
University of Coimbra - Portugal

Faculty of Science and Technology

Department of Informatics Engineering

A MUSICAL SYSTEM FOR EMOTIONAL

EXPRESSION

PH.D. THESIS

DOCTORAL PROGRAM IN INFORMATION SCIENCES AND TECHNOLOGIES

AREA OF ARTIFICIAL INTELLIGENCE

António Pedro Oliveira

Advisor: Dr. Amílcar Cardoso

April 12, 2013



ACKNOWLEDGEMENTS

I would like to express my thanks to:

• My parents and sister, as well as my grandmother and grandfather for all the
personal support given day by day.

• All my friends, for all the shared moments of joy, during times of rest of the thesis.

• Dr. Amílcar Cardoso, for support, kind words of advice and continuous encour-
agement during my Ph.D..

• Armando Oliveira and Alba Grieco from the Faculty of Psychology of the Univer-
sity, for al the support given during the experiments of the calibration/validation of
the system.

• Rui Pedro Paiva, of the Centre for Informatics and Systems of the University of
Coimbra, for guiding me in the initial stages of the thesis and for reviewing my
thesis.

• Penousal Machado, of the Centre for Informatics and Systems of the University
of Coimbra, for helping me in analysing experimental data.

• Students from the Department of Informatics Engineering, for answering to the
questionnaire given to obtain data for the calibration/validation of the system.

• Students from the Faculdade de Psicologia e de Ciências da Educação, for partic-
ipating in the behavioral and physiological experiment in the calibration/validation
of the system.

• Students from the Department of Informatics Engineering, for participating in the
application of the EDME system as an emotion-driven music engine.

• All the people from different areas of all around the world for answering to the
web-based questionnaires, that helped me in obtaining experimental data.

• Diana Taborda, Jorge Ávila, Ricardo Ruivo, Carlos Figueiredo and Isabel Lourenço
for all the academic support given during the development of the thesis.

ii



RESUMO

O controlo automático da expressão emocional na música (tonal) é um desafio que
está longe de ser resolvido. Esta tese apresenta o EDME - um sistema que pode
ser usado para a geração de novas peças musicais que exprimem uma determinado
emoção especificada pelo utilizador. O sistema funciona com ficheiros MIDI standard
e está dividido em duas etapas: a primeira off-line, a segunda on-line. Na primeira
etapa, os ficheiros MIDI são divididos em segmentos com conteúdo emocional uni-
forme. Estes são submetidos a um processo de extracção de características, sendo
posteriormente classificados de acordo com os valores emocionais de valência e ac-
tivação e armazenados numa base de músicas. Na segunda etapa, os segmentos
são seleccionados e transformados de acordo com a emoção especificada pelo uti-
lizador e, em seguida, arranjadas de acordo com uma forma musical. A modularidade,
adaptabilidade e flexibilidade da arquitectura do nosso sistema torna-o aplicável em
contextos diversos, como vídeo-jogos, teatro, filmes e contextos de saúde.

O sistema está a usar uma base de conhecimento, baseada em resultados empíricos
de obras de Psicologia da Música, tendo sido aperfeiçoado com dados experimentais
obtidos com questionários. Para as experimentais, preparamos questionários com
segmentos musicais de conteúdo emocional diferente. Após ouvir cada segmento,
cada indivíduo classificou-o com valores de valência e excitação. Inferimos que as
experiências conduzidas via web tinham um elevado grau de fiabilidade, apesar de
terem sido feitas num contexto não-controlado.

Nós também calibramos/validamos o sistema EDME em duas experiências destinadas
a verificar a precisão do sistema na classificação de valência e excitação usando da-
dos experimentais obtidos num ambiente controlado. A primeira experiência obteve
dados através de questionários com base no Self-Assessment Manikin. Na segunda
experiência obtivemos dados fisiológicos e comportamentais. Os dados mostraram
que a actividade do músculo corrugador aumenta com a excitação; os batimentos por
minuto da frequência cardíaca aumentam com a excitação, a resposta galvânica da
pele aumenta com a valência e excitação. Apenas na atividade do músculo zigomático
há um aumento significativo em ambos, valência e excitação.
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ABSTRACT

The automatic control of emotional expression in (tonal) music is a challenge that is
far from being solved. This thesis presents EDME - a system with such capabilities
used for the generation of novel musical works which express a particular emotion as
specified by the user. The system works with standard MIDI files and develops in two
stages: the first offline, the second online. In the first stage, MIDI files are partitioned in
segments with uniform emotional content. These are subjected to a process of feature
extraction, then classified according to emotional values of valence and arousal and
stored in a music base. In the second stage, segments are selected and transformed
according to user specified emotion and then arranged into song-like structures. The
modularity, adaptability and flexibility of our system’s architecture make it applicable in
various contexts like video-games, theatre, films and healthcare contexts.

The system is using a knowledge base, grounded on empirical results of works of Music
Psychology, which was refined with experimental data obtained with questionnaires.
For the experimental setups, we prepared questionnaires with musical segments of
different emotional content. Each subject classified each segment after listening to it,
with values for valence and arousal. We inferred that the experiments conducted via
online had a high degree of reliability, despite the fact of being done in a non-controlled
context.

We also calibrated/validated EDME in two experiments where we intended to verify
the accuracy of EDME in classifying valence and arousal by using experimental data
obtained in a controlled environment. The first experiment collected data with ques-
tionnaires based on Self-Assessment Manikin. The second experiment collected be-
havioral and physiological data. The data show that corrugator muscle activity increase
with arousal; heart rate measure in beats per minute increase with arousal, and gal-
vanic skin response increase with both valence and arousal. Only for zigomatic muscle
activity there is a significant increase with both, valence and arousal.

KEYWORDS

Knowledge-based system, automatic music production, expression of emotions, music
and emotions, real-time system, tonal music.
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1. Motivation

“Music can change the world because it can change people.”
– Bono (U2)

Emotions are widely accepted as being an important factor in the society. Their mul-
tidimensional nature is the main reason why there is still so much to discover in order
to understand them. Throughout history, many scientists have dedicated most of the
time of their lives to study emotions (Damásio and Sutherland, 1996; Ekman, 1999;
Frijda, 2000; Lazarus, 1999; Ortony and Collins, 1988); however, there is not yet a con-
sensus in an important aspect as is their definition (Scherer, 2005). They belong to
an extended area which is the area of affects. Scherer (2000) suggest that emotions
are among five types of affects: emotions, moods, interpersonal stances, preferences
and affect dispositions. There are two main dimensions that usually help to distinguish
between emotions from the other types of affect, they are the duration and intensity.
Emotions are characterized by having the highest intensity and the lowest duration.
We accept emotions as corresponding to the manifestation of our psychophysiological
state (Larsen et al., 2008).

Music is another area with many repercussions in society. Like emotions, they also
have a multidimensional nature with also so many to discover in order to understand
the processes involved in our mind while listening to the music. Nowadays, music is
almost everywhere, and the most interesting fact is that it is a powerful stimulus capable
of influencing our emotions. This is evidenced by research findings on Music Psychol-
ogy (Deutsch, 1982; Lerdahl and Jackendoff, 1983; Narmour, 1990; Temperley, 2004;
Widmer and Goebl, 2004; Gabrielsson and Lindstrom, 2001). There are established re-
lations between musical and emotional areas. For instance, tempo is widely accepted
as having direct influence on the pleasantness of emotions.

The scientific challenge of automatically producing music with an appropriate emo-
tional content has involved a lot of research in emotional and musical domains. Many
research areas have been working to reduce the semantic gap that exists between
these two domains (Serra et al., 2007). We are focused in the areas of Music Psy-
chology, Music Computing and Affective Computing. Computational systems with the
capability of producing music with an appropriate emotional content have an enormous
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application potential, which makes them usable in every context where there is a need
to create environments capable of inducing certain emotional experiences. The pro-
duction of soundtracks for video-games, films and theatre are examples. They can also
be applied in hospitals, shopping centres, gymnasiums and houses of worship places.
This motivated the development of Emotion-Driven Music Engine (EDME), a system
with the mentioned capabilities.
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2. Aim

The central goal of this thesis is to find a computational system for the control of the
emotional content of produced music, so that it expresses a given emotional specifica-
tion. This system shall be flexible, independent from musical styles and also scalable.
The flexibility is grounded on the possibility of controlling emotional content in different
levels, like the segmentation, classification, selection and transformation. The scala-
bility of the system allows not only the easy integration of other levels of control like
the composition, but it also allows the production of music that, originally, was not part
of the system. Produced music is solely instrumental, which is known to be sufficient
to express desired emotions (Kimura, 2002). This thesis is focused on tonal music, a
type of music characterized by having a note (the tonic) that all other notes gravitated
toward.

It is important to mention that due to the multidimensional nature of both emotions and
music, many dimensions of these areas are not going to be controlled. This thesis is
focused on the music content. For instance, concerning emotions, social variables like
context and human listener experience are not controlled; where it concerns to music,
editorial, cultural metadata and song lyrics are not analysed.
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3. Contributions

There are already some proposed approaches to solve the problem addressed by this
thesis. However, none of these approaches gives an entirely satisfactory response
to our requirements. We have found especially promising a particular hybrid approach
that consists in combining classification/selection with transformation. In fact, the trans-
formation can improve the classification/selection result when there is not a solution in
the music base (database of music) close to the emotional specification. On the other
hand, as the selection tends to produce an output with characteristics close to the de-
sired ones, the transformation assumes less risks of degrading music quality, because
the adjustments needed to get the music characteristics fit the emotional specification
are limited.

The solution proposed in this thesis has the advantage of being able to produce outputs
of acceptable quality quite independently from the music base: it is able to find the
best possible match and then transform it in order to increase the match even further.
It is also quite flexible: the music base can be completely redefined to adapt to the
specific needs of a given use scenario. The system uses mechanisms (modules) that
are independent from the music it is working with, i.e., the musical output corresponds
to the emotional specification independently of the original music base. The system is
also reliable, thanks to the experimental calibration using different subjects.

We have found other opportunities to contribute to the advance of the state of the art:
adopt both the discrete and dimensional representation of emotions; systematization of
the relations between emotions and musical features in the knowledge base by study-
ing the musical features with an emotional impact; development of modules to control
the emotional content of music; use of techniques of human emotional recognition for
validation and calibration of the system. We also tested the usability of a version of
EDME system ready to be used in real-time and with an interface that can be used in
application domains like entertainment and healthcare.

5



4. Publications Relevant to this Thesis

This section is devoted to the presentation of all the publications relevant to this thesis.
For each publication we enumerated other works where it was cited.

4.1. Journals

1. Oliveira, A., Cardoso, A., 2010. A Musical System for Emotional Expression. In:
Knowledge-Based Systems, Elsevier, 23, 901-913.

a) Wang, H., Lee, Y., Yen, B., Wang, C., Huang, S., Tang, K., 2011. A Phys-
iological Valence/arousal Model from Musical Rhythm to Heart Rhythm. In:
IEEE International Symposium on Circuits and Systems, 1013-1016.

b) Liu, Y. and Liu, M. and Lu, Z., Song, M., 2012. Extracting Knowledge from
On-Line Forums for Non-Obstructive Psychological Counseling Q&A Sys-
tem. In: International Journal of Intelligence Science, Scientific Research
Publishing, 2(2):40-48.

4.2. Conference Papers

1. Oliveira, A., Cardoso, A., 2007. Towards Affective-Psychophysiological Founda-
tions for Music Production. In: Lecture Notes in Computer Science, Affective
Computing and Intelligent Interaction, Springer, 4738, 511-522.

a) Monteith K., Martinez T., Ventura D., 2010. Computational Modeling of Emo-
tional Content in Music. In: Cognitive Science.

b) Perry K., Martinez T., Ventura D., 2010. Automatic Generation of Music for
Inducing Emotive Response. In: International Conference on Computational
Creativity.

c) Caporusso, N., 2011. The Body and the Mind “through the Lens” of Mu-
sic: Exploiting Brain-Computer Interfaces and Embodied Music Cognition
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Cognitive Practices.
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d) Monteith, K., Martinez, T., Ventura, D., 2012. Automatic Generation of Melodic
Accompaniments for Lyrics. In: International Conference on Computational
Creativity, 87.

2. Oliveira, A., Cardoso, A., 2007. Control of Affective Content in Music Production.
In: International Symposium on Performance Science.

a) Rad, R., Firoozabadi, M., Rezazadeh, I., 2011. Discriminating Affective
States in Music Induction Environment Using Forehead Bioelectric Signals.
In: 1st Middle East Conference on Biomedical Engineering, 343 - 346.

3. Oliveira, A., Cardoso, A., 2007. A Computer System to Control Affective Content
in Music Production. In: Portuguese Conference on Artificial Intelligence.

4. Oliveira, A., Cardoso, A., 2008. Controlling Music Affective Content: A Symbolic
Approach. In: Conference on Interdisciplinary Musicology.

5. Oliveira, A., Cardoso, A., 2008. Towards Bi-dimensional Classification of Sym-
bolic Music by Affective Content. In: International Computer Music Conference.

a) Baldan, S. and Barate, A., Ludovico, L.A., 2012. Automatic Performance
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In: International Symposium on Computer Music Modeling and Retrieval
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6. Oliveira, A., Cardoso, A., 2008. Modeling Affective Content of Music: A Knowl-
edge Base Approach. In: Sound and Music Computing Conference.

a) Knautz, K., Neal, D., Schmidt, S., Siebenlist, T., Stock, W.G., 2011. Find-
ing Emotional-Laden Resources on the World Wide Web. In: Information,
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b) Wallis, I., Ingalls, T., Campana, E., Goodman, J., 2011. A Rule-Based Gen-
erative Music System Controlled by Desired Valence and Arousal. In: Sound
and Music Computing.

7. Oliveira, A., Cardoso, A., 2008. Affective-driven Music Production: Selection and
Transformation of Music. In: International Conference on Digital Arts - ARTECH.

8. Oliveira, A., Cardoso, A., 2008. Emotionally-controlled Music Synthesis. In: En-
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ing musical emotion: A computational rule system for modifying score and
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gine. In: International Conference on Computational Creativity.
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5. Thesis Organization

Part I presents the motivation and the aim of the thesis, as well as the contributions and
publications that resulted from it.

Part II presents a state of the art of areas related to the work done by reviewing works
of Music Psychology, Music Computing and Affective Computing. In the end of each
section, we include a summary where we highlight the more relevant works for this
thesis.

Part III presents our computational system in seven sections. The first section presents
the approach. The second section presents the details of the architecture. The third
one describes the experiments conducted in order to improve the quality of the output
of the system. The fourth section describes the systematization of the knowledge base.
The fifth one presents the evaluation of the classifiers. The sixth one one describes all
the stages of the calibration and validation of the system. The seventh and last section
of this part presents the application of the system.

Part IV presents a section of discussion where we highlight the main things approached
in this thesis. There is also a section describing

future applications of the system.
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Background
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6. Music Psychology

”There is geometry in the humming of the strings, there is music in the spacing of the
spheres.”

– Pythagoras.

Music is used to communicate values, attitudes and self-views (Rentfrow and Gosling,
2003). It is a powerful stimulus capable of influencing our emotions. This has been
proved by research findings on music perception and expression (Deutsch, 1982; Ler-
dahl and Jackendoff, 1983; Narmour, 1990; Temperley, 2004; Widmer and Goebl,
2004), and more recently by studies that have found relations between musical fea-
tures and emotions (Gabrielsson and Lindstrom, 2001; Juslin, 2001). For instance,
tempo is widely accepted as having direct influence on the pleasantness of emotions.

Music Psychology is a field of Psychology that helps us to understand the emotional
processes involved in our mind with the help of music (Deutsch, 1982). The commu-
nication of emotional content by music can be studied at three different levels: con-
sidering the composer’s message, the emotional intentions of the performer, and the
listener’s perceptual experience (Livingstone et al., 2007). There are several research
areas contributing to this study. Music Perception and Music Cognition are focused on
the listener’s perceptual experience, Music Performance is focused of the emotional in-
tentions of the performer and Music Theory is focused on the composer’s message. In
this chapter, we present a systematic overview of works in Music Psychology. Bearing
in mind the focus of this thesis, we highlight in particular those that provide an insight on
the relations between emotions and music. We present four sections that explain Music
Psychology from four perspectives: perceptive, cognitive, performative and theoretical.

6.1. Music Perception

The major findings on music perception (and music cognition) can be found in (Justus
and Bharucha, 2002). Justus and Bharucha divided these findings into five domains
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from which we highlight three: pitch, time and musical performance. In the pitch do-
main they reviewed pitch height, pitch class, pitch categorization, relative pitch, abso-
lute pitch, consonance, dissonance, scales and tonal hierarchies of stability, chords
and harmonic hierarchies of stability, harmonic perception, harmonic representation,
harmonic expectation, melodic perception, melodic representation and melodic expec-
tation. In the time domain they reviewed tempo, rhythmic pattern, grouping, meter,
event hierarchies and reduction, and the relationship between time and pitch. In mu-
sical performance area they evaluated the interpretation and planning, communication
of structure, and musical expertise and skill acquisition. This section (and the following
ones) are not going to explore all these areas in detail, instead we will focus on those
that we have found more relevant to this thesis. In the next subsection, we are going to
put emphasis on four categories of features intervening in music perception: melody,
harmony, rhythm and timbre.

6.1.1. Melodic Expectation

“Affect . . . is aroused when an expectation activated by the musical stimulus, is tem-
porarily inhibited or permanently blocked” as was said by Meyer (1956). Melody ex-
pectation is correlated to feelings of surprise, disappointment, fear and closure. Cross-
cultural comparisons suggest that certain psychological principles of expectation are
quite general (Krumhansl, 2002). This section gets some insight on this by reviewing
important works on this area. Schellenberg et al. (2002) compared the Implication-
Realization (I-R) (Narmour, 1990) and 2-factor (Schellenberg, 1997) models of melodic
expectation using 3 features: simplicity, scope and selectivity. They tried to examine the
change of melodic expectation along the time. The implication-realization model anal-
yses registral direction, intervallic difference, registral return, proximity and closure. On
the other hand, 2-factor model analyses pitch proximity and pitch reversal. Narmour’s
theory has been extended to mathematical models of melodic tension (Margulis (2005)
and Larson (2004)).

Larson (2004) developed a theory of musical forces for melodic expectation. He de-
scribes two computational models founded on musical forces of gravity, magnetism
and inertia. Computer-generated and participant-generated expectations were com-
pared and results showed a positive correlation between them. The Larson’s theory of
musical forces states that ”we tend to hear music as purposeful action within a dynamic
field of musical forces”, making an analogy between physical motion through space and
the perceived ”motion” of a melodic line. The musical forces act continuously on musi-
cal lines in a dynamically shifting musical context.

Margulis (2005) designed a hierarchical model to evaluate melodic expectation with
four factors: stability, proximity, direction and mobility. This model links expectancy
rating to listeners experience of musical tension, as well as theorized expectations and
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dynamics, affective contours of musical experience. Margulis’ models include elements
of both Narmour’s (1990) and Lerdahl’s (1983) models. Tonal pitch space and innate
bottom-up processing are given significant status in the model. It describes how ex-
pectation connects to the experience of affect and tension. This is done with the help
of three tension types: the experience of intensity (surprise-tension); the highlighting
of a melody’s apparent intentionality (denial-tension); and the impression of desire or
forward-directedness in melody (expectancy-tension). For instance, people experience
a more positive affect in relation to small deviations from expectedness than they did in
relation to large deviations or no deviations.

Melodic expectancy can be understood with cross-cultural and statistical approaches
(Eerola, 2003). Eerola studied processes used in structuring, interpreting, remem-
bering and performing music. This work supports the idea that cultural background
shapes the influence of these processes during music perception. Melodic expectan-
cies can be of two types: pitch-related or temporal. Short-term auditory priming, audi-
tory stream segregation, sensitivity to frequency of occurrences and rule-based heuris-
tics of melodic continuations are pitch-related processes which are related to musical
events stored in sensory memory. On the other hand, there is pitch-related stylis-
tic knowledge that is also important for melody expectation: tonal hierarchy, western
schematic expectations, harmony, melody anchoring and melodic archetypes.

6.1.2. Harmonic Tension

Musical tension allows us to gain insight on how music structure translates into emo-
tions (Farbood, 2006). Increasing tension induces a feeling of building excitement or
impending climax, or an increase in uncertainty, while decreasing tension induces a
feeling of relaxation, resolution, or fulfillment. Tension is central to Western music the-
ory and has been studied by several music theorists and cognitive psychologists.

Farbood (2006) made a quantitative and parametric model of musical tension. This
model used six musical parameters: harmony, melodic expectation, pitch height, tempo,
onset frequency and dynamics. Melodic expectation, harmony and dynamics were cal-
culated with the help of the models made by, respectively, Margulis (2005), Lerdahl
(1983) and Jehan (2005). The validation of the system was done in two experiments
to analyse how these features affect subjects’ overall perception of tension. Linear and
polynomial regression were used in the second experiment. All the features tested
alone had an effect on the perception of tension. On the one hand pitch height had
the clearest effect, on the other hand onset frequency had the weakest effect. Unlike
non-musicians, harmony was more important than pitch height for musicians. Also,
changes in onset frequency and tempo have a great influence on musicians.

Steinbeis et al. (2006) studied the role of harmonic expectation in emotional expe-
rience. Harmonic expectations were based on relations of harmonic distance. They
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argued that music tension is related to the experienced emotion and that the expec-
tation of an harmonic event is inversely proportional to the expected tension, overall
subjective emotionality and electrodermal activity. This work supports Meyer’s (1956)
idea that musical emotions arise through the suspension and fulfillment of expectations;
harmony expectancy violations were related to the increase of the listener’s arousal.

Tonality induction is the process through which the sense of key arises and changes
over time. The dynamics of this process was studied by Toiviainen and Krumhansl us-
ing two self-organized models (Toiviainen and Krumhansl, 2003). One model is based
on pitch class distributions, the other on tone-transition distributions. Principles of au-
ditory scene analysis were used to design a dynamics matrix for the tone-transition
model. The dynamic process of tonality induction was associated with musical tension.
Tension was measured using key distance and dissonance. The computer model and
subjects’ responses are available on the web1.

There is also the schenkerian analysis, which intends to interpret the underlying struc-
ture of a tonal work. This is done by studying how harmonic progressions are arranged
to accomplish a goal (Schenker, 1973). It influenced recent theoretical developments
including the Generative Theory of Tonal Music (Lerdahl and Jackendoff, 1983) (section
6.4).

6.1.3. Rhythmic Perception

Rhythm recognition involves three stages: finding the beat, discovering the rhythmic
structure and mapping the note onsets to musical timings (Dixon, 1997). Beat induction
is only part of the first of the stages. It is the process in which a regular pattern (the
beat) is activated while listening to music. The induced beat carries the perception of
tempo and is the basis of temporal coding of temporal patterns (Desain et al., 1999).
Dixon described a rhythm recognition process which analyses acoustic data, detecting
a sequence of note onsets, and then discovers patterns in the intervals between the
onsets.

Desain and Honing worked on the categorization of rhythmic patterns (Desain and Hon-
ing, 2003). Continuous time intervals were transformed into rhythmic categories that
can be seen in categorization maps (Figure 6.1.1). This was done by partitioning the
space of musical performances into a small set of connected rhythmic regions (cate-
gories). In Figure 6.1.1 different colors represent different rhythmic categories. Their
music notation and integer representation is shown in the legend, which lists them in
order of response proportion. Grey lines are category boundaries. Darker shades of
color indicate a larger proportion of participants who choose this identification.

1http://www.perceptionweb.com/misc/p3312/

14



Figure 6.1.1.: Representation of rhythmic categories in a map (Desain and Honing,
2003)

6.1.4. Timbre Perception

Eronen and Klapuri (2000) found a wide set of features to model the temporal and
spectral characteristics of instruments. Padova et al. analysed the emotional responses
to variations of spectral energy, spectral structure and spectral density (Padova et al.,
2005). They found that changes of harmonic dynamic and harmonic ratios induce
negative emotions and that spectral energy variations induce high levels of happiness.
The repetition of stimuli induces a decrease of intensity in positive emotions and an
increase of intensity in negative emotions, fear and surprise. They support that different
timbre is associated with different emotions. Piano and hybrid sounds induce negative
emotions; flute sound induces other pattern of emotions. The study of timbre made
by Lucassen (2006) led him to the conclusions that the piano is emotionally neutral;
marimba is joyful; cello invokes sad emotions; and alt saxophone provokes negative
and positive emotions.

Deutsch (1982) reviewed timbre perception from three perspectives: identification, fu-
sion and sequencing. Table 6.1 presents a summary of her psychological inferences.
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Timbre perception tasks Psychological findings

Identification of timbre

Differences in timbre of complex tones are related to the

strengths of their various harmonics;

Simple tones are pleasant, but dull at low frequencies;

Tones with strong upper harmonics sound rough and sharp;

Complex tones with only odd harmonics sound hollow;

Critical band, attack segment and steady state segment (if

timbre varies with time) play an important role on timbre

perception;

Geometric models with at least two dimensions were developed

to represent the timbral space, being the first dimension related

to the spectral and distribution of sound and the second to

temporal features, such as details of the attack.

Spectral fusion and separation

Musical tones of the same source are usually fused together

and musical tones of different sources are usually separated to

perceive usually distinct sound images;

Spectral fusion can be promoted by: onset synchronicity of

spectral components; coordinated modulation in a steady state;

and harmonicity of the components of a complex spectrum.

Perception of sequences of timbres

The Warren effect says that sounds are organized into separate

streams, according to sound type. Due to this it is hard to form

temporal relationships across streams.

Table 6.1.: Psychological inferences about timbre perception

6.2. Music Cognition

The process by which the human auditory system organizes sound into perceptually
meaningful elements is called Auditory Scene Analysis (ASA). Roughly speaking, we
can generalize this process into a set of steps following presented. Cochlea does
a spectral analysis, which decomposes the perceived signal into different frequency
components. This decomposition is useful for pitch perception of complex tones, sound
segregation and sound identification. Temporal patterns of vibration are encoded on
the basilar membrane, more properly in auditory nerves. Interaural time differences
are used to localize sounds. Most of the works in this area recur to psychoacoustics
concepts (Plack, 2004). The following subsections, will be focused on music cognition
systems, the study of the personality, models of emotions in music and on emotionally-
relevant musical features.

6.2.1. Systems

Computer Auditory Scene Analysis (CASA) systems are machine listening systems
that aim to separate mixtures of sound sources in the same way that human listeners
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do. Scheirer (2000) developed a CASA framework that embeds the most important mu-
sic perception theories. Psychoacoustic theories of human listening were tested with
computer-modeling approaches. Signal-processing techniques were used to extract
important musical features from audio music. This model extracts 16 musical features,
which are based on loudness, tempo, pitch and ASA. Martin et al. (1998) present the
advantages of using a research framework based on a music listening approach, by
taking into account the limitations of music content analysis based both on musical sig-
nal processing and music theory. They studied various case studies on the extraction
of rhythm, timbre and harmony from audio signals.

Jehan (2005) developed a music cognition framework that can also belong to the group
of CASA frameworks. It creates music by using audio examples and by applying ma-
chine listening and machine learning techniques. He tried to automate the process of
listening, composing and performing using a song database. Sounds and structures
of music were analysed and musical parameters extracted. These parameters were
used in synthesis of musical structures. This thesis contributed to the fields of music
analysis and synthesis with a practical implementation grounded on music cognition. In
the realm of music synthesis/transformation several algorithms were implemented (see
subsection 7.5).

Whitman (2005) presented ways to represent information from the musical signal and
context. Whitman’s framework represented contextual and extra-signal data in the form
of community metadata. He worked with two kinds of musical data to obtain musical
meaning. Cepstral modulation extracted musical meaning from audio signal and Natu-
ral Language Processing, and Statistics were used to extract meaning from community
metadata. The framework gave the following semantics of music information: funky,
cool, loud, romantic, etc.

Temperley (2004) explored cognitive processes involved in perception of six kinds of
musical structures: metrical, melodic phrase, contrapuntal, tonal-pitch-class, harmonic
and key. Metrical structure is a framework of levels of beats. Melodic phrase structure
is a segmentation of the input into phrases. Contrapuntal structure is a segmentation
of a polyphonic texture into melodic lines. Harmonic structure is a segmentation of a
piece into harmonic segments labelled with roots. Pitch spelling involves a labelling of
pitch events in a piece with spellings. Key structure is a segmentation of a piece into
larger sections labeled with keys. For each of these structures, Temperley developed
preference rules. Lerdahl and Jackendoff (1983) were the first to use these types of
rules (see section 6.4 for more details). There are some similarities between these
two works. Metrical structure is related to the meter model of Lerdahl and Jackendoff;
and phrase structure is related to the grouping model of Lerdahl and Jackendoff. The
metrical structure uses nine rules (Table 6.2). The phrase structure uses three rules
(Table 6.3). The contrapuntal structure uses four rules (Table 6.4). The pitch spelling
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model uses three rules (Table 6.5). The harmonic model uses four rules (Table 6.6).
The key model uses two rules (Table 6.7). Temperley and Sleator (1999) implemented
preference rules to generate the harmonic and metrical structures (subsection 7.2.1).

Meter rule Description
Event prefers a structure that aligns beats with event onsets

Length
prefers a structure that aligns strong beats with onsets of longer

events

Regularity prefers beats at each level to be maximally evenly spaced

Grouping prefers to locate strong beats near the beginning of groups

Duple bias prefers duple over triple relationships between levels

Harmony prefers to align strong beats with changes in harmony

Stress prefers to align strong beats with onsets of louder events

Linguistic stress prefers to align strong beats with stressed syllables of text

Parallelism prefers to assign parallel metrical structures to parallel segments

Table 6.2.: Rules of the meter model

Melodic phrase rule Description

Gap
prefers to locate phrase boundaries at (a) large interonset

intervals and (b) large offset-to-onset intervals

Phrase length prefers phrases to have roughly 8 notes

Metrical parallelism
prefers to begin successive groups at parallel points in the

metrical structure

Table 6.3.: Rules of the phrase structure model

Contrapuntal rule Description
Pitch proximity prefers to avoid large leaps within streams

New stream prefers to minimize the number of streams

White square prefers to minimize the number of white squares in streams

Collision
prefers to avoid cases where a single square is included in more

than one stream

Table 6.4.: Rules of the contrapuntal model
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Pitch spelling rule Description

Pitch variance
prefers to label nearby events so that they are close together on

the line of fifths

Voice-leading

Given two events that are adjacent in time and a half-step apart

in pitch height: if the first event is remote from the current center

of gravity, it should be spelled so that it is five steps away from

the second on the line of fifths

Harmonic feedback
prefers TPC representations which result in good harmonic

representations

Table 6.5.: Rules of the pitch spelling model

Harmony rule Description
Compatibility prefers roots that result in certain pitch-root relationships

Ornamental dissonance

prefers events that are closely followed by another event a

half-step or whole-step away and metrically weak, when

labelling events as ornamental

Harmonic variance
prefer roots such that roots of nearby chords spans are close

together on the line of fifths

Strong-beat prefers to start chord spans on strong beats

Table 6.6.: Rules of the harmonic model

Key rule Description

Key-profile

For each segment, prefer a key which is compatible with the

pitches in the segment, according to the (modified) key-profile

formula

Modulation
prefers to minimize the number of key changes from one

segment to the next

Table 6.7.: Rules of the key model

6.2.2. Personality

Music cognition benefits from the analysis of personality. Music selection/recommendation
systems (subsections 7.4 and 8.4.2) also benefit from this analysis as they are com-
monly grounded on music preferences (Kuo et al., 2005). The influence of the person-
ality on music preferences is now going to be analysed with some detail (Rentfrow and
Gosling, 2003). Studies of music preferences were made with over 3500 individuals.
Data from these studies reveals a correlation between music genres and four dimen-
sions of music preferences: reflective and complex; intense and rebellious; upbeat and
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conventional; energetic and rhythmic. Heavy metal fans tend to experience higher rest-
ing arousal and arousal levels than country music fans. Preference for highly arousing
music (e.g. heavy metal, rock, alternative, rap and dance) appears to be positively re-
lated to resting arousal, sensation seeking, and antisocial personality. The attributes of
music vary across a wide range of moods, energy levels, complexities and lyrical con-
tents. For example, some genres emphasize negative emotions (e.g., heavy metal),
whereas others emphasize positive emotions (e.g., religious); some genres are tech-
nically complex (e.g., classical), although others tend to be basic (e.g., country); some
genres have relatively few songs with vocals (e.g., jazz), while others only have songs
with vocals (e.g., pop).

Music is listened to most often while driving, alone at home, exercising, and hanging out
with friends. Even in social gatherings where music is not the primary focus, it is an es-
sential component - imagine, for instance, a party or wedding without music. Individuals
may seek out particular styles of music to regulate their emotional states; for example,
depressed individuals may choose styles of music that sustain their melancholic mood.

Individuals enjoy listening to changes on a day-to-day basis, perhaps depending on the
mood the person is in. Blues, jazz, classical and folk music facilitate introspection and
are structurally complex. Rock, alternative and heavy metal are full of energy and em-
phasize themes of rebellion. Country, soundtrack, religious and pop emphasize positive
emotions and are structurally simple. Rap/hip-hop, soul/funk and electronica/dance are
lively and emphasize the rhythm.

6.2.3. Emotions Modeling in Music

Several works have been devoted to modeling emotional perception in music (Schu-
bert, 1999; Korhonen, 2004; Mosst, 2006). Some use time series analysis (Schubert,
1999), others use system identification techniques (Korhonen, 2004). Korhonen se-
lected, estimated and validated ARX (Auto-Regression with eXtra inputs) and State-
Space models. These models tested the emotional output using 20 subsets of musical
features as input. He distinguished between global features and local features. He used
dynamics, mean pitch, pitch variation, timbre, harmony, tempo and texture. He used
two tools (Marsyas (Tzanetakis and Cook, 2000b) and PsySound (Cabrera, 1999)) to
extract features related to the mentioned properties. Mosst (2006) used quantitative
techniques. Several individuals made time-varying emotion annotations. He extracted
loudness, spectral centroid, onset density, articulation and mode features. Multiple
linear regression method was used to relate these features with emotional annotations.

6.2.4. Emotionally-Relevant Musical Features

Musical tension and relaxation are very significant to the expectations of the sounds
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played (Krumhansl, 2002). Listeners’ tension ratings coincide with the phrase structure.
The work of Krumhansl helped us to establish various types of relations between emo-
tions and musical features (Table 6.8); emotions and psychophysiological responses
(Table 6.9); and concerns related to music and emotions (Table 6.10).

Emotion Tempo Harmony Ranges of Pitch Ranges of Dynamics Rhythms

Sadness Slow Minor Constant Constant -

Fear Rapid Dissonant Large Large -

Happiness Rapid Major Constant Constant Dancelike

Table 6.8.: Relations between emotions and musical features

Emotion Heart rate
Blood

pressure

Skin

conductance
Temperature Respiration

Rate of

blood flow

Amplitude of

blood flow

Sadness Change Change Change Change Normal Normal Normal

Fear Normal Normal Normal Normal Normal Change Change

Happiness Normal Normal Normal Normal Change Normal Normal

Table 6.9.: Relations between emotions and psychophysiological responses

Musical concerns Other concerns
Global aspects of musical structure Overall mood of the music

Tension Mostly fear, but also happiness and sadness

Tension
Heart rate, blood pressure, pitch height of the melody,

density of notes, dissonance, dynamics and key changes

Tension
Musical form (Lerdahl’s tree model chromatic tones,
interruption of harmonic processes, denial of stylistic

expectations)
Emotional expression in music Emotional expression in dance and speech

Pattern of temporal organization in music Patterns of intonational units in discourse

Table 6.10.: Relations between concerns related to music and emotions

There have been various studies about the relations between emotional states and mu-
sical features (Gabrielsson and Lindstrom, 2001; Berg and Wingstedt, 2005; Webster
and Weir, 2005; Collier and Hubbard, 2001; Ilie and Thompson, 2006). A summary of
these relations is presented in the Table 6.11. Tempo is more important than mode
to make emotional judgments in music (Dalla Bella et al., 2001; Gagnon and Peretz,
2003)2.

For an extensive review of works that studied emotionally-relevant musical features we
recommend Schubert’s work (Schubert, 1999). He divided his review by using seven

2http://www.brams.umontreal.ca/plab/research/Stimuli/Dalla%20Bella%20et%20al%20(2001)/dallabella_2001_stimulis.html
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types of musical stimuli: isolated non-musical sounds, isolated musical sounds, es-
pecially composed melodies, pre-existing melodies, especially composed pieces, pre-
existing pieces with modification and pre-existing pieces. We summarize his findings in
Table 6.12.

Musical feature High valence Low valence High arousal Low arousal

Loudness - - High Low

Average Pitch High Low High Low

Pitch range - - High Low

Pitch variation High Low High Low

Melodic contour

variation
Rising Falling Rising Falling

Register High Low - -

Mode Major Minor - -

Timbre
Piano, strings, few

harmonics, bright, soft

Brass, low register

instruments, timpani,

harsh, violin, woodwind,

voice

Brass, low register

instruments, timpani,

harsh, violin, bright,

strings

Woodwind, voice, few

harmonics, soft

Harmony Consonant

Dissonant, Melodic or

harmonic sequence,

melodic appoggiatura

Complex, dissonant,

diminished seventh

chord

-

Tempo - - fast slow

Articulation staccato legato

non-legato with sharp

contrasts between long

and short notes,

staccato

legato

Note onset - - rapid onset slow onset

Vibrato intense deep fast deep and intense

Rhythm
rhythmic activity,

smooth, flowing motion
rough

sophisticated, rough,

rhythmic activity,

smooth, flowing motion

-

Meter - - triple duple

Table 6.12.: Relations between emotional dimensions and musical features

6.3. Music Performance

The contribution of the performer to expression communication has two facets: to clar-
ify the composer’s message by enlightening the musical structure and to add his per-
sonal interpretation of the piece. A mechanical performance of a score is perceived
as lacking of musical meaning and considered dull and inexpressive as a text read
without prosodic inflexion. Indeed, human performers never respect tempo, timing and
loudness notation in a mechanical way when they play a score: some deviations are
always introduced, even if the performer explicitly wants to play mechanically. Thus,
in general, expressiveness refers both to the means used by the performer to convey
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the composer’s message and to his own contribution to enrich the musical message.
Next paragraphs are dedicated to the presentation of models and theories used for
expressive musical performances.

