an effective algorithm for this problem.

In this work we present our investigations towards a better understanding of the
role of representation and genetic operators when evolutionary algorithms are applied
to the MKP. The study presented in this article continues and expands our initial work
on this topic (Tavares et al., 2006). We add significant new results considering the ap-
plication of fitness landscapes analysis on the MKP. In addition to the research on land-
scapes produced by mutation operators, the analysis now includes landscapes gener-
ated by crossover. To study these kind of landscapes, appropriate measures are pre-
sented. To the best of our knowledge, this is the first study regarding a complete fitness
landscapes analysis on the MKP.

The paper is structured as follows: a description and formal definition of the prob-
lem is presented in section 2; section 3 presents an overview of evolutionary techniques
applied to the MKP; in section 4 we explain the concept of fitness landscapes and de-
scribe the analysis techniques used for this work; experimental results and discussion
are reported in section 5; finally, in section 6 we present some conclusions.
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2 The Multidimensional Knapsack Problem

The MKP is a well-known NP-Hard combinatorial optimization problem, with a wide
range of applications such as cargo loading, cutting stock problems, resource allocation
in computer systems and economics (Martello and Toth, 1990).

This problem is also known in the literature as the M-Dimensional Knapsack Prob-
lem, the Multiconstraint Knapsack Problem, the Multi-Knapsack Problem and the Multiple
Knapsack Problem. Additionally, some authors also include in their name the term zero-
one, e.g., the Multidimensional zero-one knapsack problem. Using alternative names for the
same problem is potentially confusing but since historically, this designation Multidi-
mensional Knapsack Problem has been the most widely used (Chu and Beasley, 1998), we
adopt this same naming.

The problem can be described as follows: given two sets of n items andm knapsack
constraints (or resources), for each item j a profit pj is assigned and for each constraint
i a consumption value rij is designated. The goal is to determine a set of items that
maximizes the total profit, not exceeding the given constraint capacities ci. Formally, it
is stated as:

maximize
n∑
j=1

pjxj (1)

subject to
n∑
j=1

rijxj ≤ ci, i = 1, . . . ,m (2)

xj ∈ {0, 1}, j = 1, . . . , n (3)
with pj > 0, rij ≥ 0, ci ≥ 0 (4)

The decision variable is the binary vector x = (x1, . . . , xn). Each item j is mapped
to a bit. When xj = 1, the corresponding item is considered part of the solution. The
special case of m = 1 is generally known as the Knapsack Problem, or the Unidimensional
Knapsack Problem, and is solvable in pseudo-polynomial time (it is only weakly NP-
Hard). Nonetheless, for m > 1 the problem is strongly NP-Hard (Garey and Johnson,
1979). This yield that exact techniques and exhaustive search algorithms, e.g., branch-
and-bound, are only of practical use to solve MKP instances of small size, since they
are in general too much time-consuming.

This problem is included in the general class of covering and packing problems.
According to Gottlieb (1999a), these two types of problems are structurally equivalent
since we can locate the global optima on the boundaries of the feasible regions. In the
particular case of the MKP, the feasible solutions contained on the boundary cannot be
improved since the insertion of more items will cause the violation of resource capaci-
ties.

The MKP has been widely studied for the past few years and many theoretical and
empirical studies exist for a different number of knapsack problem variants. For a com-
prehensive review of these techniques, including exact methods and heuristics, consult
(Martello and Toth, 1990), (Chu and Beasley, 1998) or (Kellerer et al., 2004). In the next
section, we will present and discuss the most common evolutionary approaches to the
problem.
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3 Evolutionary Approaches

Evolutionary algorithms have been widely applied to the MKP and shown to be effec-
tive for searching and finding good quality solutions (consult e.g. (Chu and Beasley,
1998)). Regardless of that success, designing an efficient evolutionary algorithm for the
MKP is a difficult task where the issue of choosing an appropriate constraint-handling
technique is important. As Gottlieb (1999a) showed, the success of an evolutionary al-
gorithm for the MKP is strongly dependent on the ability of the algorithm to restrict, or
focus, the search on the boundary of the feasible region.

As such, the most successful evolutionary algorithms are based on repairing and
local optimization techniques or heuristic decoders, as for example, the approaches de-
veloped by Chu and Beasley (1998) and Raidl (1998). The generality of the proposed
algorithms found in the literature, Chu and Beasley (1998), Michalewicz and Arabas
(1994), Hinterding (1994), Thiel and Voss (1994) and Gottlieb (2000), can also be sepa-
rated in two groups according to the adopted representation and the associated vari-
ation operators. Evolutionary algorithms may use a direct representation, encoded as
a binary string, where each bit is mapped to an item. A bit set to 1 indicates that the
corresponding item is packed into the knapsack. Moreover, evolutionary algorithms
may adopt indirect encodings, such as permutations or weight-codings. In this case,
the algorithm needs a decoder that translates the chromosome into the actual solution.

The choice of the representation and variation operators is a pivotal decision when
designing an evolutionary algorithm. The role of heuristics and local optimization is
essential for an efficient evolutionary approach for the MKP. Still, the selection of the
representation and variation operators can also play a significant part on the outcome
of the algorithm (Raidl and Gottlieb, 2005).

Next, we briefly describe the most common representations for this problem and
a simple description of some significant works regarding evolutionary algorithms and
MKP. The focus is on genetic representations; for each one of them, we present asso-
ciated variation operators, as well as decoding procedures for the indirect representa-
tions.

3.1 Genetic Representations

Binary Representation
With this encoding, a solution is represented by a characteristic bit vector, where each
bit is mapped to an item. A bit set to 1 indicates that the corresponding item is packed
into the knapsack. There are two options to deal with infeasible solutions: penalty-
based fitness functions (consult Gottlieb (2001) for a comprehensive study on fitness
functions for the MKP) or repair operators. Chu and Beasley (1998) proposed a repair
mechanism, that iteratively removes items until all constraints are satisfied. In addition,
each solution is improved by local optimization. Both methods are guided by a heuris-
tic that orders the items according to the ratio of profit and resource consumption. This
approach was later improved by Raidl (1998), by using the heuristic associated with
the weight-coding representation, described later. For a binary representation, classical
crossover and mutation operators can be used, such as n-point crossover and uniform
crossover, and bit-flip mutation, which may cause constraint violations.

Ordinal Representation
For the MKP, a chromosome is a vector v = (v1, . . . , vn), where each position vk belongs
to the set {1, . . . , n − k + 1} for k ∈ {1, . . . , n}. The vector is mapped to a permutation
π of the items. This permutation is built in the following manner: an ordered list L =
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(L1, . . . , Ln) is created, initialized with all the items; next, vector v is traversed in order,
from first to last position, and each vk specifies a position in L; the referenced element,
Lvk

, is removed from L and is inserted in permutation π, thus representing element πk.
As an example, assume v = (1, 2, 3, 2, 1) and the initial ordered list L = (1, 2, 3, 4, 5).
Vector v is interpreted by successively removing the elements 1, 3, 5, 4, 2 from L. This
process generates the permutation π = (1, 3, 5, 4, 2).

To decode the permutation into a feasible MKP solution, a first-fit heuristic is ap-
plied. The heuristic works by building a feasible solution traversing all variables in the
order given by the permutation π. An item πj is inserted into the solution if it does
not violates any constraint. To be more precise, we start with a feasible solution, rep-
resenting an empty solution, x = (0, . . . , 0) and each item in the order given by the
permutation π. Then, each corresponding decision variable xπj , with j = 1, . . . , n, is
altered from 0 to 1 if the insertion of item πj does not violate any constraint.

This representation has the advantage to enable the use of standard genetic oper-
ators. Classical crossover operators, e.g. uniform crossover, can be used. The mutation
operator randomly chooses a position k ∈ {1, . . . , n} and then picks a new value, vk,
using a uniform distribution, from the set {1, . . . , n− k + 1}.

Evolutionary algorithms for the MKP using this representation can be found in
(Michalewicz and Arabas, 1994) and (Gottlieb and Raidl, 2000). These studies report
poor results in comparison with other representations.

Permutation Representation

Permutations are typical representations for scheduling and routing problems. Addi-
tionally, they have been widely applied to the MKP (Raidl, 1998), (Hinterding, 1994),
(Thiel and Voss, 1994) and (Gottlieb, 2000).

The representation consists of a permutation of all items, π : {1, . . . , n} →
{1, . . . , n} denoted by π = (π1, . . . , πn). Decoding it into a feasible solution is done by
a first-fit heuristic, in the same manner as in the ordinal representation. The representa-
tion needs genetic operators that can preserve the permutations, such as uniform order
based crossover (Gottlieb and Raidl, 2000) or partially-match crossover, and swap mu-
tation (Michalewicz, 1992). Permutation-based evolutionary algorithms have achieved
good results when applied to the MKP, as reported by the works of Hinterding (1994)
and Gottlieb (2000).

