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Abstract. As a consequence of the immense computational power avail-
able in GPUs, the usage of these platforms for running data-intensive
general purpose programs has been increasing. Since memory and pro-
cessor architectures of CPUs and GPUs are substantially different, pro-
grams designed for each platform are also very different and often resort
to a very distinct set of algorithms and data structures. Selecting be-
tween the CPU or GPU for a given program is not easy as there are
variations in the hardware of the GPU, in the amount of data, and in
several other performance factors.

AminiumGPU is a new data-parallel framework for developing and run-
ning parallel programs on CPUs and GPUs. AminiumGPU programs
are written in a Java using Map-Reduce primitives and are compiled
into hybrid executables which can run in either platforms. Thus, the de-
cision of which platform is going to be used for executing a program is
delayed until run-time and automatically performed by the system using
Machine-Learning techniques.

Our tests show that AminiumGPU is able to achieve speedups up to
65x and that the average accuracy of the platform selection algorithm,
in choosing the best platform for executing a program, is above 92%.
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1 Introduction

Since Graphics Processing Units (GPUs) have been user-programmable, scien-
tists and engineers have been exploring new ways of using the processing power
in GPUs to increase the performance of their programs. GPU manufacturers
acknowledged this alternative fashion of using their hardware, and have since
provided special drivers, tools and even models to address this small, but fast-
growing niche.

GPUs are interesting to target because of their massive parallelism, which
provides a higher throughput than what is available on current multi-core pro-
cessors. But, one can argue that the difference in architectures also makes pro-
gramming for the GPU more complex than for the CPU. GPU programming is
not easy. Developers that do not understand the programming model and the
hardware architecture of a GPU will not be able to extract all its processing



power. And, even after a program has been specially designed for the GPU, its
performance might still be worse than on the CPU. For instance, the usage of
GPUs incurs on a penalty caused by memory copies between the main memory
and the GPU-specific memory.

In many situations, it may not be feasible to know beforehand if a program
will perform better in a GPU or in a CPU without actually executing it. And,
for programs that are not repeatedly executed or that execute for a very long
time it may not be useful to do so. Moreover, the performance of a program will
commonly be influenced by the size of the input data, the actual GPU hardware
and the structure of the program itself.

Double integral = new Range (RESOLUTION) .map (new LambdaMapper<
Integer, Double>() {
public Double map (Integer input) {
double n = RESOLUTION;
double b = Math.pow(Math.E, Math.sin (input / n));
double B = Math.pow(Math.E, Math.sin((input+l) / n));
return ((b+B) / 2 ) x (1/n);
}
}) .reduce (new LambdaReducer<Double> () {
public Double combine (Double input, Double other) {
return input + other;
}
}) i

Listing 1.1. Example of Map-Reduce to Calculate the Integral of a Function using
the trapezoid method
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Fig. 1. Performance of the Integral program on CPU and GPU

Listing 1.1 is an example of programs that can execute on the GPU and cal-
culates the integral of f(z) = e*™(*). This is an embarrassingly parallel problem,
which is expressed using a data-parallel approach by means of map and reduce



operations. Figure 1 shows the execution time of the program in both CPU and
GPU for different data sizes. The GPU version is faster after a certain data size
and it is able to achieve up to 64 times of speedup. But, note that the threshold
from which the GPU performance starts to gain on the CPU is not always the
same. The actual threshold value depends of the program logic and even with
the hardware being used. Thus the decision whether to run a program on the
GPU or CPU is not an easy one.

The goal of this work is to present a new framework which simplifies the
task of writing data-parallel programs for transparently executing in GPUs,
with improved performance. Our approach drives inspiration from Functional
Programming and puts the power of GPUs in the hands of developers without
forcing them to understand the particularities of GPU programming. While pro-
grams are written in a mainstream programming language using a Map-Reduce
approach for now, specific parts of their code are compiled to OpenCL and exe-
cuted on the GPU. In order to minimize the impact of well known bottlenecks in
GPU programming and maximize the speedup obtained by the usage of GPUs,
the framework performs several optimizations on the generated code. Such op-
timizations include the generation of data on the GPU in opposition to its copy
from main memory, among others. Furthermore, in AminiumGPU, programs
are compiled into “hybrid” executables that can run in either GPU and CPU
platforms. Since the final purpose of AminiumGPU is to execute programs as
fast as possible, independently of the platform being used, hybrid executables
allow us to delay the decision of which platform is best for executing a specific
program until run-time, when much more information is available to fundament
a choice. AminiumGPU, by means of Machine-Learning techniques, is able to
make this decision autonomously with high accuracy.