There are several models of music performance. These models specify the physical
parameters defining a performance. Widmer and Goebl (2004) reviewed four of these
models: the KTH rule-based model; the structure-level models of timing and dynamics
made by Todd; the mathematical model of musical structure and expression by Maz-
zola; and a model, induced with machine learning methods, which combines note-level
rules with structure-level expressive patterns. They studied the role, principles and as-
sumptions used to change emotional expression and concluded that the models are
complementary. This work also presents empirical evaluations of the models. Friberg
et al. (2006) presented in more detail the KTH rule system. This system has rules that
relate musical performance features and emotional expression (Figure 6.3.1). These
rules transform features like sound level, notes duration and phrasing level. Bresin
and Friberg (2000) used a program based on the KTH rule system. This program
models performance parameters like phrasing, micro-level timing, metrical patterns
and grooves, articulation, tonal tension, intonation, ensemble timing and performance
noise.

Figure 6.3.1.: KTH rules used to relate emotions with performance features (figure
taken from (Friberg et al., 2006))

Taylor et al. (2005) designed a virtual character to respond in real-time to the musical
input. Appropriate behaviours were defined in the character to reflect the perception of
the musical input. These characters were developed through a 3-layer framework. The
first layer (perception) was responsible for the extraction of musical features (e.g., pitch,
amplitude, tone and chord) from musical input. The second layer (cognition) used the
major findings of music perception and cognition (e.g., harmonic structural rules), and
Gestalt theory to organize these features. The third layer (expression) was responsible
for the character animation using musical data obtained from the previous layers.

The understanding of the communication of emotions in music performances can be
done through the application of several algorithms and theories. Most works estab-
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lished rules for controlling musical expressivity by changing musical features (e.g.,
pitch, intensity, articulation and tempo). These features are usually mapped to emo-
tions (e.g., anger, sadness and happiness). Friberg (2004) used fuzzy sets to make this
mapping. Cognitive and cultural factors help in the analysis of expressive intentions in
musical improvisation (Baraldi, 2003). We highlight the action-perception theory (Vick-
hoff and Malmgren, 2004). This theory is based on three constructs: present moment
perception, implicit knowledge and imitation. It also considers that there is a 2-way
connection between emotions and movements. Empathy is important to understand
feelings of other people. These feelings can be categorized into three groups: cate-
gorical (happiness, fear, etc.), vitality (crescendo, pulsing and other kinetics terms) and
relational (being loved, esteemed, etc.). There are three empathy catalysts: similarity,
familiarity and cue salience. Entrainment is another important concept to emotional
contagion.

Kimura (2002) used instrumental pieces of music to induce seven emotions: fear, sad-
ness, anger, tenderness, happiness, frustration and surprise. Violinists’ expression of
sadness, tenderness and happiness were perceived by the listeners with more than
70% of success rate. This work is grounded on Juslin’s (2001) study (Figure 6.3.2).

Figure 6.3.2.: Representation of musical features on a 2 dimensional emotion space
(Juslin, 2001)
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Deutsch (1982) studied the importance of the physical space in the performance of
music and drawn several conclusions. The perception of melody is more influenced by
the pitch, timbre and loudness than by the localization of instruments. Temporal rela-
tionships between tones, from different spatial locations, are also a source of influence.
The recognition of individuals tones in a sequence is affected by the pitch proximity.
The connectedness of a sequence of tones is affected by factors like pitch relationship,
tempo, attentional set and the sequence length. Melodic progression should be by
steps instead of skips, according to the law of stepwise progression. . Similar sounds
in the frequency spectrum are likely to emanate from the same source and dissimilar
sounds in the frequency spectrum from different sources. Transposed melodies retain
their essential form.

Finally, it is worth mentioning that there is an annual international competition where it is
possible to present the computer systems developed for generating expressive musical
performances (Hashida et al., 2008).

6.4. Music Theory

Music Theory and Psychology are two interconnected areas (Deutsch, 1982). The
Gestalt theory was the outcome of concrete investigations in psychology, logic and
epistemology that lead to establish four key principles: emergence, reification, multi-
stability and invariance (Ellis, 1999). These principles were used by Meyer (1956) in
the study of the meaning of emotions in music. He studied the characteristics that affect
the continuity (Table 6.13), completeness and closure (Table 6.14) in melody, rhythm,
meter and harmony. Finally, the role of the music structure and shape were also ob-
jects of analysis from which a few conclusions were drawn. A weak/bad shape can be
characterized by their excessive similarity and this leads to tension. Pitch uniformity is
characterized by equidistant series of tones. Harmony uniformity is characterized by
equal vertical intervals or unchanging harmony or repetitive progressions. Expectation
(subsection 6.1.1), expressive variations in pitch, tempo, rhythm, ornamentation and
tonality were also identified as important characteristics for understanding the emo-
tional meaning of music.

Musical Law Music characteristics

Melodic continuity
delay; acceleration; contrast of parts; ornaments; shape

expectation of harmonic structures

Rhythmic continuity
pulse; meter; rhythm; accent; hierarchical organization
(iamb, anapest, trochee, dactyl, amphibrach); rhythmic

reversals

Metric continuity
hierarchical organization; time signature; metric changes

(hemiola); polymeters

Table 6.13.: Meyer’s laws of music continuity
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Musical Law Music characteristics

Melodic completeness and closure
tonality; instrument tessitura; higher-level analysis

(Schenker analysis); relaxation of closure linked to lower
pitches

Rhythmic completeness and closure string of accented/unaccented
Harmonic completeness and closure tonic/key

Table 6.14.: Meyer’s laws of music completeness and closure

Deutsch also concluded that interval class can be perceived in a successive context, as
an example of top-down shape analysis by the listener. This conclusion is grounded on
concepts from musical shape analysis and from the theory of twelve-tone composition.
She argued that music is stored in a hierarchical structure. This principle was applied
to Schenker’s (1973) 3-level system in which notes at one level are prolonged by a
sequence of notes at the next-lower level. This system is explained with the tree-based
approach of the Generative Theory of Tonal Music (Lerdahl and Jackendoff, 1983).
Lerdahl and Jackendoff found that the fundamental relationship expressed in the tree
is the elaboration of a single pitch event by a sequence of pitch events. This theory
proposes a generative grammar for homophonic tonal music. It characterizes the way
listeners perceive hierarchical structures in tonal music. This grammar models musical
intuition and takes the form of rules that assign structures that listeners perceive while
listening to music:

• grouping structure - segmentation of music into motives, phrases and sections;

• metrical structure - hierarchy of alternating strong and weak beats;

• time-span reduction - hierarchy of structural importance of pitches with respect to
their position in the grouping and metrical structures;

• prolongation reduction - hierarchy that expresses harmonic and melodic tension
and relaxation.

For each of these structures, they developed a series of well-formedness rules. They
analysed the syntax of music using hierarchical trees of relaxation/tension. The form
of the resulting trees (right-branching and left-branching) give us indications about the
tension/relaxation character of the analysed music.

Tillmann et al. (2000) proposed a self-organizing neural network to embed the knowl-
edge of western musical grammar, e.g., pitch dimension regularities. The process of
learning used in this system intended to internalize the correlational structure of tonal
music. This work gave rise to empirical findings on processing of tone, chord, key
relationship, relatedness judgments, memory judgments and expectancies.

27



Cambouropoulos (1998) also proposed a computational theory of musical structure.
Several modules grounded on cognitive and logical principles like similarity and cate-
gorization were developed. They contribute to form a structural description of a musical
surface. A comparison with other theories and computational models of music is pre-
sented in (Cambouropoulos, 1998).

Models of semiotics and pragmatics can be used to analyse film music (Chattah, 2006).
Chattah took into consideration formal design, melodic contour, pitch content, harmonic
gestures, cadential formulas and other structural aspects of music. Aspects of film were
metaphorically related to aspects of music: motion in vertical space, weight and size
with fluctuation in pitch frequency; speed of physical movement with speed of musical
events; psychological tension with volume; psychological state with instrumental tim-
bre; and psychological/physical state with harmonic consonance. On the one hand,
leitmotifs and topics (symbols), and music and sound parameters (icons) were stud-
ied using semiotic constructs; on the other hand, qualitative and structural aspects of
music, as well as similarities and dissimilarities between film narrative and music were
studied from a pragmatic perspective.

6.5. Summary

This chapter reviewed aspects of music from different psychological perspectives. We
presented works of music perception and cognition that explained some processing
mechanisms of the listener. The section of music perception was dedicated to the pre-
sentation of several models and theories about the perception of different musical fea-
tures: melody (Eerola, 2003), harmony (Toiviainen and Krumhansl, 2003), rhythm (De-
sain and Honing, 2003) and timbre (Padova et al., 2003). The section of music cognition
presented music cognition systems (Temperley, 2004; Jehan, 2005; Whitman, 2005)
and one study about the influence of the personality (Rentfrow and Gosling, 2003).
The section ended with the description of models of emotions in music (Schubert, 1999;
Mosst, 2006; Korhonen, 2004) and with the presentation of emotionally-relevant musi-
cal features (Krumhansl, 2002; Gabrielsson and Lindstrom, 2001; Dalla Bella et al.,
2001; Ilie and Thompson, 2006).

Then, we studied music expression with the presentation of some models (Widmer
and Goebl, 2004) and theories (Vickhoff and Malmgren, 2004) for music performance.
Finally, we entered into the theoretical domain and presented models for tonal music
(Deutsch, 1982; Lerdahl and Jackendoff, 1983; Cambouropoulos, 1998; Tillmann et al.,
2000).
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7. Music Computing

”A good composer does not imitate, he steals.”
– Igor Stravinsky.

”Music Computing research can be traced back to the 1950’s, when a handful of com-
posers, together with engineers and scientists, began exploring the use of the new
digital technologies for the creation of new music and multimedia content. (...) Today,
Music Computing is Europe’s most advanced multidisciplinary approach to music and
multimedia. By combining scientific, technological and artistic methodologies it aims
at understanding, modeling and producing music using computational approaches .”
(Serra et al., 2007)

The research in Music Computing can be classified according to two imaginary axes:
music representation and type of the problem. Music can be represented in audio or
MIDI format (Moog, 1986), see section 3.1 of (McKay, 2004) for more details about this
last format. In the audio domain one uses techniques of signal processing, whereas in
the MIDI domain techniques of symbolic processing are the most appropriate. Roughly,
there are three main types of problems: analysis (decomposition into simpler ele-
ments), synthesis (composition of complex elements by using simple elements) and
transformation (recomposition of simple elements). Now, we present examples for each
of these problems. For analysis, in the audio domain we can extract features (tonality,
tempo, etc.) and also identify parts (melody and rhythm); in the MIDI domain we can
analyse harmony and rhythm. For synthesis, in the audio domain we can synthesize
and sequence audio; in the MIDI domain, we can do automatic composition and ar-
ranging, and symbolic sequencing. For transformation, in the audio domain we can
change pitch, change loudness and apply effects; in the MIDI domain we can change
pitch, rhythm and tonality, for example.

In this thesis, we work in the MIDI domain, exception made to the synthesis, where
the timbre of instruments is relevant, which takes us to perform analysis also at the
audio level. For MIDI analysis, we make segmentation, extraction of features, as well
as classification and selection. For MIDI transformation we change features like the
rhythm and harmony. For audio analysis, we make feature extraction. We also work
on the problem of synthesis, particularly in MIDI sequencing and sound synthesis. The

29



choice of using MIDI in most of the tasks is because it is much more adequate than
audio if one wants to extract high-level features. This is a very important advantage,
as it is easier to bridge the semantic gap between music and emotions when we are
using high-level features obtained from MIDI, instead of low-level features obtained
from audio recurring to techniques like signal processing. See section 1.4 of (McKay,
2004) for more details about the reasons behind using MIDI instead of audio.

The state of the art in this chapter focuses on the above areas of music computing, i.e.,
those that are approached in this thesis. Each contribute in some way to support some
of the modules of our system presented in the next part. The state of the art focuses
mostly on the reviewing of techniques and tools available in these areas. In Chapter
11, when describing the architecture of our system, we will clarify which of these tools
and techniques are being used, and in which concrete context.

7.1. MIDI Segmentation

The segmentation of the auditory stream into smaller units, melodic phrases, motifs,
i.e., repeated patterns that are structures easily perceived by listeners, is a fundamental
process in music perception, music cognition and music theory as was presented in
previous chapter. The phrase structure of Temperley (2004), implemented in Melisma
Music analyser3, and the grouping structure of Lerdahl and Jackendoff (1983) are just
two of the models most important to the process of segmentation.

There are different approaches available to find repeated patterns in MIDI representa-
tions. Lartillot (2005) identified structures based solely on pattern repetitions. He used
global selective mechanisms, based on pattern frequency and length to filter combina-
torial redundancy. Grilo (2002) used two evolutionary algorithms: genetic programming
and genetic algorithms. The objective of this work was to find a segmentation of a
musical piece that allowed the identification of the most meaningful patterns that ex-
isted in that piece. Paulus and Klapuri (2006) developed a system for finding structural
descriptions. The structure of a musical piece was depicted with segments having a
description. This system used an algorithm to find the optimal description with regard
to a cost function.

There is software developed for the segmentation of MIDI music. MIDI toolbox (Eerola
and Toiviainen, 2004) do this with two different approaches: probabilistic and gestaltic.
The probabilistic approach analyses melodies. This analysis consists in defining prob-
abilities of phrase boundaries derived from specific distribution of features at the seg-
ment boundaries of music collections. The gestaltic approach finds plausible points of

3http://www.link.cs.cmu.edu/music-analysis/
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segmentation that depend on large changes of pitch intervals, inter-onset intervals and
silence.

7.2. Feature Extraction

Feature extraction consists in transforming the input data into a set of features, in order
to reduce the dimensionality of the data we work with. We dedicate this section to
the presentation of tools and algorithms useful in the process of extracting features
from audio and MIDI music. Before entering into details, we highlight the importance
of developing taxonomies for the musical features, in order to systematize the features
being used in the extraction process. Lesaffre et al. (2003) present a user-dependent
taxonomy with five categories for audio music: melody, harmony, rhythm, timbre and
dynamics. These categories were analysed in two levels: structural and conceptual.
Typke et al. (2004) present an overview of Music Information Retrieval systems by
comparing, among other things, the features extracted from MIDI and audio music:
pitch, note duration, timbre, rhythm, contour, intervals and others.

7.2.1. MIDI

There are systems that work with MIDI data and that provide features that can be
used, for instance, to classify music. JSymbolic (McKay and Fujinaga, 2006) is a free
software package that extracts features of instrumentation, musical texture, rhythm, dy-
namics, pitch statistics and melody. Table 7.1 presents some of the available features.
A detailed description of all the features is provided in (McKay, 2004).
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Strongest
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Dynamic
Range

Most Common
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Melodic
Interval

Histogram
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Note To

Note
Dynamics
Change

Time preva-
lence of
pitched
instruments

Voice overlap Polyrhythms

Percussion
prevalence

Voice equality
- dynamics

Note
Density

Table 7.1.: Summary of McKay’s (2004) features

Eerola and Toiviainen (2004) developed a toolbox that finds the following features:
melodic contour, similarity, key, meter and segments. Besides these, it calculates
twelve melodic features: melodic accent, melodic attraction, melodiousness, melodic
range, expectancy-based model, implication-realization principles (Narmour, 1990),
melodic tessitura, melodic distance, melodic mobility, melodic measure, accent syn-
chrony and melodic contour; nine rhythmic features: concurrent onsets, duration ac-
cents of events, tempo, meter, metrical hierarchy, note density, variability of events,
onset autocorrelation and onset distribution; and four harmonic features: key mode,
pitch distribution visualization, correlation of the pitch distribution with K&K profiles and
tonality (major/minor).

Temperley and Sleator (1999) presented a computational rule-based system to model
meter and harmony. This system uses a list of notes with pitch, on-time and off-time
as input. Melisma Music analyser4, the name of the system, covers several aspects of
music structure (as presented in section 6.2).

4http://www.link.cs.cmu.edu/music-analysis/
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There is also JMusic (Sorensen and Brown, 2000) which consists of a music data
structure adequate for the extraction of several features. Climax position, rhythmic
variety, rhythmic range, note density, pitch variety and pitch range are just some of the
available features.

7.2.2. Audio

There are some systems that meet the needs of researchers by providing a library of
analysis algorithms on the audio domain that are suitable for a wide array of tasks.
JAudio (McEnnis et al., 2005) is one of these systems which allow the extraction of
features like spectral centroid, RMS, power spectrum, zero crossings, strongest beat,
MFCC, LPC, moments, peak finder and harmonic spectral centroid. Marsyas (Tzane-
takis and Cook, 2000b) is another system used for prototyping and experimentation
with computer audition applications. It uses four features extractors: Short Time Fourier
Transform, Mel-Frequency Cepstral Coefficients (MFCCs), Spectral Crest Factor and
Spectral Flatness Measure of MPEG-7 (Allamanche et al., 2001). It is composed by
many audio information retrieval tools (Tzanetakis and Cook, 2000a). Pitch, harmonic-
ity, MFCCs, LPC, and the centroid, flux and moments of spectrum are some of the fea-
tures that can be extracted. MIR Toolbox (Lartillot and Toiviainen, 2007) is a framework
that includes most of the features available in both JAudio and Marsyas, plus lower and
higher-level features related to timbre, tonality, rhythm and form. It also allows statistical
analysis, segmentation and clustering of music.

There are also tools that are focused on the extraction of perception features. PsySound
(Cabrera, 1999) extracts psychoacoustic features. It comes with several models that
obtain psychoacoustic measures: level, spectrum, cross-channel, loudness, disso-
nance and pitch. IPEM Matlab toolbox (Leman et al., 2001) models the human auditory
system. It allows the analysis of music in three different levels: sensorial, perceptual
and cognitive. Each of these levels has its own modules. The sensorial level has rough-
ness and onset modules. The perceptual level has pitch completion, rhythm and echoic
memory modules. The cognitive level has a contextuality module.

7.3. Classification

Music genre classification is the most common task in music classification5 (mood clas-
sification will be presented in detail in subsection 8.4.2). Scaringella et al. (2006)
made a survey of systems used in music classification by genre and identified the
most common features: melody, harmony, rhythm and timbre. There are three different

5http://www.music-ir.org/mirex/wiki/2011:MIREX_Home
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approaches to classify music: expert systems, unsupervised classification, and super-
vised classification. Next subsections present works about music genre classification
on the MIDI and audio domains.

7.3.1. MIDI

McKay (2004) made a system of music genre classification of MIDI data. They used
a library of features available in the JSymbolic, which is described in subsection 7.2.1.
He made use of hierarchical classification, flat leaf category classification and round
robin classification.

7.3.2. Audio

Tzanetakis and Cook (2002) and McKinney and Breebaart (2003) worked on the music
genre classification on the audio domain. Tzanetakis and Cook used three feature sets
to do music classification by genre: timbral texture, rhythmic content and pitch con-
tent. The importance of these features was analysed using audio collections to train
statistical pattern recognition classifiers. To represent timbral texture the following fea-
tures were used: spectral centroid, spectral rolloff point, spectral flux, time domain zero
crossings, MFCCs, analysis and texture window and low-energy feature. To represent
rhythm content a Wavelet transform was used to extract the following features (from
the beat histogram): strength of the main (and second) beat, regularity of the rhythm,
relation of the main beat to the subbeats, relative strength of the subbeats to the main
beat, period of the first and second peak in beats per minute and overall sum of the
histogram. To represent pitch content the signal was decomposed into two frequency
bands (below and above 1000Hz) to build a pitch histogram. From this histogram the
following features were calculated: most dominant pitch class, its octave range, main
pitch class, main tonal interval relation, overall sum of the histogram.

McKinney and Breebaart used four feature sets for audio classification: low-level signal
parameters, 13 MFCCs, psychoacoustic features and an auditory filterbank temporal
envelope. The low-level signal parameters are based on the subsequent properties:
root-mean-square level, spectral centroid, bandwidth, zero-crossing rate, spectral roll-
off frequency, band energy ratio, delta spectrum magnitude, pitch and pitch strength.
Three psychoacoustic features were analysed: roughness (musical dissonance), loud-
ness (signal strength) and sharpness (spectral density and strength of high-frequency
energy). Temporal modulations of features were the most important for the classifica-
tion of audio and music.
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7.4. Audio Selection/Recommendation

Music selection can be divided into two categories: query systems and recommen-
dation systems (Pachet et al., 2000). The works presented in this section belong to
the second category. In this category there is also the distinction between content-
based and collaborative filtering (Kuo et al., 2005). The works of this section analyse
the content of music that users liked in the past and recommends the music with rele-
vant content. Corthaut et al.(2006) developed a music player that selects appropriate
musical content to specific musical contexts. Musical characteristics are manually an-
notated by music experts. This system extracts music metadata. There are similar
systems: MusicLens6 is a music recommendation system based on genre, volume,
tempo, voice, orchestra/solo, listening purpose, gender, mood, color and composition
year; MoodLogic7 is a music recommendation system based on genre, type recording,
voice, sound quality, similar artists, energy, energy level, heat, mood, tempo, dance-
able, melody memorability, lyrics language, lyrics topic, instruments and composition
year; Sony StreamMan8 is a mobile streaming music service based on genre, mood,
atmosphere, decade and rating; MusicIP mixer9 is a tool that does acoustic fingerprint-
ing on music libraries and generates playlists for specific moods. It is also relevant to
mention two approaches for music selection. Weiss’s (2000) approach combines pop-
ularity, catalogue coverage, style continuity and multi-user dimensions. Pachet (2000)
uses a combinatorial approach based on constraint satisfaction programming. It was
based on the desire of repetition, desire of surprise and exploitation of catalogues. See
subsection 8.4.2 for a couple of studies on emotion-driven selection.

7.5. Transformation

This section is devoted to the presentation of works about transformation on the MIDI
and audio domains.

7.5.1. MIDI

For the MIDI domain we have JMusic (Sorensen and Brown, 2000), a tool adequate
for non real time music composition, but also for music transformation. It has many
algorithms that can be used to modify MIDI music at different levels (notes, phrases,
parts or score). The first beat of each bar/measure can be changed by increasing the
dynamic of notes; notes durations and rhythm can be changed; it is possible to append
notes, phrases, parts and scores; notes pan value can be alternated; crescendos,

6http://www.musiclens.de/contest/
7http://www.moodlogic.com/
8http://www.streamman.net/evo/web/stream/257_EN

http://tvnomics.typepad.com/Rodriguezfinal.pdf
9http://www.musicip.com/mixer
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decrescendos and diminuendo can be applied to phrases; phrases and parts can be
looped.

7.5.2. Audio

The audio domain is fruitful in works that transformed different musical aspects. It is
possible to make harmonic transformations such as modulation, reduction and har-
monization; melodic transformation such as transposition (or pitch shifting), various
symmetries and ornamentation/reduction; rhythmic transformations such as time com-
pression and dilatation (time stretching), various symmetries and accent and silence
changes; and dynamics and timbre transformations (Amatriain et al., 2003). Pitch shift-
ing is an effect that aims at transposing the original pitch of a sound, time-scaling
consists in changing the length of the sound. However, this is not all. Jehan (2005)
applied several transformation algorithms on his system based on the model analy-
sis/resynthesis. The beat matching, music morphing, music cross-synthesis, music
texture and music restoration are just some of the transformations. Beat matching tech-
nique intended to select songs with similar tempos and align their beat over the course
of a transition while cross-fading their volumes. Music cross-synthesis/mosaicing was
a technique used for sound production, whereby one parameter of a synthesis model
is applied in conjunction with a different parameter of another synthesis model. Music
texture and music restoration were two additional types of techniques that could be
used to transform music. Music texture (Figure 7.5.1) sequenced different segments
of the original piece of music to produce a longer piece of music. Music restoration
(Figure 7.5.2) used segments of different parts of the original song to recover the part
of the music that was corrupted.

Figure 7.5.1.: Music textures (Jehan, 2005)
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Figure 7.5.2.: Music restoration (Jehan, 2005)

Grachten (2006) worked on tempo transformations of monophonic audio. These trans-
formations preserved the quality of the musical performance and obtained audio more
naturally than the one obtained by uniform time stretching. Grachten used a case
based reasoning system that did the audio analysis/synthesis and the manipulation of
the input audio recording. The manipulation part first received a MIDI with the melody,
a melodic description and a target tempo. The problem was defined from these data.
The CBR part was used to select and reuse the case more appropriate to the problem.
Fabiani and Friberg (2007) extend this work by allowing the transformation of sound
level and tone duration besides the tempo transformation.

Gomez et al. (2003) developed a system for melodic transformation. This was done
with the help of high-level melodic descriptions.

7.6. Audio Sequencing

Sequencing music includes the ordering of tracks by musical features, namely tempo
(Cliff, 2000). The need of crossfading involves the synchronization in the pitch, tempo,
and phase of the two sequenced tracks. Figure 7.6.1 illustrates this process between
an outgoing track A and an incoming track B. As track B has a faster tempo it is being
time-stretched to match tempos of both tracks. The sequence of tracks can also be
specified with the help of trajectories of musical features.
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Figure 7.6.1.: Cross fading in a sequencing process(Cliff, 2000)

DJs use some techniques in the process of music remixing to manipulate sound. Time
warping algorithms use time stretching and shrinking techniques to change audio du-
ration and tempo matching. Pitch shifting is used for samples matching. There are also
other techniques to concatenate music samples based on loudness (amplitude en-
velope, tremolo), spectral shape (spectral motion) and pitch (vibrato and pitch bends)
similarity. From psychological studies (Meyer, 1956) we also know that music continuity
is influenced by some musical features: melody, rhythm and metric.

Beat-matching is a widely used technique during music sequencing. In this technique
there is a period of cross-fading where we need to adjust the tempo of a song with the
tempo of other song. It is possible to do this with different approaches: linear, exponen-
tial, Stype, and constant-power (Jehan, 2005). Some techniques used in concatenative
synthesis (Schwarz, 2004) can be helpful to automatic sequencing. Musical mosaicing
(Zils and Pachet, 2001) was presented as a sequence generation mechanism. With
this technique we can generate sequences of sound samples by specifying high-level
properties of the music sequence we want to obtain.

7.7. Audio Synthesis

”Musical sound synthesis allows the creation of new sounds, either from scratch, or
by changing an existing sound (this is usually called resynthesis). In both cases, the
parameters of the synthesis model used have to be specified. In synthesis from scratch
they are completely given by the user. In resynthesis, the parameters obtained by
analyzing an existing sound are modified.” (Schwarz, 2004)

There are two approaches of music synthesis: parametric and concatenative (Schwarz,
2004). Parametric synthesis is based on physical or signal models. The signal model
can be subtractive based on oscillators and filters, or additive, which is based on the
harmonics plus noise model. Concatenative synthesis is based on fixed inventory or
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unit selection. Musical mosaicing (Zils and Pachet, 2001) can be seen as a type of
concatenative synthesis based on unit selection. Concerning the synthesis of singing
voice the approaches are almost the same as in music and speech synthesis.

There is a widely used technology for concatenative sound synthesis which is called
Virtual Studio Technology (VST). There are several manufacturers (Vir210, Garritan11,
Vienna Symphonic Library12 and others) that have developed models for this technol-
ogy. These models are called VST instruments.

7.8. Summary

This section reviewed disciplines that study on different aspects of music with the help
of the computer. Firstly, we presented works focused in the analysis of music. We
presented some works focused on the extraction of information from music. There was
a particular emphasis on music segmentation (Lartillot, 2005; Grilo, 2002; Eerola and
Toiviainen, 2004) and extraction of features (Eerola and Toiviainen, 2004; McKay and
Fujinaga, 2006). Obtained features were useful for the classification task (van de Laar,
2006; Wu and Jeng, 2006).

Secondly, we presented studies focused in the production/creation of music. We pre-
sented techniques used to select (Corthaut et al., 2006; Weiss, 2000; Pachet et al.,
2000), sequence (Jehan, 2005), transform (Jehan, 2005; Sorensen and Brown, 2000)
and synthesize (Schwarz, 2004) music.

10http://www.vir2.com/
11http://www.garritan.com/
12http://vsl.co.at/en/65/71/84/1349.vsl
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8. Affective Computing

”Let’s not forget that the little emotions are the great captains of our lives and we obey
them without realizing it.”

– Vincent Van Gogh.

Throughout history, many scientists have studied emotions (Damásio and Sutherland,
1996; Ekman, 1999; Frijda, 2000; Lazarus, 1999; Ortony and Collins, 1988); however,
there is no consensus in their definition (Scherer, 2005). We accept emotions as cor-
responding to the manifestation of our psychophysiological state (Larsen et al., 2008).
In this area it is important to understand emotion and their role in human behaviour
and cognition (Vesterinen, 2001). They interfere with our decisions and learning pro-
cesses. The outcome guides our reason. Memory works in a similar fashion. Positive
events are stored with good emotions, negative events are stored with negative emo-
tions. This background is used to build devices used to express, recognize and have
emotions (Picard, 1997).

This chapter presents an overview of relevant theories and possible representations
of emotions; techniques used to recognize emotions; and systems that intend to drive
emotionally their musical output.

8.1. Emotion Theories

We distinguish emotions from moods and them from other types of affect. Scherer
(2000) suggests five types of affect: emotions, moods, interpersonal stances, prefer-
ences and affect dispositions (Figure 8.1.1). The main differences between these are
their duration and intensity. On the one hand, emotions have the highest intensity and
lowest duration, affective dispositions have the lowest intensity and the highest dura-
tion. Preferences generate unspecific positive or negative feelings, with low behavioural
impact except tendencies toward approach or avoidance. Attitudes are relatively endur-
ing beliefs and predispositions toward specific objects or persons. Moods are charac-
terized by a predominance of feelings that affect the experience and behaviour of a
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person. Affect dispositions describe the tendency of a person to experience certain
moods more frequently or to be prone to react to certain types of emotions. Interper-
sonal stances are characteristic of an affective style that spontaneously develops or is
strategically employed in the interaction with a person or a group of people.

Figure 8.1.1.: Scherer’s types of affect (Scherer, 2000)

Ortony and Turner (1990) presented a summary of emotions theories, their basic emo-
tions and approaches used to infer emotions (Table 8.1). Basic emotions have eleven
characteristics in common: distinctive universal signals, distinctive physiology, auto-
matic appraisal, distinctive universals in antecedent events, distinctive appearance de-
velopmentally, presence in other primates, quick onset, brief duration, unbidden occur-
rence, distinctive thoughts and distinctive subjective experience (Ekman, 1999). There
are divergences in Ortony’s summary. For instance, Weiner & Graham proposed only
two basic emotions, happiness and sadness, while Arnold proposed 11 basic emotions.
By analysing basic emotions from each emotions theory, we can testify the occurrence
of 7 central emotions, common to most of them: anger, happiness, fear, sadness, sur-
prise, disgust and love.
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Theorist Basic emotions Basis for inclusion

Arnold
Anger, aversion, courage,

dejection, desire, despair, fear,
hate, hope, love, sadness

Relation to action tendencies

Ekman,
Friesen and

Ellsworth

Anger, disgust, fear, joy, sadness,
surprise

Universal facial expressions

Frijda
Desire, happiness, interest,

surprise, wonder, sorrow
Forms of action readiness

Gray Rage and terror, anxiety, joy Hardwired

Izard
Anger, contempt, disgust, distress,

fear, guilt, interest, joy, shame,
surprise

Hardwired

James Fear, grief, love, rage Bodily involvement

McDougall
Anger, disgust, elation, fear,

subjection, tender-emotion, wonder
Relation to instincts

Mowrer Pain, pleasure Unlearned emotional states
Oatley and
Johnson-

Laird

Anger, disgust, anxiety, happiness,
sadness

Do not require propositional content

Panksepp Expectancy, fear, rage, panic Hardwired

Plutchik
Acceptance, anger, anticipation,

disgust, joy, fear, sadness, surprise
Relation to adaptive biological

processes

Tomkins
Anger, interest, contempt, disgust,
distress, fear, joy, shame, surprise

Density of neural firing

Watson Fear, love, rage Hardwired
Weiner and

Graham
Happiness, sadness Attribution independent

Table 8.1.: Theories of emotions (Ortony and Turner, 1990)

8.2. Emotion Representation

Concerning the representation of emotions, the prevailing alternative is between dis-
crete and dimensional systems with two or three dimensions (Daly et al., 1983). The
most common interpretation for dimensions interprets them as: arousal (activation/relaxation),
valence (pleasantness/unpleasantness) and dominance (degree of control over the
emotional state). The first two dimensions capture most of the empirical variance,
which explains that the third one is often ignored.

In the discrete representation each word describes an emotion with specific values
of valence and arousal. Several authors have attempted to classify human emotions
based on different criteria and coming from different fields of study (Gabrielsson and
Lindstrom, 2001; Juslin and Laukka, 2004; Russell, 1989; Schubert, 1999). Although
there is no consensus about considering emotions as discrete categories or as points
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in a multidimensional space, it is reasonable to assume that each category can be
loosely mapped to a point in the valence-arousal plane. There is usually high agree-
ment among listeners about the broad emotional category expressed by music, but less
agreement concerning the nuances within this category (Juslin and Laukka, 2004). Ek-
man (1999) has a list of generally accepted basic emotions. Russell (1989) and Mehra-
bian (1980) both have lists which map specific emotions to dimensional values (using
2 or 3 dimensions). Juslin and Laukka (2004) propose a specific list for emotions ex-
pressed by music. Plutchik proposed a three-dimensional circumplex model (Plutchik,
1980). It describes the relations among emotion concepts, which are analogous to the
colours on a colour wheel. In this model, the cone’s vertical dimension represents in-
tensity, and the circle represents degrees of similarity within the emotion (Figure 8.2.1).

Figure 8.2.1.: Plutchik’s emotions categorization

Russell (1989) proposed a two Dimensional Emotion Space (valence and arousal) to
categorize 28 emotions (Figure 8.2.2). In the horizontal axis it represents valence, in
the vertical axis it represents arousal. He proposed a mapping between the 28 emo-
tions and points in the bi-dimensional space using multidimensional scaling methods.
These points are an approximation of the centre of spaces representative of each emo-
tion. This mapping is very useful because it allows to establish relations between works
done in the discrete domain and the ones done in the bi-dimensional domain. It also
allows to have a better perception of semantic proximity between emotions. From ob-
serving the dimensional space we can conclude that emotions are far from the centre
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of this space.

Figure 8.2.2.: Russell’s emotions categorization (Russell, 1989)

Ritossa and Rickard (2004) studied the role of pleasantness and liking to predict emo-
tions expressed by music. Songs were rated by 121 subjects, according to pleasant-
ness, liking, arousal and familiarity. They formed positive correlations between pleas-
antness and liking, and familiarity and liking. They found that pleasantness is a better
predictor. This study confirms the usefulness of the use of valence and arousal as
dimensions used to classify emotions.

In the remaining of this document we will adopt these two dimensions to represent emo-
tions. When doing it graphically, we will represent them as points in a bi-dimensional
space with the horizontal axis representing valence and the vertical axis representing
arousal.

8.3. Emotion Recognition

The interaction between humans and computers is more natural if computers are able
to perceive and respond to human emotions (Busso et al., 2004). Emotions can be
recognized in a number of ways. This may be via speech, facial expression, gesture,
body language (Bartneck, 2001) and with a variety of other physical and physiological
cues.

The research of emotion recognition gains with the development of standard tools. The
Self-Assessment Manikin (SAM), for instance, is a widely used pictographic emotional
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rating system (Bradley and Lang, 1994). It measures the pleasure, arousal and domi-
nance associated with a person’s emotional reaction to a wide variety of stimuli. Also,
the Facial Action Coding System (FACS) (Ekman and Rosenberg, 2005) is used to
categorize facial expressions according to 47 muscles. EMFACS (Friesen and Ekman,
1983) is a counterpart of this system which extends this categorization to the emotional
dimension.

The role of psychophysiological signals in emotion recognition is part of numerous stud-
ies, some of which we will refer to. For instance, to understand emotions we can use
analytical techniques on psychophysiological signals (Etzel, 2006). Etzel studied car-
diovascular and respiratory responses to identify the moods induced by music. Haag et
al. (2004) showed a method of recognizing emotions using electromyography (EMG),
electrodermal activity, skin temperature, blood volume pulse (BVP), electrocardiogram
and respiration. Pattern recognition techniques can also be used to recognize emo-
tional states from physiological data (Vyzas, 1999). Like Haag et al. (2004), Vyzas
used BVP, EMG, electrodermal activity and respiration but also heart rate. Each emo-
tion was characterized by 24 features extracted from the psychophysiological signals.
Lisetti and Nasoz (2004) started by establishing a systematization of the results of stud-
ies that related these signals with emotions. Then, they used mappings between phys-
iological signals and emotions to train three different supervised learning algorithms.
These were used to categorize physiological signals in terms of emotions.

By knowing the important role of psychophysiological signals in the recognition of emo-
tions, several studies have used these signals to recognize the emotions induced with
music. For instance, Sloboda (1991) related physiological reactions like shivers, laugh-
ter, tears and lump in the throat with musical content. Tears were induced by music
with sequences and melodic appogiaturas; shivers were evoked by new or unexpected
harmonies and crescendos. Tears and shivers were also associated with syncopation
and enharmonic changes. The induction of emotional peaks with the denial of musical
expectation (Meyer, 1956; Eerola, 2003) is supported by the results of this work. Facial
electromyography, heart rate and skin conductance were proved to be relevant signals
in the detection of both discrete and continuous representations of emotions (Bradley
and Lang, 2000; Klein, 2003; Khalfa et al., 2002). Klein (2003) found that corruga-
tor EMG is negatively correlated with pleasantness and skin conductance is positively
correlated with activation.

