
A Specific Encryption Solution for Data Warehouses 

Ricardo Jorge Santos1, Deolinda Rasteiro2, Jorge Bernardino3 and Marco Vieira4 

1, 4CISUC – FCTUC – University of Coimbra – 3030-290 Coimbra – Portugal 
2DFM – ISEC – Polytechnic Institute of Coimbra – 3030-190 Coimbra – Portugal 

3CISUC – ISEC – Polytechnic Institute of Coimbra – 3030-190 Coimbra – Portugal 
 

lionsoftware.ricardo@gmail.com, dml@isec.pt, 
jorge@isec.pt, mvieira@dei.uc.pt 

Abstract. Protecting Data Warehouses (DWs) is critical, because they store the 
secrets of the business. Although published work state encryption is the best 
way to assure the confidentiality of sensitive data and maintain high perfor-
mance, this adds overheads that jeopardize their feasibility in DWs. In this pa-
per, we propose a Specific Encryption Solution tailored for DWs (SES-DW), 
using a numerical cipher with variable mixes of eXclusive Or (XOR) and mod-
ulo operators. Storage overhead is avoided by preserving each encrypted col-
umn’s datatype, while transparent SQL rewriting is used to avoid I/O and net-
work bandwidth bottlenecks by discarding data roundtrips for encryption and 
decryption purposes. The experimental evaluation using the TPC-H benchmark 
and a real-world sales DW with Oracle 11g and Microsoft SQL Server 2008 
shows that SES-DW achieves better response time in both inserting and query-
ing, than standard and state-of-the-art encryption algorithms such as AES, 
3DES, OPES and Salsa20, while providing considerable security strength. 

Keywords: Encryption, Confidentiality, Security, Data Warehousing. 

1 Introduction 

Data Warehouses (DWs) store extremely sensitive business information. Unautho-
rized disclosure is therefore, a critical security issue. Although encryption is used to 
avoid this, it also introduce very high performance overheads, as shown in [16]. Since 
decision support queries usually access huge amounts of data and  substantial re-
sponse time (usually from minutes to hours) [12], the overhead introduced by using 
encryption may be unfeasible for DW environments if they are too slow to be consi-
dered acceptable in practice [13]. Thus, encryption solutions built for DWs must bal-
ance security and performance tradeoff requirements, i.e., they must ensure strong 
security while keeping database performance acceptable [13, 16]. 

As the number and complexity of “data-mix” encryption rounds increase, their se-
curity strength often improves while performance degrades, and vice-versa. Balancing 
performance with security in real-world DW scenarios is a complex issue which de-
pends on the requirements and context of each particular environment. Most encryp-
tion algorithms are not suitable for DWs, because they have been designed as a gener-



al-purpose “one fits all” security solution, introducing a need for specific solutions for 
DWs capable of producing better security-performance tradeoffs.  

Encryption in DBMS can be column-based or tablespace-based. Using tablespace 
encryption implies losing the ability to directly query data that we do not want or need 
to encrypt, adding superfluous decryption overheads. Best practice guides such as 
[14] recommend using column-based encryption for protecting DWs. Thus, we pro-
pose a column-based encryption solution and for fairness we compare it with other 
similar solutions. 

In this paper, we propose a lightweight encryption solution for numerical values 
using only standard SQL operators such as eXclusive OR (XOR) and modulo (MOD, 
which returns the remainder of a division expression), together with additions and 
subtractions. We wish to make clear that it is not our aim to propose a solution as 
strong in security as the state-of-the-art encryption algorithms, but rather a technique 
that provides a considerable level of overall security strength while introducing small 
performance overheads, i.e., that presents better security-performance balancing. To 
evaluate our proposal, we include a security analysis of the cipher and experiments 
with standard and state-of-the art encryption algorithms such as Order-Preserving 
Encryption (OPES) [3] and Salsa20 (alias Snuffle) [5, 6], using two leading DBMS.  