Random-Key Representation

Proposed by Bean (1994) the random-key representation is an alternative approach to
encode permutations without the need for specific operators. A random-key is a vector
of real values w = (w1, . . . , wn) where each position represents an item j, assigned by
a weight wj ∈ [0, 1]. The decoder works by sorting the real-valued vector, yielding a
permutation π with the associated weights indexes. Once again, the attained permu-
tation is decoded by means of a first fit heuristic. As stated before, this representation
allows the use of the classical crossover and mutation operators. In the case of muta-
tion, the operator usually performs positional mutation, i.e, it randomly draws values
from the interval [0, 1], according to a uniform or normal distribution, replacing a value
in a random position in the chromosome.

Evolutionary approaches based on random-keys for MKP can be found in (Hin-
terding, 1994) and (Hinterding, 1999). The reported results show that evolutionary
approaches based on this representation can achieve good results.
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Weight-Coding Representation
The weight-coding representation, a general technique successfully applied to a vari-
ety of combinatorial optimization problems, is the most successful decoder-based tech-
nique for the MKP. It was first used by Cotta and Troya (1998) and later improved by
Raidl (1999).

In this representation, a chromosome consists of a real-valued vector of weights
w = (w1 . . . , wn), where each item j of the MKP is associated with a weight wj ∈ [0, 1].
The decoding process of the genotype to the phenotype is made of two steps. The
first step consists of transforming the original problem P into a modified problem P

′

by multiplying the original items profits with the associated weight, i.e., biasing the
original problem. The last step requires the use of a fast heuristic to find a solution to
P

′
and to evaluate it according to the original problem.

Several decoding heuristics and techniques for biasing the original problem have
been studied (Raidl, 1999). The heuristics that often work best are based on surrogate
and lagrangian relaxation techniques. The decoding heuristic using the surrogate re-
laxation method is preferred due to its lower computational requirements. The original
problem is simplified by transforming all m constraints into a single constraint:

n∑
j=1

(
m∑
i=1

airij)xj ≤
m∑
i=1

aici (5)

where ai, i = 1, . . . ,m, is the surrogate multiplier for the ith constraint. To derive the
surrogate multipliers, one of the simplest methods is to solve the Linear Programming
(LP) relaxation of the original problem (i.e., the decision variables xi can take any value
∈ [0, 1]) and to use the values of the dual variables as the surrogate multipliers.

To obtain a heuristic solution to the MKP, the profit/pseudo-resource consumption ra-
tios, uj , are calculated as:

uj =
pj∑m

i=1 airij
(6)

A lower pseudo-utility ratio heuristically indicates that an item has a lower profit with
a higher resource consumption, whilst a high ratio reflects a more efficient item. Ac-
cording to the uj values, we sort the items in a decreasing order, adding them to the
solution one at a time if none of the constraints are violated. This process is similar
to the first-fit heuristic previously described in the decoding steps for encodings where
permutations are involved.

The surrogate multipliers are only calculated once for the original problem at the
beginning, as a preprocessing step. This is done to ensure low computation costs and
as a result of this step, the decoding process begins by determining the uj values.

This representation allows the use of standard crossover and mutation variation
operators. Like the random-key representation, positional mutation is used. For details
of this method, please refer to (Raidl, 1999). This approach has attained good results
when applied to the MKP.

Other Representations
The encodings described before represent the majority of evolutionary representation
developed and studied for the MKP. Nonetheless, it is possible to find in the literature
other works which include different codifications. These are not analyzed in this paper
but we will describe them for the sake of completeness.
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In addition to permutation-based representations, Hinterding (1994) also used in
his work a variable-length representation. This representation contains a list of items that
fit into the knapsack. The items are inserted according to the ordering that they ap-
pear, which means that this encoding is similar to a permutation of variable size. The
proposed genetic operators are specific, e.g, the injection crossover (Hinterding, 1994).
Results attained are inferior to permutation-based approaches since it is possible to
produce feasible individuals to which further items could be added.

Genetic programming over context-free languages with linear constraints was in-
vestigated by Bruhn and Geyer-Schulz (2002) who presented several results on vari-
ants of the MKP. In this case, a solution is encoded by a derivation tree produced by
the grammar. An item is selected by a leaf node and each node contains the capacity
of the sub-tree it represents (the used and free). This method allows the verification
of the capacity constraints for each sub-tree. Standard genetic programming variation
operators are used, with an initialization routine which produces a derivation tree by
applying a randomly chosen rule of the grammar. This routine is computationally ex-
pensive since infeasible solutions are rejected until a feasible one is created. Results
reported by the authors (Bruhn and Geyer-Schulz, 2002) suggest that this approach is
superior to penalty-based evolutionary algorithms but Raidl and Gottlieb (2005) claim
otherwise: the inferior performance of the evolutionary algorithm used by Bruhn and
Geyer-Schulz (2002) in their study has its source on the chosen suboptimal configura-
tion made by the authors.

Despite the fact of not presenting a complete different representation for the MKP,
it is worth mentionning the work presented by Cleary and O’Neill (2005). Here, the
authors describe how the standard genotype-phenotype mapping process of grammat-
ical evolution can be enhanced with an attribute grammar to allow it to operate as a
decoder-based evolutionary algorithm. The use of an attribute grammar maintains a
context-sensitive and semantic information of the capacity constraints of the MKP, in
which the attribute grammar specification is used to perform decoding similar to a
first-fit heuristic. Presented results are encouraging but not superior to previous evolu-
tionary approaches.

3.2 Analysis of Evolutionary Algorithms for the MKP

Although many different evolutionary algorithms have been applied to the MKP, there
are just a few studies that aim to perform a comprehensive analysis of the behavior of
such techniques.

The most significant work on this subject was done by Raidl and Gottlieb (Raidl
and Gottlieb, 2005). In this study, five representations (four indirect decoder-based
representations and one direct representation) are examined according to important
aspects in an evolutionary algorithm, such as initialization and variation operators. The
study comprises a general comparison performance of the five encodings, as well as a
comprehensive empirical investigation of different characteristics of an evolutionary
algorithm. In this case, three properties, locality, heritability and heuristic bias, are
considered. A set of static measures is used to gain insights about the evolutionary
algorithm behavior when using the tested representations. This investigation helped to
confirm, extend and unify previous studies about the MKP, (Raidl and Gottlieb, 1999),
(Gottlieb, 1999b), (Gottlieb, 2000) and (Gottlieb and Raidl, 2000).

In a research initiated by Branke et al. (2005, 2006), a dynamic version of the MKP
is proposed and analyzed according to the changing fitness landscape. This work is a
contribution to a better comprehension of evolutionary algorithms when facing chang-
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ing environments. To the best of our knowledge, this is the first work regarding this
variant of the MKP and as such, results and evolutionary efficiency are not comparable
to the algorithms for static versions of the problem.

In a previous paper (Tavares et al., 2006), we used the fitness landscape frame-
work to initiate a study with five representations for the MKP. The analysis also con-
tained some repair operators, local optimization and heuristics. The focus of this in-
vestigation was on fitness landscapes generated by mutation operators. The analysis
of fitness distance correlation and autocorrelation helped to gain some insights on the
performance differences achieved by different representations. The study shows that
the choice of an encoding without a strong heuristic bias can create some difficulties for
an evolutionary algorithm designed for the MKP. Here we will continue the investiga-
tion, extending this research to landscapes produced by crossover operators, and also
adding a more clear and deep overall analysis. In the next section we will describe our
analysis framework.

4 Fitness Landscapes

The concept of fitness landscape, introduced by Wright (1932) to demonstrate the dy-
namics of biological evolutionary optimization, has been useful for the analysis and
understanding of evolutionary algorithm’s behavior. In addition, the study of fitness
landscapes can be of value in designing an evolutionary algorithm since it can help to
predict its performance.

Usually, evolutionary search can be represented by three spaces: the search space,
the phenotype space and the fitness space. The fitness space reflects the solution quality
whilst the search space is made of the candidate solutions. A candidate solution is rep-
resented by its genotype, which can be mapped to its phenotype by a decoder function.
This is not always true since in the case of direct representations, a candidate solution
is only represented by its genotype. The set of all possible genotypes is denominated
genotype space and it is equivalent to the search space. This equivalence is possible for
the reason that, variation operators work in the genotype space and, an evolutionary
algorithm searches for genotypes that decode into phenotypes with high fitness.

Fitness landscapes describe the relation between the search space and the fitness
space. Regarding the search space as a landscape, an evolutionary algorithm can be seen
of as navigating through it in order to find the highest peak of the landscape. The height
of a point in the search space (the genotype) reflects the fitness of the decoded solution
(the phenotype) associated with that point. The structure of a landscape influences
the dynamics of an evolutionary algorithm. Since the representation and operators
define the manner an evolutionary algorithm can perform more efficiently its search,
the choice of its representation and operators for a given problem can be based on the
study of the difficulties of the corresponding landscape.