The contributions of this work are:

— A new and state-of-the-art framework for GPGPU programming, which
hides GPU architectural details and execution model from developers;

— A translation library that is able to automatically generate optimized OpenCL
code from code written in a mainstream general purpose programming lan-
guage;

— A machine-learning solution for predicting the efficiency of programs in both
CPUs and GPUs;

— And, to the best of our knowledge, the first runtime system using machine-

learning techniques for autonomously deciding either to execute programs in
the CPU or GPU.

2 Approach

In this section we will depict the architecture and design of the AminiumGPU
framework. We will use the Map-Reduce algorithm as an example in this section
since it is a suitable representative of data-parallel algorithms in general.



2.1 Architecture

The AminiumGPU framework was designed for supporting Aminium[1] and
Java programming languages. Since Aminium compiles to Java, this paper will
present the architecture from the point of view of Java. The Java language is
not supported by GPUs. Thus it is necessary to translate Java into OpenCL
functions. Translation is performed at compile-time by the AminiumGPU Com-
piler. The OpenCL functions are then executed by the AminiumGPU Runtime
during execution. The general architecture can be seen in Figure 2.

AminiumGPU Compiler
The AminiumGPU Compiler
is a source-to-source com-
piler from Java-to-Java, in s
which the final Java code
has some extra OpenCL code. et
The OpenCL code is based

on lambda functions present

in the source code. For each Fig. 2. Architecture of AminiumGPU
lambda in the original code,

the compiler creates an OpenCL version. This version is later used to generate
a kernel which will execute on the GPU.

The compiler was implemented using Spoon, a Java-to-Java compiler frame-
work([2]. Spoon parses and generates the AST and generates the Java code from
the AST. The AminiumGPU compiler introduces new phases that produce the
OpenCL version of existent lambdas. The compiler looks for methods with a
special signature, such as map or reduce. The AST of lambdas passed as argu-
ments are then analyzed and a visitor tries to compile Java code to OpenCL as
soon as it descends the AST.

It is important to notice that not all Java code can be translated to OpenCL.
The AminiumGPU compiler does not support all method calls, non-local vari-
ables, for-each loops, object instantiation and exceptions. It does support a com-
mon subset between Java and C99 with some extra features like static accesses,
calls to methods and references to fields of the Math object.

AminiumGPU Runtime The AminiumGPU Runtime is a Java library re-
sponsible for providing Aminium Programs with parallel-ready lists that imple-
ment the GPU methods, such as map and reduce methods. Each list can be
associated with a GPU, thus supporting several GPUs on the same machine.
Whenever a GPU operation is summoned, the following phases occur: firstly the
compiler-generated OpenCL function is inserted in a predefined template (spe-
cific for each operation, such as reduce) and the resulting kernel is compiled to
the GPU; afterwards, the input data, if required, is copied to the GPU mem-
ory; next the kernel execution is scheduled with a suitable workgroups and
workitems arrangement for the data size and operation in question; finally



the output data is copied back to the host device and every GPU resource is
manually released.

The templates used for Map and Reduce, since we are focusing in these
operations for this work, are really straightforward. The map kernel only applies
a function to an element of the input array and writes it to the output array.
The reduce kernel is a generic version of NVIDIA’s implementation[3], allowing
for more data-types than the four originally supported.

For these operations in particular, one optimization already implemented is
the fusion of maps with maps, and maps with reduces. This optimization is
done by considering the Map operation a lazy operation that is only actually
performed when the results are needed. This laziness allows for merging together
several operations, saving time in unnecessary memory copies and kernel calls.
Because of this optimization, the final kernel is only known and compiled at
runtime.

All operations, even the ones that cannot be translated to the GPU, have a
sequential version written in Java. For the original purposes of this framework, it
was not important to parallelize on the CPU, but it will be considered in future
work, and the same technique can be used.

2.2 GPU-CPU Decision

AminiumGPU uses Machine Learning techniques to automatically decide if a
given operation should be executed on either the GPU or CPU. The problem can
be described as two-classed because each program execution can be classified as
either Best on GPU or Best on CPU. Supervised learning will be used, since it
is important to associate certain features of programs to the two platforms.