Speech is another relevant cue in the recognition of emotions. Vayrynen et al. used
statistical classification to recognize emotional states from speech corpus (Vayrynen
et al., 2003). They classified emotional speech stored in a database into four emotional
states: neutral, sad, angry and happy. Classifiers used 43 prosodic features extracted
from the speech corpus, e.g., F0 frequency, segment energy, voiced/unvoiced temporal
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and spectral derivatives.

8.4. Emotionally-Driven Musical Approaches

Scientific advances in Music Psychology (section 6) have been the key source of in-
spiration to four main approaches being used to tackle the scientific challenge of this
thesis. The first approach consists in composing/arranging music, e.g., by generating
music from scratch according to emotional cues (Sugimoto et al., 2008; Wassermann
et al., 2003). Current automatic music composition approaches are not flexible enough
to allow the adaptation of the output to different styles, which sets this approach out-
side our options. The second approach consists in selecting pre-composed music. It
requires the extraction of musical features – statistical and perceptual – which are sub-
sequently used to make recommendation/classification models (Baum, 2006; Trohidis
et al., 2008; Yang et al., 2008; Healey et al., 1998; Wu and Jeng, 2006). The third ap-
proach involves transforming/adapting pre-composed music - currently, this approach
works better at a MIDI representation level. This can be done through a knowledge-
based control of structural factors of pre-composed musical scores (Livingstone et al.,
2007; Wingstedt et al., 2005; Winter, 2005).

These two last approaches produce solutions with low quality when the emotional con-
tent of the source music is far from the required one. The sequential use of classi-
fication stage before the transformation overcomes the limitation of both approaches.
This drives us to the fourth approach that consists in combining some of the above-
mentioned alternatives (Chung and Vercoe, 2006). Chung and Vercoe, for example,
used mixed techniques, but this work is grounded on an approach that seems quite
ad-hoc and no technical details are available. In the remaining of this section we will
present an overview of works of each of the four approaches described above.

8.4.1. Music Composition/Arranging

Automatic music composition is a challenge for the scientific world today. The chal-
lenge of composition guided by emotional cues is even bigger. We present some stud-
ies on this area. The methods being used in music composition are various: genetic
algorithms (Birchfield, 2003), rule-based models (Wallis et al., 2011; Ka-Hing et al.,
2006; Robertson et al., 1998; Eladhari et al., 2006; Wassermann et al., 2003; Casella
and Paiva, 2001; Numao et al., 1997, 2002; Legaspi et al., 2007; Winter, 2005), n-
gram models, Hidden Markov Models and other statistical models (Monteith et al.,
2010, 2012). For instance, n-gram models that represent pitch intervals can generate
melodies and Hidden Markov Models can produce harmonies. The number of emo-
tions tackled in each work varies and the results are in overall satisfactory. Love, joy,
surprise, anger, sadness, serenity and fear are just some examples of emotions. The
areas of applications are also various, from which we highlight virtual environments
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(Robertson et al., 1998; Wassermann et al., 2003; Casella and Paiva, 2001) and video-
games (Eladhari et al., 2006).

Some works control the emotional content of composed music with psychophysiological
data. Heart rate (McCaig and Fels, 2002), facial expressions (Funk et al., 2005), gal-
vanic skin response, electromyography (Kim and André, 2004), muscle tension, breath-
ing, temperature and gestures Nakra (1999) are some examples. Several mappings
can be established to help the composition of music that expresses appropriate emo-
tions. McCaig and Fels mapped heart rate to musical parameters (tempo, timbre, pitch,
repetitiveness of musical structure) that reflect musical tension. Funk et al. mapped
musical features to specific zones of the face areas. Nakra mapped performers’ ges-
tures and breathing signals to real-time expressive effects by defining musical features
(beats, tempo, articulation, dynamics and note length) in a musical score.

User behaviors and context are another type of data which can guide the process of
music composition (Gaye et al., 2003). The system developed by Gaye et al. extracted
variables from the body and environment. Discrete factors (e.g., user action change)
and continuous factors (e.g., physiological state and continuous actions) were used to
change musical characteristics. Sound layers, temporal structure, timbre and envelope
were some of these characteristics. Discrete factors triggered short events (e.g., dou-
bling the tempo), continuous factors were used to define the timbre of the composition.

Aesthetics principles can also be the source of inspiration for music composition sys-
tems like the one proposed by Goga and Goga (2003). This system produced melodies
based on particular music structure patterns or musical rules. This work aimed to in-
duce feelings like restlessness, peace, consolation, innocence, delicacy, sadness, trust,
love, joviality and joy. For instance, love is characterized by this pattern: ”Gradually as-
cending movement followed by gradually descendant movement combined with jumps
of fifths and followed by the repetition of the same sound”; sadness is characterized
by ”Gradually descending movement followed by descending movement in jumps com-
bined with ascending movement in jumps (large values for the times of the notes)”.

8.4.2. Classification/Selection of Pre-composed Music

Music is said to be one of the languages of emotions (Pratt, 1948). This section focuses
on the classification of emotional content in music and on the emotionally-driven selec-
tion that uses the analysis and selection of specific features. A good overview about
existing research in music emotion recognition is (Kim et al., 2010). This task involves
disciplines like signal processing, machine learning, auditory perception, psychology
and music theory.

Classification of emotional sounds can be done through matching specific patterns of
energy dynamics (Moncrieff et al., 2001). Moncrieff et al. used four patterns of sound
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energy to induce four emotions during horror films: surprise or alarm; apprehension or
event emphasis; surprise followed by alarm; apprehension up to a climax. They anal-
ysed six dynamic features to classify sounds with certain patterns: step edge attack;
step edge decay; slope attack; slope decay; low sound energy; sustained energy.

Prominence, roughness, loudness, articulation, brightness, onset and tempo are some
features that can be used to study expressiveness in audio music (Leman et al., 2003).
Leman et al. mapped these features to a three dimension emotional space.

Emotions detection can be seen as a classification problem, therefore the selection of
the classifier model and the feature set are crucial to obtain good results (Carvalho and
Chao, 2005). Van de Laar (2006) made a comparison between six emotion detection
methods in music based on acoustical feature analysis (Table 8.2). He used four central
criteria in this comparison: precision, granularity, diversity and selection. The referred
methods consider eight fundamental features: timbral texture features, spectral flatness
measure, spectral crest factor, mel frequency cepstral coefficients, Daubechies wavelet
coefficient histogram, beat and tempo detection, genre information and lyrics.

Criteria
Carvalho
and Chao

Li and
Ogihara
(2003)

Li and
Ogihara
(2004)

Feng,
Zhuang
and Pan

Liu, Lu
and Zang

Yang and
Lee

Precision good moderate good excellent excellent excellent

Granularity bad excellent moderate bad bad good

Diversity moderate excellent moderate moderate moderate very bad

Selection bad bad bad bad excellent bad

Table 8.2.: Comparison of emotion detection methods (van de Laar, 2006)

We are now going to present details about several detection methods. Different types
of classifiers have been used: sequential stack classifier (Carvalho and Chao, 2005),
support vector machines (Li and Ogihara, 2003; Muyuan et al., 2004; Baum, 2006),
backpropagation neural network (Feng et al., 2003), gaussian mixture models (Liu
et al., 2003), psychological models (Yang and Lee, 2004), fuzzy approaches (Yang
et al., 2006), regression models (Yang et al., 2008), self-organizing maps, naive bayes
and random forests (Baum, 2006). The feature set for the classifier also varies: tim-
bral texture features (Carvalho and Chao, 2005; Li and Ogihara, 2003; Liu et al., 2003;
Yang and Lee, 2004; Yang et al., 2008; Trohidis et al., 2008), rhythmic content (Li and
Ogihara, 2003; Liu et al., 2003; Yang and Lee, 2004; Yang et al., 2008; Trohidis et al.,
2008), pitch content (Li and Ogihara, 2003; Yang et al., 2008), relative tempo, the mean
and standard deviation of average silence ratio (Feng et al., 2003), intensity, features
from MPEG-7 audio standard (Allamanche et al., 2001) and features using the Sony
Extractor Discovery System (Yang and Lee, 2004), statistical and perceptual (Muyuan
et al., 2004; Yang et al., 2008), frequency centroid, spectral dissonance (Liu et al., 2006;
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Yang et al., 2008), pure tonalness (Liu et al., 2006) and loudness (Yang et al., 2008).
Some of these features were extracted with the help of Psysound (Cabrera, 1999) and
Marsyas (Tzanetakis and Cook, 2000b). The number of emotions is also another pa-
rameter that varies across these works: two (Carvalho and Chao, 2005), four (Feng
et al., 2003), five (Carvalho and Chao, 2005), six (Muyuan et al., 2004) and thirteen (Li
and Ogihara, 2003). The number of songs also varies: 499 (Li and Ogihara, 2003), 593
(Trohidis et al., 2008), 1000 (Baum, 2006) and others not mentioned by the authors.

The sequential stack classifier used by Carvalho and Chao (2005) outperformed clas-
sifiers like decision trees, logistic regression and conditional random fields. Two-label
classification obtained a success of 86%, five-label classification achieved a success
of 36%. Li and Ogihara (2003) obtained an average precision of 0,32 and an average
recall of 0,54.

Another approach consists in extracting emotional expression from music (Wu and
Jeng, 2006). The method designed by Wu and Jeng has three steps: subject re-
sponses, data processing and segments extraction. The use of the results of this
method allows the association of emotional content to musical fragments, according to
features like pitch, tempo and mode. Similarly, Friberg et al. (2002) designed a model
to predict the expressive intention during music performance. Average and variability
values of sound level, tempo, articulation, attack velocity and spectral content were
extracted. Listening experiments served to build linear regression models to predict
intended emotion based on features.

There are also models to recommend music based on emotions (Kuo et al., 2005). The
model of Kuo et al., based on association discovery from film music, proposed promi-
nent musical features according to a queried emotion description. These features were
compared with features extracted from a music database (chord, rhythm and tempo).
Then, music was ranked and a music list was recommended. This system used MIDI
files and 15 groups of emotions (e.g., love, distress, sadness and pity).

Affective and psychophysiological data is very important to adapt music to our needs.
With this in mind, the following paragraphs describe some works that recognize this
data at some intervals to control the selection of music. Physiological data like Galvanic
Skin Response (GSR), skin temperature, heat flow, body temperature and heart rate is
used to guide the selection of music (Oliver and Flores-Mangas, 2006; Dornbush et al.,
2005; Wijnalda et al., 2005; Janssen et al., 2009). These emotion aware systems
automate the process of selecting music by learning the user’s preferences, emotions
and activity. Neural networks, regression and kernel density estimation are just some
of possible models that can be used in the learning process. These systems are used
to improve exercise performance by personalizing music to exercises.

Healey et al. (1998) developed an interface of a wearable computer that perceives and
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responds to the user’s affective state. It recognizes and responds to signals with emo-
tional information. They used an algorithm in music selection to change from current
affective state to the intended state. This algorithm compares GSR of the last 30 sec-
onds of previous song with the first 30 seconds of the current song. Current affective
state is predicted based on user preferences and physiological variables. These vari-
ables are measured based on electromyogram, photoplethysmograph (heart rate and
vasoconstriction) and galvanic skin response.

Vavrille (2006) developed an interactive web radio. In this system it is possible to select
music by mood (and genre) and also to see the relationship between music pieces.
Music classification by mood is based on a two Dimensional Mood Space (Thayer mood
model). Users can select and listen to music by using a mood matrix and then navigate
through artists that evoke similar moods.

Meyers (2007) developed a system to generate music playlists based on the emotion or
mood of the user. Chunks of texts were associated with a set of songs and ConceptNet
(Liu and Singh, 2004) was used to extract emotional content from these texts. This
extraction process was aided by All Music Guide13 mood classification, used to link
songs and artists to moods.

8.4.3. Transformation of Pre-composed Music

Music emotional content can be transformed in both audio and MIDI domains. The
following paragraphs present some works in these areas.

8.4.3.1. MIDI

Livingstone and Brown (2005a) established relations between music features and emo-
tions using results of previous work (Schubert, 1999; Gabrielsson and Lindstrom, 2001).
Both emotions and a set of music-emotion structural rules are represented in a two di-
mensional emotion space with an octal form (Figure 8.4.1). They designed a rule-based
architecture to affect the perceived emotions of music by modifying the musical struc-
ture (Livingstone and Brown, 2005b). They used a music performance engine (Living-
stone et al., 2005) to adapt the symbolic score’s reproduction to the audience emotions.
This engine is composed by three modules: the engine that contains the rule system
and emotive algorithms; the score (MIDI); and data of the audience and application.
Later, Livingstone et al. Livingstone et al. (2006, 2007) made a list of performative
and structural features and their emotional effect. Tempo, mode, loudness, articulation,
pitch and harmony are the structural parameters. Expressive contour, tempo variation,

13http://allmusic.com/
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tone attacks, stable note accent, phrase arch, pedal accent, originality, stochastic fluc-
tuations, chord asynchrony, melody accent, note accent and slurs are the performative
parameters.

Figure 8.4.1.: Livingstone’s space of emotions and space of music-emotion structural
rules (Livingstone and Brown, 2005a)

The MIDI-based software named REMUPP was designed to study aspects of musical
experience (Wingstedt et al., 2005). This system allows the real-time manipulation of
musical parameters like tonality, mode, tempo, harmonic and rhythmic complexity, reg-
ister, instrumentation and articulation. For instance, articulation is changed by altering
the length of notes and register is changed by altering the pitch of notes. This system
has a music player that receives music examples and musical parameters. Music ex-
amples are composed by a standard MIDI file (SMF) and a set of properties. Musical
parameters can be used to control the sequencer and synthesizers or to employ filters
and effects on MIDI stream. The music player loads the SMF into the sequencer. Musi-
cal parameters are both used to manipulate MIDI data and the way this data is rendered
by synthesizers. Figure 8.4.2 details aspects of the music player of this system.
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Figure 8.4.2.: Architecture of the REMUPP music player (Wingstedt et al., 2005)

Music can be generated based on examples of human performances (Arcos and de Man-
taras, 2000). The cited work combines Case-Based Reasoning (CBR) and fuzzy tech-
niques. Musical knowledge is stored in cases that represent the score (melody with
a sequence of notes and harmony with a sequence of chords), the musical analysis
of the score (a tree describing metrical, tensing and relaxing relations among notes)
and information about expressive performances of the score (affective expressivity of
sequences of notes). The system uses fuzzy techniques in the reuse step of CBR.

Winter (2005) created a system expanding on pDM (Friberg, 2006) which also ma-
nipulates harmonic features of the music. He built a real-time application to control
structural factors of a composition. This application is grounded on models of musical
communication of emotions. These models showed the emotional relevance of some
musical features (Figure 8.4.3). In this figure, we can see weights of emotional impor-
tance (between -1 and 1). Weights closer to -1 or 1 are the most important: mode
(-0.73) and tempo (0.55) stand out. These values were obtained through regression
analysis. Pre-composed music scores are manipulated through the application of rules
that control values of features: mode, instrumentation, rhythm and harmony. Winter
uses an emotional control space (valence and arousal) to define these values. A MIDI
file is produced to give emotional feedback to the user.
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Figure 8.4.3.: Expanded model of musical communication (Juslin and Laukka, 2004)

8.4.3.2. Audio

Musical effects can be used to communicate affects on ambient music Barrington et al.
(2006). In this work, 14 musical effects were tested: no effect; low-pass filter; skip
backwards by two beats; skip forward by two beats; high-pass filter; repeat eight beat
passage delayed eight beats, with reverb; filter sweep from 100 to 10000 Hz, twelve
beat period; play backwards for 1 beat, then play forward; dub with low-pass filter;
dub with high-pass filter; modulate tempo linearly +- 10%, period = one beat; add
flange effect intermittently on the beat; modulate amplitude linearly +- 100%, twelve
beat period; flange effect intermittently on the beat with high-pass filter. Ten subjects
evaluated 45 music samples, lasting around 20 seconds, using three criteria: activity
level (relaxed, normal or agitated), awareness (no effect, just noticeable, detectable,
obvious or dominant) and enjoyment (very pleasant, pleasant, neutral, unpleasant or
very unpleasant). Experiments suggested that relaxed states can be induced with the
application of the low-pass filter, the dub effect plus low pass filter or filter sweep. On
the other hand, agitated states can be induced by using high-pass filtered dub and
rewind effects.

Expressive audio synthesis is used to change a set of musical parameters to synthe-
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size music with different affective content DInca and Mion (2006). This work had the
goal to derive mappings between an expressive control space and parameters of a
rendering model, through a synthesis by analysis framework. The analysis stage con-
sisted in establishing associations between affective and sensorial categories, and in
finding relevant features from music performances. The synthesis stage consisted in
the development of an expressive tone generator. Tempo parameters (attack, duration,
notes per second), intensity parameters (peak sound level, sound level range) and per-
ception parameters (roughness and centroid) were manipulated. Tempo and intensity
parameters were controlled with ADSR envelope values; perception parameters were
controlled by changing frequency and amplitude of harmonics. Listening tests carried
out in this work, by using real and synthetic sounds, confirmed the possibility to com-
municate different intentions with simple sounds.

8.4.4. Hybrid Approaches

Chung and Vercoe (2006) developed a system to generate music in real-time based
on intended listener’s affective cues. This system correlates musical parameters with
changes in affective state. Personal expression is analysed while listening to music,
like head nodding, hand tapping, foot tapping, hand clapping, mock performing, mock
conducting, dancing and other gestures. Both affective states and musical parameters
are represented in a two dimensional emotion space. Music is composed using a multi-
track audio environment and is listened to by eight subjects. Music files are generated
in real-time by music composition/production, segmentation and re-assembly of music.
The analysis of listeners’ affective state is based on physiological data, physical data
and a questionnaire. Listener data is used to develop a probabilistic state transition
model to infer the probability of changing from one affective state to another. This
work supports the ideas that: engaged and annoyed listeners tend to stay in the same
affective state, soothed listeners tend to stay soothed but can become easily bored
and/or engaged, and annoyed listeners tend to become engaged if induced to boredom.
Foot-tapping is a useful indicator of subjects’ valence.

8.5. Summary

This chapter reviewed some theories (Ortony and Turner, 1990; Scherer, 2000) and
representations (Russell, 1989) for emotions. We presented techniques used to recog-
nize emotions (Etzel, 2006; Vyzas, 1999) and studied four principal approaches used
in generation of music with appropriate emotional content. These approaches consist
in the transformation/adaptation of pre-composed music (Livingstone, 2008; Wingstedt
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et al., 2005), music composition/arranging (Winter, 2005; Kim and André, 2004) and
music selection/classification (Healey et al., 1998; Trohidis et al., 2008). There are also
hybrid approaches (Chung and Vercoe, 2006).
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9. Reflexion on the State Of The Art

As we have discussed in section 8.4, there are four approaches to solve the problem
addressed by this thesis. Automatic composition mechanisms are generally conceived
for a bounded range of musical styles, and sometimes do not tackle the whole com-
position process (e.g., only deal with melody or with rhythm). We would like to have
the flexibility of producing complete music pieces in a wide range of styles, so this ap-
proach is not very suitable. Studies grounded on classification of pre-composed music
and subsequent selection are scalable, but the quality of their answers is very depen-
dent of the original music base. This one is, actually, a finite database, and thus cannot
cover entirely the whole emotional spectrum. Therefore, one has to expect to select
pieces that don’t match exactly the intended emotion (see Figure 9.0.1). The approach
based on transformation has the disadvantage of producing outputs with low quality
when the original music has characteristics very different from the desired ones. None
of these three approaches, alone, gives an entirely satisfactory response to our require-
ments. The fourth approach consists in the hybrid combination of the former ones in
order to overcome some of their weaknesses.

For the purpose of our work, we found especially promising a particular hybrid approach
that consists in combining classification/selection with transformation. In fact, the trans-
formation can improve the classification/selection result when there is not a solution in
the music base close to the emotional specification (Figure 9.0.2). On the other hand,
as the selection tends to produce an output with characteristics close to the desired
ones, the transformation assumes less risks of degrading music quality, because the
adjustments needed to get the music characteristics to fit the emotional specification
are limited.

The solution proposed in this thesis has the advantage of being able to produce outputs
of acceptable quality quite independently of the music base: it will be able to find the
best possible match and then transform it in order to increase the match even further.
It is also quite flexible: the music base can be completely redefined to adapt to the
specific needs of a given use scenario. The system uses mechanisms (modules) that
are independent from the music it is working with, i.e., the musical output corresponds
to the emotional specification independently of the original music base. The system is
also reliable, thanks to the experimental calibration using different subjects (section 8.3
is particularly relevant for this task), as described in Chapter 15.

56



Grounded on the state of the art, we found other opportunities to contribute to its ad-
vance: to adopt both the discrete and dimensional representation of emotions; sys-
tematize the relations between emotions and musical features in the knowledge base
(subsection 11.6.2) by studying the musical features with an emotional impact (as we
have seen in chapter 6); develop modules to control the emotional content of music;
use techniques of human emotional recognition for validation and calibration of the sys-
tem. This thesis explored these directions of research to achieve its goal. It also tested
the usability of a version of EDME system ready to be used in real-time and with an
interface that can be used in application domains like entertainment and healthcare.

Figure 9.0.1.: Error resulting from Selection when no music exists with an exact match

Figure 9.0.2.: The effect of Transformation after Selection on the error
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Part III.

Emotion-Driven Music Engine
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10. Approach

In the last part, we found some approaches that focus on musical composition (Legaspi
et al., 2007; Kim and André, 2004), others in musical selection/classification (Yang
et al., 2008; Kuo et al., 2005) and others in transformation of pre-composed music
(Winter, 2005; Wingstedt et al., 2005; Livingstone, 2008; Friberg et al., 2006). Those
based on a combination of these approaches are rare (Chung and Vercoe, 2006). We
intend to face the problem of controlling the emotional content of produced music by
using a combination of these approaches that uses four modules: segmentation, clas-
sification, selection and transformation. We propose to take the best from the control
opportunities in each module to achieve better results. Segmentation module is meant
to obtain musical segments that can express a single emotion. We analysed the influ-
ence of the variation of rhythmic, melodic, harmonic, instrumental and dynamic features
to obtain favorable points of segmentation. Classification module tags each segment
with emotional values (Oliveira and Cardoso, 2008c). Selection module uses the eu-
clidean distance metric to calculate the emotional distance between the music and the
desired emotion. Transformation module is intended to bring the emotional content of
the selected music closer to the desired emotional expression.
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11. Architecture

Our computational system, called Emotion-Driven Music Engine (EDME), produces
music expressing a desired emotion (Oliveira and Cardoso, 2010). EDME consists of
four main modules (segmentation, classification, selection and transformation) used to
control the emotional content of music and three auxiliary modules (feature extraction,
sequencing and synthesis) responsible for doing work necessary for the main mod-
ules. Some of the modules recur to four auxiliary structures (music base, knowledge
base, pattern base and library of sounds) to store content. The system interacts with
the listener through a user interface and interacts with the administrator through an
administrator interface.

The system works in two stages, one offline and another online (Lopez et al., 2010). In
the offline stage (Figure 11.0.1), the segmentation module uses pre-composed music,
in order to generate musical segments that express only one emotion. These segments
are given to the module of features extraction to obtain values of musical features that
will be used by the classification module. This last module uses the knowledge base to
label the segments with emotional values of valence and arousal. Segments emotion-
ally classified are stored in the music base. The administrator interface of the system
allows the administrator to segment and classify the segments.

Figure 11.0.1.: EDME architecture: offline stage. Modules of this stage are marked in
bold, modules of online stage are greyed out.

In the online stage (Figure 11.0.2), the selection module calculates the distance be-
tween the desired emotion and the emotional values of each segment. The segments
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with the minimum distances are selected from the music base. The transformation
module brings the emotional content of the selected segments closer to the desired
emotion by changing features emotionally relevant. The sequencer module packs the
transformed segments using musical patterns (available in the pattern base) in order
to form songs. The synthesis module selects sounds (from the library of sounds) to
convert the MIDI output into audio. The user interface of the system allows the listener
to define the desired emotion.

Figure 11.0.2.: EDME architecture: online stage. Modules of this stage are marked in
bold, modules of offline stage are greyed out.

11.1. Segmentation

The system is using pre-composed music that consists of standard MIDI files compiled
from websites, although they could come from other sources, or possibly composed on
purpose. These files are polyphonic and can be of any musical style. The segmenta-
tion module uses each of these files to produce segments as much as possible with a
musical sense of its own and expressing a single emotion (Figure 11.1.1). By obtaining
smaller music pieces, we decrease the probability of finding more than one emotion in
the segment. We made some a subjective perceptual assessment of the three segmen-
tation algorithms available on the MIDI Toolbox (Eerola and Toiviainen, 2004). Two of
the algorithms are rule-based, the other one is statistical (or memory-based). The sta-
tistical algorithm uses probabilities derived from the analysis of melodies (Bod, 2002).
The rule-based algorithm of Tenney and Polansky (1980) finds locations where there
are large pitch intervals and large inter-onset-intervals. The other rule-based algorithm,
which is called the Local Boundary Detection Model (Cambouropoulos, 1997), finds
large variations of pitch, rhythm and silence. Both rule-based algorithms are grounded
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on gestalt principles. The Local Boundary Detection Model (LBDM) was the algorithm
that reavealed the best results on this subjective assessment.

The segmentation module works in two stages. In the first stage it attributes weights
to each note onset by using an adaptation of LBDM. These weights are attributed ac-
cording to the musical importance, degree of proximity and degree of variation of five
features: pitch, rhythm, silence, loudness and instrumentation. The degree of proximity
and the degree of variation are calculated according to the LBDM; musical importance
is a parameter that was defined after making some perception tests aiming to find the
best points of segmentation.

In the second stage, the module searches for plausible points of segmentation accord-
ing to the weights attributed at each note onset. There is a threshold defined to reduce
the weights’ search space: note onsets with weights below this threshold are not con-
sidered. The length of obtained segments is defined by a minimum (MIN) and maximum
(MAX) number of bars. The module searches for a plausible point of segmentation that
corresponds to the maximum weight obtained between the first bar of music file + MIN
and the first bar + MAX. This process is then iterated, starting from the bar of the last
point of segmentation, till the end of the file.

Figure 11.1.1.: Input and output to the segmentation module
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11.2. Classification

The classification module uses the knowledge base (subsection 11.6.2) to determine
the emotional content of the segments coming from the module of feature extraction
(subsection 11.5.1). This last module also gives the values of the features obtained
for each emotional dimension. The knowledge base is used to compute the following
weighed sums:

Valence =
n

Â
i=0

valenceFeatureWeight

i

⇤ valenceFeatureValue

i

Arousal =
n

Â
i=0

arousalFeatureWeight

i

⇤arousalFeatureValue

i

The computed values are stored as tags with the segments in the music base (sub-
section 11.6.1). This module is using the thirteen features identified in chapter 13,
i.e., average note duration, average time between attacks, importance of bass register,
tempo, note density, percussion prevalence, repeated notes, variation of dynamics, key
mode, spectral loudness, spectral dissonance (Sethares), spectral sharpness (Ambres)
and spectral similarity.

11.3. Selection

The selection module obtains a list of segments from the music base (subsection
11.6.1) that are closer to the desired emotion. It calculates the Euclidean distance14

between the desired emotion and the emotional content of each segment. The results
are used to put the segments in a list ordered by the degree of similarity to the desired
emotion. This module retrieves the segments that are on the top of the list. The number
of segments that are retrieved is customizable.

11.4. Transformation

The transformation module was designed to use the two regression models of the
knowledge base (subsection 11.6.2) in order to approximate the emotional content of
selected segments to the desired emotion. This module should calculate two Euclidean

14http://en.wikipedia.org/wiki/Euclidean_distance
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distances15: the distance between the valence of each selected segment and the va-
lence of the desired emotion; and the distance between the arousal of each selected
segment and the arousal of the desired emotion. Both distances should be minimized
after transforming musical features by a specific quantity. This quantity depends on the
quotient between each distance and the weight of the feature defined in the regression
models (Weisberg, 2005) of each emotional dimension.

The features to consider in this module should be obviously the same that we used in
the classification, i.e., those found to be the most relevant according to the experiments
conducted (chapter 12). However, because we developed the transformation module in
a stage (section 12.7) before the systematization of the knowledge base (chapter 13),
it does not have algorithms that transform those thirteen features used in the classifi-
cation module. It has only five algorithms that transform the following features: tempo,
pitch register, musical scale, instruments and articulation. We decided to use these
features, because of its importance in the literature and in the three experiments. We
present details of each algorithm along the section 12.8. The transformation module to
be implemented later on should consider the features involved in the classification.

Let us give an example to see how the transformation should work. Suppose we
want a desired emotion of Valence,Arousal = (0.95,0.4) with Valence,Arousal 2 [�1,1]
and the music with the closest emotional content that the system can retrieve has
Valence,Arousal = (0.5,0.4). The dimension of arousal does not need to be changed;
however, the system needs to change the dimension of valence from 0.5 to 0.95. If the
regression model of valence has an equation of 0.005*tempo+0.005*pitch, the system
has to transform the tempo and pitch. Supposing that the retrieved music has a tempo
50 and pitch of 50, the desired valence can be achieved by transforming tempo to 120
and pitch to 70, in order to meet the desired emotion.

11.5. Auxiliary Modules

Auxiliary modules are important to a good functioning of the system. Next subsections
present the modules of feature extraction, sequencing and synthesis in detail. Auxiliary
modules differ from auxiliary structures (section 11.6) since modules process data and
structures only store data.

11.5.1. Feature Extraction

The feature extraction module labels each segment with emotionally relevant features
(Figure 11.5.1). This module uses toolboxes that obtain features known to be rele-
15http://en.wikipedia.org/wiki/Euclidean_distance
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vant to our system according to empirical results obtained both from the literature (e.g.,
Gabrielsson and Lindstrom, 2001; Livingstone et al., 2007) and from our experiments
(see next chapter). We were focused only on global features, local features were not
considered. The JSymbolic (McKay and Fujinaga, 2006), MIDI Toolbox (Eerola and
Toiviainen, 2004) and JMusic (Sorensen and Brown, 2000) extract MIDI features; MIR
Toolbox (Lartillot and Toiviainen, 2007) and Psysound Toolbox (Cabrera, 1999) extract
audio features. We developed our own algorithms to extract additional MIDI and au-
dio features (e.g., average loudness and spectral similarity). Average loudness corre-
sponds to the average velocity of all the MIDI notes. Spectral similarity calculates a
similarity matrix with the help of MIR Toolbox in order to find the difference between
consecutive frames of the frequency spectrum. It reflects the smoothness of the music
(the changes of features along the music). Both have a relationship with the arousal
of music (Schubert, 1999). It is possible to extract 482 features which belong to six
categories: instrumentation, dynamics, rhythm, melody, texture and harmony.

Figure 11.5.1.: Input and output of the module of feature extraction

11.5.2. Sequencing

Music sequencing module has the objective to obtain a smooth sequence of segments
with similar emotional content. The sequencing module resorts to the pattern base
(subsection 11.6.3) to pack the segments to form a sequence of songs. Segments are
arranged in order to match the tempo and pitch of the selected pattern. The tempo of
the segments is normalized to their average tempo. The pitch is raised or lowered, by
comparing the key of the current pattern with the key of the non-transformed segments.
We also applied algorithms of fade in and fade out to smooth the transitions between
segments, respectively, by gradually increasing the volume of the starting segment and
decreasing the volume of the finishing segment.

We present an example (Figure 11.5.2) where the user wants to hear music expressing
a delighted emotion, represented as Valence,Arousal = (0.8,0.4) with Valence,Arousal 2
[�1,1]. The system selects three MIDI segments (the ones closer to the desired emo-
tion) to match the current -ABCA- pattern. The first segment, with C as the tonic and a
tempo of 100 bpm, acts as the root of the pattern. The second segment needs trans-
formations to match the tempo (+10 bpm) and the pitch (the IV-subdominant of C is
F, so -5 semitones gets Bь to F). The third segment needs transformations to match
the tempo (-20 bpm) and the pitch (the V-dominant of C is G, so +3 semitones gets E
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to G). Finally the first segment is repeated to end the pattern. The segments are se-
quenced in order to be perceived as a single part with distinct harmonic relations and
equal tempo.

Figure 11.5.2.: Sequencing example

11.5.3. Synthesis

The synthesis module uses the library of sounds (subsection 11.6.4) to analyse and
control the emotional content of the instruments being used (Oliveira and Cardoso,
2008b). This module calculates the emotional content of the samples of each instru-
ment according to the spectral dissonance (Figure 11.5.3) and spectral sharpness (Fig-
ure 11.5.4). The module is using Psysound toolbox (Cabrera, 1999) to extract these
features. Dissonance is used to label arousal and sharpness is used to label valence
(Oliveira and Cardoso, 2008b). The emotional content drives the selection of sounds
from the library in order to produce an audio output.

11.6. Auxiliary Structures

We defined four structures with the objective of storing content useful for the modules.
The music base stores musical material; the knowledge base stores regression mod-
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Figure 11.5.3.: Arousal of the instruments

els; the pattern base stores musical patterns; and the library of sounds stores sound
material. Next subsections present each structure in detail.

11.6.1. Music Base

The music base stores musical content: standard MIDI files and the corresponding
musical features. The system uses music obtained in websites; however, it can be fed
by music composed on purpose or obtained from other sources.

Standard MIDI files store structural and performative aspects of music in a binary for-
mat. These musical aspects are stored with the help of very simple music information:
note onset and note offset, pitch and velocity (loudness). We established quality con-
straints through the analysis of several parameters: tempo variation, the number of
tracks, notes falling on the beats, orchestration, presence of pitch bending, presence of
midi control messages. We are using professional MIDI files obtained from websites 16

17 18 19.

11.6.2. Knowledge Base

The knowledge base stores two regression models (Weisberg, 2005) that establish
16www.classicalarchives.com
17midiworld.com
18kssdsd.com
19http://www.midi-classics.com/tune1000.htm
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Figure 11.5.4.: Valence of the instruments

relationships between the emotional and musical domains. The knowledge base is us-
ing one regression model for each dimension of the emotional domain: valence and
arousal. The musical domain is divided into several dimensions, determined by the
number of musical features being used. The regression models provide weighted re-
lations between the musical features and the emotional dimension in question. They
were built by applying feature selection and regression algorithms (Witten et al., 1999;
Weisberg, 2005; Guyon and Elisseeff, 2003) on experimental data obtained with ques-
tionnaires (see chapter 12 for more details). The regression models must be indepen-
dent from social variables like the age of the listeners and musical variables like the
musical style.

At the end of the first study of the validation/calibration (subsection 15.1.1), one regres-
sion model was using seven features to relate valence and the musical domain: av-
erage time between attacks, tempo, repeated notes, variation of dynamics, key mode,
spectral dissonance and spectral sharpness. The other regression model was using six
features to relate arousal and the musical domain: average note duration, importance
of bass register, tempo, note density, spectral loudness and spectral dissonance.

11.6.3. Pattern Base

The pattern base structures musical sequences with the help of musical patterns. Each
pattern defines a song structure and the harmonic relations between the segments of
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the structure (e.g., popular song patterns like AABA).

11.6.4. Library of Sounds

The library of sounds allows the customization of sounds. The library is composed by
samples for each instrument of the General MIDI 1 standard - 128 instruments. These
samples were obtained from Project SAM Symphobia20, Garritan Personal Orchestra21

and a personal library of Soundfont sounds22.

11.7. Administrator Interface

The system can be controlled offline through an administrator interface (Figure 11.7.1).
The administrator can segment, extract features and classify the segments. We can
see the values of some of the extracted features (e.g., average note duration, aver-
age time between attacks, tempo, note density, percussion prevalence and key mode),
as well as the values of valence and arousal. This interface also allows to carry out
some tests of transformation, sequencing and synthesis, but it was mainly developed
for segmentation, extraction of features and classification.

11.8. User Interface

The system can be controlled in real-time through a user interface (Figure 11.8.1) or be
driven by an external system providing an emotional specification (Lopez et al., 2010).
The input specifies values of valence and arousal. While playing, EDME responds to
input changes by quickly adapting the music to a new user-defined emotion.

The user interface serves the purpose of letting the user choose in different ways the
desired emotion. The user can type the values of valence and arousal or choose from
a list of discrete emotions. It is possible to load several lists of words denoting emotions
to fit different uses of the system. For example, Ekman (1999) has a list of generally
accepted basic emotions. Russell (1989) and Mehrabian (1980) both have lists which
map specific emotions to dimensional values (using 2 or 3 dimensions). Juslin and
Laukka (2004) propose a specific list for emotions expressed by music.

20 http://www.projectsam.com/Products/Symphobia/

21http://www.garritan.com/GPO-features.html
22 http://www.connect.creativelabs.com/developer/SoundFont/Forms/ AllItems.aspx
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Figure 11.7.1.: Administrator interface of EDME

Another way to choose the emotional state of music is through a graphic representation
of the valence-arousal emotional space, based on FeelTrace (Cowie et al., 2000): a
circular space with valence dimension in the horizontal axis and the arousal dimension
in the vertical axis.
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Figure 11.8.1.: User interface of EDME
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12. Experiments

The EDME system is composed by four main modules: segmentation, classification,
selection and transformation. The segmentation module was tested as was described
in section 11.1. Roughly speaking, the selection module has only to calculate Euclidean
distances. Because this distance is commonly used, we decided to not waste time in
testing other distance metrics, but now come the two principal modules of the system:
the classification and the transformation. Both modules are dependent on the auxiliary
structure that is the knowledge base. The success of these modules depends on the
quality of the knowledge base, more properly in its effectiveness on relating the musical
and emotional domains. But we can even highlight the degree of importance of the
classification module over the transformation module, and say that this module is the
heart of the system. This is particularly true, because it is in the classification module
that EDME establishes a bridge between the emotional and the musical dimensions.
Therefore, more attention was devoted in this section (and in the experiments) to this
module. Further emphasis was put on the identification of the most relevant features to
be used by the knowledge base that supports both modules.