Fitness landscapes can be defined as follows: a set of points (solutions) X , a fitness
function f which assigns a numeric value to each solution, and a distance operator d
defining the neighborhood within set X . Formally, a fitness landscape is a tuple

L = (X, f, d) (7)

with a fitness function defined as
f : X → < (8)

Thus, the fitness landscape can be interpreted as a graph

GL = (X,E) (9)

8 CISUC Technical Report TR 2007/003 ISSN 0874-338X



Multidimensional Knapsack Problem: The Influence of Representation

with edge set
E = {(x, y) ∈ X ×X | d(x, y) = dmin} (10)

Being dmin the minimum distance between two points in the search space. The diame-
ter of a landscape diamGL, is the maximum distance in the search space.

As an example, for binary representations with a bit-flip mutation operator, the
solution set is X = {0, 1}n, with GL a hypercube of dimension n and the Hamming
distance as the distance operator. This yields dmin = 1 and diamGL = n.

4.1 Measures for Landscape Analysis

As mentioned before, the structure of landscapes influences the ability of an evolution-
ary algorithm to perform an efficient search. There are several properties that define
the structure of fitness landscapes, such as the distribution of the fitness function, the
number and distribution of local optima, the structure of the basins of attraction, the
distribution of peaks in the search space, the presence and structure of neutral net-
works, and landscape ruggedness. These characteristics are well known and have been
studied in the evolutionary computation community.

4.1.1 Fitness Distance Correlation
One way to measure problem difficulty is determining how close is the relation be-
tween fitness value and distance to the nearest optimum, in the search space. Fitness
distance correlation, coefficient %, can be estimated by

%(f, d) ≈ 1
σ(f)σ(d)m

m∑
i=1

(fi − f)(di − d) (11)

with a given set of points xi of size m (the random walk length) and fi = f(xi) the fit-
ness value and di = dopt(xi) the minimum distance to a global optimum solution. The f
and σ(f) are the mean and standard deviation. The search should be easy, for selection-
based algorithms, when fitness increases as the distance to the optimum decreases. This
indicates the existence of a path via solutions with increasing fitness values. A value of
−1.0 for % shows that fitness and distance to the optimum are perfectly related, thus
the search is easy. A value of % = 1.0 indicates the opposite.

4.1.2 The Autocorrelation Function
The structure of a fitness landscape can be examined by measuring the degree of cor-
relation between points on the landscape. The degree of correlation depends on the
difference between the fitness values of the points. Smoother landscapes are highly
correlated, making the search for an evolutionary algorithm easier. This is the result of
similar fitness values. If the difference of fitness values is higher, the landscape is less
correlated which implies a rugged landscape, thus being harder to search in it. To mea-
sure the ruggedness of a fitness landscape we calculate the autocorrelation function ρ(d),
which measures the correlation of all pairs of points in the search space with distance
d. It can be estimated by computing a large sample of solutions:

ρ(d) =
1

σ2(f)|X2(d)|
∑

(x,y)∈X2(d)

(f(x)− f)(f(y)− f) (12)

where X2(d) is the set of all pairs of points in the search space with distance d and
|X2| the number of pairs in the set. Another possibility to estimate ρ(d) is to perform
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a random walk. In this case, the random walk of a time series {f(xt)} defines the
correlation of two points s steps away in a m length random walk:

ρrw(s) ≈ 1
σ2
f (m− s)

m−s∑
t=1

(f(xt)− f)(f(xt+s)− f) (13)

If the landscape is statistically isotropic, the time series forms a stationary random pro-
cess, therefore a single random walk is sufficient to obtain ρrw (Merz, 2000).

4.1.3 Correlation Length
This measure directly represents the ruggedness of a fitness landscape: the higher the
value of the correlation length l, the smoother the landscape is; the lower the value of
l, the more rugged the landscape is. The correlation length is defined as

l = − 1
ln(|ρ(1)|)

(14)

for ρ(1) 6= 0. It is useful to normalize it with the diameter of the landscape:

ξ =
l

diamGL
(15)

The closer the normalized correlation length is to 1, the higher the correlation is. If
ξ = 0 or close to 0, there is no correlation.

4.2 Limitations of Fitness Landscapes

Although fitness landscape analysis can be useful in performance prediction and anal-
ysis for evolutionary algorithms (Merz, 2000), it has some limitations. Jones and For-
rest (1995) suggested fitness distance correlation as a measure for search difficulty and
it can, for some problems, correctly predict difficult. However, for problems with an
unknown global optima, the measure is no longer directly applicable. It can be approx-
imated but it may lead to incorrect predictions as shown by Altenberg (1997).

Moreover, in spite of properties of fitness landscapes (e.g., the number of local op-
tima in the landscape, the structure of the basins of attraction or the landscape rugged-
ness) provide some understanding of the environment and the search dynamics of evo-
lutionary algorithms, it still can be a difficult task to predict, even for some, easy prob-
lems, the performance of an algorithm as demonstrated by Reeves (1999). Reliable and
generally applicable measures of difficulty for fitness landscapes are still needed to be
developed and studied (Raidl and Gottlieb, 2005).

Regardless of the limitations found, fitness landscape analysis is a valuable tool to
the study and design of evolutionary algorithms, as Merz and Freisleben (1999) have
illustrated.

5 Landscape Analysis

In this section, the influence of representations is investigated when solving the MKP.
This analysis is performed by conducting an investigation on the fitness landscapes
defined by different representations.

We consider five representations: binary, ordinal, permutation, random-key and
weight-coding. For each representation we will study landscapes generated by both
variation operators: mutation and crossover. Standard mutation operators are used
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to create landscapes for each one of the representations. These are: bit-flip mutation,
integer flip mutation, swap and uniform flip mutation. For the weight-coding represen-
tation, we will first use the uniform flip operator and later we will switch to a different
one. This is accomplished to examine the influence of the operator heuristic bias. As
for landscapes generated by crossover, standard one-point and uniform crossover op-
erators are applied. The only exception is related to the permutation encoding. In this
case, both one-point and uniform crossover are altered to allow the manipulation of
permutations.

All representations cover the feasible region of the search space with the exception
of the direct encoding. As such, we use a penalty function as recommended by Gottlieb
(2001) since it can better guide the search to the feasible region:

penalty(x) =
pmax + 1
rmin

×max{CV (x, i) | i ∈ I} (16)

Where pmax is the maximum profit pi and rmin is the minimum resource consumption
ri,j , with I = {1, . . . ,m} and J = {1, . . . , n}. CV is calculated by:

CV (x, i) = max(0,
∑
j∈J

rijxj − ci) (17)

In this study we consider the binary representation in different forms. First, we
will be concerned with the simple binary encoding with penalty-based fitness function,
then we will add the profit/pseudo-resource consumption ratios to obtain a better solution,
and finally, we will add repair and local optimization. This is accomplished to better
examine the effect of heuristics and local search on the encoding. It is important to ob-
serve the effect of adding these methods to a representation. We begin our analysis on
standard and simple encodings that do not use heuristics particularly biased towards
fitter phenotypes.

5.1 Experimental Setup

For our analysis, we selected problem instances from two different MKP test suites,
available from the OR-Library1, as well as another benchmark suite provided by Glover
and Kochenberg2. We performed a comprehensive set of experiments with available
instances from both suites. Due to space limitations, in this paper we present results
from some selected instances. Results obtained with other examples follow the same
trend.

From the first suite, we will analyze results from instances containing 28 and 50
items, with 10 and 5 constraints respectively (named P01 and P02). From the second
dataset, we selected instances with 100 items and 5 constraints and 25% of tightness
(designated CB01 and CB02). From the last benchmark suite, we chose the instance
with 100 items and 15 constraints (labeled GK01).

A fitness distance analysis requires that the global optima are known (or a very
near-global optimum solution). For these instances we solved them to optimality by
running a MIP solver from the GNU Linear Programming Kit 3. It is important to notice
that for our analysis we only consider the existence of one global optimum. Addition-
ally, the distance between the known optimal solution and the candidate solutions in
our random walks is calculated at the phenotype level. This simply means that, when

1http://mscmga.ms.ic.ac.uk/info.html
2http://hces.bus.olemiss.edu/tools.html
3http://www.gnu.org/software/glpk/glpk.html

CISUC Technical Report TR 2007/003 ISSN 0874-338X 11



J. Tavares, F. B. Pereira and E. Costa

using indirect encodings, all solutions contained in a random walk are converted to its
phenotype. The distance is given by the Hamming distance between the solution and
the known optimum solution. For each one of the random walks, we performed 50
runs with 100000 steps.

5.2 Mutation Fitness Landscapes

In table 1 we present, for all five MKP instances, the results of the applied measures,
regarding fitness distance correlation and autocorrelation for mutation landscapes. The
first column indicates the representation used (BR - binary representation, OR - ordi-
nal representation, PR - permutation representation, RK - random-key representation,
WC - weight-coding representation), the column with n indicates the number of items
and m the number of resources. The average of the minimum distance between the
optimum solution and the best found individual in the random walk can be observed
on the next column (dopt) with the standard deviation in brackets. The next column
presents values for the fitness distance correlation (%), followed by the correlation (l)
and correlation length (ξ) columns. The values in bold give the best representation for
a given problem instance.