In summary, our approach has the following main contributions and achievements: 

• SES-DW avoids storage space and computational overhead by preserving each 
encrypted column’s original datatype; 

• Each column may have its own security strength by defining the number of encryp-
tion rounds to execute. This also defines how many encryption keys are used, since 
each round uses a distinct key (thus, the true key length is the number of rounds 
multiplied by the length of each round’s encryption key). This enables columns 
which store less sensitive information to be protected with smaller-sized keys and 
rounds and thus, process faster than more sensitive columns; 

• Our solution is used transparently in a similar fashion as the Oracle TDE [11, 14] 
and requires minimal changes to the existing data structures (just the addition of a 
new column), and the SES-DW cipher uses only standard SQL operators, which 
makes it directly executable in any DBMS. This makes our solution portable, low-
cost and straightforward to implement and use in any DW; 

• Contrarily to solutions that pre-fetch data, by simply rewriting queries we avoid 
I/O and network bandwidth congestion due to data roundtrips between the database 
and encryption/decryption mechanism, and consequent response time overhead; 

• The experiments show that our technique introduces notably smaller storage space, 
response and CPU time overheads than other standard and state of the art solutions, 
for nearly all queries in all tested scenarios, in both inserting and querying data. 

The remainder of the paper is organized as follows. In section 2 we present the guide-
lines and describe our proposal. In Section 3, we discuss its security issues. Section 4 
presents experimental evaluations using the TPC-H decision support benchmark and a 
real-world DW with Oracle 11g and Microsoft SQL Server 2008. Section 5 presents 
related work and finally, section 6 presents our conclusions and future work. 



2 SES-DW: Specific Encryption Solution for Data Warehouses 

In this section we point out a set of considerations concerning the use of encryption 
solutions in DW environments, which guide the requirements that serve as the foun-
dations of our proposal, and then we describe our approach and how it is applied. 

2.1 The foundations of SES-DW 

Standard encryption algorithms were conceived for encrypting general-purpose data 
such as blocks of text, i.e., sets of binary character-values. Standard ciphers (as well 
as their implementations in the leading DBMS) output text values, while DW data is 
mostly composed by numerical datatype columns [12]. Most DBMS provide built-in 
AES and 3DES encryption algorithms and enable their transparent use. However, they 
require changing each encrypted column’s datatype at the core to store the ciphered 
outputs. To use the encrypted values for querying once decrypted, the textual values 
must be converted back into numerical format in order to apply arithmetic operations 
such as sums, averages, etc., adding computational overheads with considerable per-
formance impact. Since working with text values is much more computationally ex-
pensive than working with numeric values, standard ciphers are much slower than 
solutions specifically designed for numerical encryption such as ours, which is specif-
ically designed for numerical values and avoids datatype conversion overheads. 

Data in DWs is mostly stored in numerical attributes that usually represent more 
than 90% of the total storage space [12]. Numerical datatype sizes usually range from 
1 to 8 bytes, while standard encryption outputs have lengths of 8 to 32 bytes. Since 
DWs have a huge amount of rows that typically take up many gigabytes or terabytes 
of space, even a small increase of any column size required by changing numeric 
datatypes to textual or binary in order to store encryption outputs introduces very 
large storage space overheads. This consequently increases the amount of data to 
process, as well as the required resources, which also degrades database performance. 
While encrypting text values is mainly not so important for DWs, efficiently encrypt-
ing numerical values is critical. In our approach, we preserve the original datatype and 
length of each encrypted column, to maintain data storage space. 

Topologies involving middleware solutions such as [15] typically request all the 
encrypted data from the database and execute decrypting actions themselves locally. 
This strangles the database server and/or network with communication costs due to 
bandwidth consumption and I/O bottlenecks given the data roundtrips between mid-
dleware and database, jeopardizing throughput and consequently, response time. Giv-
en the typically large amount of data accessed for processing DW queries, previously 
acquiring all the data from the database for encrypting/decrypting at the middleware 
is impracticable. Therefore, our approach is motivated by the requirement of using 
only operators supported by native SQL. This enables using only query rewriting for 
encrypting and decrypting actions and no external languages or resources need to be 
instantiated, avoiding data roundtrips and thus, avoiding I/O and network overhead 
from the critical path when compared to similar middleware solutions. 