12.1. Stages of the experiments

The classification and transformation modules and the knowledge base were refined in
three experiments. But before we made the experiments we had an initial phase that
consisted in building manually a first version of the knowledge base (Oliveira and Car-
doso, 2007) by considering empirical data collected from works of Music Psychology
(section 12.3). Figure 12.1.1 presents an overview of the different stages of the initial
phase and of the experiments described in this chapter. We carried out three experi-
ments (Oliveira and Cardoso, 2008d,c,b, 2009) conducted via Web to build regression
models and to successively refine their set of features and corresponding weights (sec-
tions 12.4, 12.6 and 12.7). It is worth noting that the focus of these experiments was
in the identification of a small group of features emotionally relevant. We left to the
calibration/validation (chapter 15) the identification of the best weights for these fea-
tures. It is also worth to mention that we were more concerned in finding the set of
features, instead of finding the best type of classifier. This approach was followed in
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other studies (McKinney and Breebaart, 2003), as it seems that in some cases the type
of classifier does not influence the classification accuracy, but what seems to influence
this accuracy is the feature set being used. This is especially true when the number of
features is high as in our case.

Figure 12.1.1.: Stages of the experiments

In the initial phase we built a first version of a knowledge base by selecting a set of
features manually according to what we learned from the literature about their relative
importance to emotional expression. We also defined tentative weights for the fea-
tures in accordance with the literature. Now, we are going to briefly explain the most
important steps of each experiment (Figure 12.1.1). As mentioned in section 11.1,
pre-composed music consists of standard MIDI files compiled from websites. Each ex-
periment started with the segmentation of the pre-composed music to obtain segments
that might express only one kind of emotion. From the large group of obtained seg-
ments we selected those that best cover all the bi-dimensional emotional space. This
was done by taking into account the classification results obtained with the knowledge
base(s) built in the previous experiment(s) (or in the initial phase, in the case of the
first experiment). Then, feature extraction algorithms of third party software (McKay
and Fujinaga, 2006; Eerola and Toiviainen, 2004; Sorensen and Brown, 2000; Lartillot
and Toiviainen, 2007; Cabrera, 1999) were applied to label the segments with music
features. Each segment was then made available in web-based questionnaires232425

(Figure 12.1.2). Each questionnaire was divided into three parts. The first part con-
23http://student.dei.uc.pt/%7Eapsimoes/PhD/Music/icmc08/index.html
24http://student.dei.uc.pt/%7Eapsimoes/PhD/Music/smc08/index.html
25http://student.dei.uc.pt/~apsimoes/PhD/Music/smc09/
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sisted in a brief introduction of the work, followed by a description of the content of the
questionnaire. It also gives a brief description of the two emotional dimensions to be
classified: valence/satisfaction and arousal/activation. The second part consisted of
the musical segments and the emotional labels. The third part consisted in personal
information as it is the age and gender. So, each segment was classified by human
subjects according to two emotional dimensions. Values in the interval [0; 10] were
used by the listeners to classify each dimension. Answers from listeners distant more
than the mean ± 2*standard deviation were considered as outliers and consequently
discarded. The remaining answers were used as emotional labels for the music seg-
ments. We obtained, therefore, music features and emotional values for each music
segment.

Figure 12.1.2.: Web-based questionnaire for the experiments

The process proceeded in three sequential steps: feature ranking, feature selection
and classification. The first step consisted in applying feature ranking to obtain a first
group of features that were individually the ones emotionally more relevant. Each fea-
ture was ranked individually using the correlation coefficients obtained separately for
arousal and valence. The best features in each emotional dimension were the ones
with the highest positive/negative coefficients26. The second step consisted in applying

26In the case of the first experiment, with the highest importance according to the literature review (See
Figure 12.3.1 of section 12.3)
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feature selection methods to obtain, for each dimension, a smaller group of features
that collectively best discriminate the emotional content of music. In general, we ap-
plied the best first search method (Witten et al., 1999) on the group of features obtained
from the first step. To a better understanding of the relative importance of the categories
of the features we decided to group them during the first and second experiment into
six categories: instrumental, textural, rhythmic, dynamics, melodic and harmonic. The
third step consisted in evaluating the classification performance using this last group of
features by applying n-fold cross-validation. As a result, we obtained weights for each
feature that contributed to the best performance. We applied 10-fold cross-validation
with the best group of features to obtain the classification results, i.e., the correlation
coefficients (CC), mean absolute errors (MAE), root mean square errors (RMSE) and
the weights of the features. N-fold cross-validation process was made with the help of
these measures which were given by the classification models used with WEKA (Witten
et al., 1999; Witten and Frank, 2005). Every time we use correlation coefficient (CC)
we are referring to the Pearson product-moment correlation coefficient. It is a measure
of the linear dependence between two variables X and Y, which gives values between
+1 and -1 inclusive. The closer the value is to 1 or -1 the higher is the strength of the
dependence between the variables X and Y. The equation for CC is presented:
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The root-mean-square error (RMSE) is used to measure the difference between values
predicted by a model and the obtained results. It corresponds to the square root of
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12.2. Overview of the experiments

12.2.1. First experiment

Most of the time dedicated to the three experiments had the objective of working to-
wards automatic bi-dimensional classification of MIDI music by emotional content. The
first experiment (entitled ”Preliminary evaluation of the classification”) was totally com-
mitted to this purpose. It was the first step to accomplish this objective. In this ex-
periment we obtained the first emotionally-relevant set of features (after proceeding to
feature ranking and feature selection), and with this set of features we obtained the first
results of classification.

In the beginning of the first experiment, we performed ad-hoc comparisons between a
small group of classifiers by using the experimental data (Oliveira and Cardoso, 2008d)
and verified that Support Vector Machine regression (Witten et al., 1999) obtained the
best results, which took us to use this classifier to calculate all the classification results
presented in this chapter.

12.2.2. Second experiment

The second experiment was divided into two parts with different objectives. The first
part of the second experiment (entitled ”Extended evaluation of the classification mod-
ule”) had the same objective of the first one and consisted solely in extending the first
experiment by increasing the number of music pieces, the number of extracted fea-
tures and the number of listeners that answered to the web-based questionnaire. More
details about it are left to its respective section.

The second part of the second experiment (entitled ”Analysis of audio features”) in-
troduced a novelty that consisted in analysing audio features. Till then, we had only
analysed MIDI features... The main reason why we went from the MIDI to audio do-
main was because the synthesis module works with the audio domain. It is in this
module were we select audio samples for each of the notes of the MIDI file. Knowing
the importance of the timbre of the instruments in the emotional domain, we intended
to identify audio features emotionally-relevant that could lead to the selection of au-
dio samples guided by the emotional relevance of their features (spectral dissonance,
spectral sharpness, etc.).

12.2.3. Third experiment

The third experiment was also divided into three parts with different objectives. The first
part of this experiment (entitled ”Improvement of the classification module”) was made
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with the objective of having more data that could help us in finding the (MIDI and audio)
features emotionally more relevant.

The second part of the third experiment (entitled ”Evaluation of the transformation mod-
ule”) was developed with the objective of verifying the existent correlation between the
variation of five features emotionally-relevant features: tempo, pitch register, musical
scales, instruments and articulation.

We prepared the third part of the third experiment (entitled ”Melodic analysis”) in order
to verify the importance of features of the melody in the discrimination of the emotions.
By reducing the amount of data being analysed, and focusing only on the melody, we
were expecting to find features with a value of correlation higher than those values of
correlation obtained until then.

12.3. Initial Phase - Manually Built Knowledge Base

The contents of this initial phase were published in the proceedings of the 2007 Affec-
tive and Intelligent Interaction conference (Oliveira and Cardoso, 2007).

The first version of the knowledge base was built solely with the help of the theories,
algorithms, models, frameworks and empirical results found on works of Music Psy-
chology (section 6) (Oliveira and Cardoso, 2007). The objective was to have some
rough way of classifying MIDI segments in order to select from a large set of segments
those that could cover reasonably the classification space, to be used in further ex-
periments. The features were selected manually, according to what we learned from
the literature about their relative importance to emotional expression. We also defined
weights for the features in accordance with the literature. Then, we looked for existing
software that might extract those features. We could find extractors (McKay and Fuji-
naga, 2006; Eerola and Toiviainen, 2004; Sorensen and Brown, 2000; Cabrera, 1999;
Lartillot and Toiviainen, 2007) for most of the relevant ones (See Figure 12.3.1). A
positive or negative tentative weight was defined according to the positive or negative
effect and degree of influence of each of the features in each of the dimensions. Here
is an example: consider the weight x in ¬ : x 2 [�1,1]. We know that pitch register has
a small direct relationship with the valence of music, so a weight of 0.2 is given; and
tempo has a great direct relationship with the arousal of music, so a weight of 1.0 is
given.
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Figure 12.3.1.: Features of happy, sad, activating and relaxing music

12.4. First Experiment - Preliminary Evaluation of the
Classification Module

The contents of this experiment were published in the proceedings of the 2008 Interna-
tional Computer Music Conference (Oliveira and Cardoso, 2008d).
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Features per Category
Instrumental Textural

Acoustic Guitar Fraction
Brass Fraction

Electric Guitar Fraction
Electric Instrument Fraction

Number of Pitched Instruments
Number of Unpitched Instruments

Orchestral Strings Fraction
Percussion Prevalence

Saxophone Fraction
String Ensemble Fraction
String Keyboard Fraction

Var. of Note Prev. of Pitched Instruments
Var. Note Prev. of Unpitched Instruments

Violin Fraction
Woodwinds Fraction
Slap Bass Fraction

Muted Guitar Fraction
Harpsichord Fraction

Average Number of Independent Voices
Importance of Loudest Voice

Maximum Number of Independent Voices
Melodic Intervals in Lowest Line

Range of Highest Line
Relative Note Density of Highest Line

Relative Range of Loudest Voice
Var. of Number of Independent Voices

Voice Equality - Dynamics
Voice Equality - Melodic Leaps
Voice Equality - Note Duration

Voice Equality - Number of Notes
Voice Equality - Range

Voice Separation

Rhythmic Pitch
Average Note Duration

Average Time Between Attacks
Avg. Time Between Attacks For Each Voice

Avg. Var. Time Bet. Attacks Each Voice
Changes of Meter

Comb. Strength Two Strong. Rhyth. Pulses
Compound Or Simple Meter

Harmonicity Two Strong. Rhythmic Pulses
Initial Tempo

Maximum Note Duration
Minimum Note Duration

Note Density
Number of Moderate Pulses

Number of Relatively Strong Pulses
Number of Strong Pulses

Polyrhythms
Quintuple Meter

Rhythmic Looseness
Rhythmic Variability

Second Strongest Rhythmic Pulse
Staccato Incidence

Strength Second Strongest Rhythmic Pulse
Strength of Strongest Rhythmic Pulse

Strength Ratio Two Strong. Rhyth. Pulses
Strongest Rhythmic Pulse

Triple Meter
Variability of Note Duration

Variability of Time Between Attacks

Average Range of Glissandos
Dominant Spread

Glissando Prevalence
Importance of Bass Register
Importance of High Register

Importance of Middle Register
Interval Between Strongest Pitch Classes

Interval Between Strongest Pitches
Most Common Pitch Class

Most Common Pitch Class Prevalence
Most Common Pitch

Most Common Pitch Prevalence
Number of Common Pitches

Pitch Class Variety
Pitch Variety

Primary Register
Quality
Range

Relative Strength of Top Pitch Classes
Relative Strength of Top Pitches

Strong Tonal Centres
Vibrato Prevalence

Melodic Dynamics
Amount of Arpeggiation
Average Melodic Interval

Chromatic Motion
Direction of Motion

Distance Bet. Common Melodic Intervals
Duration of Melodic Arcs

Melodic Fifths
Melodic Octaves
Melodic Thirds

Melodic Tritones
Most Common Melodic Interval

Most Common Melodic Interval Prevalence
Number of Common Melodic Intervals

Relative Strength Most Common Intervals
Repeated Notes

Size of Melodic Arcs
Stepwise Motion

Average Note To Note Dynamics Change
Overall Dynamic Range
Variation of Dynamics

Variation of Dynamics In Each Voice

Table 12.1.: Features extracted with JSymbolic (McKay and Fujinaga, 2006) that were
analysed in the first experiment
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12.4.1. Objective

After building a first version of the knowledge base grounded solely on literature of Mu-
sic Psychology we set the objective of making this knowledge base in an automatic way
without worrying about defining manually what would be the right features and their re-
spective weights. This step from the manual to the automatic building of the knowledge
base gave us much more confidence on its reliability. So, the first experiment was the
first step towards automatic bi-dimensional classification of MIDI music by emotional
content.

We tested the hypothesis that there is only a small group of features emotionally-
relevant from a larger group of various features. We worked to obtain the first two
sets of features emotionally relevant to valence and arousal. We intended to identify
the emotional relevance of the 2 harmonic features (key mode and key) available from
MIDI Toolbox (Eerola and Toiviainen, 2004) and 103 one-dimensional features available
from JSymbolic (McKay and Fujinaga, 2006): instrumentation (18 features), texture (14
features), rhythm (28 features), dynamics (4 features), pitch (22 features) and melody
(17 features). Table 12.1 shows the features extracted with JSymbolic. Detailed de-
scription of each one can be seen in McKay’s thesis (McKay, 2004).

12.4.2. Method

We selected 9 MIDI files of western tonal music (pop and r&b genres) from a large
database of pre-composed music of various genres. These files were selected based
on its musical quality. The genres were randomly chosen from a group that included
besides these, others like rap, rock and classical. Selected files went through the pro-
cesses of segmentation and feature extraction. From this resulted a group of 412 seg-
ments labeled with musical features. The regression models built in the initial phase
were used to classify each segment with an appropriate emotional label. From this
group of 412 segments emotionally classified, we selected 16 segments to be used to
update the regression models. This selection process was grounded on the purpose of
covering all the bi-dimensional emotional space. Listeners were invited to classify the
selected segments through the use of several mailing-lists (intended for discussion of
subjects like music theory, music therapy and others).

12.4.3. Data

Data consists of the selected musical segments and obtained emotional answers from
the listeners.
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12.4.3.1. Music

The 16 musical segments lasted between 20 and 60 seconds and are available in this
link27.

12.4.3.2. Emotional answers

53 listeners answered to the questionnaire: 33 male and 20 female with ages between
14 and 56 years old (mean of 34, standard deviation of 12). They had background in
informatics, technology and music. We calculated the mean and standard deviation
for the emotional answers obtained in the questionnaire, as is shown in Figure 12.4.1.
Mean and standard deviations were computed first between listeners, and then aver-
aged over segments. We measured the agreement of the listeners on the emotional
content of the music using the Cronbach’s Alpha and obtained a value of 79.49% for
arousal and a value of 78.19% for valence. These values give us an acceptable (if not
good) internal consistency 28 of the obtained emotional answers. .

Figure 12.4.1.: Mean and standard deviations of the emotional responses in the first
experiment

12.4.4. Results

The results of this experiment are divided into two subsubsections. One that consists
of feature ranking and the other that consists of feature selection and classification.

27http://student.dei.uc.pt/%7Eapsimoes/PhD/Music/icmc08/index.html
28http://en.wikipedia.org/wiki/Cronbach’s_alpha

81



12.4.4.1. Feature Ranking

We calculated individually the correlation coefficient between each feature and the two
emotional dimensions. Table 12.2 presents, for each category, the features with the
highest correlation with valence29. We can highlight rhythmic (e.g, variability of note
duration, note density and polyrhythms), instrumentation (e.g., string ensemble frac-
tion), melodic (e.g., melodic tritones) and textural features (e.g., average number of
independent voices) as the most relevant ones to valence.

Category Feature CC
Instrumental String Ensemble Fraction

Saxophone Fraction
Electric Guitar Fraction

-0.50
0.36
0.31

Textural Average Number of Independent Voices
Variability Number of Independent Voices

0.40
0.38

Rhythmic Variability of Note Duration
Note Density
Polyrhythms

Average Note Duration
Average Time Between Attacks

-0.66
0.57
-0.54
-0.52
-0.52

Dynamics Variation of Dynamics of Each Voice 0.22
Melodic Melodic Tritones

Most Common Melodic Interval Prevalence
Relative Strength Common Intervals

Relative Strength of Top Pitches
Relative Strength of Top Pitch Classes

Importance of Middle Register

0.47
-0.37
0.37
0.37
0.35
0.33

Harmonic Key mode -0.23

Table 12.2.: Best features of each category - valence

The corresponding results for arousal are represented in Table 12.3. We can highlight
rhythmic (e.g., average time between attacks, average note duration and note density),
instrumentation (e.g., number of unpitched instruments and percussion prevalence),
melodic features (e.g., importance of high register and primary register), textural (e.g.,
range of highest line) and dynamics (e.g., variation of dynamics) as the most relevant
ones to arousal.

29The meaning of each musical feature present in this table and in the following tables is described in the
Glossary, section A.2
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Category Feature CC
Instrumental Number of Unpitched Instruments

Percussion Prevalence
0.60
0.53

Textural Range of Highest Line
Variability Number of Independent Voices

-0.51
0.45

Rhythmic Average Time Between Attacks
Average Note Duration

Note Density
Variability of Time Between Attacks

Strength of Strongest Rhythmic Pulse

-0.73
-0.72
0.68
-0.65
-0.61

Dynamics Variation of Dynamics
Average Note to Note Dynamics Change

0.49
0.46

Melodic Importance of High Register
Primary Register
Stepwise Motion

Most Common Melodic Interval Prevalence

-0.55
-0.50
-0.40
0.36

Harmonic Key mode -0.13

Table 12.3.: Best features of each group - arousal

12.4.4.2. Feature Selection and Classification

We applied the best first search method Witten et al. (1999) on the features with the
highest ranking (Tables 12.2 and 12.3) to select the set of features that better discrimi-
nate the emotional content of music. We made a compromise between the number of
features and the quality of the results. Then, we applied 10-fold cross-validation on the
most discriminant features with the results presented in Table 12.4. From the analysis
of this table, we have the two best features in the classification of valence with similar
weights, and average note duration, average time between attacks and importance of
high register with the highest weights in the classification of arousal.

Emotional dimension CC MAE RMSE Best features Weight

Valence 0.76 0.75 0.91
Average time between attacks

Variability of note duration
-0.50
-0.55

Arousal 0.77 0.86 1.06

Average note duration
Average time between attacks

Importance of high register
Note density

-0.48
-0.35
-0.45
0.09

Table 12.4.: Results of 10-fold cross-validation for valence and arousal – first
experiment
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12.4.5. Discussion

We presented a preliminary experiment that undertook music emotion classification
as a regression problem. SVM regression obtained the best results in the classifica-
tion of the dimensions of valence and arousal. N-fold cross-validation results using
the coefficient of correlation showed that the performance of the predictive models for
classification of arousal (0.77) and for the classification of valence (0.76) are similar
and positive.. Rhythmic features proved to be very important to valence and arousal
(e.g., average time between attacks, note density and average note duration). Melodic
features (e.g., importance of high register and primary register) were also important to
classify arousal.

Regarding the instrumentation not too much could be concluded because of the lack of
music pieces with similar instruments. Moreover, more instrumentation features were
needed (e.g., spectral sharpness, spectral dissonance and analysis of the frequency
spectrum of samples). It was also important to implement some features of dynam-
ics (e.g., average loudness) for arousal prediction and harmony (e.g., spectral conso-
nance) for valence. Concerning the texture and melodic features there was the need
of more tests. Therefore, it was our goal to extend this study to a statistical significant
number of music files.

12.5. Second Experiment - Extended Evaluation of the
Classification Module

The second experiment was divided into two parts. The first part is described in this
section; the second part is described in section 12.6. This part consisted in an ex-
tended evaluation of the classification module and its contents were published in the
proceedings of the 2008 Sound and Music Computing Conference (Oliveira and Car-
doso, 2008c).
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Features per Category
Instrumental
(JSymbolic)

Textural
(MIR Toolbox)

Note Prevalence of Acoustic Grand Piano
Note Prevalence of Bright Acoustic Piano
Note Prevalence of Electric Grand Piano

...
Note Prevalence of Helicopter
Note Prevalence of Applause
Note Prevalence of Gunshot

Time Prevalence of Acoustic Grand Piano
Time Prevalence of Bright Acoustic Piano
Time Prevalence of Electric Grand Piano

...
Time Prevalence of Telephone Ring

Time Prevalence of Helicopter
Time Prevalence of Applause
Time Prevalence of Gunshot

Slap Bass Fraction
Harpsichord Fraction

Spectral Texture MFCC 1
Spectral Texture MFCC 2
Spectral Texture MFCC 3
Spectral Texture MFCC 4
Spectral Texture MFCC 5
Spectral Texture MFCC 6
Spectral Texture MFCC 7
Spectral Texture MFCC 8
Spectral Texture MFCC 9

Spectral Texture MFCC 10
Spectral Texture MFCC 11
Spectral Texture MFCC 12
Spectral Texture MFCC 13

Rhythmic
(MIDI Toolbox and JMusic)

Melodic
(MIDI Toolbox and JMusic)

Average Meter Accent Synchrony
Maximum Meter Accent Synchrony

Concurrent Onsets
Average Duration Accent

Meter
Average Metrical Hierarchy

Variability of Events
Onset Autocorrelation

Consecutive Identical Rhythms
Distinct Rhythm Count

Repeated Rhythmic Value Density
Rhythm Range

Same Direction Interval Count
Syncopation

Average Melodic Complexity
Maximum Melodic Complexity

Average Melodic Originality
Maximum Melodic Originality

Average Melodiousness
Maximum Melodiousness
Average Melodic Accent

Maximum Melodic Accent
Average Melodic Attraction

Maximum Melodic Attraction
Average Melodic Mobility

Maximum Melodic Mobility
Average IR Narmour

Maximum IR Narmour
Average Melodic Tessitura

Maximum Melodic Tessitura
Big Jump

Big Jump Followed By Step Back
Climax Position
Climax Strength

Consecutive Identical Pitches
Leap Compensation

Melodic Direction Stability
Overall Pitch Direction

Repeated Pitch Density

Harmonic
(JMusic)

Dissonance

Table 12.5.: Features analysed in the second experiment that were not analysed in the
first experiment
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12.5.1. Objective

The second experiment had the same objective as the first one. In this part of the
second experiment we tried to overcome two problems: the limited number of music
files being classified and the limited number of features extracted from the music. The
first problem was surmounted by extending the number of musical files (from 16) to a
statistical significant number (96). The second problem was overcome by extracting a
larger number of features (from 105 to 414); we extracted the 105 features of the first
experiment plus other 309 features not extracted in the first experiment by using other
third-party software. Thus, the second experiment was the second step towards auto-
matic bi-dimensional classification of MIDI music by emotional content. This experiment
was dedicated to the refinement of the knowledge base built in the first experiment.

Just as in the first experiment, we came up with the hypothesis that there is a small
amount of features that may predict arousal/valence. We worked to refine the two set
of features relevant to valence and arousal. We intended to identify the emotional rele-
vance of 148 unidimensional features and 3 multidimensional ones (note prevalence of
instruments, time prevalence of instruments and spectral texture) that were categorized
into six groups: instrumentation (20), texture (15), rhythm (42), dynamics (4), melody
(64) and harmony (3). We used JSymbolic (McKay and Fujinaga, 2006), MIDI Toolbox
(Eerola and Toiviainen, 2004), JMusic (Sorensen and Brown, 2000) and MIR Tool-
box (Lartillot and Toiviainen, 2007). Special attention was devoted to the identification
of the emotional relevance of new features and important ones from the first exper-
iment: the importance (volume*time) of 13 Mel Frequency Cepstral Coefficients30 of
each sample used to synthesize musical instruments, the prevalence (by note or time)
of specific groups and individual instruments, tempo, notes density, duration of notes,
rhythmic variability, melodic complexity, prevalence of repeated notes, prevalence of
the most common melodic intervals, pitch classes and pitches, and mode (major or
minor). Table 12.5 shows the ”new” features not present in Table 12.1. In the instru-
mental category note prevalence of instruments and time prevalence of instruments
are multidimensional features, each one with the size that corresponds to the number
of standard pitched instruments of the General MIDI. To avoid a longer table, we only
mention the first and last three instruments separated by ”...” to be representative of
all the 128 instruments. Detailed description of each feature can be consulted in the
reference (McKay, 2004) as in the case of JSymbolic features, or on the following links
as in the cases of MIDI Toolbox31 , JMusic32 and MIR Toolbox33.

30http://en.wikipedia.org/wiki/Mel-frequency_cepstrum
31https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox/Manual
32http://ses.library.usyd.edu.au/bitstream/2123/6205/1/abrown.pdf
33https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/MIRtoolboxUsersGuide1.3.3
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12.5.2. Method

The steps of the method of this experiment were designed in order to accomplish the
objectives of the two parts of this experiment. We selected 90 MIDI files of western
tonal music (film music genre) from a large database of pre-composed music of various
genres. These files were selected based on their musical quality. We selected this
genre, because of its closer connection with the emotional dimension, as it is proved
by the fact that the composers usually guide the process of producing music by an
emotional specification subjacent to the film scenes. Another reason which led to this
selection was to diversify the genre of music being analysed, as we want a system
that works with all the genres of western tonal music. Selected files were put through
the processes of segmentation and feature extraction. From this resulted a group of
5238 segments labeled with musical features. The regression models built in the first
experiment were used to classify each segment with an appropriate emotional label.
From this group of 5238 segments emotionally classified, we selected 96 segments to
be used to update regression models. This selection process was grounded on the
purpose of covering all the bi-dimensional emotional space. Listeners were invited to
classify a subgroup of 16 segments from the group of 96 selected segments through
the use of several mailing-lists (intended for discussion of subjects like music theory,
music therapy and others).

12.5.3. Data

Data consists of the selected musical segments and obtained emotional answers from
the listeners.

12.5.3.1. Music

The 96 musical segments lasted between 20 and 60 seconds and are available in this
link 34. We extended the first experiment by increasing the number of music pieces
(from 16 to 96) and features (from 105 to 414).

12.5.3.2. Emotional Answers

80 listeners answered to the questionnaire: 34 male and 46 female aged between 17
and 69 years old (mean of 38, standard deviation of 11). They had background in infor-
matics, technology and music. We calculated the mean and standard deviation for the
34http://student.dei.uc.pt/%7Eapsimoes/PhD/Music/smc08/index.html
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emotional responses obtained in the questionnaire, as is shown in Figures 12.5.1 and
12.5.2. Mean and standard deviations were computed first between listeners, and then
averaged over segments. We measured the agreement of the listeners on the emo-
tional content of the music using the Cronbach’s Alpha and obtained a value of 7.44%
for arousal and a value of 25.16% for valence. These values give us an unacceptable
internal consistency 35 of the obtained emotional answers. This may be explained by
the fact that each listener answered to its own subgroup of 16 segments (from the group
of 96 selected segments) - as explained in subsection 12.5.2. Nobody answered to the
same subgroup of musical segments as this subgroup was randomly chosen.

Figure 12.5.1.: Mean and standard deviations of the first 48 emotional responses in the
second experiment

35http://en.wikipedia.org/wiki/Cronbach’s_alpha
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Figure 12.5.2.: Mean and standard deviations of the second 48 emotional responses in
the second experiment

12.5.4. Results

The results of this experiment are divided into two subsubsections. One that consist of
feature ranking and the other that consists of feature selection and classification.

12.5.4.1. Feature Ranking

We calculated individually the correlation coefficient between each feature and the two
emotional dimensions. The features with the highest correlation with valence in each
category are presented in Table 12.6. We can highlight rhythmic (e.g, tempo, average
note duration and average time between attacks), harmonic (e.g., key mode and key),
instrumentation (e.g., note prevalence of muted guitar) and melodic features (e.g., cli-
max position) as the most relevant ones to the valence. We started by applying feature
selection algorithms (Witten et al., 1999) to reduce the number of features and to im-
prove classification results. From this resulted a group of 26 features. We applied 8-fold
cross validation with these features and obtained a correlation coefficient of 0.81. Af-
ter this, we selected manually the best group of features to know the most important
features in the stage of selection, but also for the stage of transformation. From this
resulted a group of four features. The correlation coefficient obtained with the applica-
tion of 10-fold cross validation with these features is available in Table 12.8. We also
determined the correlation coefficient (0.57) obtained by using the regression models
of the first experiment.
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Category Feature CC
Instrumental Note Prevalence Muted Guitar

Electric Instrument Fraction
Note Prevalence Steel Drums

Time Prevalence Marimba
Note Prevalence Fretless Bass

Note Prevalence Timpani
Electric Guitar Fraction

String Ensemble Fraction

0.37
0.34
0.33
0.31
0.31
-0.27
0.23
-0.22

Textural Spectral Texture MFCC 4
Spectral Texture MFCC 6
Spectral Texture MFCC 7

Number of Unpitched Instruments

0.23
0.22
0.21
0.20

Rhythmic Tempo
Average note duration

Average time between attacks
Strength of strong. rhythmic pulse

Variability of note duration
Note density

Strength of two strong. rhythmic pulses
Variability of time between attacks
Number of relatively strong pulses

Distinct rhythm count
Rhythmic variety

Strength sec. strong. rhythmic pulse
Strongest rhythmic pulse

0.63
-0.49
-0.48
-0.42
-0.42
0.40
-0.37
-0.36
0.30
0.29
-0.28
-0.25
0.20

Dynamics Staccato incidence 0.15
Melodic Climax position

Average melodic complexity
Interval strong. pitch classes

Dominant spread

0.32
0.24
0.20
0.20

Harmonic Key mode
Key

-0.43
-0.37

Table 12.6.: Best features of each group - valence

Table 12.7 presents for each category the features with the highest correlation with
arousal. We can highlight rhythmic (e.g., average note duration, note density and vari-
ability of note duration), melodic (e.g., climax position and average melodic complexity)
and dynamics (e.g., staccato incidence) as the most relevant ones to the arousal. We
started by applying feature selection algorithms (Witten et al., 1999) to reduce the num-
ber of features and to improve classification results. From this resulted a group of 23
features. We applied 8-fold cross validation with these features and obtained a corre-
lation coefficient of 0.84. After this, we manually selected the best group of features
to know the most important features in the stage of selection, but also for the stage of
transformation. From this resulted a group of four features. The correlation coefficient
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obtained with the application of 10-fold cross validation with these features is available
in Table 12.8. We also determined the correlation coefficient (0.77) obtained by using
the regression models of the first experiment.

Category Feature CC
Instrumental Electric instrument fraction

String ensemble fraction
Note prevalence english horn

Number of unpitched instruments
Note prevalence flute

Brass fraction
Note prevalence orchestra hit

Electric guitar fraction

0.28
-0.27
-0.26
0.25
-0.25
0.25
0.22
0.21

Textural Spectral texture MFCC 2
Variab. prevalence unpitched instruments

Spectral texture MFCC 4

0.28
0.25
0.24

Rhythmic Average note duration
Note density

Variability of note duration
Tempo

Average time between attacks
Variability of time between attacks

Average duration accent
Strength strongest rhythmic pulse
Number of relatively strong pulses

Strength two strong. rhythmic pulse
Polyrhythms

-0.68
0.63
-0.57
0.55
-0.55
-0.54
-0.53
-0.47
0.43
-0.41
-0.38

Dynamics Staccato incidence 0.35
Melodic Climax position

Average melodic complexity
Consecutive identical pitches

Climax strength
Repeated notes

Most common pitch class prevalence
Relative strength of top pitch classes

Amount of arpeggiation
Same direction interval
Repeated pitch density

0.45
0.38
0.37
-0.33
0.32
0.31
-0.30
0.29
0.27
0.24

Harmonic Key mode -0.22

Table 12.7.: Best features of each group - arousal
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12.5.4.2. Feature Selection and Classification

We applied the best-first search method Witten et al. (1999) on the features with the
highest ranking (Tables 12.6 and 12.7) to select the set of features features emotionally
more discriminant. We made a compromise between the number of features and the
quality of the results. Then, we applied 10-fold cross-validation on the most discrimi-
nant features with the results presented in Table 12.8. From the analysis of this table,
we have average note duration, tempo and note density with the highest weights in
the classification of valence, and average note duration with the highest weight in the
classification of arousal.

Emotional dimension CC MAE RMSE Best features Weight

Valence 0.70 0.85 1.04

Average note duration
Tempo

Key mode
Note density

0.31
-0.48
-0.18
0.34

Arousal 0.77 0.84 1.04
Average note duration

Tempo
Note density

-0.84
0.42
0.41

Table 12.8.: Results of 10-fold cross-validation for valence and arousal – second
experiment

12.5.5. Discussion

We were expecting that the importance (volume*time) of the 13 Mel Frequency Cep-
stral Coefficients (van de Laar, 2006) of each sample used to synthesize musical in-
struments and that the prevalence (by note or time) of specific groups and individual
instruments would have a higher relevance on the emotional discrimination of the mu-
sical output. However, rhythmic, harmonic and melodic features seemed to have a
higher importance on the emotional discrimination. Nonetheless, instrumentation fea-
tures like the prevalence of muted guitar still have an emotional relevance, for example,
for valence as it is expressed by the correlation coefficient of 0.37.

We presented an extension of the first experiment that undertook music emotion clas-
sification as a regression problem. SVM regression obtained the best results in the
classification of the dimensions of valence and arousal. Validation results using the
coefficient of correlation confirmed that the classification of arousal (0.84) is easier
than the classification of valence (0.81). Rhythmic (e.g., tempo, note density and av-
erage/variability of note duration) and melodic (e.g., climax position and melodic com-
plexity) features proved to be very important to valence and arousal. Harmonic (e.g.,
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key mode) and dynamics features (e.g., staccato incidence) were also important to
classify, respectively, the valence and arousal. As a matter of curiosity we calculated
the correlation coefficient between valence and arousal and obtained a value of 0.63,
which indicates that there is some colinearity amongst these two dimensions.

With similar goals to (Kuo et al., 2005; Muyuan et al., 2004), we developed a knowl-
edge base with relations between music features and emotions, Kuo et al. developed
an affinity graph and Muyuan and Naiyao a SVM classifier. We used continuous di-
mensions (valence and arousal) instead of discrete emotions (Kuo et al., 2005; Muyuan
et al., 2004). The results of our model (81% for valence and 84% for arousal) surpass
the results of Kuo et al. (80%) and Muyuan and Naiyao (70%) when using a higher
number of features (>20).

With these satisfactory results, we felt ready to move to the third experiment of our
work, which consisted in the transformation of the emotional content of selected music
to approximate even further its emotional content to an intended emotion.

12.6. Second Experiment - Analysis of Audio Features

This section describes the second part of the second experiment. This part consisted in
the analysis of audio features and its contents were presented in the 2008 Portuguese
Audio Engineering Society Conference (Oliveira and Cardoso, 2008b).

12.6.1. Objective

This part of the second experiment intended to understand the importance of au-
dio features in the emotional expression, as well as to understand their relation with
emotionally-relevant MIDI features. The data of the second experiment (described in
subsection 12.5.3) was used to analyse the importance of 18 audio features. These
features were extracted with MIR Toolbox (Lartillot and Toiviainen, 2007) and Psysound
Toolbox (Cabrera, 1999). This was done with the objective of identifying the audio
features emotionally more relevant for: the selection of instruments in the synthesis
module (subsection 11.5.3); and the analysis of the spectral characteristics of the mu-
sical audio output. We also worked on bridging the gap between the MIDI and audio
domains, by analysing the influence of MIDI features on audio features.

12.6.2. Method

The method used in this part of the experiment is described in subsection 12.5.2.
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12.6.3. Data

Data used in this part of the experiment is described in subsection 12.5.3.

12.6.4. Results

The results of this experiment are divided into two subsubsections. One that consist of
feature ranking and the other that consists of feature selection and classification.

12.6.4.1. Feature Ranking

We calculated the correlation between the 18 audio features and valence (Table 12.9)
and arousal (Table 12.10). In bold font we have the features with the highest correlation
coefficients.

Audio feature CC
Spectral sharpness (Ambres)

Spectral dissonance (Sethares)
Spectral sharpness (Zwickler)

Timbral width
Volume

Tonal dissonance (Sethares)
Spectral dissonance (H&K)

Tonal dissonance (H&K)
Loudness

Spectral similarity
Brightness (>1500Hz)
Brightness (>4000Hz)
Brightness (>400Hz)

Inharmonicity
Harmonic mode

Energy
ADSR envelope

Register

0.42
0.28
0.37
0.32
-0.22
-0.25
-0.04
-0.11
0.41
-0.26
0.21
0.17
0.06
0.05
0.13
0.23
-0.04
0.12

Table 12.9.: Correlation coefficients between audio features and valence
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Audio feature CC
Spectral sharpness (Ambres)

Spectral dissonance (Sethares)
Spectral sharpnes (Zwickler)

Timbral width
Volume

Tonal dissonance (Sethares)
Spectral dissonance (H&K)

Tonal dissonance (H&K)
Loudness

Spectral similarity
Brightness (> 1500Hz)
Brightness (> 4000Hz)
Brightness (> 400Hz)

Inharmonicity
Harmonic mode

Energy
ADSR envelope

Register

0.36
0.49
0.34
0.29
-0.26
-0.29
0.17
-0.06
0.28
-0.58
0.18
0.21
-0.03
0.06
0.08
0.29
-0.13
0.02

Table 12.10.: Correlation coefficients between audio features and arousal

We calculated the correlation coefficients between the audio features with the highest
importance on emotional discrimination (spectral similarity, spectral dissonance and
spectral sharpness) and some of the most emotionally-relevant MIDI features (Table
12.11).