Table 1: Summary results for mutation landscapes.
Representation Instance Measures

Name n m dopt % l ξ

BR P01 28 10 14.03 (0.36) 0.07 7.12 0.25
OR P01 28 10 12.02 (0.35) -0.51 4.61 0.16
PR P01 28 10 12.01 (0.35) -0.51 7.64 0.27
RK P01 28 10 12.03 (0.36) -0.53 10.97 0.39
WC P01 28 10 7.53 (0.34) -0.58 14.51 0.52
BR P02 50 5 25.01 (0.49) 0.09 16.18 0.32
OR P02 50 5 20.67 (0.57) -0.45 6.23 0.12
PR P02 50 5 20.64 (0.53) -0.41 11.72 0.23
RK P02 50 5 20.72 (0.54) -0.28 17.05 0.34
WC P02 50 5 17.48 (0.46) -0.37 19.43 0.39
BR CB01 100 5 49.95 (0.76) -0.05 35.74 0.36
OR CB01 100 5 49.70 (0.71) -0.57 4.09 0.04
PR CB01 100 5 49.64 (0.71) -0.53 7.04 0.07
RK CB01 100 5 49.63 (0.72) -0.56 8.12 0.08
WC CB01 100 5 40.85 (0.69) -0.62 10.85 0.11
BR CB02 100 5 50.00 (0.64) -0.02 36.65 0.37
OR CB02 100 5 49.78 (0.71) -0.60 4.78 0.05
PR CB02 100 5 49.81 (0.70) -0.54 6.89 0.07
RK CB02 100 5 49.64 (0.67) -0.53 9.22 0.09
WC CB02 100 5 40.68 (0.74) -0.59 10.78 0.11
BR GK01 100 15 49.95 (0.75) 0.06 27.32 0.27
OR GK01 100 15 49.99 (0.70) -0.15 3.95 0.04
PR GK01 100 15 49.99 (0.77) -0.12 8.37 0.08
RK GK01 100 15 49.91 (0.77) -0.19 8.98 0.09
WC GK01 100 15 49.41 (0.74) -0.08 9.33 0.09
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The data presented in table 1 shows that the average distances between the best
found individual and the optimal solution, for the first two instances (P01 and P02),
are similar for the ordinal, permutation and random-key encodings. Binary represen-
tation has the worst performance while weight-coding has the best results. In terms of
percentage, the binary encoding is always around a value of 50% from the optimum,
whilst the ordinal, permutation and random-key representations are around 42%. To
complete, weight-coding is on the interval of 26% to 35%. This pattern is not found on
the larger instances. For all the instances with n = 100, the average distance to the op-
timum solution is very similar for all tested representations, around the value of 50%.
The exception is weight-coding which performs slightly better on instances CB01 and
CB02 but on the same level as the other encodings on instance GK01. It is interesting to
notice that, as n increases, the gap between the different representations decreases. This
effect might be explained, to a certain degree, to the tightness of the different instances.
The smaller instances have a higher tightness value than the larger ones. This could be
an indication that the heuristic bias, not present in the binary encoding, is important for
tighter instances. On the other hand, it can also be owing to the fact of the increasing
size of the search space of the larger instances.

When looking at the fitness distance correlation coefficient, the observed pattern is
different. One might expect that the weight-coding representation with the uniform flip
operator would perform better in comparison to the others encodings, simply because
it has a stronger heuristic bias on its decoder. From column %, it is clear that this does
not happen. The weight-coding scheme only has the best coefficient value for instances
PC01 and CB01, and a close second best for instance CB02. For the other two instances,
PC02 and GK01, the fitness distance correlation for weight-coding is worse than ordinal
and random-key encodings, respectively. The only clear pattern presented for this col-
umn is the poor performance of the binary encoding. In fact, contrary to the previous
measure, the fitness distance correlation does not improve as n increases. With values
near 0.0, ranging from 0.09 to −0.05, the order of magnitude cannot be compared with
the other representations. In a general way, the other four representations have similar
values around −0.50. The clear exception is instance GK01. For the instance with more
constraints, the % values are all above −0.20, indicating that for this particular instance,
all representations had several difficulties to reach better solutions.

From this table, it is possible to distinguish differences between the decoder-based
encodings and the direct encoding, which is not an unexpected result. Differences be-
tween the three decoder-based encodings with the first-fit heuristic, and the decoder
with the profit/pseudo-resource consumption ratios, are less visible. There is an indi-
cation that the weight-coding representation performs slightly better than the others
but that might be also dependent on the problem instance.

Moreover, it is also important to observe the fitness distance plots of the several
representations. This type of plot presents information about the distribution of the
random walk points, in which the fitness is plotted against their minimum distance
to an optimum. The fitness distance plot provides additional insight since it contains
more information.

Figure 1 contains the fitness distance plots for binary, ordinal, permutation,
random-key and weight-coding representations, on the CB02 instance (which is rep-
resentative for the analyzed MKP instances). From the five plots, it is possible to ob-
serve the distribution of the candidate solutions induced by the encodings. The first
conclusion that can be drawn from these plots is that none of the representations pro-
duce highly correlated landscapes. The landscapes do not have an ideal distribution of
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(a) (b)

(c) (d)

(e)

Figure 1: Fitness distance plots for Binary (a), Ordinal (b), Permutation (c), Random-
Key (d) and Weight-Coding (e) representations, on the CB02 instance.
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points since the optimum solution cannot be found by jumping from one solution to a
better one with successively decreasing the jump distance.

Although the plots show that fitness and distance are correlated with similar dis-
tribution shapes, not all representations present the same configuration. Binary repre-
sentation does not show a concentration closer to the optimum as the others, which is
in accordance with the fitness distance correlation coefficient. We can observe that con-
centration on the remaining encodings but the weight-coding representation is closer
to the optimum. In fact, the fitness distance plot reveals that local minimums are found
only in a fraction of the search space with smaller distance to the optimum. All other
encodings have a larger distance to the optimum. It is possible to observe that ordinal,
permutation and random-key encodings show identical plots.

In order to gain more discernment, fitness distance correlation should be examined
in association with the autocorrelation measures. To determine the correlation length
we performed a series of random walks to calculate the autocorrelation function, with a
phenotypic distance of 1. The neighborhood operator used was based on the Hamming
distance between two bit strings (for all representations, after decoding them into a bit
string). The results of the autocorrelation analysis are also presented in table 1.

A brief overview of the results reveals a very interesting pattern: for instances P01
and P02, weight-coding representation achieved the highest correlation value, for in-
stances CB01, CB02 and GK01, binary representation attained the highest values. On
the other end, ordinal encoding has the lowest autocorrelation values for all problem
instances. Another interesting fact is the correlation for all decoder-based representa-
tions on instances with 100 items: the values are similar and very low, when comparing
to the direct encoding. In fact, binary representation shows consistent values across the
instances (between 0.25 and 0.37), and this does not happen for the indirect encodings.

How can these differences be explained? Part of the answer relies on the the type of
mutation operator. The lower correlation for the ordinal representation is in compliance
with previous studies (Raidl and Gottlieb, 2005). Locality indicates that small variations
in the genotype space, usually originated by mutation, imply small variations in the
phenotype space. Strong locality allows a search algorithm to efficiently explore the
neighborhood of the current solutions, whilst a weak locality prevents evolutionary
search from a meaningful exploration of the phenotype space because small variations
often cause strong phenotypic changes. The weak locality for this representation means
that a single change in one of its genes can cause a major effect on the decoded solution,
thus the lower correlation which implies a more difficult search.

In contrast, this does not happen, to such a degree, on the others representations.
Here, the flip mutation operator also changes a single gene but the effect on the pheno-
type is not as dramatic as in the ordinal representation (with the exception of permu-
tations). This effect can explain why ordinal representation has the worst correlation.
Furthermore, binary representation achieves higher correlations since the occurrence
of mutation can change its genotype without causing a major disruption on its pheno-
type, i.e., this representation has a higher locality. This effect is more evident on the
larger instances.

In this case, weight-coding and binary representations are shown to have better
correlated landscapes than the other representations. Taking into consideration the fit-
ness distance correlation analysis, we can conclude that weight-coding representation
should provide a good option for solving the MKP, at least, for mutation-based algo-
rithms.
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5.3 Crossover Fitness Landscapes

Studying the behavior of mutation-based algorithms using the above mentioned
methodology is simple and well suited. The reason is that mutation operators are
good to generate random walks for correlation analysis. These operators can be seen
as producing a time series of fitness values for a succession of solutions (Merz, 2000).
Normally, a mutation operator is more appropriate to a certain landscape if the correla-
tion is higher. With regard to crossover generated landscapes, it is a complete different
issue.

According to Merz (2000), various attempts have been made to generalize fitness
landscape analysis to crossover operators. The first difficult, when it comes to use
crossover as the variation operator, is the fact that it works with solutions, the parents,
and creates two new solutions (or one, depending on the operator), the offspring. It is
then necessary to define how to apply this operator to generate a time series of values.
In this work we followed an approach similar to the one defined by Horjik and Man-
derick (1995). A time series is simply produced by repeatedly applying crossover to
two candidate solutions. One of the solutions is always randomly generated whilst the
other one, starts as a random initial solution but later is replaced from the best of the
two offspring. Given the parents and the offspring we measure the fitness and distance
to produce the landscape.

