
Handling Exceptions in Programs with Hidden Concurrency:
New Challenges for Old Solutions

Alcides Fonseca, Bruno Cabral
Universidade de Coimbra

Coimbra, Portugal
{amaf,bcabral}@dei.uc.pt

Abstract—Multi-core processors are present in everyone’s
daily life. Consequently, concurrent programming has re-
emerged as a pressing concern for everyone interested in
exploring all the potential computational power in these ma-
chines. But, the emergence of new concurrency models and
programming languages also brings new challenges in terms
of how one can deal with abnormal occurrences, much due to
the heterogenous parallel control flow. Unexpectedly, sequential
Exception Handling models remain as the most used tool for
robustness, even in the most recent concurrent programming
languages. Though, the appearance of more complex models,
such as programming languages with implicit concurrency,
might pose a challenge too big for these sequential mechanisms.
In this article we will provide evidences why such models
are not generally suited to deal with faults in programs
with implicit concurrency and, in the light of more recent
advances in concurrent Exception Handling, we will discuss
the attributes of a model for addressing this problem.

I. INTRODUCTION

The development of new concurrency models and con-
current programming languages has become one of the most
active research fields in Computer Science of the last decade.
At the root of this growing interest is the need for programs
that are able to efficiently explore the computational power
available on modern multi-core processors. But, concurrency
introduces new challenges for systems development, among
which Exception Handling (EH) is a main concern. More
than confining developers to the usage of sequential try-
catch type EH techniques, language designers face the chal-
lenge of integrating EH into a new and complex environment
in a way that respects the structure of programs and its
goals. And, despite the existence of sound concurrent and
distributed EH models(e.g., [1], [2]), the traditional and
sequential exception handling model remains as the most
used tool for robustness in concurrent programming. This
is still true in more concurrency-oriented languages such
as Scala, Fortress, X10, JCilk, and Erlang, among others.
But, such hegemony may end soon. The reason for this
downfall is the new interest in programming languages
and models capable of generating concurrency without an
explicit structure or control by the programmer [3], [4]
(section II). As we will show in this article, such lack of
control makes the usage of sequential EH impossible and

the integration of existent concurrent solutions too costly.
Furthermore, since these languages are very recent and still
an open research topic, all aspects related with EH remain
unexplored.

The main contributions of this work are:
• Identification of the problems which make the use of

sequential try-catch type EH mechanisms undesirable
for programming languages with implicit concurrency
(section III);

• Discussion of the pitfalls of using concurrent EH
techniques for programs written in such programming
languages (section IV.)

II. PROGRAMMING LANGUAGES WITH IMPLICIT
CONCURRENCY

Writing concurrent programs is a complex and error-
prone task. The main difficulty arises from the fact that we
are used to think about programs sequentially. Moreover,
traditionally developers are not taught to reason about pro-
grams concurrently. Consequently, parallel programming is
almost always an afterthought. Programmers have to specify,
control and tune parallel execution explicitly and effectively.
For instance, programmers must identify and control all
possible memory-access interferences (e.g., races). Such
an approach to parallelism does not scale well with the
increasing complexity in programs.

During the last decade, many programming languages
designers have been working towards decreasing the com-
plexity of concurrent programming. Many new models and
languages have emerged from this effort. In this work,
we will focus in languages with implicit concurrency, i.e.,
languages where the programmer is allowed to write code
very similar to what he or she would write for sequential
programs, but which will execute concurrently ”under-the-
hood”. We have already mentioned a couple of these lan-
guage [3], [4], but we will be focusing in the approach
which, in our opinion, seems to illustrate better the similarity
with sequential code and the code that the programmer
actually produces.

In Æminium[4], programs are parallel from inception and
developers do not control or define parallelism explicitly.
Even the execution order of the instructions in the code is



automatically decided by the compiler and runtime. Devel-
opers focus on the definition of Access Permissions for the
objects in the code. These permissions allow the compiler to
understand the Data Dependencies between all instructions
in the code, which it uses to derive a data-flow graph of the
program and allow the parallel execution of all independent
tasks in the graph.