Audio and symbolic features
Correlation
Coefficient

Spectral similarity and average duration accent
Spectral similarity and average note duration

Spectral similarity and average time between attacks
Spectral similarity and variability of time between attacks

Spectral similarity and strength of strongest rhythmic pulse

0.61
0.50
0.44
0.43
0.42

Spectral dissonance and variab. of note prev. of unpitched instruments
Spectral dissonance and percussion prevalence

Spectral dissonance and number of unpitched instruments
Spectral dissonance and bass drum prevalence

Spectral dissonance and melodic complexity

0.46
0.45
0.43
0.42
0.41

Spectral sharpness and harpsichord fraction
Spectral sharpness and number of unpitched instruments

Spectral sharpness and variab. of note prev. of unpitched instruments
Spectral sharpness and climax position

0.41
0.40
0.35
0.33

Table 12.11.: Correlation coefficients between relevant audio and symbolic features
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12.6.4.2. Feature Selection and Classification

To have a first idea about the importance of the best audio features in the classification
of the emotional content, we proceeded to a manual selection of features according
to their correlations coefficients with the two emotional dimensions (Tables 12.9 and
12.10). The best features were spectral sharpness - Ambres, spectral dissonance
- Sethares, loudness, spectral similarity, timbral width and tonal dissonance. Then,
we calculated the correlation coefficient between the values of valence/arousal of the
emotional answers (subsubsection 12.5.3.2) and the best features and obtained, re-
spectively, the values of ~0.61/~0.75 for valence/arousal.

12.6.5. Discussion

The correlation between audio and MIDI features (subsubsection 12.6.4.1) allowed us
to drawn some interesting conclusions. Longer duration of notes and longer time be-
tween the attacks (onsets) of the notes contribute to a more homogeneous frequency
spectrum more homogeneous (similar). This is a plausible conclusion, because it is
intuitive to conclude that less variations in a musical piece contribute to less variation in
the frequency spectrum and as a result to a high degree of spectral similarity. Another
conclusion drawn is that the use of unpitched (percussion) instruments contribute to a
high degree of spectral dissonance. Melodic complexity also influences spectral disso-
nance. Other conclusions could be drawn, but these seemed to us the most important.

The values of the correlation coefficients presented in subsubsection 12.6.4.2 are close
to the ones obtained with MIDI features: 0.76/0.77 (Table 12.4) in the first experiment
and 0.70/0.77 (Table 12.8) of the first part of the second experiment. This gave us pre-
cious indication about the importance of the audio features, especially for the arousal,
which had the closer results. We made an ad-hoc preliminary test on the effect of
classifying music with both audio and emotionally-relevant MIDI features (e.g., average
note duration and note density) and verified that the inclusion of audio features in the
process contribute to an increase in the classification performance (measured with the
help of the correlation coefficient). A detailed analysis of the effect of using both audio
and MIDI features in the classification performance was left as an object of study to
the third experiment (section 12.7) and to the experiments of the calibration/validation
(chapter 15) of the EDME. Special attention would be devoted to the six features with
the highest correlation coefficients (Tables 12.9 and 12.10).

We came to some conclusions based only on the results obtained in this part of the sec-
ond experiment. For instance, there is some emotional content of the musical pieces
which is only controlled in the audio domain. This is particularly true in the selection
of instruments, more exactly in the selection of the samples for each note of the MIDI

96



file. We verified the existence of colinearity among the features of the MIDI and audio
domains. We can also infer that timbre/sound is an important musical feature that can
be used to control/influence the emotional expression in music. This is visible not only
on the results of this part of the second experiment, but also on the results of the first
part of the second experiment and of the first experiment.

12.7. Third Experiment – Improvement of the Classification
Module

The third experiment was divided into three parts. The first part is described in this
section; the second part is described in section 12.8; the third part is described in
section 12.9. This part consisted in the improvement of the classification module. The
contents of this part of the experiment were published in the proceedings of the 2009
Sound and Music Computing Conference (Oliveira and Cardoso, 2009).

Category Feature Category Feature

Instrumental
(JSymbolic)

Note Prevalence of Bass Drum 2
Note Prevalence of Bass Drum 1

Note Prevalence of Side Stick/Rimshot
...

Note Prevalence of Open Cuíca
Note Prevalence of Mute Triangle
Note Prevalence of Open Triangle

Rhythmic
(made with
JSymbolic)

Harmonic
(MIR Toolbox)

Average Rhythmic Pulse
Average Dynamics

Spectral centroid

Table 12.12.: Features analysed in the third experiment that were not analysed in the
first and second experiments

12.7.1. Objective

This part of the third experiment had the same objective as the first experiment and of
the first part and second parts of the second experiment. We worked toward the sys-
tematization of the emotionally-relevant group of features and their respective weights.
This part of the third experiment was the third step towards automatic bi-dimensional
classification of MIDI music by emotional content. This experiment was dedicated to the
refinement of the knowledge base built with the data coming from the first and second
experiments.

Like in the first and second experiments, we came up with the hypothesis that there is a
small amount of features that may predict arousal/valence. We worked to refine the two
sets of features relevant to valence and arousal. We intended to identify the emotional
relevance of 482 features. We used JSymbolic (McKay and Fujinaga, 2006), MIDI Tool-
box (Eerola and Toiviainen, 2004) and JMusic (Sorensen and Brown, 2000) to extract
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the MIDI features and MIR Toolbox (Lartillot and Toiviainen, 2007) and Psysound Tool-
box (Cabrera, 1999) to extract the audio features. Special attention was put on the
identification of the emotional relevance of new features and important ones from the
first and second experiments: average time between attacks, variability of note dura-
tion, average note duration, importance of high register, note density, tempo, key mode,
spectral sharpness, spectral dissonance and spectral similarity. Table 12.12 shows the
features not present in Tables 12.1, 12.5 and 12.9. In the instrumental category, note
prevalence of instruments is a multidimensional feature with size of 48 that corresponds
to the number of standard unpitched instruments of the General MIDI. To avoid a longer
table, we only mention the first and last three instruments separated by ”...” to be rep-
resentative of all the 48 percussion instruments. Detailed description of each feature
can be consulted on the reference (McKay, 2004) as in the case of JSymbolic features,
or on the following link as in the cases of MIR Toolbox36.

12.7.2. Method

Figure 12.7.1.: Experimental steps of the third experiment

Figure 12.7.1 presents the steps of this experiment. These steps were designed in or-
der to accomplish the objectives of the three parts of this experiment. We selected 14
MIDI files of western tonal music (pop/rock music genre) from a large database of pre-
composed music of various genres. These files were selected based on their musical
quality. The genres were randomly chosen from a group that included besides these,
others like rap, R&B and classical. Selected files went through the processes of seg-
mentation and feature extraction. From this resulted a group of 746 segments labelled
with 482 musical features. The regression models built in the second experiment were
36https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/MIRtoolboxUsersGuide1.3.3
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used to classify each segment with an appropriate emotional label. From this group of
746 segments emotionally classified, we selected 69 segments to be used to update
regression models. This selection process was grounded on the purpose of covering all
the bi-dimensional emotional space. Then, we selected a small group of 26 segments
from the group of 69 pieces. These segments were used to test the effectiveness of
transformation algorithms (see section 12.8). After transforming tempo, pitch, scale
and articulation, we obtained a group of 63 segments (26 original segments + 37 trans-
formed segments). Listeners were invited to classify a subgroup of 22 segments from
the group of 132 selected segments (69 to update regression models + 63 to test trans-
formation algorithms) through the use of several mailing-lists (intended for discussion
of subjects like music theory, music therapy and others).

12.7.3. Data

Data consists of the selected musical segments and obtained emotional answers from
the listeners.

12.7.3.1. Music

The 132 musical segments lasted between 10 and 15 seconds and are available in this
link 37. We extended the first experiment by increasing the number of musical pieces
(from 16 of the first experiment and 96 of the first and second parts of the second
experiment) and features (482, from 105 of the first experiment and from 414 of the
first part of the second experiment).

12.7.3.2. Emotional Answers

37 listeners answered to the questionnaire: 28 male and 9 female aged between 14
and 63 years old (mean of 33, standard deviation of 13). They had background in in-
formatics, technology and music. We calculated the mean and standard deviation for
the emotional responses obtained in the questionnaire, as is shown in Figures 12.7.2,
12.7.3 and 12.7.4. Mean and standard deviations were computed first between listen-
ers, and then averaged over segments. We measured the agreement of the listeners on
the emotional content of the music using the Cronbach’s Alpha and obtained a value of
35.74% for arousal and a value of 63.77% for valence. The value obtained for the emo-
tional answers of arousal give us an unacceptable internal consistency 38 ; the value

37http://student.dei.uc.pt/~apsimoes/PhD/Music/smc09/
38http://en.wikipedia.org/wiki/Cronbach’s_alpha
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obtained for the emotional answers of valence is a bit better but with a questionable
internal consistency 39. Again,

this may be explained by the fact that each listener answered to its own subgroup of
22 segments (from the group of 132 selected segments) - as explained in subsection
12.7.2. Nobody answered to the same subgroup of musical segments as this subgroup
was randomly chosen.

Figure 12.7.2.: Mean and standard deviations of the first 44 emotional responses in the
third experiment

39http://en.wikipedia.org/wiki/Cronbach’s_alpha
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Figure 12.7.3.: Mean and standard deviations of the second 44 emotional responses in
the third experiment

Figure 12.7.4.: Mean and standard deviations of the third 44 emotional responses in
the third experiment
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12.7.4. Results

The results of this experiment are divided into two subsubsections. One that consist of
feature ranking and the other that consists of feature selection and classification.

12.7.4.1. Feature Ranking

We calculated individually the correlation coefficient between each feature and the two
emotional dimensions. Table 12.13 and Table 12.14 present the correlation between
the best features and valence and arousal. On the one hand, we can highlight rhythmic
(e.g, staccato incidence, note density, average note duration and average time between
attacks) and instrumentation (e.g., number of unpitched instruments) as the most rele-
vant ones to the valence. On the other hand, we can highlight rhythmic (e.g, note den-
sity and staccato incidence) and instrumentation (e.g., variability of note prevalence of
unpitched instruments, percussion prevalence and number of unpitched instruments)
as the most relevant ones to the arousal.

Musical feature CC
Staccato incidence

Number of unpitched instruments
Note density

Average note duration
Average time between attacks

Overall dynamic range
Variability of note duration

Melodic fifths
Pitch variety

Note prevalence of closed hi-hat
Rhythmic looseness

Percussion prevalence

0.57
0.53
0.52
-0.50
-0.50
0.48
-0.46
0.45
0.43
0.42
0.41
0.40

Table 12.13.: Features emotionally more discriminant for valence
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Musical feature CC
Var. note prev. unpitched instruments

Percussion prevalence
Note density

Number of unpitched instruments
Staccato incidence

Importance of loudest voice
Variation of dynamics

Note prevalence of snare drum
Overall dynamic range

Variability of note prevalence of pitched instruments
Note prevalence of bass drum

Note prevalence of closed hi-hat

0.70
0.69
0.66
0.58
0.56
0.55
0.48
0.47
0.46
0.45
0.45
0.43

Table 12.14.: Features emotionally more discriminant for arousal

12.7.4.2. Feature Selection and Classification

We applied the best first search method Witten et al. (1999) on the features with the
highest ranking (Tables 12.13 and 12.14) to select the set of features features emotion-
ally more discriminant. We made a compromise between the number of features and
the quality of the results. Then, we applied 10-fold cross-validation on the most dis-
criminant features with the results presented in Table 12.15. From the analysis of this
table, we have the features overall dynamic range and variability of note duration with
the highest weights in the classification of valence, and note density with the highest
weight in the classification of arousal.

Emotional dimension CC MAE RMSE Best features Weight

Valence 0.69 0.76 0.97

Average time between attacks
Number of unpitched instruments

Overall dynamic range
Percussion prevalence

Variability of note duration

-0.18
0.20
0.32
-0.12
-0.31

Arousal 0.71 0.81 0.99

Note density
Percussion prevalence
Variability of unpitched

instruments

0.29
0.12
0.15

Table 12.15.: Results of 10-fold cross-validation for valence and arousal – third
experiment
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12.8. Third Experiment - Evaluation of the Transformation
Algorithms

The second part of the third experiment is described in this section. It consisted in
the evaluation of the transformation algorithms. The contents of this part of the ex-
periment were published in the proceedings of the 2009 Sound and Music Computing
Conference (Oliveira and Cardoso, 2009).

12.8.1. Objective

Despite of the lower importance of the role of the transformation module when com-
pared with the classification module, we also dedicated an experiment to test the ef-
fectiveness of its algorithms. This experiment was focused on the automatic transfor-
mation of two emotional dimensions of music (valence and arousal) by changing five
musical features: tempo, pitch register, musical scales, instruments and articulation.
We verified the effectiveness of the five algorithms in approximating the emotional con-
tent of music segments to the desired emotion of the listener.

12.8.2. Methods, Results and Discussion

The method used in this experiment is the one described in subsection 12.7.2. We
present more details about the method, results and discussion for each algorithm in
the following subsubsections.

12.8.2.1. Tempo

Algorithm The transformation of tempo starts by obtaining the original tempo of the
music piece. Then, it changes the tempo parameter in the MIDI metadata, or, alterna-
tively, it changes note onsets and/or increases/decreases the duration of notes.

Method We transformed six segments by accelerating their tempo in 50% and slow-
ing it down in 30%, obtaining three versions with different tempos for each one: fast,
normal and slow. For each of the resulting six groups of three segments, we correlated
the tempo of each version with the emotional data obtained in the third experiment (see
section 12.7).
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Results Table 12.16 presents the correlation coefficients for each of the six groups.
The last column of this table contains the absolute mean for all of these groups.

Group 1 2 3 4 5 6
Absolute

Mean
Valence 0.94 0.96 0.91 -0.07 0.62 1.00 0.75
Arousal 1.00 0.98 0.98 -0.16 0.97 -0.36 0.74

Table 12.16.: Correlation coefficients between tempo and valence and arousal for the
six groups of segments

Discussion The expected high positive coefficients were confirmed by most of the
results. However, the fourth group of segments obtained small negative coefficients for
both valence and arousal, and the sixth group for arousal. This may be explained by
the presence of an imperceptible transformation, because of the presence of very long
notes (> four seconds) in the original segment. A higher percentage of acceleration and
slowing down of the original segment would be needed. The result of 100% for valence
in the sixth group is not very reliable because the answers were very close: 3.5, 3.3 and
3.2. Emotional transformations contributed to an increase of 0.4/0.2 in valence/arousal
with changes from low to normal tempo, and an increase of 1/0.8 in valence/arousal
with changes from normal to high tempo.

12.8.2.2. Pitch Register

Algorithm The algorithm that transforms pitch register transposes up/down pitched
instruments40 (percussion instruments don’t change) by a specific number of octaves
to increase/decrease valence/arousal. We chose octaves, because they are the inter-
vallic transformation more consonant (Vassilakis, 2005) with audible repercussion in
the frequency spectrum. The system adds positive/negative multiples of twelve to the
pitch of all the notes.

Method We transformed five segments by transposing them up and down two oc-
taves, obtaining three versions of different registers for each one: high, normal and
low. For each of the resulting five groups of three segments, we correlated the register
of each version with the emotional data obtained in the third experiment (see section
12.7).
40http://wiki.answers.com/Q/What_is_the_difference_between_pitched_and_non-pitched_instruments
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Results Table 12.17 presents the correlation coefficients for each of the five groups.
The last column of this table contains the absolute mean for all of these groups.

Group 1 2 3 4 5
Absolute

Mean
Valence 0.79 1.00 0.15 0.60 0.33 0.57
Arousal -0.39 -0.63 -0.98 -0.92 -0.62 0.71

Table 12.17.: Correlation coefficients between pitch register and valence and arousal
for the five groups of segments

Discussion Generally speaking, the increase of register correlates positively with
valence and negatively with arousal. A more detailed analysis of the results in groups
three and five showed lower correlation for valence, which revealed that the change
from normal to high register contributes to a decrease in valence. From the analysis
of the mean pitch of the segments, we can observe that, for these cases, the increase
in register affects valence positively only till we have mean values of MIDI pitch around
80, whilst higher values contribute to a decrease in valence. We assisted to a similar
situation in this first group for arousal: values of MIDI pitch higher than 80 do not seem
to affect the arousal of music. Emotional transformations contributed to an increase of
2/-0.6 in valence/arousal with changes from low to normal register, and an increase of
0.7/-0.4 in valence/arousal with changes from normal to high register.

12.8.2.3. Musical Scales

Algorithm The algorithm that transforms musical scales finds the original scale of the
MIDI file using MIDI toolbox (Eerola and Toiviainen, 2004), which takes into account
only pitched instruments41 (percussion instruments are not considered), and selects a
target scale according to emotional tags to be defined for each scale. Once the scale is
chosen, it finds the pitch distance relative to the tonic for each note in the original scale.
If this distance is not found in the target scale, it finds the closest pitch distance that
is present in the target scale and changes the pitch of the note, accordingly. Suppose
we want to transform from a ragha madhuri scale (pitch distances of 4, 5, 7, 9, 10
and 11 semitones to the tonic) to a minor gipsy scale (pitch distances of 2, 3, 6, 7,
8 and 11 semitones to the tonic). A note distant four semitones from the tonic in the
ragha madhuri scale would have its pitch decreased by one semitone to be distant
three semitones from the tonic in the minor gipsy scale. This happens because the
interval of four semitones is not present in the minor gipsy scale. We used a group of
41http://wiki.answers.com/Q/What_is_the_difference_between_pitched_and_non-pitched_instruments
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27 twelve-tone scales42. We chose this group and not others because it has a higher
variety of number of notes and intervals: scales have between two and seven notes
and intervals vary from one to seven semitones.

Method We transformed one segment by changing the original major scale to other
27 musical scales. We used feature selection algorithms in the process of finding the
features that best characterize the emotional variation when changing the scale.

Results We calculated the weights for the most important features for valence: num-
ber of semitones in scale (-0.17), difference between successive intervals of the scale
(-0.15), spectral dissonance (0.18) and spectral sharpness (-0.14). We made the same
for arousal: number of semitones in scale (-0.19), difference between successive inter-
vals of the scale (-0.07), spectral dissonance (0.14) and stepwise motion (0.24). Table
12.18 presents the correlation coefficients between the most discriminant features and
the emotional dimensions.

Feature Valence Arousal
Spectral dissonance

Tonal dissonance
Timbral width

Spectral sharpness
Stepwise motion

Melodic thirds
Number of semitones in scale

Differenc. successive intervals in scale

0.46
0.28
-0.32
0.34
0.24
-0.34
-0.40
-0.28

0.31
-
-

-0.20
0.33
-0.18
-0.23
-0.16

Correlation coefficient 0.61 0.45

Table 12.18.: Correlation coefficients between musical features and valence and
arousal for the 27 versions of the segment

Discussion It is not an easy task to find features that can be helpful in defining a
musical as is shown by the low correlation coefficients of the features shown in Table
12.18. However, some of the features despite of its low correlation coefficients can be
helpful in finding scales more appropriate to some emotions.

42http://papersao.googlepages.com/musicalscales
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12.8.2.4. Instruments

Algorithm The algorithm used to transform the set of instruments used by the music,
obtains original MIDI instruments specification and selects new instruments according
to the emotional tags of each timbre. These tags are pre-computed, offline, through
a weighed sum of audio features (e.g., spectral dissonance and spectral sharpness),
with the help of a vector of weights defined in the knowledge base for each emotional
dimension. Transformations are done by taking into consideration spectral features
(Lartillot and Toiviainen, 2007), to allow the transformation to be done with compatible
instruments, for example, it is preferable to change an acoustic piano to an electric
piano, instead of changing it into a trumpet.

Method We changed the instruments of the original group of 69 segments (not sub-
ject to any type of transformation). This change consisted only in modifying the MIDI
patch (instrument) of the musical piece. We tried to have each of the General Midi 1
(GM1) instruments present in, at least, one of the segments, in order to analyse the
emotional impact of every GM1 instrument. This test was an extension of what was
done in the second experiment on the analysis of audio features (section 12.6).

Results Table 12.19 presents the correlation coefficients between audio features and
the valence and arousal of the segments.

Audio Feature Valence Arousal
Spectral dissonance 0.28 0.72

Timbral width - 0.54
Tonal dissonance 0.19 0.27

Spectral sharpness - 0.44

Table 12.19.: Correlation coefficients between musical features and valence and
arousal for the 69 segments.

Discussion We can infer that instruments are essentially relevant to the arousal, be-
cause for valence the correlation coefficients obtained in this experiment are lower than
the ones obtained in section 12.6. Spectral dissonance and spectral sharpness ob-
tained the highest values of correlation coefficients (as in section 12.6). So, these fea-
tures can be said to be the more relevant in the emotional analysis of the sound/timbre
of instruments. We found that violin, string ensembles, choirs and piccolo contribute to
low valence; and percussion instruments contribute to high valence/arousal.
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As in these tests, the instruments that we intended to evaluate did not appear alone,
despite its high presence in the music, the results shall be analysed with caution. How-
ever, the results give us indications about some tendencies.

12.8.2.5. Articulation

Algorithm The algorithm that transforms normal to staccato articulation decreases
the duration of all notes by a specific percentage. If we consider 75%, notes with a
duration of X would have a new duration of X-X*0.75.

Method We transformed 14 segments by changing their articulation to staccato and
obtained two versions for each one: normal and staccato. We correlated the articulation
of the 28 versions with the emotional data obtained in our experiment.

Results We found that the change from normal to staccato articulation is 40% corre-
lated with the increase of valence and has no impact in arousal.

12.8.3. Overall discussion

We successfully tested the effectiveness of algorithms of music transformation. Change
of tempo was positively related to both valence and arousal. Change of pitch register
was positively related to valence and negatively related to arousal. The presence of
semitones in musical scales was found to be an important feature negatively related
to valence. Spectral dissonance, timbral width and spectral sharpness were found to
be important features for instruments and are positively related to arousal. Staccato
articulation was found to be positively related to valence.

If we look at all the experiments carried out to evaluate the transformation module
(Oliveira and Cardoso, 2008a,b, 2009), we can conclude that the transformation of
tempo, note density, pitch register, spectral sharpness (Ambres), spectral sharpness
(Zwickler), timbral width (spectral flatness) and loudness contribute to a direct influence
on valence; and that the transformation of tempo, note density, spectral sharpness (Am-
bres), spectral sharpness (Zwickler) and spectral dissonance (Sethares) contribute to a
direct influence on arousal. The transformation of pitch register and spectral similarity
influenced arousal in an inverse way.
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12.9. Third Experiment - Melodic Analysis

The third part of the third experiment is described in this section. It consisted on the
analysis of the influence of the melody in the emotional content of music. The contents
of this part of the third experiment were published in the journal of Knowledge-Based
Systems (Oliveira and Cardoso, 2010).

12.9.1. Objective

In the first and second experiments, as well as in the first and second parts of the
third experiment, we proceeded to the extraction of features from the whole musical
pieces. We thought that we could gain in the classification performance of the emotional
content, if we moved from the analysis of the whole piece (bass line, harmonic line,
melodic line and percussion line) to the analysis of only the melodic line of the piece.
The part of melodic analysis of the third experiment aimed to verify the importance of
the melody in the expression of emotions by using the data of the three experiments.
We came up with the hypothesis that by analysing solely the melodic line it would be
easier to find features with a high degree of emotional discrimination.

12.9.2. Method

We manually extracted the melodic lines from the musical pieces used in the experi-
ments. We guided this extraction by considering the loudness and pitch of the notes:
notes with high loudness and pitch were considered as having a high probability of be-
longing to the melodic line. We extracted from the melodic lines the features analysed in
the third experiment and used the listeners’ answers obtained with the questionnaires.

12.9.3. Data

We used data coming from the first experiment, first part of the second experiment
and first part of the third experiment. This data includes music and emotional answers
(subsections 12.4.3, 12.5.3 and12.7.3).

12.9.4. Results

We did not proceeded to feature ranking in this part of the third experiment, because
we already had an idea of which were the more emotionally relevant features after
analysing the results of the first experiment, three parts of the second experiment and
the first two parts of the third experiment.
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12.9.4.1. Feature Selection and Classification

In order to select the set of features features emotionally more discriminant in each of
the six cases of classification presented in Table 12.20, we applied a mixture of manual
and automatic selection. Manual selection was guided by the emotional importance of
features based on the results of the previous two experiments and results of the first two
parts of the third experiment, as well as based on the results from the literature of Music
Psychology (chapter 6). Automatic selection was done with the application of the best
first search method Witten et al. (1999). We made a compromise between the num-
ber of features and the quality of the results. Then, we applied 10-fold cross-validation
on the most discriminant features with the results presented in Table 12.20. Both fea-
ture selection (automatic and manual) and classification (using 10-fold cross-validation)
where applied separately, for each of the six cases presented in the mentioned table.

Emotional dimension CC MAE RMSE Best features Weight

Valence - data of first
experiment

0.79 0.61 0.87

Average note duration
Rhythmic variability
Staccato incidence

Time prevalence of koto
Variability of note duration

-0.04
-0.35
0.18
0.22
-0.50

Valence - data of second
experiment

0.62 0.94 1.18

Average time between attacks
Tempo

Maximum note duration
Variability of note duration

Variation of dynamics

-0.47
0.59
-0.06
0.04
0.25

Valence - data of third
experiment

0.41 1.00 1.25

Average note duration
Comb. streng. two strong. pulses

Minimum note duration
Strength strong. rhythmic pulse

-0.16
-0.25
-0.32
0.11

Arousal - data of first
experiment

0.85 0.64 0.85

Average note duration
Tempo

Maximum note duration
Most common pitch prevalence

-0.48
0.29
-0.25
0.29

Arousal - data of second
experiment

0.72 0.89 1.14

Average note duration
Average time between attacks

Tempo
Variation of dynamics

-0.09
-0.83
0.41
0.43

Arousal - data of third
experiment

0.54 0.94 1.20
Number of common pitches

Rel. streng. common mel. interval
Variation of dynamics

0.05
0.14
0.40

Table 12.20.: Results of 10-fold cross-validation for valence and arousal – melodic
analysis
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12.9.5. Discussion

An interesting aspect found through all these six cases of classification is that there
are many ”new” best features that did not appeared in the first experiment, in the first
two parts of the second experiment and in the first part of the third experiment. In the
case of the classification of valence with the data of the first experiment we have two
”new” features: rhythmic variability and time prevalence of koto. Four ”new” features
appeared in the classification of valence with data of second and third experiments:
maximum note duration, combined strength of the two strongest pulses, minimum note
duration and strength of the strongest rhythmic pulse. The classification of arousal with
the data of first, second and third experiments gave rise to another four ”new” features:
maximum note duration, most common pitch prevalence, number of common pitches
and relative strength of common melodic interval. Ten ”new” features out of 25 features
were used in six cases of classification. We also observed that there is variability on
the best features for each of the experiments. The conditions that vary across the
experiments are basically the style and the duration of the musical pieces. We believe
that this variability may be explained by the style differences.

After analysing the correlation coefficients of Table 12.20, we can conclude that the
melody does not reflect much of the emotional content expressed in the music anal-
ysed in the third experiment. The correlation coefficients of 0.41 for valence and of
0.54 for arousal are low. The same happens in the classification of valence with the
data of the second experiment, where we obtained a correlation coefficient of 0.62.
On the other side, we obtained high correlations coefficients (0.79 and 0.85) in the
classification of, respectively, valence and arousal with the data of the first experiment.
Other relatively high correlation coefficient (0.72) was obtained in the classification of
arousal with the data of the second experiment. The correlation coefficients also re-
vealed to be lower when using just the melody for most of the cases. These results
do not concur with our initial thought that the classification performance of the emo-
tional content could be improved if we were focused on the extraction of features from
only the melodic line. These results may indicate a lower relevance of the melody in
discriminating the emotional content of music. Therefore, we decided to keep consid-
ering the whole information about the music in our approach. The hypothesis that by
analysing solely the melodic line it would be easier to find features was not confirmed.
What was confirmed was that we gain from analysing the whole piece in order to find
emotionally-relevant features.
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13. Knowledge Base Systematization

Before proceeding to the calibration/validation of the EDME system, we decided to
systematize the knowledge base. This systematization consisted in making a careful
analysis through all the collected data (musical and emotional). This data was obtained
in three sequential experiments that were divided, in some cases, into several parts,
as was the case of the second and third experiments. The main purpose of the experi-
ments was to contribute to a better control of the emotions being expressed in music.

In order to build the knowledge base, we decided to collect the most discriminant fea-
tures in previous experiments (tables 12.4, 12.8, 12.10, 12.9, 12.15 and 12.20), in
literature (chapter 6) and in similar works (section 8.4). We obtained a group of 13
features for both valence and arousal. Similarly to what was done in the described
experiments we went through a stage of feature ranking followed by a stage of feature
selection and classification.

Musical feature CC - First
Experiment

CC-Sec.
Experiment

CC - Third
Experiment

Average Note duration
Average Time Between Attacks

Importance of Bass Register
Tempo

Note Density
Percussion Prevalence

Repeated Notes
Variation of Dynamics

Key mode
Spectral loudness

Spectral dissonance (Sethares)
Spectral sharpness (Ambres)

Spectral similarity

-0.52
-0.52
-0.03
-0.06
0.57
0.16
-0.24
0.01
-0.14
0.26
0.02
0.07
0.17

-0.50
-0.49
-0.09
0.63
0.43
0.06
0.1

0.05
-0.44

-
-
-
-

-0.50
-0.50
0.00

-
0.52
0.40
-0.04
0.00
0.00
0.17
0.28
0.09

-0.13

Table 13.1.: Correlation between features and valence

13.1. Feature Ranking

As a term of comparison, we decided to calculate the correlation coefficients for these
features with the data of each of the three experiments. Table 13.1 presents the correla-
tion between the features and valence. Table 13.2 presents the correlation between the
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features and arousal. We can highlight average note duration, average time between
attacks and note density as being the most relevant ones for both valence and arousal.
It is also important to mention the relevance of percussion prevalence to arousal.

Musical feature CC - First
Experiment

CC-Sec.
Experiment

CC - Third
Experiment

Average Note duration
Average Time Between Attacks

Importance of Bass Register
Tempo

Note Density
Percussion Prevalence

Repeated Notes
Variation of Dynamics

Key mode
Spectral loudness

Spectral dissonance (Sethares)
Spectral sharpness (Ambres)

Spectral similarity

-0.72
-0.74
-0.32
-0.40
0.68
0.53
-0.04
0.50
-0.40
0.03
-0.02
-0.14
0.18

-0.69
-0.56
0.13
0.56
0.64
0.20
0.32
0.00
-0.23

-
-
-
-

-0.26
-0.21
0.08

-
0.66
0.69
0.35
0.48
-0.14
0.53
0.72
0.44
-0.38

Table 13.2.: Correlation between features and arousal

13.2. Feature Selection and Classification

Emotional dimension CC MAE RMSE Best features Weight

Valence 0.78 0.66 0.88

Average Note Duration
Average Time Between Attacks

Tempo
Note Density

Variation of Dynamics
Key Mode

Spectral Sharpness
Spectral Loudness
Spectral Similarity

-0.61
-0.28
-0.33
0.45
-0.34
0.26
0.07
0.37
-0.14

Arousal 0.74 0.66 1.08

Average Note Duration
Average Time Between Attacks

Importance of Bass Register
Note Density

Variation of Dynamics
Spectral Dissonance

-0.49
-0.33
-0.18
0.07
0.35
-0.15

Table 13.3.: Results of 10-fold cross-validation for valence and arousal – first
experiment
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We proceeded to a phase of feature selection by using both manual selection and the
best first search method Witten et al. (1999) in the group of 13 features, in order to
find a smaller set of features features, always having in mind the compromise between
the number of features and the quality of the results. Using the data of the first exper-
iment, we obtained a group of nine features for valence and a group of six features for
arousal. We applied 10-fold cross-validation with these features with the results pre-
sented in Table 13.3. From the analysis of this table, we have average note duration
and note density with the highest weights in the classification of valence, and average
note duration, average time between attacks and variation of dynamics with the highest
weights in the classification of arousal. Using the data of the second experiment, we
obtained a group of six features for valence and a group of five features for arousal. We
applied 10-fold cross-validation with these features with the results presented in Table
13.4. From the analysis of this table, we have average note duration and tempo with
the highest weights in the classification of valence, and average note duration and note
density with the highest weights in the classification of arousal. Using the data of the
third experiment, we obtained a group of five features for valence and a group of three
features for arousal. We applied 10-fold cross-validation with these features with the
results presented in Table 13.5. From the analysis of this table, we have average note
duration and average time between attacks with the highest weights in the classifica-
tion of valence, and spectral dissonance with the highest weight in the classification of
arousal.

Emotional dimension CC MAE RMSE Best features Weight

Valence 0.68 0.89 1.09

Average Note Duration
Average Time Between Attacks

Importance of Bass Register
Tempo

Note Density
Key Mode

-0.26
-0.15
-0.19
0.47
0.14
-0.14

Arousal 0.81 0.74 0.96

Average Note Duration
Average Time Between Attacks

Tempo
Note Density

Repeated Notes

-0.93
0.22
0.33
0.54
0.36

Table 13.4.: Results of 10-fold cross-validation for valence and arousal – second
experiment
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Emotional dimension CC MAE RMSE Best features Weight

Valence 0.58 0.85 1.10

Average Note Duration
Average Time Between Attacks

Importance of Bass Register
Percussion Prevalence

Spectral Loudness

-0.39
-0.31
-0.18
0.12
0.10

Arousal 0.75 0.72 0.95
Percussion Prevalence
Spectral Dissonance

Spectral Similarity

0.13
0.38
-0.21

Table 13.5.: Results of 10-fold cross-validation for valence and arousal – third
experiment

We went further and joined the musical and emotional data (Figure 13.2.1) 43. We used,
again, both manual selection and the best first search method Witten et al. (1999) on
the group of 13 features. We obtained a group of seven features for valence and a group
of six features for arousal. We applied 10-fold cross-validation with these features with
the results presented in Table 13.6. From the analysis of this table, we have average
note duration and tempo with the highest weights in the classification of valence, and
tempo and note density with the highest weights in the classification of arousal. We
also calculated the percentage of correct predictions and obtained results of 79,0% for
valence and 84,5% for arousal. We considered a correct prediction the one that falls in
the interval of the mean value of the emotional answer, given by the listeners, plus or
minus the standard deviation of this answer.

Emotional dimension CC MAE RMSE Best features Weight

Valence 0.62 0.88 1.11

Average note duration
Average time between attacks
Importance of Bass Register

Tempo
Note Density

Variation of Dynamics
Key mode

-0.45
-0.21
-0.16
0.38
0.15
0.12
-0.09

Arousal 0.77 0.83 1.02

Average note duration
Tempo

Note density
Percussion prevalence

Repeated Notes
Variation of Dynamics

-0.20
0.39
0.58
0.15
0.18
0.14

Table 13.6.: Results of 10-fold cross-validation for valence and arousal after joining the
data of all the experiments

43As explained in section 8.2, we are using bidimensional plots for representing emotions, with the hori-
zontal axis representing valence and the vertical axis arousal. Each point represents the mean values
of valence and arousal obtained from the listeners for each piece of music.
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13.3. Discussion

For the first experiment (Table 13.3), average note duration, average time between
attacks, note density and variation of dynamics are common features used in the clas-
sification of the emotional dimensions. Note density has a positive influence as a result
of the positive weights; average note duration and average time between attacks have
a negative influence as a result of the negative weights. Then, for valence, we have
tempo, variation of dynamics and spectral similarity with a negative influence, and key
mode, spectral sharpness and spectral loudness with a positive influence; for arousal,
we have importance of bass register and spectral dissonance with a negative influence,
and variation of dynamics with a positive influence.

For the second experiment (Table 13.4), average note duration, average time between
attacks and tempo are common features used in the classification of the emotional
dimensions. Tempo and average time between attacks (for arousal) have a positive
influence as a result of the positive weights; average note duration and average time
between attacks (for valence) have a negative influence as a result of the negative
weights. Then, for valence, we have importance of bass register and key mode with a
negative influence, and note density with a positive influence; for arousal, we have note
density and repeated notes with a positive influence.

For the third experiment (Table 13.5), percussion prevalence is the only common fea-
ture used in the classification of the emotional dimensions. It has a positive influence
as a result of the positive weights. Then, for valence, we have average note duration,
average time between attacks and importance of bass register with a negative influ-
ence, and spectral loudness with a positive influence; for arousal, we have spectral
dissonance with a positive influence; and spectral similarity with a negative influence.

The results of the classification using the data of all the three experiments were pre-
sented in Table 13.6. After analysing this table, we observed that average note duration,
tempo, note density and variation of dynamics are common features used in the clas-
sification of the emotional dimensions. Average note duration has a negative influence
as a result of the negative weight; tempo, note density and variation of dynamics have
a positive influence as a result of the positive weights. Then, for valence, we have
average time between attacks, importance of bass register and key mode with a neg-
ative influence; for arousal, we have percussion prevalence and repeated notes with a
positive influence.

The analysis of the contents of these first four paragraphs of this section allows us to
make further observations. Average note duration and average time between attacks
are always used in the classification of valence with a negative influence as a results of
the negative weight.
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14. Evaluation of Classifiers’ Performance

Musical and emotional features are given to a classifier in order to obtain a model that
relates the musical and the emotional domains. We tested different models and meth-
ods of optimization available on Weka (Witten et al., 1999). We considered five cate-
gories of classifiers: function-like, instance-based, mixed, rule-based and tree-based.
Having in mind that each classifier intends to learn a mapping model, we explain each
one briefly. More details about each of the classifiers, models and algorithms following
referred can be obtained in (Witten and Frank, 2005).