Since decisions are hardware dependent (CPU and GPU combination), we
considered two ways for tackling the problem: training the classifier in each
machine; or considering CPU and GPU specifications as features in a general
classifier. The former was selected for this work, although it can be extended
to the later in the future. Using a large number of features would increase clas-
sification time and it would be a very hard to train a general classifier with a
large set of CPU and GPUs. This means that when installing AminiumGPU, it
is necessary to execute a standard benchmark for collecting training data.

The critical aspect for having a good classification is choosing the right fea-
tures to represent programs. For instance, it is not feasible to consider the full
program in ASCII, since the length would be variable and the abstraction level
ill-suited for classification techniques. Table 1 lists all the features used in the
classification process.

Features can be extracted either
during compilation or during runtime.
b(); // Level 2 This means that a given program will
while ( j < 20) always hold the same values for the
c(); // Level 3 first features, while the last three fea-

} tures may be different, depending on
the conditions of execution. Features

a(); // Level 1
for (int i=0; i<10; i++) {

Listing 1.2. Examples of Level
categorization



marked with a size of 3 have three values, one for each depth of loop scopes.
Listing 1.2 shows an example in which three functions are considered in 3 dif-
ferent loop levels. This distinction is important since operations in inner levels
are executed more times than ones in the outer levels.

The choice of some selected features was inspired by other applications of
Machine Learning in this area ([4], [5] and [6]). Memory accesses were considered
a feature as they are one of the main reasons why GPU programs are not as fast
as one would expect. As such, there are features for all three main kinds of
memories in GPUs (global and slow, local and fast, global read-only and fast).
Note that some GPU models may not have one of them, but it is still required
for other models.

l Name [Size[Collected during[Deseription
OuterAccess | 3 Compilation |Global GPU memory read.
InnerAccess 3 Compilation |Local (thread-group) memory read. This area
of the memory is faster than the global one.
ConstantAccess| 3 Compilation |Constant (read-only) memory read. This
memory is faster on some GPU models.

OuterWrite 3 Compilation |Write in global memory.

InnerWrite 3 Compilation |Write in local memory, which is also faster
than in global.

BasicOps 3 Compilation [Simplest and fastest instructions. Include
arithmetic, logical and binary operators.

TrigFuns 3 Compilation |Trigonometric functions, including sin, cos,
tan, asin, acos and atan.

PowFuns 3 Compilation |pow, log and sqrt functions

CmpFuns 3 Compilation |maz and min functions

Branches 3 Compilation |Number of possible branching instructions
such as for, if and whiles

DataTo 1 Runtime Size of input data transferred to the GPU in
bytes.

DataFrom 1 Runtime Size of output data transferred from the GPU
in bytes.

ProgType 1 Runtime One of the following values: Map, Reduce,
PartialReduce or MapReduce, which are the
different types of operations supported by
AminiumGPU.

Table 1. List of features

In terms of operations, we performed micro-benchmarks to assess their ex-
ecution cost. For instance, 4 or 5 plus operator calls execute much faster than
one single sin call. As such, OpenCL functions were grouped according to the
relative cost they have on execution time.

Besides these features, each benchmark also collected the execution time in
both CPU and GPU, and the class to each execution belongs to. This is used
for training and also evaluation.



3 Evaluation and Classifier Selection

In this section we will describe the experiments performed for verifying and
validating our approach and to select a classifier to use in the implementation.

3.1 Dataset

Our workload for generating the training and testing dataset is composed by the
following 8 programs:
1. A map operation that adds 1 to each element of the input array;
2. A map operation that applies the sin function to each element of the input
array;
3. A map operation that applies the sin and cosine functions to each element
of the input array and sums the values;
4. A map operation that calculates the factorial for each element of the input
array;
5. A map-reduce operation that calculates the integral from 0 to the size of the
array for f(z) = es"(®);
6. A map-reduce operation that calculates the minimum value from 0 to the
size of the array for f(x) = 1025 + 2° + 22 4 323 + %wQ + mx;
7. A map-reduce operation that calculates the sum of all natural numbers up
to a given value that are divisible by 7;
8. A map-reduce operation that calculates the sum of all elements of the input
array that are divisible by 7.