Access permissions are special annotations introduced
into method signatures which describe the restrictions for
accessing the objects being referenced. We will consider four
kinds of permissions: unique, shared, immutable and none.
Unique means that there can only be one reference to the
”tagged” object in every moment of the program execution.
Shared means that there may be two or more references to
an object, but accesses to it must be performed in consistent
way (e.g., mutual exclusion). Immutable expresses the fact
that the object is not modified, thus several tasks can access
it in parallel. None means that there is no reference to the
object. Access permissions are written by the programmer in
the source code of the program, they can be optionally used
in local variables, but are mandatory in method signatures.
state UpperCaseFileConverter {

method void convert(immutable String inputName, immutable String
outputName) [none] {

val inputFile = java.io.File.new(inputName);
val outputFile = java.io.File.new(outputName);
val reader = java.io.BufferedReader.new(java.io.FileReader.new(inputFile

));
val writer = java.io.BufferedWriter.new(java.io.FileWriter.new(outputFile)

);

translate(reader, writer);

inputFile.close();
outputFile.close();

}
method void translate(unique BufferedReader reader, unique BufferedWriter

writer) [none] {
while (reader.hasAvailable()) {

var newLine = translateLine(
readLine(reader)

);
writeLine(writer, newLine);
Logger.log(”Converted ” + newLine);

}
}
method immutable String readLine(shared BufferedReader reader) [none] {

reader.readLine();
}
method void writeLine(shared BufferedWriter writer, immutable String

newLine) [none] {
writer.write(newLine);
writer.flush();

}
method immutable String translateLine(immutable String oldLine) [none] {

oldLine.toUpper();
}

}

Listing 1. Example of a FileConverter in Æminium

The program in Listing 1 performs the conversion of
the text in a file to upper case and then saves the result
in a new file. This example will help us understand how
Æminium works. It is important to notice that several parts
of this program will execute in parallel. But, without the
permissions in the code it would actually be very difficult

to distinguish this code from regular sequential code. In
particular, the method translateLine can be invoked
in parallel with other instances of itself (even when applied
to the same string) because there is no reference to this
and the only parameter present is immutable. On the other
hand, the method readLine cannot be invoked in parallel
with itself using the same reader, because access is shared
and therefore needs to be synchronized. readLine and
writeLine can be executed in parallel because there is
no access to this and they do not share any parameter.
Besides these restrictions defined by the access permissions,
the compiler also guarantees the order between parallel
executions, so that the output is the same as if the program
was sequential. This is done using a data-flow approach.

In this example, the mentioned restrictions simply mean
that reads and writes of files are sequential and ordered due
to the Unique permission, but the actual execution of the
translateLine can be parallelized. For instance, at a
given time the program may have read 10 lines and it is
processing those 10 lines without having written anything
to disk yet.

III. SEQUENTIAL EH AND IMPLICIT CONCURRENCY

In the example in Listing 1, IO operations are not guar-
anteed to always execute correctly. For instance, open, read
and write operations may raise exceptions if some problem
occurs. In this section we will consider several abnormal
scenarios using Æminium code examples.

method void translate(unique BufferedReader reader, unique BufferedWriter
writer) [none] {

try {
while (reader.hasAvailable()) {

try {
newLine = translateLine(readLine(reader));

} catch (CouldNotTranslateEnconding e) {
newLine = translateLine(readLastLine(reader, ’utf8’));

}
try {

writeLine(writer, newLine);
Logger.log(”Converted ” + newLine);

} catch (DiskIsFullException e) {
clearTemporaryFiles();
retry;

} catch (IOException e) {
Logger.log(”Could not write on the output file.”);
break;

}
}

} catch (IOException e) {
Logger.log(”Line ’” + newLine + ”’ was not converted because of ” + e.

toString() );
outputFile.delete();

}
}

Listing 2. Handling of Exceptions in File Converter if it was Sequential

Starting with the previous example, if we consider it to
execute in a pure sequential way, the code in Listing 2 would
suffice for recovery under several abnormal conditions when
replacing the original translate method. Please note that
for the programmer (and for anyone reading the code) this
recovery code would look suitable if the code executed the



way it is actually written, which is not the case here. In
Æminium, we do not know exactly how this method will be
executed.

In Æminium, considering that the log operation can
be called multiple times inside the loop and that those
calls are executed in parallel, several things can go wrong.
These are situations where this code could fail to recover
from abnormal situations in Æminium due to its concurrent
nature:

• Occurrence of an error reading from the file - In this
case the output file should be deleted and the operation
aborted. However in a implicit concurrent language,
one thread might catch an error when reading a line
and handles it by deleting the output file while another
thread is finishing the translation of the previous line
and writes to the same file shortly after. This results in
an inconsistent program state.