In what concerns the design of “data mixing” for each of the cipher’s rounds, we 
discard bit shifting and permutations, commonly used by most ciphers, since there is 
no standard SQL support for these actions. We also discard the use of substitution 
boxes (e.g. AES uses several 1024-byte S-boxes, each of which converts 8-bit inputs 
to 32-bit outputs). Although complex operations such as the use of S-boxes provide a 
large amount of data mixing at reasonable speed on several CPUs, thus achieving 
stronger security strength faster than simple operations, the potential speedup is fairly 
small and is accompanied by huge slowdowns on other CPUs. It is not obvious that a 
series of S-box lookups (even with large S-boxes, as in AES, increasing L1 cache 
pressure on large CPUs and forcing different implementation techniques on small 
CPUs) is faster than a comparably complex series of integer operations. In contrast, 
simple operations such as bit additions and XORs are consistently fast, independently 
from the CPU. Our approach aims to be DBMS platform independent, making it usa-
ble in any DW without depending on any programming language or external resource, 
as well as specific CPU models. Given the requirements described in the former para-
graphs, the proposed solution is described in the next subsections. 

2.2 The SES-DW Cipher 

Considering x the plaintext value to cipher and y the encrypted ciphertext, NR the 
number of rounds, RowK a 2128 bit encryption key, Operation[t] a random binary 
vector (i.e., each element is 1 or 0), XorK[t] and ModK[t] as vectors where each ele-
ment is an encryption subkey with the same bit length as the plaintext x, and F(t) a 
MOD/XOR mix function (explained further), where t represents each individual en-
cryption round number (i.e., t = 1...NR). Figures 1.a and 1.b show the external view of 
the SES-DW cipher for respectively encrypting and decrypting. 

Fig. 1.a The SES-DW encryption cipher Fig. 2.b The SES-DW decryption cipher 

As illustrated, we randomly mix MOD with XOR throughout the encryption 
rounds, given a random distribution of 1 and 0 values of vector Operation. In the 



rounds where Operation[t] = 0, only XOR is used with the respective XorK[t]; in 
rounds where Operation[t] = 1, we first perform MOD with addition and subtraction 
using the respective ModK[t] and RowK[j], and TabK, and afterwards XOR with the 
respective XorK[t]. To avoid generating a ciphertext that may overflow the bit length 
of x it must be assured that the bit length of the term using MOD (EncryptOutput + 
(RowK[j] MOD ModK[t]) - ModK[t]) is smaller or equal to the bit length of x.  

As an example of encryption, consider the encryption of an 8 bit numerical value 
(x  = 126) executing 4 rounds (NR = 4), given the following assumptions: 

Operation = [0, 1, 0, 1]   XorK = [31, 2, 28, 112] 

For t=1 (round 1), EncryptOutput = 126 XOR 31 = 97 
For t=2 (round 2), EncryptOutput = (97+(15467801 MOD 36)-36) XOR 2 = 64 
For t=3 (round 3), EncryptOutput = 64 XOR 28 = 92 
For t=4 (round 4), EncryptOutput = ((92+15467801 MOD 19)-19) XOR 112 = 40 

Thus, Encrypt(126, 4) = 40. In the decryption cipher, shown in Figure 1.b, F-1(t) al-
so represents the reverse MOD/XOR mix function for decryption. Given this, the 
SES-DW cipher decryption function for decrypting x with NR rounds is: 
   FUNCTION Decrypt(x,NR)  
      DecryptOutput = x 
      FOR t = NR DOWNTO 1 STEP -1 
         DecryptOutput = DecryptOutput XOR XorK[t] 
         IF Operation[t] = 1 THEN 
            DecryptOutput = DecryptOutput - (RowK MOD ModK[t]) + ModK[t] 
         END_IF 
      END_FOR 
   RETURN DecryptOutput    