With this information, the previous fitness distance correlation measure and cor-
relation are updated for crossover analysis. For both measures, we take into considera-
tion the average fitness of both parents, fp, the average fitness of both offspring, fo, as
well as the average distance of the children to the known optimum solution, do. The
measures for analysis are redefined in the following way. Fitness distance correlation
for crossover, %cx, can be estimated by

%cx(fo, do) ≈
1

σ(fo)σ(do)m

m∑
i=1

(foi
− fo)(doi

− do) (18)

with a given pair of points xi of sizem (the random walk length). As previously defined
for mutation-landscapes, a value of −1.0 for %cx shows that fitness and distance to the
optimum are perfectly related, indicating an easy search, whilst a value of %cx = 1.0
signals the opposite.

As in (Manderick et al., 1991), the parent-offspring correlation is given by:

ρcx =
cov(fp, fo)
σ(fp)σ(fo)

(19)

where cov(fp, fo) is the covariance of two variables, in this particular case, the average
fitness of the parents and the offspring.

In table 2 we present the results regarding crossover analysis. The table gathers
data from 1-point crossover and uniform crossover. Uniform crossover uses probability
p = 0.5, for directly transferring the position of the parent to the offspring (which is
commonly used). As before, the first column indicates the representation used, the
second column the tested instance, while the last two columns provide the data for the
crossover operators. For each operator, we show the average of the minimum distance
between the optimum solution and the average offspring found in the random walk
(dcxopt ) with the standard deviation in brackets. Next, we present the values for the
fitness distance correlation (%cx), followed by the parent offspring correlation (ρcx).
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Table 2: Summary results for crossover landscapes.

Representation Instance 1-Point Crossover Uniform Crossover
Name n m dcxopt

%cx ρcx dcxopt
%cx ρcx

BR P01 28 10 13.23 (0.36) -0.04 0.72 13.46 (0.37) -0.03 0.54
OR P01 28 10 10.46 (0.35) -0.47 0.83 10.87 (0.35) -0.48 0.68
PR P01 28 10 12.12 (0.36) -0.51 0.90 10.96 (0.35) -0.50 0.81
RK P01 28 10 10.55 (0.35) -0.51 0.87 10.99 (0.35) -0.49 0.82
WC P01 28 10 5.66 (0.30) -0.57 0.90 6.05 (0.31) -0.55 0.86
BR P02 50 5 24.53 (0.51) 0.01 0.78 24.65 (0.50) 0.01 0.65
OR P02 50 5 19.20 (0.51) -0.26 0.81 19.51 (0.52) -0.29 0.62
PR P02 50 5 20.87 (0.53) -0.37 0.90 19.58 (0.53) -0.32 0.78
RK P02 50 5 19.19 (0.51) -0.28 0.79 19.58 (0.53) -0.34 0.78
WC P02 50 5 16.31 (0.45) -0.40 0.82 16.48 (0.44) -0.39 0.80
BR CB01 100 5 49.64 (0.72) -0.02 0.80 49.74 (0.71) -0.01 0.75
OR CB01 100 5 46.37 (0.66) -0.58 0.79 47.66 (0.68) -0.59 0.55
PR CB01 100 5 49.59 (0.71) -0.56 0.91 47.58 (0.69) -0.61 0.72
RK CB01 100 5 46.09 (0.66) -0.58 0.74 47.55 (0.69) -0.61 0.72
WC CB01 100 5 37.52 (0.64) -0.56 0.75 37.87 (0.64) -0.55 0.71
BR CB02 100 5 49.62 (0.71) -0.03 0.82 49.72 (0.71) -0.03 0.75
OR CB02 100 5 46.47 (0.66) -0.58 0.81 47.73 (0.67) -0.57 0.57
PR CB02 100 5 49.87 (0.71) -0.56 0.91 47.76 (0.69) -0.62 0.73
RK CB02 100 5 46.25 (0.67) -0.59 0.76 47.74 (0.69) -0.61 0.73
WC CB02 100 5 36.96 (0.64) -0.57 0.76 37.37 (0.66) -0.57 0.73
BR GK01 100 15 49.89 (0.71) -0.02 0.78 49.91 (0.71) 0.01 0.72
OR GK01 100 15 49.33 (0.73) -0.09 0.78 49.48 (0.72) -0.08 0.52
PR GK01 100 15 49.86 (0.71) -0.09 0.90 49.53 (0.72) -0.10 0.67
RK GK01 100 15 49.35 (0.72) -0.09 0.71 49.39 (0.71) -0.08 0.65
WC GK01 100 15 48.92 (0.71) -0.10 0.71 48.95 (0.71) -0.08 0.65

A first inspection of the results allows us to observe some important aspects. By
looking at the best values, marked in bold, it is clear that there is not a representation
that outclasses the other. In fact, this only happens when we look at the distance be-
tween offspring and the optimum solution. For every single instance, weight-coding
representation is better than all the other encodings, whilst between these represen-
tations, the differences are small. Furthermore, it seems the type of instance has an
effect on the representations performance. Considering the fitness distance correlation,
the instances from the first dataset, P01 and P02, are also dominated by the weight-
coding representation. When looking into the remaining instances, weight-coding is
not able to perform better than other encodings. In fact, encodings which make use
of a first-fit heuristic in their decoding process from genotype to phenotype seem to be
more suitable. This is especially visible in the random-key representation, as it has the
best fitness distance correlation values for instances CB01 and CB02 on both crossover
operators.

In addition, the results found in table 2 reveal that binary representation has in-
ferior values when comparing to all other representations, regardless of the problem
instance. Above all, the fitness distance correlation values for binary representation are
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considerable lower. They are near to 0.0, while for other representations the values are,
in average, closer to −0.5.

The fitness distance plots for crossover landscapes provide some auxiliary infor-
mation. Figure 2 presents the plots for 1-point crossover and figure 3 for uniform
crossover, on all the tested representations. The first observable fact is that for both
operators the shapes of the distribution of the landscapes points are very similar. This
is a first indication that there are no significant differences between choosing one of the
crossover operators. This is not an unexpected result since the ordering of the items
in the chromosome is irrelevant. Apart from this, we can find different fitness distance
plots for the crossover landscapes on the tested encodings.

Looking at the plots for the binary representation, we can observe an uncorrelated
landscape. The distance to the optimum is large as well as between the landscape el-
ements. If the shape of the distribution was more round and closer to a circle, the
landscape would be totally uncorrelated. This effect is not seen on the other representa-
tions. For the remaining representations, the landscapes show that fitness and distance
are correlated with similar distribution. In contrast with the fitness distance correla-
tion coefficient, the most noticeable fact is that weight-coding representation is closer
to the optimum. We conclude that this difference was significant to be reflected on the
coefficient values. Looking at these fitness distance plots, we can conclude that they
are similar to the plots of the mutation landscapes in terms of distribution shape. In
spite of this, it is possible to distinguish a minor difference between the plots of weigh-
coding: the crossover plots are closer to the optimum. This effect can be explained by
the stronger heuristic bias in this encoding.

As for the parent-offspring correlation, the results are somewhat inconclusive. The
correlation between parents and their offspring is similar for all representations, attain-
ing some high values. Even for the binary encoding the correlation values are good, a
fact already observed in the mutation analysis. Only ordinal encoding presents slighter
inferior values when comparing to the other representations. As a final observation,
neither crossover operator demonstrate a superior performance.

How can these observations be explained? The first reason is related to the spe-
cific properties of the operator; the dynamics of crossover are more difficult to analyze
as previous studies have shown (Merz, 2000). Building a precise time series from a
random walk generated is a hard task, when compared to mutation operators. The sec-
ond reason is the dependency on parental distance. Larger parental distance usually
induces larger crossover innovations (Raidl and Gottlieb, 2005). Here, the crossover
landscapes are generated from pairs of solutions where one of them is always created
independently at random. This fact may ensure a larger parental distance but at the
same time, it might create a weak dependency on the distance between the parents thus
allowing a certain loss of homogeneity required to produce fitter offspring. Instead of
creating one of the parents independently at random, another possibility would be to
derive it from the first parent solution via n consecutively applied mutations. Further
investigation on this issue is required.

Representation must allow for crossover operators the capacity of efficient ex-
change of genetic material. For the MKP, we can observe that all studied representa-
tions clearly perform that task since they cover the feasible region of the search space.
The notable exception is binary encoding, as confirmed by the results of fitness distance
correlation.

It is possible to conclude for this problem, that the choice of crossover operators
is not very influential on the representation used. In fact, what can be stated is that
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(c) (d)

(e)

Figure 2: Fitness distance correlation plots for Binary (a), Ordinal (b), Permutation (c),
Random-Key (d) and Weight-Coding (e) representations, on the CB02 instance, with
1-point crossover.
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(a) (b)

(c) (d)

(e)

Figure 3: Fitness distance correlation plots for Binary (a), Ordinal (b), Permutation (c),
Random-Key (d) and Weight-Coding (e) representations, on the CB02 instance with
uniform crossover.
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these two operators in conjunction with these representations have the same behaviour.
There is no clear advantage of a single representation which indicates that other factors
must be taken into more consideration.