• Occurrence of an error translating a line due to string
encoding problems - It is possible to read the line again
(using seek for instance) with another decoder. In
a implicit concurrent language this can not be done
because the last line read might not be the one causing
problems. The translation of each line happens in par-
allel with a lock protecting the file reads. It is possible
that the next iterations of the cycle have already read
their lines before the faulty translation happens.

• Occurrence of an error writing to the file - The suc-
cess message should never be written to the logger,
and the operation would be aborted. In a concurrent
setting, the log instruction might still execute in parallel
with writeLine and incorrect information would be
logged. This means that even though the writeLine
fails, the log might have already completed or still be
running in parallel. Even if both lines were inside a
protected block, it would not be possible to predict
which one would finish first.

• Occurrence of an error writing to the log - It is not clear
how exceptions should be thrown and handled. On one
hand, since the calls are parallel, each one should raise
one exception. On the other hand, from the perspective
of the programmer, there is only one single error that
affects the parallel execution several times.

In any of the previous cases, to correct the issue the
programmer has to prevent future loop iterations from oc-
curring, pause the program, correct the problem and retry.
Alternatively, he or she could enable each parallel execution
to try to restore the logger itself. It is very hard to know
exactly what has already been written to the output file,
what has been translated or is being translated. Programmers
do not know what other operations can be in execution
simultaneously.

It is also feasible that the program will continue to
execute, consuming resources, just to fail all the operations

that are already in execution. Since this is a very simple ex-
ample, we can guess almost all the possibilities, but in more
complex programs it would be impossible to know exactly
what is executing and how the isolation between concurrent
executions is broken by one exceptional occurrence.

To summarize, an implicit concurrent language poses the
following challenges when we attempt to apply sequential
exception handling techniques to it in the event of an
abnormal occurrence:
• It is not possible to assert the precise state of the

program when writing the code. Even if no recovery
is attempted and the program is aborted, the system
would have an hard time logging the precise conditions
of when the problem occurred.

• It is not possible to know what is executing in that
moment when writing the code.

• It is not possible to know what has executed until that
moment when writing the code.

• It is not possible to know the impact in concurrent
executions or notify them of the problem.

• It is not simple to revert the program to a ”known”
state.

One can use a conservative approach, assigning Unique
permissions to as many objects as possible in order to ”se-
quentialize” execution and make sequential EH work. But,
this would break the fundamental objective of this paradigm,
which is extracting as much concurrency as possible from
the code.

IV. CAN CONCURRENT EXCEPTION HANDLING
APPROACHES HELP?

Concurrent EH has been a very active research topic
for several decades now. And, although one can argue that
there is no definitive solution, several techniques have been
very successful in particular domains (e.g., Atomic Actions,
Conversations, Coordinated Atomic Actions, the Guardian
model, among others). Unfortunately, a common require-
ment to all these approaches is that they need concurrency
to be explicit in the source code, for instance, with threads
and locks. This is something which implicit concurrent lan-
guages do not have since the scheduling of code among the
available threads only happens at runtime. Therefore such
mechanisms, without any substantial modification, cannot
be used in these languages.

The solution for the problem can be the re-engineering of
the runtime of these languages. An approach is to reduce
the number of possible states by introducing barriers or
checkpoints in some sections of the code[5]. This would
allow programmers to handle exceptions knowing that all
the code before the last checkpoint executed correctly and
will only need to consider the possible states after the last
checkpoint. The frequency of checkpoints in a program
would lead to a difficult trade-off. On one hand, less frequent
checkpoints would lead to more possible alternatives being



considered, and more possible states for the programmer
to consider. On the other hand, more frequent checkpoints
would lead to a more sequential code with less parallelism.

Another approach to consider is to revert the program to
a previous state, in which it is possible to recover. When
a program throws an exception, the program can stop the
current parallel execution and rollback to the most recent
common state. This stability is defined by the non-existence
of running code that can have potential side-effects on other
running code. On a stable state, it would be possible to
execute the error-recovery code defined by the programmer.
Inspiration can come from the work of Lanvin et all[6], who
proposed the concept of reconstructor: a counter-action for
each operation that can take the program from the state left
by that operation to the state it was in before. Having this
undo semantics for all methods in a program it is possible
to revert to a previous state. The drawback of this technique
is that the reconstructor must be programmed manually.
This means that for every method, programmers must write
another one for reverting the state.