Considering the encryption example previously shown, we now demonstrate the 
decryption process for y = 40, given the same Operation, RowK, XorK and ModK: 

 For t=4 (round 1), DecryptOutput = (40 XOR 112)-(15467801 MOD 19)+19 = 92 
 For t=3 (round 2), DecryptOutput = 92 XOR 28 = 64 
 For t=2 (round 3), DecryptOutput = (64 XOR 2)–(15467801 MOD 36)+36 = 97 
 For t=1 (round 4), DecryptOutput = 97 XOR 31 = 126 

Thus, Decrypt(40, 4) = 126, which is the original x plaintext value. Although our 
cipher only works with numerical values, we maintain the designation of plaintext and 
ciphertext respectively for the true original input value and ciphered value. 

2.3 The SES-DW Functional Architecture 

The system’s architecture is shown in Figure 2, made up by three entities: 1) the en-
crypted database and its DBMS; 2) the SES-DW security middleware application; and 
3) user/client applications to query the encrypted database. The SES-DW middleware 
is a broker between the DBMS and the user applications, using the SES-DW encryp-
tion and decryption methods and ensuring queried data is securely processed and the 
proper results are returned to those applications. We assume the DBMS is a trusted 
server and all communications are made through SSL/TLS secure connections, to 
protect SQL instructions and returned results between the entities. 



 
Fig. 2. The SES-DW Data Security Architecture 

The Black Box is stored on the database server, created for each encrypted database. 
This process is similar to an Oracle Wallet, which keeps all encryption keys and defi-
nitions for each Oracle Database [14]. However, contrarily to Oracle, where a DBA 
has free access to the wallet, in our solution only the SES-DW middleware can access 
the Black Box, i.e., absolutely no user has direct access to its content. In the Black 
Box, the middleware will store all encryption keys and predefined data access policies 
for the database. The middleware will also create a history log for saving duplicates of 
all instructions executed in the database, for auditing and control purposes. All Black 
Box contents are encrypted using AES with a 256 bit key. 

To obtain true results, user actions must go through the security middleware appli-
cation. Each time a user requests any action, the application will receive and parse the 
instructions, fetch the encryption keys, rewrite the query, send it to be processed by 
the DBMS and retrieve the results, and finally send those results back to the applica-
tion that issued the request. Thus, SES-DW is transparently used, since query rewrit-
ing is transparently managed by the middleware. The only change user applications 
need is to send the query to the middleware, instead of querying the database directly. 

To encrypt a database, a DBA requires it through the SES-DW middleware. Enter-
ing login and database connection information, the middleware will try to connect to 
that database. If it succeeds, it creates the Black Box for that database, as explained 
earlier. Afterwards, the middleware will ask the DBA which tables and columns to 
encrypt. All the required encryption keys (RowK, XorK, ModK) for each table and 
column will be generated, encrypted by an AES256 algorithm and stored in the Black 
Box. Finally, the middleware will encrypt all values in each column marked for en-
cryption. Subsequent database updates must always be done through the middeware, 
which will apply the cipher to the values and store them directly in the database. 

To implement SES-DW encryption in a given table T, consider the following: Sup-
pose table T with a set of N numerical columns Ci = {C1, C2, …, CN} to encrypt and a 
total set of M rows Rj = {R1, R2, …, RM}. Each value to encrypt in the table will be 
identified as a pair (Rj, Ci), where Rj and Ci respectively represent the row and col-
umn to which the value refers (j = {1..M} and i = {1..N}). To use the SES-DW cipher, 
we generate the following encryption keys and requirements: 