5.4 The effect of heuristics and local improvement

From previous sections, it is possible to infer the importance of heuristics and other
techniques, such as repair operators, in the design of efficient evolutionary algorithms
for the MKP.

All decoder-based representations include some simple heuristic mechanisms, es-
sential to its interpretation. We will now complement our study by investigating a few
other techniques that can be added to some of the encodings addressed at this research.
Our goal is to perform an all inclusive study. Many additional techniques could be de-
veloped and used but we restrain ourselves to the most common used in evolutionary
algorithms for the MKP (Raidl and Gottlieb, 2005).

Some additional tests were made regarding the binary and the weight-coding rep-
resentations. Our experimentation covers mutations and crossover generated land-
scapes for these two representations. In our tests, we will consider the following im-
provements:

• Binary representation with local repair (BR with R): the standard encoding will be
subject to a local method that repairs infeasible solutions by randomly removing
items until all constraints are satisfied;

• Binary representation with profit/presudo-resource consumption ratios heuristic repair
(BR with HR): an infeasible solution is repaired by removing items according to
the ordering of the items given by the profit/presudo-resource consumption ra-
tios;

• Binary representation with heuristic repair and local improvement (BR with HR + LI):
the union of the previous steps with the insertion of items in a feasible solution, as
long as it does not violates any constraint;

• Weight-coding representation with log-normal (WC with log-normal): the heuristic is
encoded in the mutation variation operator. The operator replaces a randomly se-
lected position on the chromosome by sampling a random number which follows
a log-normal distribution:

wj = (1 + γ)N(0,1), j = 1, . . . , n. (20)

where γ > 0 is a strategy parameter that controls the average intensity of bias-
ing and N(0, 1) denotes a normally distributed random number with mean 0 and
standard deviation 1. We set γ = 0.05 as recommended by (Raidl, 1999).

In table 3 we present, for all tested instances, the results of the applied measures
for the four types of binary encodings and two types of weight-coding (we include the
results for simple BR and WC for comparison) using mutation as the variation operator.
Table 4 contains the results for the crossover operators.

A brief perusal of the results generated by mutation operators, as shown in table
3 reveals one important aspect: the weight-coding representation with the log-normal
operator achieved the highest correlation value for all instances and the highest fitness
distance correlation value for all instances with the exception of instance GK01. At a
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Table 3: Summary results for the effect of adding heuristics and local optimization for
mutation landscapes.

Representation Instance Measures
Name n m dopt % l ξ

BR P01 28 10 14.03 (0.36) 0.07 7.12 0.25
BR with R P01 28 10 14.33 (0.38) -0.39 9.93 0.35
BR with HR P01 28 10 12.99 (0.43) -0.58 12.46 0.44
BR with HR + LI P01 28 10 1.78 (0.27) -0.90 10.11 0.36
WC P01 28 10 7.53 (0.34) -0.58 14.51 0.52
WC with log-normal P01 28 10 0.19 (0.42) -0.98 45.36 1.62
BR P02 50 5 25.01 (0.49) 0.09 16.18 0.32
BR with R P02 50 5 26.13 (0.53) -0.21 15.07 0.30
BR with HR P02 50 5 23.93 (0.52) -0.42 19.78 0.40
BR with HR + LI P02 50 5 13.88 (0.17) -0.84 18.28 0.37
WC P02 50 5 17.48 (0.46) -0.37 19.43 0.39
WC with log-normal P02 50 5 12.78 (0.31) -0.86 75.17 1.50
BR CB01 100 5 49.95 (0.76) -0.05 35.74 0.36
BR with R CB01 100 5 50.37 (0.68) -0.25 15.50 0.15
BR with HR CB01 100 5 43.67 (0.87) -0.43 21.83 0.22
BR with HR + LI CB01 100 5 6.58 (1.55) -0.96 23.79 0.24
WC CB01 100 5 40.85 (0.69) -0.62 10.85 0.11
WC with log-normal CB01 100 5 9.62 (2.86) -0.99 138.31 1.38
BR CB02 100 5 50.00 (0.64) -0.02 36.65 0.37
BR with R CB02 100 5 49.94 (0.71) -0.34 15.79 0.16
BR with HR CB02 100 5 43.25 (0.83) -0.47 19.73 0.20
BR with HR + LI CB02 100 5 12.08 (1.11) -0.91 12.77 0.13
WC CB02 100 5 40.68 (0.74) -0.59 10.78 0.11
WC with log-normal CB02 100 5 11.41 (2.60) -0.98 133.35 1.33
BR GK01 100 15 49.95 (0.75) 0.06 27.32 0.27
BR with R GK01 100 15 50.33 (0.70) -0.06 15.64 0.16
BR with HR GK01 100 15 49.80 (0.69) -0.03 14.86 0.15
BR with HR + LI GK01 100 15 40.04 (0.44) -0.98 29.84 0.30
WC GK01 100 15 49.41 (0.74) -0.08 9.33 0.09
WC with log-normal GK01 100 15 44.30 (0.80) -0.61 51.66 0.52
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(a) (b)

(c) (d)

Figure 4: Fitness distance correlation plots for Binary with repair (a), Binary with
heuristic repair (b), Binary with heuristic repair and local improvement (c) and Weight-
coding with log-normal operator (d) on the CB02 instance.

closer examination, we can verify that the attained values are very good. For the fitness
distance correlation, the encoding has values near−1.0 (instances P01, CB01 and CB02).
When comparing these values to the average minimal distance from the best individual
to the optimum, we can observe that they are also the lowest. Only for instances CB01
and GK01 this effect is not visible. Close to the weight-coding representation with log-
normal operator is binary representation with consumption ratios heuristic repair and
local improvement. This encoding is able to achieve very good values for the fitness
distance correlation for all instances (in instance GK01 it has the best value), as well as
the average distance from the best individual found to the optimum (instances CB01
and GK01). Regarding autocorrelation, this encoding does not attain the same degree of
success like the weight-coding representation (the values are similar to those attained
by the simple direct encoding).

From the examination of the fitness distance plots in figure 4, it is possible to distin-
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Table 4: Summary results for the effect of adding heuristics and local optimization for
crossover landscapes.

Representation Instance 1-Point Crossover Uniform Crossover
Name n m dopt %cx ρcx dopt %cx ρcx

BR P01 28 10 13.23 (0.36) -0.04 0.72 13.46 (0.37) -0.03 0.54
BR with R P01 28 10 13.08 (0.36) -0.40 0.92 13.19 (0.36) -0.40 0.85
BR with HR P01 28 10 10.04 (0.39) -0.64 0.96 11.04 (0.40) -0.60 0.90
BR with HR + LI P01 28 10 3.63 (0.33) -0.68 0.54 7.00 (0.38) -0.67 0.72
BR P02 50 5 24.53 (0.51) 0.01 0.78 24.65 (0.53) 0.01 0.65
BR with R P02 50 5 25.14 (0.52) -0.29 0.82 25.25 (0.49) -0.28 0.81
BR with HR P02 50 5 22.02 (0.50) -0.35 0.90 22.28 (0.45) -0.35 0.88
BR with HR + LI P02 50 5 15.04 (0.40) -0.56 0.65 16.08 (0.47) -0.51 0.65
BR CB01 100 5 49.64 (0.72) -0.02 0.80 49.74 (0.71) -0.01 0.75
BR with R CB01 100 5 48.19 (0.69) -0.41 0.75 48.36 (0.70) -0.42 0.71
BR with HR CB01 100 5 39.90 (0.83) -0.53 0.84 40.04 (0.81) -0.52 0.81
BR with HR + LI CB01 100 5 33.81 (0.84) -0.62 0.77 36.34 (0.78) -0.58 0.72
BR CB02 100 5 49.62 (0.71) -0.03 0.82 49.72 (0.71) -0.03 0.75
BR with R CB02 100 5 47.85 (0.68) -0.41 0.76 48.01 (0.69) -0.42 0.73
BR with HR CB02 100 5 39.26 (0.84) -0.54 0.86 39.83 (0.83) -0.53 0.82
BR with HR + LI CB02 100 5 34.26 (0.86) -0.64 0.78 36.30 (0.82) -0.61 0.72
BR GK01 100 15 49.89 (0.71) -0.02 0.78 49.91 (0.71) 0.01 0.72
BR with R GK01 100 15 50.38 (0.71) -0.05 0.77 50.35 (0.72) -0.03 0.72
BR with HR GK01 100 15 49.66 (0.67) -0.06 0.81 49.50 (0.66) -0.06 0.75
BR with HR + LI GK01 100 15 48.40 (0.71) -0.10 0.72 48.73 (0.69) -0.12 0.66

guish two simple and clear patterns: low correlated landscapes and highly correlated
landscapes. Binary representation with repair and binary representation with heuristic
repair do not have a highly correlated landscape, whilst binary representation with
heuristic repair and local improvement, and weight-coding representation with the
log-normal operator have highly correlated landscapes. These representations have
near-ideal distributions since the solutions very near to the optimum can be reached
by jumping from one solution to another by successively reducing the jump distance.
For these two encodings, the addition of heuristics and/or local improvement was in-
fluential in reshaping the distributions shapes (for binary representation in one con-
figuration) in comparison to the distributions of the representations without heuristics
and/or local improvement. From ellipsoidal shapes, the distributions are now closer
to linear lines in direction to the optimum with a strong concentration on that point.
Fitness and distance are clearly correlated.