1. Function-like. Gaussian Process regression uses gaussian functions to map an
input vector to an output vector. It allows the normalization and standardization of
input vector. Polynomial and gaussian support vector kernels can be used: nor-
malized poly kernel, poly kernel, pre-computed kernel matrix kernel, puk, RBF
kernel and string kernel . Isotonic regression uses the least square error method
to pick the best feature and estimate the isotonic regressive function. Linear re-
gression fits input to output vector by using a specific optimization, like least mean
square. It uses the Akaike criterion to select the best function. It allows feature
selection using M5 and greedy methods; and elimination of collinear features.
Least mean square is a steeper descent algorithm with a stochastic method of op-
timization. It uses the Linear regression method to develop least median square
regression functions. These functions are generated from random subsamples of
the input vector. This method selects the function with the lowest median square
error. Multilayer perceptron is a type of neural network that uses various layers
of non-linear functions. It trains data using backpropagation algorithm. Various
parameters can be defined: number of hidden layers, learning rate, momentum,
training time and others. Pace regression is an improvement of the ordinary least
squares that estimates the effect of each input feature and uses cluster analysis
to improve the estimation of a mapping function. It consists of a group of estima-
tors that can be of various types: empirical bayes, nested model selector, subset
selector, PACE2, PACE4, PACE6, ordinary least squares selection, AIC, BIC and
RIC. It is adequate when there are many features, because it determines very well
which ones to discard. Radial Basis Function method uses functions of this type
to find a mapping function. It uses the k-means clustering algorithm to provide the
basis functions and learns a linear regression on top of that. Symmetric multivari-
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ate gaussians are fit to the data from each cluster. It standardizes all the features
and uses k parameter to define the number of clusters being generated. Simple
linear regression uses ordinary least squares methods. It obtains the feature with
the lowest squared error. Sequential Minimization Optimization (SMO) regression
is a type of Support Vector Machine regression that uses the SMO algorithm for
training a support vector classifier. As with the method of Gaussian Process re-
gression it uses polynomial or gaussian kernels and allows the normalization and
standardization of input data.

2. Instance-based. Instance-based k-nearest neighbor uses a k-nearest neighbor
algorithm to find a solution from a space with part of the input vector. Four algo-
rithms can be used: ball tree, cover tree, KD tree and linear NN search. It allows
the selection of the best K value using cross-validation. Euclidean distance is
the distance metric being used. The number of neighbours is another parame-
ter to be defined. K* calculates an entropic distance between instances and the
variable to be classified. It uses a generalized distance function based on trans-
formations. LWL weights each instance using local distance functions. Weighed
instances are used to build a classifier that can be any of the other classifiers
here described. Like the Instance-based k-nearest neighbour it allows the used
of four algorithms of search for the nearest neighbour.

3. Mixed. These kinds of methods use various types of classifiers. Additive re-
gression is a boosting algorithm that is used to improve the performance of re-
gression classifiers. It uses two parameters: the shrinkage, which governs the
learning rate; and the maximum number of models to generate. Each iteration
fits a model to the residuals left by the classifier in the previous iteration. The
bagging method divides the input vector into various input vectors with a lower
dimension which are given to different classifiers. Ensemble selection uses the
average prediction of several classifiers to predict the output value. It allows the
use of five different types of algorithms to optimize the ensemble: forward selec-
tion, backward elimination, forward selection + backward elimination, best model
and build library only. Seven metrics can be used to optimize the chosen ensem-
ble: accuracy, RMSE, ROC, precision, recall, fscore and all the referred metrics.
Random Subspace divides input vector into different subspaces that are used by
different tree-type classifiers. Regression by discretization converts continuous
input vector into a discrete input vector that is used by any type of the classifiers
here described.

4. Rule-based. Conjunctive rule method establishes rules composed by conjunc-
tions of different variables of the input vector. This method calculates the infor-
mation gain of each variable and prunes the generated rule using Reduced Error
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Pruning (REP) or simple pre-pruning based on the number of variables of each
rule. Decision tables method uses a set of features and a set of labeled instances
to predict the output of new instances. It uses the root mean square error to evalu-
ate the performance of feature combinations used in the decision table. It applies
best-first search to evaluate the subsets of features and can use cross-validation
for evaluation. M5Rules build various trees using M5’. It obtains regression rules
using the best leaf from each tree.

5. Tree-based. Decision stump is a predictive model which uses a binary tree
with only one level. M5P builds trees’ models with the help of the divide and
conquer method. REP tree builds regression trees’ models using information
gain/variance reduction criterion. Trees are pruned using reduce-error.

With the systematization of the knowledge base, we were ready to evaluate the perfor-
mance of various classifiers in the classification of valence and arousal (Figure 14.0.1
and 14.0.2). A description of the acronyms of the classifiers presented in these figures
is available44. The performance was evaluated by applying training/test split (66%/34%)
and 10-fold cross-validation. Each classifier was evaluated with their default parame-
ters (Witten et al., 1999). We considered three metrics: correlation coefficient (CC),
mean absolute error (MAE) and root mean square error (RMSE).

44GP – Gaussian Process; IR – Isotonic Regression; LMS – Least Mean Square; LR – Linear Regression;
MP – Multilayer Perceptron; PR – Pace Regression; RBF – Radial Basis Function; SLR – Simple Linear
Regression; SMO – SVM Regression; IBK – Instance-Based K-Nearest Neighbor; KS – K Star; LWL
– Locally-weighted Learning; AR – Additive Regression; BAG – Bagging; ES – Ensemble Selection;
RSS – Random SubSpace; RD – Regression By Discretization; CR – Conjunctive Rule; DT – Decision
Table; M5R – M5 Rules; DS – Decision Stump; M5P – M5 Trees; REP – REP Tree.
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Figure 14.0.1.: Classifiers performance for valence

If we analyse carefully Figure 14.0.1, which presents the performance of various clas-
sifiers for valence, we conclude the following: support vector regression, least mean

122



squares and regression by discretization obtained the best performances in the first
experiment; linear regression, M5R and least mean squares obtained the best per-
formances in the second experiment; linear regression, pace regression and support
vector regression obtained the best performances in the third experiment. In general, if
we consider the mean of the results obtained in the three experiments, support vector
regression, pace regression and linear regression obtained the best performances.

If we analyse carefully Figure 14.0.2, which presents the performance of various clas-
sifiers for valence, we conclude the following: Gaussian process, multilayer perception
and support vector regression obtained the best performances in the first experiment;
least mean squares, additive regression and bagging obtained the best performances
in the second experiment; Gaussian process, support vector regression and linear re-
gression obtained the best performances in the third experiment. In general, if we
consider the mean of the results obtained in the three experiments, support vector re-
gression, Gaussian process and radial basis function obtained the best performances

An overall analysis allows us to conclude that, on the one hand, function-based mod-
els like support vector regression and Gaussian processes are the ones that perform
better; and on the other hand, rule-based and tree-based models are the ones that
perform worst. This may be explained by the robustness of the function-based models
and lack of it on the other models.
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Figure 14.0.2.: Classifiers performance for arousal
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15. Calibration and Validation

The system was calibrated/validated in two types of experiments: ratings and physi-
ological. Unlike previous experiments, in this new series of experiments we intended
to obtain experimental data in a controlled environment. Emotional data obtained from
these experiments was used to refine the knowledge base. Special attention was de-
voted to the identification of the weights of the musical features that compose it.

15.1. Rating Experiment

The rating experiment was developed with the objective of calibrating/validating the mu-
sical output of the system. We prepared a sample of music that, according to EDME’s
classification, covered all the quadrants of the bi-dimensional space. We used Superlab
software (Haxby et al., 1993) to prepare the experiments.

15.1.1. First Experiment

15.1.1.1. Objective

We intended to verify the accuracy of EDME in classifying valence and arousal by
using experimental data obtained in a controlled environment. This experiment aimed
to examine the fit of the expected locations of music to its observed locations. This
was done by classifying music through ratings made with naive listening subjects. This
experiment was also dedicated to the refinement of the knowledge base. We came up
with the hypothesis that a maximum of 13 features, which resulted from the phase of
knowledge base systematization (chapter 13), was enough to discriminate valence and
arousal of music. We intended to identify from this group of features a smaller subset
for each emotional dimension, as well as to identify the weights for the features.

15.1.1.2. Data

Data consists of the selected musical segments and obtained emotional answers from
the listeners.
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Music The 30 musical segments used in this experiment lasted between 5 and 30
seconds. These segments belonged to four different genres of music: 16 of classical
music, 4 of pop music, 7 of rock music and 3 of soundtrack.

Emotional Answers 30 listeners participated in this experiment: 20 male and 10
female aged between 18 and 23 years old (mean of 20, standard deviation of 2). They
had background in informatics and technology. We calculated the mean and standard
deviation for the emotional responses obtained in the questionnaire, as is shown in
Figures 12.5.1 and 12.5.2. Mean and standard deviations were computed first amongst
listeners, and then averaged over segments.

15.1.1.3. Method

We selected 40 MIDI files of western tonal music (classical, rock, pop and soundtrack
genres) from a large database of pre-composed music of various genres. These files
were selected based on its musical quality. Selected files went through the processes
of segmentation and feature extraction. From this, a group of 193 segments labeled
with musical features was obtained. The regression models built in the phase of knowl-
edge base systematization (chapter 13) were used to classify each segment with an
appropriate emotional label. From this group of 193 segments emotionally classified,
we selected 30 segments covering all the quadrants of the bi-dimensional emotional
space.

This experiment was carried out in a room with six desktops and respective head-
phones. Each user had one individual session that lasted, approximately, 10 minutes.
In each session the user was guided by five screens of instructions (in portuguese). The
first screen (Figure 15.1.1) gave general instructions about each session. It said that
each user has to listen to several musical segments and afterwards he had to evaluate
that segment in two dimensions represented in figures of the Self-Assessment Manikin
(described in section 8.3) (Bradley and Lang, 1994). One dimension was related to the
positive/negative effect of music that corresponded to valence. The other dimensions
were related to the calm/exciting effect of music that corresponds to arousal.
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Figure 15.1.1.: General instructions giving information about what each session con-
sists in

The second screen (Figure 15.1.2) gave detailed instructions about the dimension of
valence. It emphasized the differences in the mouth and eyebrows of each of the five
pictures of the Self-Assessment Manikin. Based on these differences it guided the user
on the selection of the circles below the pictures that best reflected his evaluation of the
valence of the listened music.
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Figure 15.1.2.: Instructions about the selection of the valence of music

The third screen (Figure 15.1.3) gave detailed instructions about the dimension of
arousal, emphasizing the differences in the eyes, eyebrows and ”lines of energy” of
each of the five pictures of the Self-Assessment Manikin. As for valence, based on
these differences it guided the user on the selection of the circles below the pictures
that best reflect his evaluation of the arousal of the listened music.
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Figure 15.1.3.: Instructions about the selection of the arousal of music

The fourth screen (Figure 15.1.4) gave instructions about the process of listening to the
music and skipping from one music piece to another one. It is possible to listen to the
piece one or more times. This all depends if the user selected the button to listen again
to the music again, or if he/she selected the other button which would guide the person
to answer the valence and arousal dimension of the music. These buttons were inside
a text box. This screen also shown to the user that he/she had a period of training that
consists in listening to five pieces of music and answering the corresponding values
of the emotional dimensions. After training, the user had to tag each of 30 musical
segments with the desired ratings for valence and arousal.
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Figure 15.1.4.: Screen that guides the user while listening to one music piece and skip-
ping to the next one

The fifth screen (Figure 15.1.5) appeared after listening to each music sample. In this
screen the user had to select the circle that best fitted the desired value for valence
(above in the Figure 15.1.5) and arousal (below in the Figure 15.1.5). There were nine
possible choices for each of the dimensions. After selecting the desired ratings for
each dimension, the user had to click in the button shown below the pictures, in order
to listen to other music.
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Figure 15.1.5.: Screen where the user rates valence and arousal of each music

The preparation of the musical material, getting the experimental data, the analysis of
both the music material and experimental data, and other stages followed the method
described in chapter 12 and presented in Figure 12.1.1.

15.1.1.4. Statistical Data

We calculated the mean and standard deviation for the emotional responses obtained
with the Self Assessment Manikin (Bradley and Lang, 1994, described in section 8.3),
as is shown in Figure 15.1.6, which presents the mean and standard deviation for
emotional responses obtained. Mean and standard deviations were computed first
amongst listeners, and then averaged over segments.
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Figure 15.1.6.: Mean and standard deviations of the emotional responses in the first
experiment of calibration/validation

In order to have a visual idea of the emotional distributions obtained with the listen-
ers’ answers and system’s answers we built the scatter chart for both. Figure 15.1.7
presents the scatter chart for the listeners’ answers, Figure 15.1.8 presents the scatter
chart for system’s answers. These charts allow us to see how the emotional space is
covered, but also to discover similarities and differences among them. The main vis-
ible difference is that the users do not tend to answer with values of valence close to
0, which sometimes happens with the system. The scatter chart of system’s answers
is similar to the ones obtained in web-based experiments (Figure 13.2.1). In order to
have numeric relations between the emotional distributions of listeners’ answers and
system’s answers, we have calculated the correlation coefficients, mean absolute error
and root mean square error between the listeners’ and system’s answers for each axis
(valence and arousal). We obtained, respectively, the values of 0.75, 0.81 and 0.97 for
valence and the values of 0.85, 0.86 and 1.08 for arousal.
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Figure 15.1.7.: Emotional distribution of listeners’ answers (points represent mean val-
ues for each piece of music)

Figure 15.1.8.: Emotional distribution of system’s answers (points represent values for
each piece of music)
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15.1.1.5. Results

In this experiment we identified the emotional relevance of 13 features. These features
resulted from a phase of systematization of the knowledge base (described in chapter
13) and were the ones considered the most discriminant in previous experiments (ta-
bles 12.4, 12.8, 12.10, 12.9, 12.15 and 12.20), in literature (chapter 6) and in similar
studies (section 8.4).

Feature Ranking We have calculated individually the correlation coefficient between
each feature and the two emotional dimensions. Table 15.1 presents the feature, its
description and the correlation coefficient between the feature and valence. Rhythmic
(e.g, average note duration and average time between attacks) and texture features
(e.g., spectral dissonance) are of particular relevance to valence, because of its high
values of correlation.

Musical feature Correlation
Coefficient

Average Note duration
Average Time Between Attacks

Importance of Bass Register
Tempo

Note Density
Percussion Prevalence

Repeated Notes
Variation of Dynamics

Key mode
Spectral loudness

Spectral dissonance (Sethares)
Spectral sharpness (Ambres)

Spectral similarity

-0.63
-0.78
0.40
0.50
0.54
0.44
0.41
0.27
-0.21
0.31
0.72
0.39

-0.47

Table 15.1.: Correlation between features and valence, in bold style we have the best
features of Table 15.4

Table 15.2 presents the feature, its description and the correlation coefficient between
the feature and arousal. Rhythmic (e.g., average note duration, average time between
attacks and tempo), melodic (e.g., repeated notes) and texture features (e.g., spectral
dissonance, spectral sharpness and spectral similarity) are of particular relevance to
arousal, because of its high values of correlation.
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Musical feature Correlation
Coefficient

Average Note duration
Average Time Between Attacks
Importance of Bass Register

Tempo
Note Density

Percussion Prevalence
Repeated Notes

Variation of Dynamics
Key mode

Spectral loudness
Spectral dissonance (Sethares)

Spectral sharpness (Ambres)
Spectral similarity

-0.55
-0.61
0.56
0.68
0.47
0.41
0.63
0.31
-0.10
0.53
0.62
0.62

-0.60

Table 15.2.: Correlation between features and arousal, in bold style we have the best
features of Table 15.4

As a matter of curiosity, we calculated the correlation among all the features and pre-
sented in Table 15.3 those with the highest correlations (>0.5 or <-0.5). There are
several features with high correlation, which indicates that there is a relatively high
colinearity among them.
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Musical feature Musical feature
Correlation
Coefficient

Average Note Duration

Average Time Between Attacks

Importance of Bass Register

Tempo

Note Density

Percussion Prevalence

Repeated Notes

Spectral Loudness

Spectral Sharpness (Ambres)

Average Time Between Attacks
Spectral Sharpnes (Ambres)

Spectral Similarity

Note Density
Percussion Prevalence

Spectral Loudness
Spectral Dissonance (Sethares)
Spectral Sharpness (Ambres)

Spectral Similarity

Percussion Prevalence
Repeated Notes

Spectral Dissonance (Sethares)

Repeated Notes

Spectral Dissonance (Sethares)

Repeated Notes
Spectral Dissonance (Sethares)
Spectral Sharpness (Ambres)

Spectral Similarity

Spectral Dissonance (Sethares)
Spectral Sharpness (Ambres)

Spectral Similarity

Spectral Sharpness (Ambres)

Spectral Similarity

0.81
-0.64
0.55

-0.53
-0.52
-0.51
-0.62
-0.73
0.54

0.58
0.59
0.69

0.51

0.51

0.7
0.82
0.52
-0.5

0.70
0.54
-0.51

0.72

-0.54

Table 15.3.: Correlation between features emotionally more discriminant

Feature Selection and Classification We applied the best first search method Wit-
ten et al. (1999) on the set of features to select those emotionally more discriminant.
We made a compromise between the number of features and the quality of the results.
Then, we applied 10-fold cross-validation on the set of features emotionally more dis-
criminant. The results are presented in Table 15.4. The features considered in this
table are in bold style in Tables 15.1 and 15.2.
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Emotional dimension CC MAE RMSE Best features Weight

Valence 0.85 0.61 0.74

Average Time Between Attacks
Tempo

Repeated Notes
Variation of Dynamics

Key Mode
Spectral Dissonance
Spectral Sharpness

-0.54
0.23
-0.16
0.17
-0.06
0.37
-0.37

Arousal 0.83 0.77 1.01

Average Note duration
Importance of Bass Register

Tempo
Note Density

Spectral Loudness
Spectral Dissonance

-0.19
0.37
0.37
0.33
0.14
0.06

Table 15.4.: Results of 10-fold cross-validation for valence and arousal – first experi-
ment of calibration/validation

15.1.1.6. Statistical Analysis

We proceeded to the statistical analysis of the system classification and listeners’ clas-
sification of the quadrants of the 30 musical pieces. We used SPSS Statistics software
to do this (Field, 2009). Kappa and Cramer’s V were used as statistical measures. The
results of the interrater analysis are Kappa = 0.688 with p < 0.0001. This measure of
agreement, while statistically significant, is substantially convincing (Landis and Koch,
1977). We obtained a value of 0.766 for Cramer’s V, which according to the literature45

shows us that the two variables (classification of the system and classification of the
listeners) are probably measuring the same concept.

15.1.1.7. Discussion

From the analysis of Tables 15.1 and 15.2 it seems that the variation (of some features),
as expressed by repeated notes, variation of dynamics and spectral (di)similarity, con-
tribute to an increase of both valence and arousal.

The high values of correlation of Table 15.3, allow us to make some conclusions with
a degree of confidence. The percussion line of a musical pieces seems to be more
important than the melodic, harmonic and bass lines in dictating the rhythm of the
music. The higher the prevalence of percussion, the lower the time between attacks. A
high presence of percussion and repeated notes increase dissonance of music.
45http://homes.chass.utoronto.ca/~josephf/pol242/LM-3A#Stage%20I:%20%20Phi
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After analysing Table 15.4 we came to some conclusions. In general, the set of fea-
tures for both valence and arousal included the features emotionally more discrimi-
nant when correlated alone with the respective emotional dimensions (Tables 15.1 and
15.2). From these results, it seems that the 13 considered features can discriminate
well both valence and arousal of each music. As a result, we can infer that the ex-
periments conducted via online have a high degree of reliability, despite the fact of
being made in a non-controlled context. The correlations coefficients of 0.85 and 0.83,
respectively, for the classification of valence and arousal are significant.

From the analysis of Table 15.4, we have average time between attacks, spectral disso-
nance and spectral sharpness with the highest weights in the classification of valence,
and importance of bass register, tempo and note density with the highest weights in the
classification of arousal. Tempo and spectral dissonance are common features used
in the classification of the emotional dimensions. Tempo and spectral dissonance have
a positive influence as a result of the positive weights. Then, for valence, we have av-
erage time between attacks, repeated notes, key mode and spectral sharpness with a
negative influence, and variation of dynamics with a positive influence; for arousal, we
have average note duration with a negative influence, and importance of bass register,
note density and spectral loudness with a positive influence.

We can compare the results of this experiment with the results obtained in the chapter
13 of knowledge base systematization, which used this same group of features in the
classification of emotional dimensions using experimental data obtained via web. Aver-
age time between attacks and tempo were always used in the classification of valence.
In the case of the classification of arousal there are no features that are always used.
Focusing only on the correlation coefficient, the classification of valence obtained the
following results: 0.78, 0.68, 0.58, 0.62 and 0.85, which give us a mean of 0.70 which
is a satisfactory value. Concerning the classification, we obtained the following corre-
lation coefficients: 0.74, 0.81, 0.75, 0.77 and 0.83, which gives a mean of 0.78 which
is also a satisfactory result.

Similar distributions to the ones presented in Figures 15.1.7 and 15.1.8 were obtained
in the three experiments carried out via online. This is another point that allow us to
have more confidence in the reliability of the experiments done online.

The statistical results using Kappa and Cramer’s V do not only confirm the reliability
of this calibration/validation study but also the reliability of the experiments conducted
with the help of online questionnaires (chapter 12). This is visible in the similarity of
the results obtained for the best features, as well as for the results of 10-fold cross-
validation.
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15.2. Physiological and Behavioral Experiment

This experiment intended to obtain additional data, in a controlled environment, to as-
sess the relationship between the emotional output (valence and arousal rating) of the
computational system for the emotional control (EDME) and the physiological response
to the sounds. As a result, the text of this section was authored by them. Emotional re-
actions to different sounds were evaluated by behavioral (pleasure and arousal rating),
and physiological measures (heart rate, skin conductance and facial electromyographic
-EMG).

15.2.1. Method

This experiment was led by Alba Grieco46 and Armando Oliveira47 at the Faculdade
de Psicologia e de Ciências da Educação. Our contribution was on the selection of
music fragments to be used in the experiment, which should cover all the quadrants
of the bi-dimensional emotional space according to EDME’s classification, and on the
analysis of the results in terms of the quality of EDME’s classification. The details of
the experiment are available in (Grieco and Oliveira, 2012).

15.2.1.1. Participants

A group of 27 (25 female) undergraduate subjects participated at the experiment.

15.2.1.2. Materials, Design and Procedure

Of the 48 sounds used in the experiment, 10 files were selected from the International
Affective Digitalized Sounds (IADS) and the remaining 38 files were pieces of music
selected from different musical styles (classical, soundtrack, pop and rock). The va-
lence and arousal of the IADS files were selected in order to cover the four quadrants
of the valence-arousal space. The same happened with the remaining 38 segments,
according to EDME’s classification.

Valence and arousal were obtained in a similar manner as in the previous experi-
ment, using the paper and pencil version of the affective rating system Self-Assessment
Manikin (SAM) (Lang, 1980).

Physiological data were acquired during 9s on each trial, corresponding to 500 ms of
registration preceding the sound presentation, then the registration during the presen-
tation of the sound (with duration varying from 4973 to 7580ms), and a registration

46http://vision.psy.unipd.it/grieco.htm
47https://woc.uc.pt/fpce/person/ppgeral.do?idpessoa=14
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performed after the sound was turned off, with variable duration (from 500 to 3500 ms).
After subjects evaluated valence and arousal a relaxing screen was presented for 15
seconds. The next sound was presented 2s after the starting-button was pressed. We
collected data of facial EMG, heart rate and galvanic skin response.

15.2.2. Results

The results obtained during the experiment were subject to analysis in three perspec-
tives. A detailed description can be consulted in (Grieco and Oliveira, 2012).

The first analysis focused on the variation of physiological measures evocated by sounds
from IADS with the emotional a priori valence and arousal (Bradley and Lang, 1999).
The aim of this analysis was to assess the quality of the results obtained in this experi-
ment.

The second analysis focused on the variation of physiological measures obtained with
the sounds from IADS with the emotional output from the EDME system. The analysis
concludes that mean CORR amplitude decrease with valence; ZIG activity modestly in-
crease with valence, BPM increase with valence, and the increase of BPM with arousal
depend on the valence. Finally, outcomes show that GSR values increase with arousal.

The third analysis focused on the variation of physiological measures with affective
EDME system’ emotional output (valence and arousal). Overall the outcomes shown
that the physiological responses elicited when listening to sounds correlates with a pri-
ori valence and arousal values, in agreements with Bradley and Lang (2000) results.
When the relation between physiological responses elicited when listening to elabo-
rates pieces of music (classical, pop, rock and soundtracks) and the emotional output
from EDME system is evaluated the results show that they are weakly correlated.
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Part IV.

Conclusion
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16. Discussion

This thesis was a journey with different and complementary stages. All began with a
motivation very close to the statement presented in the beginning of the thesis “Music
can change the world because it can change people.”, whose author was Bono (U2).
The idea of joining two multidimensional worlds (music and emotions) with a very sig-
nificant impact in the society gave the ”fuel” for the beginning of the thesis. This ”fuel”
led to the exploration of these two worlds. Different works in the areas of Music Psy-
chology, Music Computing and Affective Computing were studied in order to discover
possible contributions to the state of the art in these areas, as well as to have a clear
idea of what the aim of the thesis would be.

16.1. State of the art

We have found many studies on the area of Music Psychology that helped us in bridg-
ing the gap between the two worlds. The empirical results of these works contributed
to the development of the first knowledge base. This knowledge base as was said is
composed by regression models that relate musical features the emotional dimensions
of valence and arousal. We found particularly practical the model of emotions repre-
sentation proposed by Russell (1989). Because musical features were represented
numerically, a numeric representation of emotions would be desirable. This was made
possible with the Russell’s model.

The works of Music Computing that were studied were particular useful to the defi-
nition of the architecture of the EDME. Different tasks of Music Computing led to the
development of the modules of EDME: segmentation, features extraction, classifica-
tion, selection, transformation, sequencing and synthesis. The discovery of third party
software that could facilitate the accomplishment of the objective of this thesis occu-
pied a relevant portion of time. The module of feature extraction was the one that
gained more from using third party software (McKay and Fujinaga, 2006; Eerola and
Toiviainen, 2004; Sorensen and Brown, 2000; Lartillot and Toiviainen, 2007; Cabrera,
1999).

The works on Affective Computing which we studied were useful in making a clear vi-
sion of what was already done in order to accomplish the objective proposed in this
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thesis. There are four proposed approaches in order to accomplish it. The works
based on the automatic composition are generally conceived for a bounded range
of musical styles, and sometimes do not tackle the whole composition process. We
desired to have the flexibility of producing complete music pieces in a wide range of
styles, so this approach was not very suitable. The studies grounded on classification
of pre-composed music and subsequent selection were scalable, but the quality of their
answers is very dependent of the original music base. This one is, actually, a finite
database, and thus cannot cover entirely the whole emotional spectrum. Therefore,
one has to expect to select pieces that do not match exactly the intended emotion. The
approach based on transformation has the disadvantage of producing outputs with low
quality when the original music has characteristics very different from the desired ones.
None of these three approaches, alone, gives an entirely satisfactory response to our
requirements. The fourth approach consists in the hybrid combination of the former
ones in order to overcome some of their weaknesses. For the purpose of our work,
we found especially promising a particular hybrid approach that consists in combining
classification/selection with transformation. In fact, the transformation can improve the
classification/selection result when there is not a solution in the music base close to
the emotional specification. On the other hand, as the selection tends to produce an
output with characteristics close to the desired ones, the transformation assumes less
risks of degrading music quality, because the adjustments needed to get the music
characteristics fit the emotional specification are limited.

16.2. Experiments

After having a clear idea of the works more relevant to this thesis, from the areas of
Music Psychology, Music Computing and Affective Computing, and after doing a first
version of EDME ready to be used, we proceeded to conduct some experiments with
the objective of improving the knowledge base, and more properly to obtain experimen-
tal data that could allow us to relate emotional and music domains with the help of the
Weka software (Witten et al., 1999). We carried out three experiments, spread in dif-
ferent parts, in some cases. The first experiment consisted in analysing and selecting
the first set of (MIDI) features emotionally relevant. The second experiment was an
extension of the first experiment, which allowed used to analyse and select another set
of features from a bigger group of features. The number of listeners and the number
of music files were other variables that were extended. This second experiment also
consisted in the analysing the first set of audio features with emotional impact, particu-
larly the selection of the instruments samples used in the synthesis of the MIDI music.
Another part of this experiment consisted in a preliminary evaluation of the selection
and transformation modules. The third experiment also consisted in trying to find the
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set of (MIDI and audio) features with the most impact of the emotional dimensions. This
experiment also contributed to the verification of the effectiveness of the algorithms of
transformation. We were particularly successful in this aspect, as was observed from
the analysis of the results of this experiment. Tempo, pitch register, musical scales,
instruments and articulation all have a degree of importance in shifting the emotional
content of music.

16.3. Systematization and Evaluation

By the end of the experiments we felt ready to two other stages needed before pro-
ceeding to the phase of calibration/validation of the EDME system. The first stage
consisted in systematizing the knowledge base. We analysed all the results obtained
in the three experiments and made a knowledge base that best bridged the semantic
gap between the emotional and musical domains. The other stage consisted in making
an extensive evaluation of different types of classifiers. After making a systematization
of a small group of features emotionally relevant we were ready to make this evaluation.
Function-based classifiers (Witten and Frank, 2005) were the ones that achieved the
best results. From this group of classifiers we highlight the SVM regression classifier,
because of its better results.

16.4. Calibration/Validation

The last experimental stage consisted in calibrating/validating EDME. This stage was
divided in two experiments. The first experiment collected data with questionnaires
based on Self-Assessment Manikin (Bradley and Lang, 1994) that were developed in
the Superlab software (Haxby et al., 1993). Unlike previous web-based experiments, in
this first experiment of calibration/validation we intended to obtained experimental data
in a controlled environment. We intended to verify the accuracy of EDME in classifying
valence and arousal by using experimental data obtained in a controlled environment.
From the results of these experiments, it seems that the 13 considered features can
discriminate well both valence and arousal of each music. As a result, we inferred that
the experiments conducted via online had a high degree of reliability, despite the fact of
being done in a non-controlled context. We also obtained similar distributions between
the ones obtained from the emotional answers of the web-based experiments and the
ones obtained in the controlled context. This is another point that allowed us to have
more confidence in the reliability of the experiments done online. The statistical results
using Kappa and Cramer’s V also confirmed the reliability of the first experiment of cal-
ibration/validation and of the experiments made with the help of online questionnaires.
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At a later stage, we assessed the experienced emotions in listeners by collecting psy-
chophysiological data and by recording facial expressions.

The second experiment called ”physiological and behavioral” led us to the conclusion
that the emotional output from EDME system is weakly correlated. However, although
the effects were not significant (with p0.050) the data show that corrugator muscle
activity increase with arousal; heart rate measure in beats per minute increase with
arousal, and galvanic skin response increase with both valence and arousal. Only for
zigomatic muscle activity there is a significant increase with both, valence and arousal.

16.5. Application

In the meantime we also dedicated some time to the development of an installation
that could test the interactive abilities of EDME (Ventura et al., 2009). At the core of
the installation there was an affective computer system that selected appropriate music
and images to express its emotional state. Music was selected using EDME, images
were selected with another engine. The installation allowed people to experience and
influence the emotional behavior the affective computer system. We conducted two
experiments where people were able to ascribe emotions to the the system in a natural
way. From the preliminary results, we carefully concluded that both music and images
were effective and important in transmitting the emotional state of the affective com-
puter system. Extended experiments would be needed to have clear certainty of this
conclusion.

16.6. Contributions

As a whole we can conclude that EDME is a music production system that expresses
the desired emotions. From its implementation resulted several advances to the state-
of-the-art. It implements algorithms that control emotional content of music in differ-
ent levels: segmentation, classification, selection and transformation. The knowledge
base, one of the auxiliary structures, systematizes relations between emotions and
musical features. It is also composed by an interface that allows different types of emo-
tional representation. The flexibility of the architecture and the use of parameterizable
structures widen the areas of application of EDME. The system was already applied
in an affective installation, but we also intend to demonstrate the usability of EDME in
healthcare and soundtrack generation, which leads us to the next chapter.
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17. Future Work

17.1. Update of the transformation module

We should design new algorithms in order to have one algorithm for each of the features
used in the classification module. With these algorithms developed, a new experiment
shall be designed to test their effectiveness in approximating the emotional content of
music to the desired emotion of the listeners. The final stage of this process shall
test the effectiveness of the regression models used by the classification module in the
transformation. By doing this, the transformation module will be ready to be used by
EDME in the way we designed it.

17.2. Soundtrack generation

One of the most promising fields of application of EDME is the production of sound-
tracks for narrative contexts. Music has become an integral part of the emotional,
immersive gaming experience. One can envisage EDME managing the musical com-
ponent of a computer game, adapting dynamically to the game conditions by matching
music to action in real time. Soundtrack composition for movies can also become
simpler: given a script annotated with the emotions, the system may produce music
accordingly. We intend to demonstrate the applicability of our system in such contexts
by integrating it with EmoTag (Francisco and Hervas, 2007), a system developed by the
Instituto de Tecnología del Conocimiento team that makes automated mark up of emo-
tional information in texts. This system is capable, for example, to annotate narrative
texts like scripts with information about the emotions derived from the text. We intend
to develop a prototype that will integrate both systems in order to be possible to demon-
strate the feasibility of automatically producing music that is emotionally consistent with
a given text.

17.3. Healthcare

The application of systems like ours has been done in the healthcare domain (Wing-
stedt et al., 2005). We intend to demonstrate the usability of EDME in a healthcare
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context. EDME will be tested with patients of the paediatrics service of the Hospital de
Santo André de Leiria (HSAL). The several musicians that use this service do not have
an automatic method to help in the selection of music for each healthcare situation.
The use of EDME can be very important to overcome this problem and to promote the
use of music as a medical tool in the whole hospital. It is a precious tool not only for
patients, but also for the family, doctors and nurses by promoting a desired emotional
ambiance.

The interface of EDME is prepared to be used by professionals of the HSAL in several
experiments. In each experiment, the system reproduces in an audio format song-like
structures formed by musical segments selected from a personalized database of pre-
composed music. Experiments are focused in the analysis of the amount of deviation
between the expected and obtained emotional effects on patients.

17.4. Emotionally-Driven Music Composition

Despite the fact of not using a module of music composition in our thesis we already
did a review of the works developed in this area. Some of this review was already
presented where we described the fourth approaches being used to accomplish the
objective of this thesis. Another was presented in works done by me 48 (from pages 60
to 68) and Ivana Matic 49. The work developed by Ivana Matic was grounded on the
EDME system. She talked about composing melody that suits well to desired emotion
using Neural Networks, Cellular Automata, tables with specific values and rules. After
that, rhythm generation was also discussed.

48http://student.dei.uc.pt/~apsimoes/PhD/PhDThesisProposal.pdf
49http://eden.dei.uc.pt/~apsimoes/Automatic_composition.pdf
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18. Accompanying CD-ROM

The source code of the system developed in this thesis has been put on a supplemen-
tary CD-ROM. Videos demonstrating the offline and online stages of our system is also
part of the CD-ROM.
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A. GLOSSARY

A.1. Music

MUSICAL FEATURE DEFINITION

Tonality Western tonal music rules

Rhythm Variation of the duration of sounds over time

Melody Series of linear events (pitches) or a succession

Harmony Study of pitch simultaneity (e.g., chords)

Chord Aggregate of musical pitches sounded simultaneously

Dynamics Softness or loudness of a sound or note

Timbre Perception of sound harmonics and onsets (attack transients)

Loudness Sound pressure change (amplitude or intensity)

Pitch Sound wave’s frequency

Pitch range Difference between highest and lowest pitches

Pitch variation Amount of pitch change in the melody

Key Pitch class from which the scale is built

Interval Pitch step

Melodic contour/motion Up and down pattern of pitch changes

Meter Regular alternation of strong and weak beats in twos or threes, at many hierarchical temporal levels

Mode Subset ot pitches used in a song

Articulation Performance technique

Legato Articulation used to play notes smoothly

Staccato Articulation used to play notes distinctly

Vibrato Quickly up and down of the pitch of notes

Attack/Note onset Beginning of a musical note or other sound

Note Musical sign used to represent the duration and pitch of sound

Texture Overall sound (color) of a piece of music

Timing Adjust the time of notes/beats to sound well
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A.2. Description of music features

FEATURE DESCRIPTION

ADSR envelope Curve of Attack, Decay, Sustain and Release representative of the

sound energy

Amount of arpeggiation Fraction of horizontal intervals that are repeated notes, minor thirds,

major thirds, perfect fifths, minor sevenths, major sevenths, octaves,

minor tenths

Average duration accent Average duration accent of the notes. It uses two variables. Tau

variable represents saturation duration, which is proportional to the

duration of the echoic store. Accent variable covers the minimum

discriminable duration

Average melodic complexity Expectancy-based model of melodic complexity based either on pitch

or rhythm-related components or on an optimal combination of them

together. It focus on tonal and accent coherence, and to the amount of

pitch skips and contour self-similarity the melody exhibits

Average Note Duration Average duration of notes in seconds

Average Note to Note Dynamics Change Average change of loudness from one note to the next note in the same

channel

Average Number of Independent Voices Average number of different channels in which notes have sounded

simultaneously. Rests are not included in this calculation

Average Time Between Attacks Average time in seconds between Note On events (irregardless of

channel)

Brass fraction Fraction of Note Ons belonging to brass patches (including

saxophones) (General MIDI patches 57 to 68)

Brightness (>1500Hz) Amount of sound energy above the frequency of 1500 Hz

Brightness (>4000Hz) Amount of sound energy above the frequency of 4000 Hz

Brightness (>400Hz) Amount of sound energy above the frequency of 400 Hz

Climax position Represents where the climax of the melody starts. The value is a

percentage of the complete melody. The exact formula is the sum of the

rhythm values of all notes prior to the climax, divided by the sum of all

the rhythm values in the melody

Climax strength Inverse of the count of the number of notes sharing the highest pitch

Consecutive identical pitches Count of intervals whose size is 0 semitones

Distinct rhythm count Number of rhythms that appear at least once

Dominant spread Largest number of consecutive pitch classes separated by perfect 5ths

that accounted for at least 9% each of the notes

Electric Guitar Fraction Fraction of Note Ons belonging to electric guitar patches (General MIDI

patches 27 to 32)
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Electric Instrument Fraction Fraction of Note Ons belonging to electric (non- “synth”) patches

(General MIDI patches 5, 6, 17, 19, 27 to 32, 34 to 40)

Energy The global energy of the signal x is computed simply by taking the root

average of the square of the amplitude, also called root-mean-square

Harmonic mode Estimation of the modality, i.e. major vs. minor, returned as a numerical

value between -1 and +1

Importance of High Register Fraction of Note Ons between MIDI pitches 73 and 127

Importance of Middle Register Fraction of Note Ons between MIDI pitches 55 and 72

Importance of loudest voice Difference between the average loudness of the loudest channel and

the average loudness of the other channels that contain at least one

note divided by 64

Inharmonicity Amount of partials that are not multiples of the fundamental frequency,

as a value between 0 and 1. More precisely, the inharmonicity

considered here takes into account the amount of energy outside the

ideal harmonic series

Interval strong. pitch classes Absolute value of the difference between the pitches of the two most

common pitch classes

Key Returns the key according to the Krumhansl-Kessler algorithm. C major

= 1, C# major = 2, ... c minor = 13, c# minor = 14, ...