• An encryption key TabK, a 128 bit random generated value, constant for table T; 
• Vector RowK[j], with j = {1..M}, for each row j in table T. Each element holds a 

random 128 bit value; 
• Define NRi with i = {1..N}, which gives the number of encryption rounds to ex-

ecute for each column Ci. We define NRi = SBLi/BitLength(Ci), where SBLi is the 



desired security bit strength for the XorK and ModK encryption keys of column Ci 
and BitLength(Ci) is the datatype bit length of column Ci (e.g. if we want to secure 
a 16 bit column Ci with a security strength of 256 bits, then the number of encryp-
tion rounds would be 256/16 = 16); 

• Vectors XorKi[t] and ModKi[t], with t = {1..NRi}, for each Ci, filled with randomly 
generated unique values. The bit length of each key is equal to the bit length of 
each Ci’s datatype; 

• A vector Operationi[t], with t = {1..NRi}, for each column Ci, filled randomly with 
1 and 0 values, so that the count of elements equal to 1 is the same as the count of 
elements equal to 0 (e.g. Operationi = [0,1,0,0,1,1,0,1], with NRi = 8). 

Since the number of rows in a DW fact table is often very big, the need to store a 
RowK[j] encryption key for each row j poses a challenge. If these values were stored 
in a lookup table separate from table T, a heavy join operation between those tables 
would be required to decrypt data. Given the typically huge number of rows in fact 
tables, this must be avoided. For the same reasons, storing RowK[j] in RAM is also 
impracticable. To avoid table joins, as well as oversized memory consumption, the 
values of RowK[j] must be stored along with each row j in table T, as an extra column 
CN+1. This is the only change needed in the DW data structure in order to use SES-
DW. To secure the value of RowK[j], it should be XORed with key TabK before be-
ing stored. To retrieve the true value of RowK[j] in order to use the SES-DW algo-
rithms, we need to simply calculate (Rj, CN+1) XOR TabK. 

3 Security Issues 

Threat model. All user instructions are managed by the SES-DW middleware, 
which transparently rewrites them to query the DBMS and retrieve the results. The 
users never see the rewritten instructions. For security purposes, the middleware shuts 
off database historical logs on the DBMS before requesting execution of the rewritten 
instructions, so they are not stored in the DBMS, since this would disclose the encryp-
tion keys. All communications between user applications, the SES-DW middleware 
and the DBMS are done through encrypted SSL/TLS connections. In what concerns 
the Black Box, all content is encrypted using the AES 256 algorithm, making it as 
secure in this aspect as any other similar solution for stored data (e.g. Oracle 11g TDE 
and SQL Server 2008 TDE). The only access to the Black Box content is done by the 
middleware, which is managed only by the application itself. We assume the DBMS 
is an untrusted server such as in the Database-As-A-Service (DAAS) model and the 
“adversary” is someone that manages to bypass network and SES-DW access con-
trols, gaining direct access to the database. We also assume the SES-DW algorithms 
are public, so the attacker can replicate the encryption and decryption functions, 
meaning that the goal of the attacker is to obtain the keys in order to break security. 

Using variable key lengths and MOD-XOR mixes. The bit length of the encryp-
tion keys XorK and ModK are the same as the bit length of each encrypted column, 
meaning that an 8 bit sized column datatype will have 8 bit sized encryption keys. It is 
obvious that using 8 bit keys on their one is not secure at all. However, since all keys 



are distinct in each round, executing 16 rounds would be roughly equivalent to having 
a 16*8 = 128 bit key in the encryption process. It is up to the DW security administra-
tor to decide how strongly secure each column should be, which defines how many 
rounds should be executed, considering the bit length of the column’s datatype. 