Software Transactional Memory (STM) is an alternative
for achieving the same goal these days. A way of imple-
menting the system is making protected blocks atomic[7],
using STM. Operations done inside a try-catch are either
all completed or none is. And if there is an exceptional
occurrence, there is a catch clause that able to restore
the system. Although the behavior is what we expect, STM
solutions today are still very expensive. Furthermore, if the
exception is caused by external factors (writing to a file
and other IO operations), the system cannot automatically
recover from those, which also poses a problem. For in-
stance, the authors of the Atomic Boxes mechanism [8]
report slowdowns between 10 and 1000 times for simple
programs featuring sorting algorithms such as quicksort and
bubblesort. Atomic Boxes expand the previous work by iso-
lating atomic blocks. These blocks can have dependencies,
something in common with languages such as Æminium,
and if there is an exception in one block, all the dependent
blocks stop executing and all threads execute the recovery
code.

Another alternative would be for the system to automati-
cally handle the most common exceptions[9]. This way the
programmer would not have to write EH code itself. On the
short-side, this approach suffers from the same problems
of the previous atomic models and it is not be suitable for
exceptions resulting from bad program logic.

V. CONCLUSIONS

In this article we have identified the problems that arise
when attempting to use sequential EH techniques in pro-
grams with implicit concurrency. We also concluded that
such programs would be unable to use concurrent EH tech-
niques because they lack any kind of explicit identification

of concurrent structures (e.g., threads) in the code. Further-
more, we also described how some successful approaches
for dealing with problems in concurrent settings could be
used to improve the system and allow the inclusion of
recovery strategies. On this last topic we concluded that
none of the described approaches would be totally successful
or desirable. In conclusion, EH in languages with implicit
concurrency is a challenging new problem.

ACKNOWLEDGMENT

This work was partially supported by the Portuguese
Research Agency FCT, through CISUC (R&D Unit 326/97)
and the CMU—Portugal program (R&D Project Æminium
CMU-PT/SE/0038/2008).

REFERENCES

[1] V. Issarny, “An exception handling model for parallel program-
ming and its verification,” SIGSOFT Softw. Eng. Notes, vol. 16,
pp. 92–100, September 1991.

[2] R. Campbell and B. Randell, “Error recovery in asynchronous
systems,” IEEE Transactions on Software Engineering, vol. 12,
pp. 811–826, 1986.

[3] S. Marlow, R. Newton, and S. Peyton Jones, “A monad for
deterministic parallelism,” in Proceedings of the 4th ACM
symposium on Haskell. ACM, 2011, pp. 71–82.

[4] S. Stork, P. Marques, and J. Aldrich, “Concurrency by default:
using permissions to express dataflow in stateful programs,” in
Proceeding of the 24th ACM SIGPLAN conference compan-
ion on Object oriented programming systems languages and
applications. ACM, 2009, pp. 933–940.

[5] L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski, “Bulk
synchronous parallel ml with exceptions,” Future Generation
Computer Systems, vol. 26, no. 3, pp. 486 – 490, 2010.

[6] D. Fernández Lanvin, R. Izquierdo Castanedo, A. Juan Fuente,
and A. Fernández Álvarez, “Extending object-oriented lan-
guages with backward error recovery integrated support,” Com-
puter Languages, Systems & Structures, vol. 36, no. 2, pp.
123–141, 2010.

[7] C. Fetzer and P. Felber, “Improving program correctness with
atomic exception handling,” Journal of Universal Computer
Science, vol. 13, no. 8, pp. 1047–1072, 2007.

[8] D. Harmanci, V. Gramoli, and P. Felber, “Atomic boxes:
Coordinated exception handling with transactional memory,”
ECOOP 2011–Object-Oriented Programming, pp. 634–657,
2011.

[9] B. Cabral and P. Marques, “A transactional model for auto-
matic exception handling,” Computer Languages, Systems &
Structures, vol. 37, no. 1, pp. 43–61, 2011.