This analysis reveals that adding heuristics and/or local improvement methods to
a representation is crucial to obtain better results when solving the MKP. Examining the
weight-coding representation, using a mutation variation operator that is more sensi-
tive to the problem domain helps to improve performance. Since the float values repre-
sent surrogate multipliers, it is clear that the mutation provided by a uniform distribu-
tion will cause strong phenotypic changes, whilst a log-normal distribution will handle
the genotype in a more subtle way, since it gives the advantage that small changes of
weights are made with higher probabilities and allowing at the same large changes, but
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with less probability. The log-normal operator ensures a higher locality for the weight-
coding representation. In this particular case, the addition of a heuristic – by means of
a more controlled probability distribution – helped the encoding to improve its fitness
distance correlation and autocorrelation values, for all tested problem instances.

The binary representation needs a more careful investigation. The introduction of
a local search method was sufficient to improve the performance when comparing to
the simple direct encoding (as the works of Chu and Beasley (1998) and Raidl (1999)
show) but unable to achieve the values of the ordinal, permutation and random-key
representations. These three previous encodings still perform better than a direct en-
coding even when we compare them to the binary representation with the ratios heuris-
tic (BR with HR). The exception is instance P01, although the differences are small. It
seems these two improvements, when examined separate from each other, can only
introduce a slightly weaker heuristic bias than the first-fit heuristic used for ordinal,
permutation and random-key encodings. When heuristic repair and local improve-
ment are combined, the result is very different and the performance is comparable to
the weight-coding representation with the log-normal mutation operator. In terms of
autocorrelation, the effects are not the same. For all variants of the direct encoding, the
autocorrelation values are similar, only with marginal differences.

We follow now to the crossover generated landscapes analysis. In this case, only
the modifications made to the simple binary encoding are eligible. For weight-coding
representation the heuristic was introduced on the mutation operator and the same
heuristic is not directly applicable to the crossover operator.

Focusing our attention on the results from table 4, we can see that for crossover
generated landscapes the fitness distance correlation and minimum average distance
to the optimum solution, the direct encoding with the heuristic repair plus the local
improvement method attains the best results. Immediately after is the weight-coding
representation. These results are not surprising and confirm the previous observations.
Since crossover has a role of exploration, the addition of mechanisms that enable some
exploitation when evaluating the individuals permits better solutions to be found. In
spite of this fact, the degree of improvement obtained by introducing the combined use
of these two extra mechanisms (heuristics and local improvement) is not so wide in
comparison with mutation. The interesting fact is, the sole use of these mechanisms
might be more sensitive to the instance’s structure. For the instances of the first bench-
mark, the heuristic repair performs better than simple repair, while for the second
benchmark instances, simple repair gives better results. The type of crossover does
not affect the representation’s performance.

In terms of parent-offspring correlation, results are more consistent when compar-
ing with mutation. Tested encodings reveal higher values of correlation with some mi-
nor exceptions: for the first instance, P01, binary representation with uniform crossover
(0.54); and binary representation with heuristic repair and local improvement, on both
operators (0.65). For all other experiments correlation values are high, in the range
of [0.7, 0.9]. This fact can be explained by the strong heuristic bias that is introduced
and by binary encodings. As already seen with mutation, the binary encoding permits
good correlation values since alterations to a candidate solution generate neighbor so-
lutions which are not only close but, with the addition of these mechanisms, changes
on the fitness value are not deeply affected. As before, in terms of correlation the type
of crossover is not influential on the encodings behavior.

Figure 5 presents the fitness distance plots for the crossover landscapes generated
by the encodings with heuristics and/or local improvement. On the left column we
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Fitness distance correlation plots for Binary with repair (a), Binary with
heuristic repair (c), Binary with heuristic repair and local improvement (e) with 1-point
crossover and and uniform crossover (b,d,f) on the CB02 instance.
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can see the landscapes produced by 1-point crossover operator and on the right, the
landscapes created by uniform crossover.

The first conclusion is that there are no differences between the operators. The
shapes of the landscapes elements distributions are identical with no significant differ-
ences, even in terms of the distance to the optimum. The second observable fact is that
the increasing of complexity on the decoding process leads to a minimal distribution
concentration closer to the optimum. Even binary representation with the consumption
heuristic repair and local improvement, provides significant advantage over the other
encodings. Although the fitness distance correlation coefficient shows differences be-
tween the different types of modifications made to binary representation, the plots do
not reflect the same order of improvement. This is an indication that crossover opera-
tors are not very sensitive to the effect of these methods. The enhancements affect more
the landscapes created by mutation operators. Partially this may be due to the manner
crossover landscapes are produced.

As we can see from these results, a pattern arises in terms of the representations
performance according to their heuristic bias. This is essential true when looking at the
fitness distance correlation coefficient. The representations with stronger heuristic bias
(weight-coding with log-normal operator and binary representation with heuristic re-
pair and local improvement) achieve the best results, very close to−1.0. The encodings
with a weak heuristic bias do perform well but clearly below the two previous encod-
ings, while the simple binary representation, as expected, is the one with the poorer
performance. The fitness landscape analysis is compliant with previous studies on rep-
resentations for the MKP, like Raidl and Gottlieb (2005).

5.5 Statistical Analysis

The analysis described on the previous sections was able to provide some insights
about the role of representation on the MKP. Nevertheless, part of the presented results
raised some concerns, if under certain conditions, the representations have a signifi-
cant performance difference, or, if they simply can be considered equivalent. To better
understand these situations, a statistical analysis is presented.

We start our analysis by testing the differences found in the coefficient values con-
tained in all the previous tables. Specifically, it is important to establish what statis-
tically significant differences exist between the distance values, fitness distance corre-
lation values, for mutation and crossover landscapes, as well as the parent-offspring
correlation, 1-point crossover and uniform crossover operators, for all tested represen-
tations.

The function used for the hypothesis testing is the Wilcoxon rank sum test, which is
equivalent to the Mann-Whitney U test. This test performs a two-sided rank sum test
of the hypothesis that two independent samples come from distributions with equal
medians. If the null hypothesis is true, the medians are equal. The sets of data are
assumed to come from continuous distributions that are identical except possibly for
a location shift, but are otherwise arbitrary. The reason to use this test instead of t-test
is that the former assumes the data to come from a normal distribution with unknown
variance. The difference between hypothesis test procedures often arises from differ-
ences in the assumptions that the researcher is willing to make about the data sample.
In our case, the fitness landscapes generated by the different representations follow dif-
ferent distributions. Although most of them follow normal distributions, e.g., ordinal,
permutation and random-key encodings, others simply do not follow it, as confirmed
by the Lilliefors test. For this reason, it is preferable to use the Wilcoxon rank sum test
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instead of the t-test. On all performed tests the significance level is 5%(α = 0.05). We
present results for the CB02 instance since the other problem instances follow the same
trend.

Table 5: Wilcoxon rank sum test results for mutation landscapes; ”+” indicates null
hypothesis is true whilst ”-” indicates null hypothesis can be rejected at 5% significance
level. Lower triangle reports to fitness distance correlation coefficients; upper triangle
to distance values.

BR OR PR RK WC BR+R BR+HR BR+HR+LI WC+log
BR - + + - + - - -
OR - + - - + - - -
PR - + + - + - - -
RK - + + - + - - -
WC - + + + - - - -

BR+R - - - - - - - -
BR+HR - - - - - - - -

BR+HR+LI - - - - - + - -
WC+log - - - - - - - -

Table 6: Wilcoxon rank sum test results for crossover operators; ”+” indicates null hy-
pothesis is true whilst ”-” indicates null hypothesis can be rejected at 5% significance
level.

BR OR PR RK WC BR+R BR+HR BR+HR+LI
%cx - + + + - + + +
ρcx + + + + + + + +

Table 5 shows the significant differences found for the distance and fitness distance
coefficient values, on mutation landscapes. A brief overview of the data presented in
the table allow us to verify that for most of the representations, the coefficient values
found are statistically significant different. For all cases marked with a ”-” sign, the null
hypothesis can be rejected, i.e., the medians of the tested data are not equal. This means
that when testing the landscapes generated by two different representations, they can-
not be considered equivalent. In fact, on a closer look to the table, the lower triangle,
which reports to the fitness distance correlation coefficient values, shows us that the
group with no significant differences are the ordinal, permutation and random-key
representations. In general terms, this fact is also true when considering the distance
values (reported in the upper triangle). The exception is binary representation with
repair. When comparing this encoding with the base representations, the differences
are not statistically different. The pattern previously observed in mutation landscapes
is confirmed by this test.