Key Mode Estimates the key mode (1=major, 2=minor) based on

Krumhansl-Kessler key finding algorithm and pitch distribution

Loudness Loudness is the subjective impression of the intensity of a sound,

measured in sones. Specific loudness is the loudness attributable to an

auditory filter. The specific loudness function extends from the low

frequency filters to the high frequency filters

Melodic fifths Fraction of melodic intervals that are perfect fifths

Melodic Tritones Fraction of melodic intervals that are tritones

Most Common Melodic Interval

Prevalence

Fraction of melodic intervals that belong to the most common interval

Most common pitch class prevalence Fraction of Note Ons corresponding to the most common pitch class

Note Density Average number of notes per second

Note prevalence english horn Number of notes played using the MIDI patch corresponding to english

horn divided by the total number of Note Ons in the piece

Note prevalence flute Number of notes played using the MIDI patch corresponding to flute

divided by the total number of Note Ons in the piece

Note Prevalence Fretless Bass Number of notes played using the MIDI patch corresponding to fretless

bass divided by the total number of Note Ons

Note Prevalence Muted Guitar Number of notes played using the MIDI patch corresponding to muted

guitar divided by the total number of Note Ons

Note prevalence orchestra hit Number of notes played using the MIDI patch corresponding to

orchestra hit by the total number of Note Ons in the piece
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Note Prevalence Steel Drums Number of notes played using the MIDI patch corresponding to steel

drums divided by the total number of Note Ons

Note Prevalence Timpani Number of notes played using the MIDI patch corresponding to timpani

divided by the total number of Note Ons in the piece

Note prevalence of bass drum Number of notes played using the MIDI patch corresponding to snare

drum divided by the total number of Note Ons in the piece

Note prevalence of closed hi-hat Number of notes played using the MIDI patch corresponding to closed

hi-hat divided by the total number of Note Ons in the piece

Note prevalence of snare drum Number of notes played using the MIDI patch corresponding to snare

drum divided by the total number of Note Ons in the piece

Number of relatively strong pulses Number of beat peaks with frequencies at least 30% as high as the

magnitude of the bin with the highest magnitude

Number of Unpitched Instruments Total number of MIDI Percussion Key Map patches that were used to

play at least one note

Overall dynamic range The maximum loudness minus the minimum loudness value

Percussion Prevalence Total number of Note Ons belonging to percussion patches divided by

total number of Note Ons in the recording

Pitch variety Number of pitches used at least once

Polyrhythms Number of beat peaks with frequencies at least 30% of the highest

magnitude whose bin labels are not integer multiples or factors (using

only multipliers of 1, 2, 3, 4, 6 and 8) (with an accepted error of +/- 3

bins) of the bin label of the peak with the highest magnitude. This

number is then divided by the total number of beat bins with

frequencies over 30% of the highest magnitude

Primary Register Average MIDI pitch

Range of Highest Line Difference between the highest note and the lowest note played in the

channel with the highest average pitch divided by the difference

between the highest note and the lowest note in the piece

Register The octave position

Relative Strength Common Intervals Fraction of melodic intervals that belong to the second most common

interval divided by the fraction of melodic intervals belonging to the

most common interval

Relative Strength of Top Pitch Classes The magnitude of the 2nd most common pitch class divided by the

magnitude of the most common pitch class

Relative Strength of Top Pitches The magnitude of the 2nd most common pitch divided by the magnitude

of the most common pitch

Repeated notes Fraction of notes that are repeated
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Repeated pitch density Ratio between the count of consecutive notes of the same pitch and the

count of all note to next note intervals

Rhythmic looseness Average width of beat histogram peaks (in beats per minute). Width is

measured for all peaks with frequencies at least 30% as high as the

highest peak, and is defined by the distance between the points on the

peak in question that are 30% of the height of the peak

Rhythmic variety Ratio between the number of distinct rhythms and the total number of

notes

Same direction interval Count of consecutive intervals in the same direction

Saxophone Fraction Fraction of Note Ons belonging to saxophone patches (General MIDI

patches 65 to 68)

Spectral dissonance (H&K) When applied to the compact spectrum, this feature measures the

noisiness of the sound; when applied to the tonal components, it comes

closer to measuring musical dissonance. This feature normalizes the

results, and uses linear intensity

Spectral dissonance (Sethares) When applied to the compact spectrum, this feature measures the

noisiness of the sound; when applied to the tonal components, it comes

closer to measuring musical dissonance. This feature does not

normalize the results, and uses decibels

Spectral sharpness (Ambres) Sharpness is a subjective measure of sound on a scale extending from

dull to sharp. Aures’ sharpness formula is a revision of Z&F’s, so as to

model the positive influence that loudness has on sharpness. Aures

also uses a different g(z) function. Aures’ formula is more sensitive to

loudness than Zwickler formula

Spectral sharpness (Zwickler) Sharpness is a subjective measure of sound on a scale extending from

dull to sharp. Zwicker & Fastl’s sharpness is calculated in the following

manner - where N is loudness, N’(z) is specific loudness, z is the

critical-band rate, and g(z) is a weighting function that emphasizes high

frequencies

Spectral similarity Spectral similarity calculates a similarity matrix with the help of MIR

Toolbox in order to find the difference between consecutive frames of

the frequency spectrum. It reflects the smoothness of the music (the

changes of features along the music)

Spectral texture MFCC 2 Amount of energy presented on the second out of thirteen

Mel-frequency cepstral coefficients

Spectral Texture MFCC 4 Amount of energy presented on the fourth out of thirteen Mel-frequency

cepstral coefficients

Spectral Texture MFCC 6 Amount of energy presented on the sixth out of thirteen Mel-frequency

cepstral coefficients

Spectral Texture MFCC 7 Amount of energy presented on the seventh out of thirteen

Mel-frequency cepstral coefficients
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Staccato incidence Number of notes with durations of less than a 10th of a second divided

by the total number of notes in the recording

Stepwise Motion Fraction of melodic intervals that corresponded to a minor or major third

Strength of Strongest Rhythmic Pulse Magnitude of the beat bin with the highest magnitude

Strength of two strong. rhythmic pulses The magnitude of the higher (in terms of magnitude) of the two beat

bins corresponding to the peaks with the highest magnitude divided by

the magnitude of the lower.

Strength sec. strong. rhythmic pulse Magnitude of the beat bin of the peak with the second highest

magnitude

String Ensemble Fraction Fraction of Note Ons belonging to orchestral string ensemble patches

(General MIDI patches 49 to 52)

Strongest rhythmic pulse Bin label of the beat bin with the highest magnitude

Tempo Tempo in beats per minute

Timbral width The width of the peak of the specific loudness spectrum is called the

timbral width

Time Prevalence Marimba The total time in seconds during which marimba was sounding notes

divided by the total length in seconds of the piece

Tonal dissonance (H&K) Tonal dissonance differs in that it only takes into account components of

the spectrum that relate to tone. Tonalness is defined as “the degree to

which a sound has the sensory properties of a single complex tone

such as a speech vowel. As intonation gets increasingly worse,

tonalness decreases.

Tonal dissonance (Sethares) Tonal dissonance only takes into account components of the spectrum

that relate to tone. Tonalness is defined as “the degree to which a

sound has the sensory properties of a single complex tone such as a

speech vowel. As intonation gets increasingly worse, tonalness

decreases.

Variability of note prevalence of pitched

instruments

Standard deviation of the fraction of notes played by each General MIDI

instrument that is used to play at least one note

Variab. prevalence unpitched

instruments

Standard deviation of the fraction of notes played by each MIDI

Percussion Key Map instrument that is used to play at least one note

Variability of Note Duration Standard deviation of note durations in seconds

Variability of Number of Independent

Voices

Standard deviation of number of different channels in which notes have

sounded simultaneously. Rests are not included in this calculation

Variability of time between attacks Standard deviation of the times, in seconds, between Note On events

(irregardless of channel)

Variation of Dynamics Standard deviation of loudness levels of all notes

Variation of Dynamics of Each Voice The average of the standard deviations of loudness levels within each

channel that contains at least one note

Volume Volume is a subjective measure of sound on a scale extending from

small to large. Large volume is associated with low frequency, high

intensity, and broad bandwidth
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A.3. Affective Science

TERMS DEFINITION

Happiness Affective state characterized by feelings of enjoyment, pleasure, and satisfaction

Sadness Affective state characterized by feelings of gloominess

Anger Affective state characterized by a psychophysiological response to pain, perceived suffering or distress

Fear Affective state characterized by a response to impending danger, that is tied to anxiety

Tension Affective state characterized by physiological or mental stress

Relaxation Affective state characterized by the absence of muscular tension and a non-active mind

A.4. Acronyms

ACRONYM DEFINITION

ADSR Attack, Decay, Sustain, Release

BPM Beats Per Minute

BVP Blood Volume Pulse

CBR Case-Based Reasoning

CC Correlation Coefficient

EMG Electromyography

GSR Galvanic Skin Response

LPC Linear Predictive Coding

MAE Mean Absolute Error

MFCC Mel Frequency Cepstral Coefficient

MIDI Musical Instrument Digital Interface

RMS Root Mean Square

RMSE Root Mean Square Error

TPC Tonal Pitch Class

155



Bibliography

Allamanche, E., Herre, J., Hellmuth, O., Fröba, B., Kastner, T., Cremer, M., 2001. Content-
based identification of audio material using mpeg-7 low level description. In: International
Symposium on Music Information Retrieval (ISMIR).
URL http://ismir2001.ismir.net/pdf/allamanche.pdf

Amatriain, X., Bonada, J., Loscos, À., Arcos, J., Verfaille, V., 2003. Content-based transforma-
tions. Journal of New Music Research 32 (1), 95–114.

Arcos, J., de Mantaras, R., 2000. Combining ai techniques to perform expressive music by
imitation. In: AAAI Workshop: Artificial Intelligence and Music. pp. 41–47.
URL http://citeseer.ist.psu.edu/cache/papers/cs/14277/

http:zSzzSzwww.iiia.csic.eszSz~arcoszSzFuzzySaxex.pdf/

combining-ai-techniques-to.pdf

Baraldi, F., 2003. An experiment on the communication of expressivity in piano improvisation
and a study toward an interdisciplinary research framework of ethnomusicology and cognitive
psychology of music. Tech. rep., Paris V University.
URL http://recherche.ircam.fr/equipes/repmus/MemoiresATIAM0203/

Bonini.pdf

Barrington, L., Lyons, M. J., Diegmann, D., Abe, S., 2006. Ambient display using musical
effects. In: International conference on Intelligent User Interfaces (IUI). Vol. 11. ACM Press,
New York, NY, USA, pp. 372–374.
URL http://van.ucsd.edu/pubs/Barrington-AffectiveEffects-IUI2006.

pdfhttp://van.ucsd.edu/pubs/AffectiveEffects.ppt

Bartneck, C., 2001. How convincing is mr. data’s smile: Affective expressions of machines.
User Modeling and User-Adapted Interaction 11 (4), 279–295.
URL http://www.bartneck.de/publications/2001/

howConvincingIsMrDatasSmile/bartneckUMUAI2001.pdfhttp://citeseer.

ist.psu.edu/cache/papers/cs/20773/http:zSzzSzwww.bartneck.

dezSzworkzSzaem.pdf/bartneck00affective.pdf

Baum, D., 2006. Emomusic–classifying music according to emotion. In: Workshop on Data
Analysis. Citeseer.
URL http://www.ifs.tuwien.ac.at/mir/pub/baum_wsom06.pdf

Berg, J., Wingstedt, J., 2005. Relations between selected musical parameters and expressed
emotions - extending the potential of computer entertainment. In: International Conference
on Advances in Computer Entertainment. p. 8.
URL http://sis.cms.livjm.ac.uk/library/AAA-GAMES-Conferences/

ACM-ACE/ACE2005/FP3-8%20(a105).pdf

156

http://ismir2001.ismir.net/pdf/allamanche.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/14277/http:zSzzSzwww.iiia.csic.eszSz~arcoszSzFuzzySaxex.pdf/combining-ai-techniques-to.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/14277/http:zSzzSzwww.iiia.csic.eszSz~arcoszSzFuzzySaxex.pdf/combining-ai-techniques-to.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/14277/http:zSzzSzwww.iiia.csic.eszSz~arcoszSzFuzzySaxex.pdf/combining-ai-techniques-to.pdf
http://recherche.ircam.fr/equipes/repmus/MemoiresATIAM0203/Bonini.pdf
http://recherche.ircam.fr/equipes/repmus/MemoiresATIAM0203/Bonini.pdf
http://www.ifs.tuwien.ac.at/mir/pub/baum_wsom06.pdf
http://sis.cms.livjm.ac.uk/library/AAA-GAMES-Conferences/ACM-ACE/ACE2005/FP3-8%20(a105).pdf
http://sis.cms.livjm.ac.uk/library/AAA-GAMES-Conferences/ACM-ACE/ACE2005/FP3-8%20(a105).pdf


Birchfield, D., 2003. Generative model for the creation of musical emotion, meaning, and form.
In: ACM SIGMM Workshop On Experiential Telepresence. ACM Press New York, NY, USA,
pp. 99–104.
URL http://ame2.asu.edu/faculty/dab/research/publications/ETP03_

Birchfield.pdf

Bod, R., 2002. Memory-based models of melodic analysis: Challenging the gestalt principles.
Journal of New Music Research 31 (1), 27–36.

Bradley, M., Lang, P., 1994. Measuring emotion: the self-assessment manikin and the semantic
differential. Journal of behavior therapy and experimental psychiatry 25 (1), 49–59.

Bradley, M., Lang, P., 1999. International affective digitized sounds (iads): Stimuli. Instruction
Manual and Affective Ratings.

Bradley, M., Lang, P., 2000. Affective reactions to acoustic stimuli. Psychophysiology 37 (02),
204–215.
URL http://www.stanford.edu/~kateri/Becky/PDFs/Bradley%202000.pdf

Bresin, R., Friberg, A., 2000. Emotional coloring of computer-controlled music performances.
Computer Music Journal 24 (4), 44–63.
URL http://www.speech.kth.se/prod/publications/files/724.pdf

Busso, C., Deng, Z., Yildirim, S., Bulut, M., Lee, C., Kazemzadeh, A., Lee, S., Neumann, U.,
Narayanan, S., 2004. Analysis of emotion recognition using facial expressions, speech and
multimodal information. In: Proceedings of the 6th international conference on Multimodal
interfaces. ACM, pp. 205–211.

Cabrera, D., 1999. Psysound: A computer program for psychoacoustical analysis. In: Australian
Acoustical Society Conference. Vol. 24. pp. 47–54.
URL http://members.tripod.com/~densil/software/PsySound.PDF

Cambouropoulos, E., 1997. Music, Gestalt, and Computing-Studies in Cognitive and System-
atic Musicology. Ch. Musical Rhythm: A Formal Model for Determining Local Boundaries,
Accents and Metre in a Melodic Surface, pp. 277–293.

Cambouropoulos, E., 1998. Towards a general computational theory of musical structure. Ph.D.
thesis, University of Edinburgh.

Carvalho, V., Chao, C., 2005. Sentiment retrieval in popular music based on sequential
learning. In: SIGIR: Conference on Research and Development in Information Retrieval.
Vol. 28.
URL http://www.andrew.cmu.edu/user/cchao/projects/carvalho_chao_

sigir05.pdf

Casella, P., Paiva, A., 2001. Magenta: An architecture for real time automatic composition
of background music. In: International Workshop on Intelligent Virtual Agents (IVA ’01).
Springer-Verlag, London, UK, pp. 224–232.
URL http://gaips.inesc-id.pt/gaips/shared/docs/Casella01Magenta.

pdfhttp://liquidnarrative.csc.ncsu.edu:16080/classes/csc582/

Presentations/waronke-magenta-presentation.pdf

157

http://ame2.asu.edu/faculty/dab/research/publications/ETP03_Birchfield.pdf
http://ame2.asu.edu/faculty/dab/research/publications/ETP03_Birchfield.pdf
http://www.stanford.edu/~kateri/Becky/PDFs/Bradley%202000.pdf
http://www.speech.kth.se/prod/publications/files/724.pdf
http://members.tripod.com/~densil/software/PsySound.PDF
http://www.andrew.cmu.edu/user/cchao/projects/carvalho_chao_sigir05.pdf
http://www.andrew.cmu.edu/user/cchao/projects/carvalho_chao_sigir05.pdf


Chattah, J., 2006. Semiotics, pragmatics, and metaphor in film music analysis. Ph.D. thesis,
The Florida State University College Of Music.
URL http://etd.lib.fsu.edu/theses/available/etd-04042006-140957/

unrestricted/JuanChattah_Dissertation.pdf

Chung, J., Vercoe, G., 2006. The affective remixer: Personalized music arranging. In: Con-
ference on Human Factors in Computing Systems. ACM Press New York, NY, USA, pp.
393–398.
URL http://media.icu.ac.kr/park/id/readings/AffectRemix-Final.

pdfhttp://media.icu.ac.kr/park/id/presentations/Remixer.ppthttp://

courses.media.mit.edu/2005spring/mas630/05.projects/AffectListener/

afflisten.ppt

Cliff, D., 2000. Hang the dj: Automatic sequencing and seamless mixing of dance-music tracks.
Tech. rep., Hewlett-Packard Laboratories.

Collier, W., Hubbard, T., 2001. Musical scales and evaluations of happiness and awkwardness:
Effects of pitch, direction, and scale mode. The American Journal of Psychology 114 (3),
355–375.
URL http://www.psy.tcu.edu/ColHub_AJP01.pdf

Corthaut, N., Govaerts, S., Duval, E., 2006. Moody tunes: The rockanango project. In: Interna-
tional Symposium on Music Information Retrieval (ISMIR). Vol. 7.
URL http://ismir2006.ismir.net/PAPERS/ISMIR0688_Paper.pdf

Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., Schröder, M., 2000.
Feeltrace: An instrument for recording perceived emotion in real time. In: ISCA Workshop on
Speech and Emotion. pp. 19–24.
URL http://www2.dfki.de/~schroed/articles/cowieetal2000.pdf

Dalla Bella, S., Peretz, I., Rousseau, L., Gosselin, N., 2001. A developmental study of the af-
fective value of tempo and mode in music. Cognition 80, B1–B10.
URL http://www.brams.umontreal.ca/plab/downloads/Dalla_Bella_et_al_

2001.pdf

Daly, E., Lancee, W., Polivy, J., 1983. A conical model for the taxonomy of emotional experience.
Journal of Personality and Social Psychology 45 (2), 443–457.

Damásio, A., Sutherland, S., 1996. Descartes’ error: Emotion, Reason and the Human Brain.
Papermac London.

Desain, P., Honing, H., 2003. The formation of rhythmic categories and metric priming.
Perception 32 (3), 341–365.
URL http://www.numerik.mathematik.uni-mainz.de/~schneid/

optimaleMusik/Desain/mmm-28.pdf

Desain, P., Honing, H., et al., 1999. Computational models of beat induction: The rule-based
approach. Journal of New Music Research 28 (1), 29–42.

Deutsch, D., 1982. The Psychology of Music. Academic Press.

DInca, G., Mion, L., June 2006. Expressive audio synthesis: From performances to sounds. In:
International Conference on Auditory Display (ICAD). Vol. 12. University of London, UK.

158

http://etd.lib.fsu.edu/theses/available/etd-04042006-140957/unrestricted/JuanChattah_Dissertation.pdf
http://etd.lib.fsu.edu/theses/available/etd-04042006-140957/unrestricted/JuanChattah_Dissertation.pdf
http://www.psy.tcu.edu/ColHub_AJP01.pdf
http://ismir2006.ismir.net/PAPERS/ISMIR0688_Paper.pdf
http://www2.dfki.de/~schroed/articles/cowieetal2000.pdf
http://www.brams.umontreal.ca/plab/downloads/Dalla_Bella_et_al_2001.pdf
http://www.brams.umontreal.ca/plab/downloads/Dalla_Bella_et_al_2001.pdf
http://www.numerik.mathematik.uni-mainz.de/~schneid/optimaleMusik/Desain/mmm-28.pdf
http://www.numerik.mathematik.uni-mainz.de/~schneid/optimaleMusik/Desain/mmm-28.pdf


URL http://www.dcs.qmul.ac.uk/research/imc/icad2006/proceedings/

papers/f43.pdf

Dixon, S., 1997. Beat induction and rhythm recognition. Advanced Topics in Artificial Intelli-
gence, 311–320.

Dornbush, S., Fisher, K., McKay, K., Prikhodko, A., Segall, Z., 2005. Xpod a human activity
and emotion aware mobile music player. In: Proceedings of the International Conference on
Mobile Technology, Applications and Systems. Citeseer, pp. 1–6.

Eerola, T., 2003. The dynamics of musical expectancy: Cross-cultural and statistical ap-
proaches to melodic expectations. Ph.D. thesis, University of Jyvaskila.
URL http://www.cc.jyu.fi/~ptee/publications/phd1.pdf

Eerola, T., Toiviainen, P., 2004. Mir in matlab: The midi toolbox. In: International Symposium on
Music Information Retrieval (ISMIR).
URL http://www.cc.jyu.fi/~ptee/publications/3_2004.pdf

Ekman, P., 1999. Handbook of Cognition and Emotion. Sussex: John Wiley & Sons Ltd, Ch.
Basic Emotions, pp. 45–60.

Ekman, P., Rosenberg, E., 2005. What the face reveals: Basic and applied studies of sponta-
neous expression using the Facial Action Coding System (FACS). Oxford University Press,
USA.

Eladhari, M., Nieuwdorp, R., Fridenfalk, M., 2006. The soundtrack of your mind: Mind music-
adaptive audio for game characters. In: ACM SIGCHI international conference on Advances
in computer entertainment technology. ACM Press New York, NY, USA.
URL http://student.dei.uc.pt/~apsimoes/PhD/References/

soundtrackMind.pdf

Ellis, W., 1999. A source book of Gestalt psychology. Routledge.

Eronen, A., Klapuri, A., 2000. Musical instrument recognition using cepstral coefficients and
temporal features 2, 753–756.

Etzel, J., 2006. Algorithms and procedures to analyze physiological signals in psychophysio-
logical research. Ph.D. thesis, Iowa State University.
URL http://archives.ece.iastate.edu/archive/00000238/01/

dissertation.pdf

Fabiani, M., Friberg, A., 2007. Expressive modifications of musical audio recordings: prelimi-
nary results. In: Proceedings of the 2007 International Computer Music Conference (ICMC
2007), Copenhagen (DK). Vol. 2. pp. 21–24.

Farbood, M., 2006. A quantitative, parametric model of musical tension. Ph.D. thesis, Mas-
sachusetts Institute of Technology.
URL http://web.media.mit.edu/~mary/thesis/files/

MaryFarbood-PhD-Thesis-2006.pdf

Feng, Y., Zhuang, Y., Pan, Y., 2003. Popular music retrieval by detecting mood. In: SIGIR:
Research and development in informaion retrieval. Vol. 26. ACM Press New York, NY, USA,
pp. 375–376.

159

http://www.dcs.qmul.ac.uk/research/imc/icad2006/proceedings/papers/f43.pdf
http://www.dcs.qmul.ac.uk/research/imc/icad2006/proceedings/papers/f43.pdf
http://www.cc.jyu.fi/~ptee/publications/phd1.pdf
http://www.cc.jyu.fi/~ptee/publications/3_2004.pdf
http://student.dei.uc.pt/~apsimoes/PhD/References/soundtrackMind.pdf
http://student.dei.uc.pt/~apsimoes/PhD/References/soundtrackMind.pdf
http://archives.ece.iastate.edu/archive/00000238/01/dissertation.pdf
http://archives.ece.iastate.edu/archive/00000238/01/dissertation.pdf
http://web.media.mit.edu/~mary/thesis/files/MaryFarbood-PhD-Thesis-2006.pdf
http://web.media.mit.edu/~mary/thesis/files/MaryFarbood-PhD-Thesis-2006.pdf


Field, A., 2009. Discovering statistics using SPSS. SAGE publications Ltd.

Francisco, V., Hervas, R., 2007. Emotag: Automated mark up of affective information in texts.
In: Proceedings of the Doctoral Consortium in EUROLAN 2007 Summer School. pp. 5–12.

Friberg, A., October 2004. A fuzzy analyzer of emotional expression in music performance and
body motion. Music and Music Science.
URL http://www.speech.kth.se/prod/publications/files/1346.pdf

Friberg, A., 2006. pdm: an expressive sequencer with real-time control of the kth music-
performance rules. Computer Music Journal 30 (1), 37–48.

Friberg, A., Bresin, R., Sundberg, J., 2006. Overview of the kth rule system for musical perfor-
mance. Advances in Cognitive Psychology 2 (2-3), 145–161.
URL http://www.speech.kth.se/prod/publications/files/1330.pdf

Friberg, A., Schoonderwaldt, E., Juslin, P., Bresin, R., 2002. Automatic real-time extraction of
musical expression. In: International Computer Music Conference. pp. 365–367.
URL http://www.speech.kth.se/prod/publications/files/875.pdf

Friesen, W., Ekman, P., 1983. Emfacs-7: emotional facial action coding system, unpublished
manuscript, University of California at San Francisco.

Frijda, N., 2000. Handbook of Emotions. New York: The Guilford Press, Ch. The Psychologists’
Point of View, pp. 59–74.

Funk, M., Kuwabara, K., Lyons, M., 2005. Sonification of facial actions for musical expression.
In: New Interfaces for Musical Expression (NIME). National University of Singapore Singa-
pore, Singapore, pp. 127–131.
URL http://www.kasrl.org/lyons_nime2005_127.pdf

Gabrielsson, A., Lindstrom, E., 2001. Music and emotion: Theory and research. Ch. The Influ-
ence Of Musical Structure On Emotional Expression, pp. 223–248.

Gagnon, L., Peretz, I., 2003. Mode and tempo relative contributions to" happy-sad" judgements
in equitone melodies. Cognition & Emotion 17 (1), 25–40.
URL http://www.brams.umontreal.ca/plab/downloads/CE_Gagnon.pdf

Gaye, L., Mazé, R., Holmquist, L., 2003. Sonic city: The urban environment as a musical in-
terface. In: New Interfaces For Musical Expression (NIME). National University of Singapore
Singapore, Singapore, pp. 109–115.
URL http://tii.se/reform/results/publications_2003/2003_nime.pdf

Goga, M., Goga, N., 2003. Aesthetic analyze of computer music. In: Generative Art Conference.
Vol. 6.
URL http://www.generativeart.com/on/cic/papersga2003/a18.htm

Gómez, E., Peterschmitt, G., Amatriain, X., Herrera, P., 2003. Content-based melodic transfor-
mations of audio material for a music processing application. In: Proc. Int. Conf. Digital Audio
Effects. Citeseer, pp. 333–338.

Grachten, M., July 2006. Expressivity-aware tempo transformations of music performances us-
ing case based reasoning. Ph.D. thesis, Universitat Pompeu Fabra.

160

http://www.speech.kth.se/prod/publications/files/1346.pdf
http://www.speech.kth.se/prod/publications/files/1330.pdf
http://www.speech.kth.se/prod/publications/files/875.pdf
http://www.kasrl.org/lyons_nime2005_127.pdf
http://www.brams.umontreal.ca/plab/downloads/CE_Gagnon.pdf
http://tii.se/reform/results/publications_2003/2003_nime.pdf
http://www.generativeart.com/on/cic/papersga2003/a18.htm


Grieco, A., Oliveira, A. M., 2012. Physiological and behavioural reactions to acoustic stimuli.
Tech. rep., Faculdade de Psicologia e Ciências da Educação da Universidade de Coimbra.
URL http://dl.dropbox.com/u/64916421/Report2012.pdf

Grilo, C., 2002. Aplicação de algoritmos evolucionários à extracção de padrões musicais. Mas-
ter’s thesis.

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. The Journal of
Machine Learning Research 3, 1157–1182.

Haag, A., Goronzy, S., Schaich, P., Williams, J., 2004. Emotion recognition using bio-sensors:
First steps towards an automatic system. Lecture Notes in Computer Science 3068, 36–48.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.

1742&rep=rep1&type=pdf

Hashida, Y., Nakra, T., Katayose, H., Murao, Y., Hirata, K., Suzuki, K., Kitahara, T., 2008.
Rencon: Performance rendering contest for automated music systems. In: Proceedings of
the 10th Int. Conf. on Music Perception and Cognition (ICMPC 10), Sapporo, Japan. Citeseer,
pp. 53–57.

Haxby, J., Parasuraman, R., Lalonde, F., Abboud, H., 1993. Superlab: General-purpose mac-
intosh software for human experimental psychology and psychological testing. Behavior Re-
search Methods 25 (3), 400–405.

Healey, J., Picard, R., Dabek, F., November 1998. A new affect-perceiving interface and its
application to personalized music selection. In: Workshop Perceptual User Interfaces.
URL http://www.acm.org/icmi/1998/Papers/Healey.pdf

Ilie, G., Thompson, W., 2006. A comparison of acoustic cues in music and speech for three
dimensions of affect. Music Perception 23, 319–329.
URL http://www.ccit.utoronto.ca/billt/papers/MUSIC.23_319-330.pdf

Janssen, J., van den Broek, E., Westerink, J., 2009. Personalized affective music player. In:
Affective Computing and Intelligent Interaction and Workshops, 2009. ACII 2009. 3rd Inter-
national Conference on. IEEE, pp. 1–6.

Jehan, T., September 2005. Creating music by listening. Ph.D. thesis, Massachusetts Institute
of Technology, MA, USA.
URL http://web.media.mit.edu/~tristan/phd/pdf/Tristan_PhD_

MIT.pdfhttp://www.media.mit.edu/events/movies/video.php?id=

tristan-2005-06-17

Juslin, P., 2001. Communicating emotion in music performance: A review and a theoretical
framework. Music and Emotion: Theory and Research, 309–337.

Juslin, P., Laukka, P., 2004. Expression, perception, and induction of musical emotions: A re-
view and a questionnaire study of everyday listening. Journal of New Music Research 33 (3),
217–238.

Justus, T., Bharucha, J., 2002. Music Perception and Cognition in Stevens Handbook of
Experimental Psychology, Volume 1: Sensation and Perception. Vol. 1. New York: Wiley, pp.
453–492.

161

http://dl.dropbox.com/u/64916421/Report2012.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1742&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1742&rep=rep1&type=pdf
http://www.acm.org/icmi/1998/Papers/Healey.pdf
http://www.ccit.utoronto.ca/billt/papers/MUSIC.23_319-330.pdf


URL http://ase.tufts.edu/psychology/music-cognition/pdfs/Justus_

Bharucha_2002.pdf

Ka-Hing, J., Sze-Tsan, C., Kwok-Fung, C., Chi-Fai, H., 2006. Emotion-driven automatic mu-
sic arrangement. In: International Conference on Computer Graphics and Interactive Tech-
niques. ACM Press New York, NY, USA.
URL http://student.dei.uc.pt/~apsimoes/PhD/References/p108-ka-hing.

pdf

Khalfa, S., Peretz, I., Blondin, J., Manon, R., 2002. Event-related skin conductance responses
to musical emotions in humans. Neuroscience Letters 328 (2), 145–149.
URL http://skhalfa.com/doc/Khalfa_NeurLett.pdf

Kim, S., André, E., 2004. Composing affective music with a generate and sense approach. In:
Proceedings of Flairs 2004 - Special Track on AI and Music. AAAI Press.
URL http://mm-werkstatt.informatik.uni-augsburg.de/files/

publications/94/FLAIRS04KimS.pdf

Kim, Y., Schmidt, E., Migneco, R., Morton, B., Richardson, P., Scott, J., Speck, J., Turnbull, D.,
2010. Music emotion recognition: A state of the art review. In: International Symposium of
Music Information Retrieval.

Kimura, J., 2002. Analysis of emotions in musical expression.
URL http://courses.media.mit.edu/2002spring/mas630/02.projects/

kimura/

Klein, M., 2003. Psychophysiological and emotional dynamic responses to music: An explo-
ration of a two-dimensional model. In: National Conferences on Undergraduate Research
(NCUR).
URL http://www.bethelks.edu/academics/undergrad_research/files/13/

Mike__NCUR2003_paper.pdf

Korhonen, M., 2004. Modeling continuous emotional appraisals of music using system identifi-
cation. Master’s thesis, University of Waterloo.
URL http://www.eng.uwaterloo.ca/~dclausi/Theses/

MarkKorhonenMASc2004.pdf

Krumhansl, C., 2002. Music: A link between cognition and emotion. Current Directions in Psy-
chological Science 11 (2), 45–50.
URL http://www.erin.utoronto.ca/~w3psyuli/MusicPerception.pdf

Kuo, F., Chiang, M., Shan, M., Lee, S., 2005. Emotion-based music recommendation by
association discovery from film music. In: International Conference On Multimedia. Vol. 13.
ACM Press New York, NY, USA, pp. 507–510.
URL http://users.cis.fiu.edu/~lli003/Music/am/4.pdfhttp://dblab.cs.

nccu.edu.tw/presentation/Emotion-Based%20Music%20Recommendation%

20By%20Assciation%20Discovery%20from%20Film.ppt

Landis, J., Koch, G., 1977. The measurement of observer agreement for categorical data. Bio-
metrics 33 (1), 159.

Lang, P., 1980. Self-assessment manikin. The Center for Research in Psychophysiology, Uni-
versity of Florida.

162

http://ase.tufts.edu/psychology/music-cognition/pdfs/Justus_Bharucha_2002.pdf
http://ase.tufts.edu/psychology/music-cognition/pdfs/Justus_Bharucha_2002.pdf
http://student.dei.uc.pt/~apsimoes/PhD/References/p108-ka-hing.pdf
http://student.dei.uc.pt/~apsimoes/PhD/References/p108-ka-hing.pdf
http://skhalfa.com/doc/Khalfa_NeurLett.pdf
http://mm-werkstatt.informatik.uni-augsburg.de/files/publications/94/FLAIRS04KimS.pdf
http://mm-werkstatt.informatik.uni-augsburg.de/files/publications/94/FLAIRS04KimS.pdf
http://courses.media.mit.edu/2002spring/mas630/02.projects/kimura/
http://courses.media.mit.edu/2002spring/mas630/02.projects/kimura/
http://www.bethelks.edu/academics/undergrad_research/files/13/Mike__NCUR2003_paper.pdf
http://www.bethelks.edu/academics/undergrad_research/files/13/Mike__NCUR2003_paper.pdf
http://www.eng.uwaterloo.ca/~dclausi/Theses/MarkKorhonenMASc2004.pdf
http://www.eng.uwaterloo.ca/~dclausi/Theses/MarkKorhonenMASc2004.pdf
http://www.erin.utoronto.ca/~w3psyuli/MusicPerception.pdf


Larsen, J., Berntson, G., Poehlmann, K., Ito, T., Cacioppo, J., 2008. The psychophysiology of
emotions. Handbook of Emotions, 180–195.

Larson, S., 2004. Musical forces and melodic expectations: Comparing computer models and
experimental results. Music Perception 21 (4), 457–498.
URL http://www.informatics.indiana.edu/donbyrd/Teach/

PapersEtcByOthers/Larson_MusicalForcesComparing.pdf

Lartillot, O., 2005. Efficient extraction of closed motivic patterns in multi-dimensional symbolic
representations of music. In: International Conference on Web Intelligence. IEEE Computer
Society Press.
URL http://ismir2005.ismir.net/proceedings/1082.pdf

Lartillot, O., Toiviainen, P., 2007. Mir in matlab (ii): A toolbox for musical feature extraction from
audio. In: International Conference on Music Information Retrieval. pp. 237–244.

Lazarus, R., 1999. Handbook of Cognition and Emotion. Sussex: John Wiley & Sons Ltd, Ch.
The Cognition-Emotion Debate: A Bit of History, pp. 3–19.