Each one of these programs was executed several times with varying amounts
of input data. The size of input data varies from 10 to 107 elements, executing
with 10 values for each power of 10, and in each level multiplied by all natural
numbers until 9. Thus, the first sizes would be 10,20,30,40,50,... and the last
sizes would be 506, 60°, 705,806,906, 107. Overall, the dataset has 440 instances
of different program executions, from 8 individual programs, each executed with
the 55 different data sizes.

3.2 Experimental Setup

These are the specifications of the hardware and software used for the exper-
iments: Intel Core2 Duo E8200 at 2.66GHz; 4GB of RAM memory; NVIDIA
GeForce GTX 285, with 240 CUDA cores and 1GB of memory; OS Ubuntu
Linux 64bits with the NVIDIA CUDA SDK 5.0 preview 2 with OpenCL 1.1 and
OpenJDK 1.7. The results presented here are specific to this particular hardware
and software and can not represent all possible combinations.

3.3 Feature analysis

To evaluate features we used two feature ranking techniques: Information Gain
and Gain Ratio. Both techniques were applied to the whole dataset. The ranking



obtained was different for each method, but both returned 3 groups of features:
A first group of high-ranked features, a group of low-ranked features and a third
group of unused or unrepresentative features. This later group exists because the
dataset programs do not cover all possibilities. But, this does not mean that such
features should be ignored, on the contrary, they should be studied for particular
examples which are out of the scope of this work. Table 2 shows the two other
groups ranked using the Information Gain method.

l Rank [Feature “Rank [Feature ‘

0.2606|DataTo 0.172 |OutterAccessl
0.2517|DataFrom 0.0637|Branches1
0.1988|BasicOps2 0.0516|InnerAccessl
0.1978|BasicOpsl 0.0425| TrigFuns1
0.1978|ProgType 0.0397|InnerWrite2
0.1978|Outter Writel||0.0397|Inner Access2
Table 2. Features rank using Information gain

Notice that features related with data sizes are high ranked, which is sup-
ported by the high penalty caused by memory transfers. Basic Operations are
also very representative, since they are very common, specially in loop condi-
tions (BasicOps2). The program type is also important because maps and re-
duces have a different internal structure. Maps happen in parallel, while parallel
reduces are executed with much more synchronization in each reduction level.

Looking at the lower ranked features, it is important to consider that memory
accesses also impact the decision. It is also expected that branching conditions
would have an impact on the performance of programs. Finally, trigonometric
functions do not have such an high impact as basic operations, but they are still
relevant for the decision.

3.4 Classifier Comparison

In order to achieve the best accuracy, it is important to choose an adequate clas-
sifier. For this task, several off-the-shelf classifiers from Weka[7] were evaluated,
and some custom classifiers were also developed. The used classifiers include: a
Random classifier that randomly assigns either class to a particular instance;
AlwaysCPU and AlwaysGPU that classifies all instances as Best on CPU and
Best on GPU; a NaiveBayes Classifier; a Support Vector Machine (SVM) ob-
tained from a Sequential Minimal Optimization algorithm with ¢ = 1, e = 10712
and a Polynomial Kernel; a Multi-Layer Perceptron (MLP); a DecisionTable
classifier; and a Cost-Sensitive version of the DecisionTable(CSDT) that uses
0.4 as the cost for 0.4 for misclassified Best on CPU programs and 0.6 for Best
on GPU programs.

Besides these classifiers, we also experimented with a regression-based ap-
proach using additional metrics such as: CPUTime and GPUTime. The main
idea was to use regression techniques to predict values of CPUTime and GPUTime
for each instance and then select the smallest value. However, regressions have



shown to have a poor quality with correlation coefficients between 70 and 80%.
The final classifier behaved very similarly with the Random classifier. Thus, we
decided to not pursue this line of research further.

Classifiers were evaluated using both 7 and 8 fold cross validation. Data was
not randomized and was ordered by program. Since the number of folds is lower
than or equal to the number of programs, some programs are not present in all
the training sets. This simulates the real-world scenario of classifying programs
that were not previously seen. The results with 7 and 8 folds were very similar,
as well as the results with randomized data. The results presented from here on
are with 7 folds and without randomization.