Regarding crossover landscapes, from the fitness landscape analysis was not pos-
sible to clearly draw conclusions. In fact, differences between representations were
not so strong as the ones found in mutation landscapes. When performing this test to
crossover coefficient values, results are not different. For all representations it is not
possible to reject the hypothesis in a consistent way. With some exceptions, e.g., per-
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Table 7: Wilcoxon rank sum test results for mutation landscapes; ”+” indicates null
hypothesis is true whilst ”-” indicates null hypothesis can be rejected at 5% significance
level.

BR OR PR RK WC BR+R BR+HR BR+HR+LI
OR -
PR - +
RK - + +
WC - - - -

BR+R - - - - -
BR+HR - - - - - -

BR+HR+LI - - - - - - -
WC+log - - - - - - - -

Table 8: Wilcoxon rank sum test results for crossover landscapes; ”+” indicates null
hypothesis is true whilst ”-” indicates null hypothesis can be rejected at 5% significance
level. Lower triangle reports to 1-point crossover; upper triangle to uniform crossover.

BR OR PR RK WC BR+R BR+HR BR+HR+LI
BR - - - - - - -
OR - + - - - + -
PR - + + - - + -
RK - + - - - + -
WC - - - - - - -

BR+R - - - - - - -
BR+HR - - - - - - -

BR+HR+LI - - - - - - -

mutation and random-key encodings, no statistical significant differences are found
between different representations. Another important question raised from the previ-
ous analysis is: what is the difference between the two types of crossover operators;
can we found significant differences between 1-point crossover and uniform crossover
when applied to the MKP? By looking at table 6 it is possible to observe that for most
of the representations, there is not an advantage of a single operator. The only visible
statistically differences between the use of the two operators are found in binary and
and weight-coding representations, when considering the fitness distance correlation
coefficient. For the parent-offspring correlation, no differences can be found.

In spite of being important to analyze the differences of the coefficient values, it is
even more to test the fitness landscapes. Statistically testing the landscapes will provide
us with a more clear picture of the influence of the representation on the MKP. In this
case, we will analyze the differences between the landscapes by analyzing the time
series.

Tables 7 and 8 present the results of the Wilcoxon rank sum test to the fitness land-
scapes, mutation and crossover landscapes respectively. A brief overview of both ta-
bles reveals a similar pattern to the one presented by the coefficient tables. We can find
significant differences for all the representations with the exception of the group ordi-
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(a) (b)

Figure 6: Box-plot (a) and Rank graph (b) for mutation landscapes on the Binary, Ordi-
nal, Permutation, Random-Key and Weight-Coding representations.

nal, permutation and random-key representations when considering fitness landscapes
produced by mutation operators. With crossover the results are slighter different. For
1-point crossover, the test results in the acceptance of the null hypothesis only for the
pair ordinal and random-key representation, whilst for uniform crossover is with the
pairs ordinal and permutation representation, permutation and random-key represen-
tation, as well as all these representations with binary with consumption rations heuris-
tic. These results are interesting since the previous analysis provided more uncertain
differences between representation. This is an indication that the fitness landscapes
contain slightly differences which were not detected by the measures. Despite that,
representation plays a lesser role in crossover landscapes when comparing to mutation
ones.

The application of this test can be useful to establish and clarify the existing dif-
ferences between two sets of data, in this case, two representations. However, it is also
important to analyze and confirm differences in groups of data. A good example is, for
example, to compare differences between the representations with the first-fit heuristic
bias or the group of binary encodings, and see if the observable differences between the
elements are not only statistically different but also how much. In this case we need to
use another function for the hypothesis testing: Kruskal-Wallis test. This test is a non-
parametric version of the classical one-way ANOVA, and an extension of the Wilcoxon
rank sum test to more than two groups. It compares samples from two or more groups
of data and returns the p-value for the null hypothesis that all samples are drawn from
the same population, or equivalently, from different populations with the same dis-
tribution. We will examine some of the previous situations to better clarify existing
groups of representations. The significance level is 5%(α = 0.05). The results of the
Kruskal-Wallis test are presented in graphical form. This allows a quicker and better
understanding of the achieved results.

Figure 6 contains the box-plot and rank graph for mutation landscapes, for the set
of ordinal, permutation, random-key and weight-coding representations. In this test
binary representation is not included since it is already establish there are significant
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(a) (b)

Figure 7: Box-plot (a) and Rank graph (b) on the Binary, Ordinal, Permutation,
Random-Key and Weight-Coding representations for 1-point crossover.

(c) (d)

Figure 8: Box-plot (a) and Rank graph (b) on the Binary, Ordinal, Permutation,
Random-Key and Weight-Coding representations for uniform crossover.
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(a) (b)

Figure 9: Box-plot (a) and Rank graph (b) for mutation landscapes on Binary represen-
tations with heuristics and local improvement.

(a) (b)

Figure 10: Box-plot (a) and Rank graph (b) for mutation landscapes on Binary with
heuristic and local improvement, and Weight-Coding with log-normal operator.

32 CISUC Technical Report TR 2007/003 ISSN 0874-338X



Multidimensional Knapsack Problem: The Influence of Representation

differences between the binary encoding and all the other representations. Figures 7
and 8 show the same data but for the crossover landscapes. The plots are from instance
CB02 but other instances follow the same trendline.

From the plots is clearly visible the differences and respective order of magnitude
of the different representations. As in the previous analysis, it is possible to conclude
that there are no statistically significant differences between the first three representa-
tions, but all of these are considerable different from weight-coding. In fact, this be-
havior is stronger on mutation landscapes while on crossover landscapes, the pattern
is only equal with uniform crossover. For 1-point crossover, permutation encoding is
statistically different from ordinal and random-key representations, although the dif-
ferences are larger in relation to weight-coding.

Looking at the rank graphs, the confidence intervals exhibit the same information
since the intervals for ordinal, permutation and random-key representations overlap.
The overlap is more evident on fitness landscapes generated by mutation operators
than crossover operators. This supports previous evidence that weight-coding is a
more suitable representation for this problem, considering both variation operators.

Moreover, figure 9 displays the results of the test for the different types of binary
representation with the addition of heuristics and/or local improvement. The figure
presents the graphs for mutation landscapes but the crossover graphs are equivalent.
From these, we can observe that the three types of modifications made to binary rep-
resentation are statistically different. As expected, the combination of heuristics and
local improvement is superior in comparison to repair only. Nevertheless, the box-plot
shows that the consumption heuristic might be more suitable to use with binary encod-
ings for the MKP than simple repairing techniques.

Finally, figure 10 presents plots that compares binary representation with heuris-
tic repair and local improvement to weight-coding representation with the log-normal
operator. Both encodings achieve the best distribution of local optima as well as the
best values for he different coefficients measures. What is not clear is the difference
between the two encodings. From the observation of the graphs, weigh-coding rep-
resentation is superior to the direct representation. Although not very distant as the
box-plot confirms, the confidence intervals are clearly separated. This confirms that
both representations are statistically significantly different.

6 Conclusions

In this article we presented an analysis of fitness landscapes for the Multidimensional
Knapsack problem. The goal of this work was to study how the interplay between rep-
resentations and genetic operators affects the search performance of evolutionary algo-
rithms for the MKP. Although it is a relevant topic, few studies exist that analyze this
issue, e.g. (Raidl and Gottlieb, 2005). The results of these investigations may provide
useful insights in how to design more efficient algorithms for this class of problems.

Standard tools of fitness landscapes analysis, such as fitness distance correlation
and autocorrelation, help to explain differences in performance achieved by differ-
ent representations. Within a mutation-based evolutionary algorithm, weight-coding
with a log-normal mutation operator, and binary representation with a heuristic re-
pair and local improvement, appear to be the most suitable combinations. Considering
crossover-based algorithms, the binary representation with the heuristic repair and lo-
cal improvement is the suitable choice.

Also, the study described in this paper presents a valuable contribution to analyze
how heuristics and local search techniques can improve the performance of evolution-
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ary algorithms. The heuristic bias effect is studied in depth. In general, heuristics with
a strong bias help to achieve better results.

Representation plays an important role when solving the MKP, since choosing an
encoding without a strong heuristic bias can create some difficulties for the evolution-
ary algorithm. As such, the use of heuristics on the decoding process or on an variation
operator, as well as the use of local improvement methods can significantly alter the
performance for a given representation. A binary string is the most natural encoding,
although, it generates infeasible solutions making the task for an algorithm harder. In-
stead, indirect encodings focus the search on the boundary of the feasible region (Got-
tlieb, 1999a), suggesting that they might be the most appropriate representations. In
any event, this is not a straightforward decision, as confirmed by previous studies,
mainly by Raidl and Gottlieb (2005) and Tavares et al. (2006).

Even though our analysis focused on the MKP, the aim of our research is to investi-
gate the influence of genetic representations when solving combinatorial optimization
problems. Results presented in this paper add a contribution for this goal and should
be considered as a starting point for future studies. This research will now be extended
to different combinatorial optimization problems to see if the findings encountered here
can be generalized. The outcomes of the global analysis may be important for future
applications of evolutionary algorithms to problems with similar properties.
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