Legaspi, R., Hashimoto, Y., Moriyama, K., Kurihara, S., Numao, M., 2007. Music compositional
intelligence with an affective flavor. In: International conference on Intelligent user interfaces.
Vol. 12. ACM Press New York, NY, USA, pp. 216–224.
URL http://student.dei.uc.pt/~apsimoes/PhD/References/p216-legaspi.

pdf

Leman, M., Lesaffre, M., Tanghe, K., 2001. Introduction to the ipem toolbox for perception-
based music analysis. Mikropolyphonie-The Online Contemporary Music Journal 7.
URL http://www.ipem.ugent.be/Toolbox/IT_PaperMeeting.pdf

Leman, M., Vermeulen, V., De Voogdt, L., Taelman, J., Moelants, D., Lesaffre, M., 2003. Cor-
relation of gestural musical audio cues and perceived expressive qualities. Gesture-based
communication in human-computer interaction. Berlin, Heidelberg, Springer-Verlag, 40–54.
URL https://archive.ugent.be/retrieve/1424/2004LemanCorrelation.pdf

Lerdahl, F., Jackendoff, R., 1983. A Generative Theory Of Tonal Music. MIT Press Cambridge,
Mass.
URL http://www.amazon.com/gp/reader/026262107X/ref=sib_dp_pt/

102-0736134-1221739#reader-link

Lesaffre, M., Leman, M., Tanghe, K., De Baets, B., De Meyer, H., Martens, J., August 2003.
User-dependent taxonomy of musical features as a conceptual framework for musical
audio-mining technology. In: Stockholm Music Acoustics Conference. pp. 6–9.
URL http://www.ipem.ugent.be/staff/marc/Papers2003/

2003LesaffreEtAl-Taxonomy-SMAC.pdf

Li, T., Ogihara, M., 2003. Detecting emotion in music. In: International Conference on Music
Information Retrieval (ISMIR). Vol. 4. pp. 239–240.
URL http://ismir2003.ismir.net/papers/Li.PDF

Lisetti, C., Nasoz, F., 2004. Using noninvasive wearable computers to recognize human emo-
tions from physiological signals. EURASIP Journal on Applied Signal Processing 2004 (11),
1672–1687.
URL http://www.cs.cmu.edu/~cga/behavior/Lisetti.pdf

163

http://www.informatics.indiana.edu/donbyrd/Teach/PapersEtcByOthers/Larson_MusicalForcesComparing.pdf
http://www.informatics.indiana.edu/donbyrd/Teach/PapersEtcByOthers/Larson_MusicalForcesComparing.pdf
http://ismir2005.ismir.net/proceedings/1082.pdf
http://student.dei.uc.pt/~apsimoes/PhD/References/p216-legaspi.pdf
http://student.dei.uc.pt/~apsimoes/PhD/References/p216-legaspi.pdf
http://www.ipem.ugent.be/Toolbox/IT_PaperMeeting.pdf
https://archive.ugent.be/retrieve/1424/2004LemanCorrelation.pdf
http://www.amazon.com/gp/reader/026262107X/ref=sib_dp_pt/102-0736134-1221739#reader-link
http://www.amazon.com/gp/reader/026262107X/ref=sib_dp_pt/102-0736134-1221739#reader-link
http://www.ipem.ugent.be/staff/marc/Papers2003/2003LesaffreEtAl-Taxonomy-SMAC.pdf
http://www.ipem.ugent.be/staff/marc/Papers2003/2003LesaffreEtAl-Taxonomy-SMAC.pdf
http://ismir2003.ismir.net/papers/Li.PDF
http://www.cs.cmu.edu/~cga/behavior/Lisetti.pdf


Liu, C., Yang, Y., Wu, P., Chen, H., 2006. Detecting and classifying emotion in popular music.
In: Joint International Conference on Information Sciences. Vol. 9. pp. 996–999.
URL http://homepage.ntu.edu.tw/~d95942025/pub/JCIS06.pdf

Liu, D., Lu, L., Zhang, H., 2003. Automatic mood detection from acoustic music data. In:
International Symposium on Music Information Retrieval (ISMIR). Vol. 4. pp. 81–7.
URL http://citeseer.ist.psu.edu/cache/papers/cs/30423/http:

zSzzSzismir2003.ismir.netzSzpaperszSzLiu.PDF/liu03automatic.pdf

Liu, H., Singh, P., 2004. Conceptnet: A practical commonsense reasoning tool-kit. BT Technol-
ogy Journal 22 (4), 211–226.

Livingstone, S., 2008. Changing musical emotion through score and performance with a
computational rule system. Ph.D. thesis, The University of Queensland.
URL http://www.itee.uq.edu.au/~srl/CMERS/2008_LivingstoneSR_

Changing_Musical_Emotion.pdf

Livingstone, S., Brown, A., 2005a. Dynamic response: real-time adaptation for music emotion.
In: Australasian Conference On Interactive Entertainment. Vol. 2. Sydney, Australia, Creativ-
ity & Cognition Studios Press, pp. 105–111.
URL http://www.itee.uq.edu.au/~srl/IE_2005.pdf

Livingstone, S., Brown, A., 2005b. Influencing the perceived emotions of music with intent. In:
International Conference on Generative Systems. Vol. 3.
URL http://www.itee.uq.edu.au/~srl/3rd_Iteration.pdf

Livingstone, S. R., Muhlberger, R., Brown, A. R., 2005. Playing with affect: Music performance
with awareness of score and audience. In: Australasian Computer Music Conference.
URL http://www.itee.uq.edu.au/~srl/ACMC_05.pdf

Livingstone, S. R., Muhlberger, R., Brown, A. R., 2006. Influencing perceived musical emotions:
The importance of performative and structural aspects in a rule system. In: Music as Human
Communication: An HCSNet Workshop on the Science of Music Perception, Performance
and Cognition. Vol. 1.
URL http://www.itee.uq.edu.au/%7Esrl/HCS_Abstract.pdfhttp://www.

hcsnet.edu.au/files2/arch/music06slides/Steven_Livingstone.pdf?

PHPSESSID=d89350b93f4bf17ef191b4c6766bdc1e

Livingstone, S. R., Muhlberger, R., Brown, A. R., Loch, A., 2007. Controlling musical emotional-
ity: An affective computational architecture for influencing musical emotion. Digital Creativity
18.
URL http://www.itee.uq.edu.au/~srl/Controlling_Musical_

Emotionality.pdf

Lopez, A., Oliveira, A., Cardoso, A., 2010. Real-time emotion-driven music engine. In: Interna-
tional Conference on Computational Creativity.

Lucassen, T., 2006. Emotions of musical instruments. In: Twente Student Conference on IT.
Vol. 4.
URL http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_

Interaction/2006_04_C_Lucassen,T-Emotions_of_Musical_Instruments.

pdf

164

http://homepage.ntu.edu.tw/~d95942025/pub/JCIS06.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/30423/http:zSzzSzismir2003.ismir.netzSzpaperszSzLiu.PDF/liu03automatic.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/30423/http:zSzzSzismir2003.ismir.netzSzpaperszSzLiu.PDF/liu03automatic.pdf
http://www.itee.uq.edu.au/~srl/CMERS/2008_LivingstoneSR_Changing_Musical_Emotion.pdf
http://www.itee.uq.edu.au/~srl/CMERS/2008_LivingstoneSR_Changing_Musical_Emotion.pdf
http://www.itee.uq.edu.au/~srl/IE_2005.pdf
http://www.itee.uq.edu.au/~srl/3rd_Iteration.pdf
http://www.itee.uq.edu.au/~srl/ACMC_05.pdf
http://www.itee.uq.edu.au/~srl/Controlling_Musical_Emotionality.pdf
http://www.itee.uq.edu.au/~srl/Controlling_Musical_Emotionality.pdf
http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_Interaction/2006_04_C_Lucassen,T-Emotions_of_Musical_Instruments.pdf
http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_Interaction/2006_04_C_Lucassen,T-Emotions_of_Musical_Instruments.pdf
http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_Interaction/2006_04_C_Lucassen,T-Emotions_of_Musical_Instruments.pdf


Margulis, E., 2005. A model of melodic expectation. Music Perception 22 (4), 663–713.
URL http://esf.ccarh.org/254/254_LiteraturePack1/MelFeatures2_

ExpectTheoryt(Margulis).pdf

Martin, K., Scheirer, E., Vercoe, B., 1998. Music content analysis through models of audition.
In: CM Multimedia Workshop on Content Processing of Music for Multimedia Applications.
Vol. 12.
URL http://www.cs.princeton.edu/courses/archive/spring99/cs598b/

scheirer.pdf

McCaig, G., Fels, S., 2002. Playing on heart-strings: experiences with the 2hearts system. In:
NIME ’02: Proceedings of the 2002 conference on New interfaces for musical expression.
National University of Singapore, Singapore, Singapore, pp. 1–6.
URL http://student.dei.uc.pt/~apsimoes/PhD/References/p1-mccaig.pdf

McEnnis, D., McKay, C., Fujinaga, I., Depalle, P., 2005. Jaudio: A feature extraction library. In:
International Symposium on Music Information Retrieval (ISMIR).
URL http://ismir2005.ismir.net/proceedings/2103.pdf

McKay, C., 2004. Automatic genre classification of midi recordings. Ph.D. thesis, McGill
University.
URL http://www.music.mcgill.ca/~cmckay/papers/musictech/MA_Thesis.

pdf

McKay, C., Fujinaga, I., 2006. jsymbolic: A feature extractor for midi files. In: International Com-
puter Music Conference (ICMC).
URL http://www.music.mcgill.ca/~cmckay/papers/musictech/McKay_ICMC_

06_jSymbolic.pdf

McKinney, M., Breebaart, J., 2003. Features for audio and music classification. In: International
Symposium on Music Information Retrieval (ISMIR). Vol. 4.

Mehrabian, A., 1980. Basic dimensions for a general psychological theory. Cambridge, MA:
Oelgeschlager, Gunn & Hain.

Meyer, L., 1956. Emotion and Meaning in Music. University of Chicago Press.
URL http://www.amazon.com/gp/reader/0226521397#reader-link

Meyers, O., 2007. A mood-based music classification and exploration system. Ph.D. thesis,
Massachusetts Institute of Technology.

Moncrieff, S., Dorai, C., Venkatesh, S., 2001. Affect computing in film through sound energy
dynamics. In: MULTIMEDIA ’01: Proceedings of the ninth ACM international conference on
Multimedia. ACM Press, New York, NY, USA, pp. 525–527.
URL http://www.computing.edu.au/~svetha/cma-current/simon/acm2001.

pdf

Monteith, K., Martinez, T., Ventura, D., 2010. Automatic generation of music for inducing emotive
response. In: Proceedings of the International Conference on Computational Creativity. pp.
140–149.

Monteith, K., Martinez, T., Ventura, D., 2012. Automatic generation of melodic accompaniments
for lyrics. In: International Conference on Computational Creativity. p. 87.

165

http://esf.ccarh.org/254/254_LiteraturePack1/MelFeatures2_ExpectTheoryt(Margulis).pdf
http://esf.ccarh.org/254/254_LiteraturePack1/MelFeatures2_ExpectTheoryt(Margulis).pdf
http://www.cs.princeton.edu/courses/archive/spring99/cs598b/scheirer.pdf
http://www.cs.princeton.edu/courses/archive/spring99/cs598b/scheirer.pdf
http://student.dei.uc.pt/~apsimoes/PhD/References/p1-mccaig.pdf
http://ismir2005.ismir.net/proceedings/2103.pdf
http://www.music.mcgill.ca/~cmckay/papers/musictech/MA_Thesis.pdf
http://www.music.mcgill.ca/~cmckay/papers/musictech/MA_Thesis.pdf
http://www.music.mcgill.ca/~cmckay/papers/musictech/McKay_ICMC_06_jSymbolic.pdf
http://www.music.mcgill.ca/~cmckay/papers/musictech/McKay_ICMC_06_jSymbolic.pdf
http://www.amazon.com/gp/reader/0226521397#reader-link
http://www.computing.edu.au/~svetha/cma-current/simon/acm2001.pdf
http://www.computing.edu.au/~svetha/cma-current/simon/acm2001.pdf


Moog, R., 1986. Midi: Musical instrument digital interface. Audio Engineering Society, 394–404.

Mosst, M., December 2006. Quantitative modeling of emotion perception in music. Master’s
thesis, University Of Southern California.

Muyuan, W., Naiyao, Z., Hancheng, Z., 2004. User-adaptive music emotion recognition. In: 7th
International Conference on Signal Processing. Vol. 2. pp. 1352–1355.
URL http://www.ews.uiuc.edu/~mwang2/files/ICSP04.pdf

Nakra, T., 1999. Inside the conductors jacket: Analysis, interpretation and musical synthesis of
expressive gesture. Ph.D. thesis, Massachusetts Institute of Technology.
URL http://vismod.media.mit.edu/pub/tech-reports/TR-518.pdf

Narmour, E., 1990. The Analysis and Cognition of Basic Melodic Structures: The Implication-
realization Model. University of Chicago Press.

Numao, M., Kobayashi, M., Sakaniwa, K., 1997. Acquisition of human feelings in music ar-
rangements. In: International Joint Conference on Artificial Intelligence (IJCAI). pp. 268–273.
URL http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/

cache/papers/cs/11032/http:zSzzSznumao-www.cs.titech.ac.

jpzSzlabzSzpaperszSzNumao97b.pdf/numao97acquisition.pdf

Numao, M., Takagi, S., Nakamura, K., 2002. Constructive adaptive user interfaces - composing
music based on human feelings. In: AAAI.
URL http://www.ai.sanken.osaka-u.ac.jp/files/Numao-caui.pdf

Oliveira, A., Cardoso, A., 2007. Towards affective-psychophysiological foundations for music
production. In: Affective Computing and Intelligent Interaction. Vol. 4738. Springer, p. 511.

Oliveira, A., Cardoso, A., 2008a. Affective-driven music production: selection and transforma-
tion of music. In: International Conference on Digital Arts - ARTECH.

Oliveira, A., Cardoso, A., 2008b. Emotionally-controlled music synthesis. In: Encontro de En-
genharia de Áudio da AES Portugal.

Oliveira, A., Cardoso, A., 2008c. Modeling affective content of music: A knowledge base ap-
proach. In: Sound and Music Computing Conference.

Oliveira, A., Cardoso, A., 2008d. Towards bi-dimensional classification of symbolic music by
affective content. In: International Computer Music Conference.

Oliveira, A., Cardoso, A., 2009. Automatic manipulation of music to express desired emotions.
In: Sound and Music Computing Conference.

Oliveira, A., Cardoso, A., 2010. A musical system for emotional expression. Knowledge-Based
Systems 23, 901–913.

Oliver, N., Flores-Mangas, F., 2006. Mptrain: a mobile, music and physiology-based personal
trainer. In: Proceedings of the 8th conference on Human-computer interaction with mobile
devices and services. ACM, pp. 21–28.

Ortony, A., Collins, A., 1988. The Cognitive Structure of Emotions. Cambridge University Press.

Ortony, A., Turner, T., 1990. What’s basic about basic emotions? Psychology Review 97 (3),
315–31.

166

http://www.ews.uiuc.edu/~mwang2/files/ICSP04.pdf
http://vismod.media.mit.edu/pub/tech-reports/TR-518.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/11032/http:zSzzSznumao-www.cs.titech.ac.jpzSzlabzSzpaperszSzNumao97b.pdf/numao97acquisition.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/11032/http:zSzzSznumao-www.cs.titech.ac.jpzSzlabzSzpaperszSzNumao97b.pdf/numao97acquisition.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/11032/http:zSzzSznumao-www.cs.titech.ac.jpzSzlabzSzpaperszSzNumao97b.pdf/numao97acquisition.pdf
http://www.ai.sanken.osaka-u.ac.jp/files/Numao-caui.pdf


URL http://www.cs.northwestern.edu/~ortony/Andrew%20Ortony_files/

Basic_Emotions.pdf

Pachet, F., Roy, P., Cazaly, D., 2000. A combinatorial approach to content-based music selec-
tion. Multimedia, IEEE 7 (1), 44–51.

Padova, A., Bianchini, L., Lupone, M., Belardinelli, M., September 2003. Influence of specific
spectral variations of musical timbre on emotions in the listeners. In: Triennial ESCOM
Conference. Vol. 5.
URL http://www.epos.uos.de/music/books/k/klww003/pdfs/164_Padova_

Proc.pdf

Padova, A., Santoboni, R., Belardinelli, M., March 2005. Influence of timbre on emotions and
recognition memory for music. In: Conference on Interdisciplinary Musicology.
URL http://www.oicm.umontreal.ca/doc/cim05/articles/PADOVA_A_CIM05.

pdf

Paulus, J., Klapuri, A., 2006. Music structure analysis by finding repeated parts. In: First ACM
Workshop on Audio and music computing multimedia. ACM, pp. 59–68.

Picard, R., 1997. Affective Computing. MIT Press Cambridge, MA, USA.

Plack, C., 2004. Auditory perception in Psychology: An International Perspective (PIP).
Psychology Press.
URL http://www.psypress.co.uk/pip/resources/chapters/PIP_Auditory_

Perception.pdf

Plutchik, R., 1980. A general psychoevolutionary theory of emotion. Emotion: Theory, research,
and experience 1 (3), 3–33.

Pratt, C., 1948. Music as a language of emotions. Bulletin of the American Musicological Society
11 (1), 67–68.

Rentfrow, P., Gosling, S., 2003. The do re mis of everyday life: Examining the structure and
personality correlates of music preferences. Journal of Personality and Social Psychology
84, 1236–56.
URL http://homepage.psy.utexas.edu/homepage/faculty/Gosling/

reprints/jpsp03musicdimensions.pdf

Ritossa, D., Rickard, N., 2004. The relative utility of pleasantness and liking dimensions in
predicting the emotions expressed by music. Psychology of Music 32 (1), 5–22.
URL http://music.ucsd.edu/~sdubnov/Mu175/Papers/Ritossaetal.pdf

Robertson, J., De Quincey, A., Stapleford, T., Wiggins, G., August 1998. Real-time music
generation for a virtual environment. In: Workshop on AI/Alife and Entertainment. Vol. 24. p.
1998.
URL http://liquidnarrative.csc.ncsu.edu/classes/csc582/papers/

real-time-music-generation.pdf

Russell, J., 1989. Measures of emotion. Emotion: Theory, research, and experience 4, 83–111.

Scaringella, N., Zoia, G., Mlynek, D., 2006. Automatic genre classification of music content: a
survey. IEEE Signal Processing Magazine, Special Issue on Semantic Retrieval of Multime-
dia.

167

http://www.cs.northwestern.edu/~ortony/Andrew%20Ortony_files/Basic_Emotions.pdf
http://www.cs.northwestern.edu/~ortony/Andrew%20Ortony_files/Basic_Emotions.pdf
http://www.epos.uos.de/music/books/k/klww003/pdfs/164_Padova_Proc.pdf
http://www.epos.uos.de/music/books/k/klww003/pdfs/164_Padova_Proc.pdf
http://www.oicm.umontreal.ca/doc/cim05/articles/PADOVA_A_CIM05.pdf
http://www.oicm.umontreal.ca/doc/cim05/articles/PADOVA_A_CIM05.pdf
http://www.psypress.co.uk/pip/resources/chapters/PIP_Auditory_Perception.pdf
http://www.psypress.co.uk/pip/resources/chapters/PIP_Auditory_Perception.pdf
http://homepage.psy.utexas.edu/homepage/faculty/Gosling/reprints/jpsp03musicdimensions.pdf
http://homepage.psy.utexas.edu/homepage/faculty/Gosling/reprints/jpsp03musicdimensions.pdf
http://music.ucsd.edu/~sdubnov/Mu175/Papers/Ritossaetal.pdf
http://liquidnarrative.csc.ncsu.edu/classes/csc582/papers/real-time-music-generation.pdf
http://liquidnarrative.csc.ncsu.edu/classes/csc582/papers/real-time-music-generation.pdf


Scheirer, E., 2000. Music-listening systems. Ph.D. thesis, Massachusetts Institute of Technol-
ogy.
URL http://www.idiap.ch/~paiement/references/to_read/music/feature_

extraction/eds-diss-full/eds-diss-full.pdf

Schellenberg, E., 1997. Simplifying the implication-realization model of melodic expectancy.
Music Perception 14 (3), 295–318.

Schellenberg, E., Adachi, M., Purdy, K., McKinnon, M., 2002. Expectancy in melody: Tests of
children and adults. Journal of Experimental Psychology: General 131 (4), 511–537.
URL https://www.erin.utoronto.ca/uploads/tx_researcherprofile/

JEPGeneral.pdf

Schenker, H., 1973. Harmony. MIT Press.

Scherer, K., 2000. The Neuropsychology Of Emotion. Oxford University Press, Ch. Psycholog-
ical models of emotion, pp. 137–162.
URL http://www.affective-sciences.org/system/files/2000_Scherer_

Borod.pdf

Scherer, K., 2005. What are emotions? and how can they be measured? Social Science
Information 44, 695–729.

Schubert, E., 1999. Measurement and time series analysis of emotion in music. Ph.D. thesis,
University of New South Wales.
URL http://www.library.unsw.edu.au/~thesis/adt-NUN/uploads/

approved/adt-NUN20021104.143221/public/02vol1.pdfhttp://

www.library.unsw.edu.au/~thesis/adt-NUN/uploads/approved/

adt-NUN20021104.143221/public/03vo2.pdf

Schwarz, D., 2004. Data-driven concatenative sound synthesis. Ph.D. thesis, Universite Paris.
URL http://recherche.ircam.fr/equipes/analyse-synthese/schwarz/

thesis/report.pdf

Serra, X., Leman, M., Widmer, G., 2007. A roadmap for sound and music computing. The S2S
Consortium.

Sloboda, J., 1991. Music structure and emotional response: Some empirical findings. Psychol-
ogy of Music 19 (2), 110–120.

Sorensen, A., Brown, A., 2000. Introducing jmusic. In: Australasian Computer Music Confer-
ence. pp. 68–76.
URL http://eprints.qut.edu.au/archive/00006805/01/6805.pdf;http:

//jmusic.ci.qut.edu.au/

Steinbeis, N., Koelsch, S., Sloboda, J., 2006. The role of harmonic expectancy violations in
musical emotions: Evidence from subjective, physiological, and neural responses. Journal of
Cognitive Neuroscience 18 (8), 1380.
URL http://www.stefan-koelsch.de/papers/Steinbeis+JOCN2006_inpress.

pdf

Sugimoto, T., Legaspi, R., Ota, A., Moriyama, K., Kurihara, S., Numao, M., 2008. Modelling
affective-based music compositional intelligence with the aid of ans analyses. Knowledge-
Based Systems 21 (3), 200–208.

168

http://www.idiap.ch/~paiement/references/to_read/music/feature_extraction/eds-diss-full/eds-diss-full.pdf
http://www.idiap.ch/~paiement/references/to_read/music/feature_extraction/eds-diss-full/eds-diss-full.pdf
https://www.erin.utoronto.ca/uploads/tx_researcherprofile/JEPGeneral.pdf
https://www.erin.utoronto.ca/uploads/tx_researcherprofile/JEPGeneral.pdf
http://www.affective-sciences.org/system/files/2000_Scherer_Borod.pdf
http://www.affective-sciences.org/system/files/2000_Scherer_Borod.pdf
http://recherche.ircam.fr/equipes/analyse-synthese/schwarz/thesis/report.pdf
http://recherche.ircam.fr/equipes/analyse-synthese/schwarz/thesis/report.pdf
http://www.stefan-koelsch.de/papers/Steinbeis+JOCN2006_inpress.pdf
http://www.stefan-koelsch.de/papers/Steinbeis+JOCN2006_inpress.pdf


Taylor, R., Boulanger, P., Torres, D., 2005. Visualizing emotion in musical performance using a
virtual character. Lecture Notes in Computer Science 3638, 13.
URL http://www.cs.ualberta.ca/~pierreb/Papers-Thesis-2004-2005/

SmartGraphics2005_13.pdf

Temperley, D., 2004. The Cognition of Basic Musical Structures. MIT Press.

Temperley, D., Sleator, D., 1999. Modeling meter and harmony: A preference-rule approach.
Computer Music Journal 23 (1), 10–27.
URL http://www.cs.cmu.edu/~sleator/papers/music-modeling.pdf

Tenney, J., Polansky, L., 1980. Temporal gestalt perception in music. Journal of Music Theory
24 (2), 205–241.

Tillmann, B., Bharucha, J., Bigand, E., 2000. Implicit learning of tonality: A self-organizing
approach. Psychological Review 107 (4), 885–913.
URL http://olfac.univ-lyon1.fr/unite/equipe-02/tillmann/download/

Tillmann_etal_2000.pdf

Toiviainen, P., Krumhansl, C., 2003. Measuring and modeling real-time responses to music:
The dynamics of tonality induction. Perception 32 (6), 741–766.
URL http://www.cc.jyu.fi/~ptoiviai/pdf/ToivKrumhPercep2003.pdf

Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I., 2008. Multilabel classification of music
into emotions. In: International Conference on Music Information Retrieval. Vol. 2008.

Typke, R., Wiering, F., Veltkamp, R., 2004. A survey of music information retrieval systems.
Retrieved April 12, 2004.

Tzanetakis, G., Cook, P., 2000a. Audio information retrieval (air) tools. In: International Sympo-
sium on Music Information Retrieval (ISMIR). Vol. 1.
URL http://www.ee.columbia.edu/~dpwe/papers/TzanC00-airtools.pdf

Tzanetakis, G., Cook, P., 2000b. Marsyas: a framework for audio analysis. Organised Sound
4 (03), 169–175.

Tzanetakis, G., Cook, P., 2002. Musical genre classification of audio signals. IEEE Transactions
On Speech And Audio Processing 10 (5), 293.
URL http://www.ee.columbia.edu/~marios/courses/e6820y02/project/

papers/Automatic%20Musical%20Genre%20Classification.pdf

van de Laar, B., 2006. Emotion detection in music, a survey. In: Twente Student Conference on
IT. Vol. 4.
URL http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_

Interaction/2006_04_C_Laar,B.L.A.van.de.,-Emotion_detection_in_

music,_a_survey.pdf

Vassilakis, P., 2005. Auditory roughness as means of musical expression. Selected Reports in
Ethnomusicology 12, 119–144.

Vavrille, F., 2006. Musicovery: An interactive webradio.
URL http://www.visualcomplexity.com/vc/project.cfm?id=329

169

http://www.cs.ualberta.ca/~pierreb/Papers-Thesis-2004-2005/SmartGraphics2005_13.pdf
http://www.cs.ualberta.ca/~pierreb/Papers-Thesis-2004-2005/SmartGraphics2005_13.pdf
http://www.cs.cmu.edu/~sleator/papers/music-modeling.pdf
http://olfac.univ-lyon1.fr/unite/equipe-02/tillmann/download/Tillmann_etal_2000.pdf
http://olfac.univ-lyon1.fr/unite/equipe-02/tillmann/download/Tillmann_etal_2000.pdf
http://www.cc.jyu.fi/~ptoiviai/pdf/ToivKrumhPercep2003.pdf
http://www.ee.columbia.edu/~dpwe/papers/TzanC00-airtools.pdf
http://www.ee.columbia.edu/~marios/courses/e6820y02/project/papers/Automatic%20Musical%20Genre%20Classification.pdf
http://www.ee.columbia.edu/~marios/courses/e6820y02/project/papers/Automatic%20Musical%20Genre%20Classification.pdf
http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_Interaction/2006_04_C_Laar,B.L.A.van.de.,-Emotion_detection_in_music,_a_survey.pdf
http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_Interaction/2006_04_C_Laar,B.L.A.van.de.,-Emotion_detection_in_music,_a_survey.pdf
http://referaat.ewi.utwente.nl/documents/2006_04_C-Intelligent_Interaction/2006_04_C_Laar,B.L.A.van.de.,-Emotion_detection_in_music,_a_survey.pdf
http://www.visualcomplexity.com/vc/project.cfm?id=329


Vayrynen, E., Seppanen, T., Toivanen, J., 2003. An experiment in emotional content classifica-
tion of spoken finnish using prosodic features. In: Finnish Signal Processing Symposium. pp.
264–267.
URL http://www.mediateam.oulu.fi/publications/pdf/411.pdf

Ventura, F., Oliveira, A., Cardoso, A., 2009. An emotion-driven interactive system. In: 14th
Portuguese Conference on Artificial Intelligence. pp. 167–178.

Vesterinen, E., 2001. Affective computing. In: Digital media research seminar.

Vickhoff, B., Malmgren, H., 2004. Why does music move us? Tech. rep., Dept. of Philosophy,
Göteborg University, Sweden.
URL http://www.phil.gu.se/posters/musicmove.pdf

Vyzas, E., 1999. Recognition of emotional and cognitive states using physiological data. Ph.D.
thesis, Massachusetts Institute Of Technology.
URL http://citeseer.ist.psu.edu/cache/papers/cs/11090/ftp:

zSzzSzwhitechapel.media.mit.eduzSzpubzSztech-reportszSzTR-510.pdf/

vyzas99recognition.pdf

Wallis, I., Ingalls, T., Campana, E., Goodman, J., 2011. A rule-based generative music system
controlled by desired valence and arousal. In: Sound and Music Computing.

Wassermann, K., Eng, K., Verschure, P., Manzolli, J., 2003. Live soundscape composition
based on synthetic emotions. IEEE Multimedia 10 (4), 82–90.
URL http://ada.ini.ethz.ch/presskit/papers/Wassermann-Emotions-2003.
pdf

Webster, G., Weir, C., 2005. Emotional responses to music: Interactive effects of mode, texture,
and tempo. Motivation and Emotion 29 (1), 19–39.
URL http://psych.colorado.edu/~gwebster/Music.pdf

Weisberg, S., 2005. Applied linear regression. Wiley-Blackwell.

Weiss, A., 2000. Music selection for internet radio.

Whitman, B., 2005. Learning the meaning of music. Massachusetts Institute of Technology.
URL https://dspace.mit.edu/bitstream/1721.1/32500/1/61896668.pdf

Widmer, G., Goebl, W., 2004. Computational models of expressive music performance: The
state of the art. Journal of New Music Research 33 (3), 203–216.
URL http://www.cp.jku.at/research/papers/Widmer_Journal_of_New_

Music_Research.pdf

Wijnalda, G., Pauws, S., Vignoli, F., Stuckenschmidt, H., 2005. A personalized music system
for motivation in sport performance. Pervasive Computing, IEEE 4 (3), 26–32.
URL http://www.redant.nl/g.l.wijnalda/files/pervasivecomputing-final.
pdf

Wingstedt, J., Liljedahl, M., Lindberg, S., Berg, J., 2005. Remupp: An interactive tool for inves-
tigating musical properties and relations. In: New Interfaces For Musical Expression. Univer-
sity of British Columbia, Vancouver, Canada, pp. 232–235.
URL http://www.nime.org/2005/proc/nime2005_232.pdf

170

http://www.mediateam.oulu.fi/publications/pdf/411.pdf
http://www.phil.gu.se/posters/musicmove.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/11090/ftp:zSzzSzwhitechapel.media.mit.eduzSzpubzSztech-reportszSzTR-510.pdf/vyzas99recognition.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/11090/ftp:zSzzSzwhitechapel.media.mit.eduzSzpubzSztech-reportszSzTR-510.pdf/vyzas99recognition.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/11090/ftp:zSzzSzwhitechapel.media.mit.eduzSzpubzSztech-reportszSzTR-510.pdf/vyzas99recognition.pdf
http://ada.ini.ethz.ch/presskit/papers/Wassermann-Emotions-2003.pdf
http://ada.ini.ethz.ch/presskit/papers/Wassermann-Emotions-2003.pdf
http://psych.colorado.edu/~gwebster/Music.pdf
https://dspace.mit.edu/bitstream/1721.1/32500/1/61896668.pdf
http://www.cp.jku.at/research/papers/Widmer_Journal_of_New_Music_Research.pdf
http://www.cp.jku.at/research/papers/Widmer_Journal_of_New_Music_Research.pdf
http://www.redant.nl/g.l.wijnalda/files/pervasivecomputing-final.pdf
http://www.redant.nl/g.l.wijnalda/files/pervasivecomputing-final.pdf
http://www.nime.org/2005/proc/nime2005_232.pdf


Winter, R., 2005. Interactive music: Compositional techniques for communicating different emo-
tional qualities. Master’s thesis, University of York.
URL http://www.speech.kth.se/prod/publications/files/1701.pdf

Witten, I., Frank, E., 2005. Data Mining: Practical machine learning tools and techniques. Mor-
gan Kaufmann.

Witten, I., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S., 1999. Weka: Practical
machine learning tools and techniques with java implementations. International Conference
on Neural Information Processing, 192–196.

Wu, T., Jeng, S., 2006. Extraction of segments of significant emotional expressions in music.
In: Workshop on Computer Music and Audio Technology.
URL http://forum.dmc.ntnu.edu.tw/~wocmat2006/pdf/4-3.pdf

Yang, D., Lee, W., 2004. Disambiguating music emotion using software agents. In: International
Symposium on Music Information Retrieval (ISMIR). Vol. 5.
URL http://www.site.uottawa.ca/~wslee/publication/ISMIR2004.pdf

Yang, Y., Lin, Y., Su, Y., Chen, H., 2008. A regression approach to music emotion recognition.
Audio, Speech, and Language Processing 16 (2), 448–457.
URL http://mpac.ee.ntu.edu.tw/~yihsuan/pub/TASLP08.pdf

Yang, Y., Liu, C., Chen, H., 2006. Music emotion classification: A fuzzy approach. ACM Multi-
media, 81–84.
URL http://homepage.ntu.edu.tw/~d95942025/pub/ACMMM06.pdf

Zils, A., Pachet, F., 2001. Musical mosaicing. In: Digital Audio Effects (DAFx).
URL http://www.csl.sony.fr/downloads/papers/2001/zils-dafx2001.pdf

171

http://www.speech.kth.se/prod/publications/files/1701.pdf
http://forum.dmc.ntnu.edu.tw/~wocmat2006/pdf/4-3.pdf
http://www.site.uottawa.ca/~wslee/publication/ISMIR2004.pdf
http://mpac.ee.ntu.edu.tw/~yihsuan/pub/TASLP08.pdf
http://homepage.ntu.edu.tw/~d95942025/pub/ACMMM06.pdf
http://www.csl.sony.fr/downloads/papers/2001/zils-dafx2001.pdf

	Introduction
	Motivation
	Aim
	Contributions
	Publications Relevant to this Thesis
	Journals
	Conference Papers

	Thesis Organization

	Background
	Music Psychology
	Music Perception
	Melodic Expectation
	Harmonic Tension
	Rhythmic Perception
	Timbre Perception

	Music Cognition
	Systems
	Personality
	Emotions Modeling in Music
	Emotionally-Relevant Musical Features

	Music Performance
	Music Theory
	Summary

	Music Computing
	MIDI Segmentation
	Feature Extraction
	MIDI
	Audio

	Classification
	MIDI
	Audio

	Audio Selection/Recommendation
	Transformation
	MIDI
	Audio

	Audio Sequencing
	Audio Synthesis
	Summary

	Affective Computing
	Emotion Theories
	Emotion Representation
	Emotion Recognition
	Emotionally-Driven Musical Approaches
	Music Composition/Arranging
	Classification/Selection of Pre-composed Music
	Transformation of Pre-composed Music
	MIDI
	Audio

	Hybrid Approaches

	Summary

	Reflexion on the State Of The Art

	Emotion-Driven Music Engine
	Approach
	Architecture
	Segmentation
	Classification
	Selection
	Transformation
	Auxiliary Modules
	Feature Extraction
	Sequencing
	Synthesis

	Auxiliary Structures
	Music Base
	Knowledge Base
	Pattern Base
	Library of Sounds

	Administrator Interface
	User Interface

	Experiments
	Stages of the experiments
	Overview of the experiments
	First experiment
	Second experiment
	Third experiment

	Initial Phase - Manually Built Knowledge Base
	First Experiment - Preliminary Evaluation of the Classification Module
	Objective
	Method
	Data
	Music
	Emotional answers

	Results
	Feature Ranking
	Feature Selection and Classification

	Discussion

	Second Experiment - Extended Evaluation of the Classification Module
	Objective
	Method
	Data
	Music
	Emotional Answers

	Results
	Feature Ranking
	Feature Selection and Classification

	Discussion

	Second Experiment - Analysis of Audio Features
	Objective
	Method
	Data
	Results
	Feature Ranking
	Feature Selection and Classification

	Discussion

	Third Experiment – Improvement of the Classification Module
	Objective
	Method
	Data
	Music
	Emotional Answers

	Results
	Feature Ranking
	Feature Selection and Classification


	Third Experiment - Evaluation of the Transformation Algorithms
	Objective
	Methods, Results and Discussion
	Tempo
	Algorithm
	Method
	Results
	Discussion

	Pitch Register
	Algorithm
	Method
	Results
	Discussion

	Musical Scales
	Algorithm
	Method
	Results
	Discussion

	Instruments
	Algorithm
	Method
	Results
	Discussion

	Articulation
	Algorithm
	Method
	Results


	Overall discussion

	Third Experiment - Melodic Analysis
	Objective
	Method
	Data
	Results
	Feature Selection and Classification

	Discussion


	Knowledge Base Systematization
	Feature Ranking
	Feature Selection and Classification
	Discussion

	Evaluation of Classifiers' Performance
	Calibration and Validation
	Rating Experiment
	First Experiment
	Objective
	Data
	Music
	Emotional Answers

	Method
	Statistical Data
	Results
	Feature Ranking
	Feature Selection and Classification

	Statistical Analysis
	Discussion


	Physiological and Behavioral Experiment
	Method
	Participants
	Materials, Design and Procedure

	Results



	Conclusion
	Discussion
	State of the art
	Experiments
	Systematization and Evaluation
	Calibration/Validation
	Application
	Contributions

	Future Work
	Update of the transformation module
	Soundtrack generation
	Healthcare
	Emotionally-Driven Music Composition

	Accompanying CD-ROM
	Glossary
	Music
	Description of music features
	Affective Science
	Acronyms

	Bibliography