Figure 3 shows the accuracy distribution of the evaluated classifiers. Al-
waysCPU and AlwaysGPU do not have 0.5 of accuracy because programs that
are faster on the GPU are larger number on the dataset. This was not bal-
anced on purpose, to reflect the actual distribution of CPU and GPU execution
times for the tested programs. The DecisionTable classifier achieved a very high
accuracy, only second to its Cost-Sensitive version which had a slightly higher
accuracy with a more condensed distribution.

In this problem, the distinction between False Positives and Negatives is not
relevant. This may seem to contradict the usage of a Cost-Sensitive Classifier,
but the cost of misclassification does not only depend on the class, but also on
the size of the data in that execution, according to Figure 1. In order to represent
the impact of taking the wrong decision, a measure of cost was introduced to
replace the traditional confusion matrix. The cost of a misclassification is the
absolute difference between the real GPU and GPU execution times previously
measured during the feature extraction.

Figure 4 shows the distribution of the total cost of the classification for each
cross-validation execution with a logarithmic scale on the Cost (yy axis). The
lowest the cost is, the better. A perfect classifier would have a cost of 0. The
random classifier has an average cost of 9.8 x 10, which can be considered as a
ceiling for this dataset.

The measure of cost is important because we can see that some classifiers
such as NaiveBayes and SVM have a better accuracy but have an higher penalty
on performance than the classifier that executes everything on the GPU. The
two versions of the DecisionTable classifier were also the ones with the lowest
cost. Another evaluation metric was classification time, since it could not be
representative in execution time. Except for the NaiveBayes classifiers, all others
classified instances in less than 20 microseconds, which is acceptable for this task.
The classifier training time was not considered for this study as it is not relevant
since it is only performed once per machine.

Looking at all the metrics, the Cost Sensitive version of the DecisionTable
classifier was the best, achieving 92% of average accuracy and the lowest mis-
classification cost.
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4 Related Work

There have been several works which can be compared with the AminiumGPU
framework. There are also approaches that allow to write the kernel code in
higher-level languages such as Aparapi[8] (for Java), Copperhead[9] (for Python)
and ScalaCL[10] (for Scala) and in X10[11]. AminiumGPU is different from these
approaches since it provides an interface at an even higher level, as it does not
require programmers to write kernels, or know about which code can execute in
the GPU or CPU.

Accelerate[12] has a more similar approach in which it also executes higher-
level functions over arrays on the GPU. The purity of Haskell makes this some-
how easier than in Java. Due to the monadic approach, programmers must type
annotate all the code that can execute on the GPU, making GPU Programming
less transparent than in AminiumGPU.

Both the second version of ScalaCL and JikesVM][13] can convert for loops to
OpenCL code and execute it on the GPU. The former uses reflection while the
later uses bytecode instrumentation. AminimumGPU uses a different approach,
using a Source-to-Source compiler to generate the OpenCL code.

MARS[14] and MapCGJ15] are two map-reduce frameworks for the GPU and,
in the case of the latter, CPU as well with a low-level C API. Both these plat-
forms follow the distributed key-value approach to map-reduce. The overhead of
copying both keys and values is significant on the GPU, where every memory
transfer counts, in cases where the values are not aggregated by key.

Qilin[16] is a C++ framework that has adaptive mapping in which it tries
to record executes of the same program to build a cost model for future execu-
tions of the program with different data sizes. AminiumGPU also uses previous
program executions to build information for future decisions, but it does not
require executions of the same program. For programs that only execute a few
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times in each machine, the approach used in Qilin is not feasible. There are also
approaches for real-time systems[17]. However this work is limited to operations
inside a ever-running loop, in which each iteration is schedule to the CPU or
GPU according to estimated time, based on previous runs.

5 Conclusions and Future Work

The Aminium framework tries, as much as possible, to optimize the generated
code and to schedule operations to the GPU. In many situations, performance
increases as soon as the size of the input data goes above a certain threshold. But,
since this value is program-dependent, AminiumGPU uses a Machine-Learning
approach to decide which platform offers more guarantees of providing the best
performance. Our tests show that AminiumGPU is able to achieve a 92% average
accuracy with a low misclassification penalty.

The approach presented is language independent and can be applied to typ-
ical HPC languages like C and Fortran, even without using the Map-Reduce
pattern. The approach can also work with other accelerators like FPGAs, and
improved with specific features for those processors.

Concluding, AminiumGPU allows programmers to write data-parallel pro-

grams whose performance can, if possible, be improved automatically by using
the GPU.
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