The MOD operator is used in the cipher because it is non-injective, given that for X 
MOD Y = Z, the same output Z, considering Y a constant, can have an undetermined 
number of possibilities in X as an input that will generate the same value Z (e.g. 15 
MOD 4=3, 19 MOD 4=3, 23 MOD 4=3, etc). Since MOD operations are non-
injective, the encryption rounds using MOD are also non-injective. Given that injec-
tivity is a required property for invertibility, our cipher is thus not directly invertible. 
It is also true that the same ciphered output values are most likely to come from dif-
ferent original input values. Moreover, randomly using the XOR and MOD operators 
as the two possible operators for each round also increases the number of possibilities 
an attacker needs to test in exhaustive searches for the output values of each encryp-
tion round, since the attacker does not know the rounds in which MOD is used with 
XOR and needs to test both hypothesis (XOR and MOD-XOR). Furthermore, if the 
attacker does not know the security strength chosen for encrypting each column, s/he 
does not know how many encryption rounds were executed for each ciphered value. 

By making the values of XorKi and ModKi, distinct between columns, we also 
make encrypted values independent from each other between columns. Even if the 
attacker breaks security of one column in one table row, the information obtained 
from discovering the remaining encryption keys is limited. Thus, the attacker cannot 
infer information enough to break overall security; in order to succeed, s/he must 
perform recover all the keys for all columns. 

Attack costs. To break security by key search in a given column Ci, the attacker 
needs to have at least one pair (plaintext, ciphertext) for a row j of Ci, as well as the 
security bit strength involved, as explained in subsection 2.3, because it will indicate 
the number of rounds that were executed. In this case, taking that known plaintext, the 
respective known ciphertext, and the CN+1 value (storing RowKj XOR TabK, as ex-
plained in subsection 2.3), s/he may then execute an exhaustive key search.  

The number of cipher rounds for a column Ci is given by NRi, and β is the bit-
length of Ci’s datatype. Since half the values of vector Operation are zeros and the 
other half are ones, the probability of occurrences of 1 and 0 is equal, i.e., 
Prob(Operation[t]=0) = ½ = Prob(Operation[t]=1), where the number of possible 
values for Operation[t] is 2NRi. Considering β, each XorK and ModK subkey also has 
a length of β bits and thus, each XorK and ModK subkeys have a search space with 2β 
possible values. TabK is a 128 bit value, thus with a search space of 2128 possible 
values. Considering the cipher’s algorithm and given the probability of {0, 1} values 
in Operation, a XOR is executed in all rounds (NRi), while a MOD is executed before 
the XOR in half the rounds (NRi/2). Given this, the key search space dimension con-
sidering the combination of XOR and MOD/XOR rounds is given by G(x):  ܩሺݔሻ ൌ ෍ ሻேோ௜ାಿೃ೔మ௫ୀଵݔሺܨ . 2ሺఉ௫ሻାଵଶ଼ 



ቆேோ௜ି௫ಿೃ೔మ ି ௫ቇ , x = 1 
ݔሺܨ െ 1ሻ ൅ ሺെ1ሻ௫  ቆேோ௜ି௫ಿೃ೔మ  ି ௫ቇ , 2 <= x <= NRi/2 ܨሺݔሻ ൌ ݔሺܨ          െ 1ሻ , NRi/2+1 <= x <= NRi ܨሺݔ െ 1ሻ ൅ ሺെ1ሻሺ௫ିಿೃ೔మ ሻ  ൭௫ିಿೃ೔మ ିଵ௫ିேோ௜ିଵ൱ , NRi+1 <= x <= NRi + NRi/2 - 1 
ቆேோ௜ಿೃ೔మ ቇ , x = NRi + NRi/2 

 
Considering Y as the number of attempts to discover the keys, Y is a discrete ran-

dom variable with support S = {1…N }, where N represents the search space’s dimen-
sion. For one attempt, considering a random variable B, it has only two possibilities: ܤ ൌ ൜0, ,1݈ݑ݂ݏݏ݁ܿܿݑݏ ݐ݋݊ ݏ݅ ݐ݌݉݁ݐݐܽ ݄݁ݐ ݊݁ݒ݅݃ ݈ݑ݂ݏݏ݁ܿܿݑݏ ݏ݅ ݐ݌݉݁ݐݐܽ ݄݁ݐ ݊݁ݒ݅݃  

Therefore, B follows a Bernoulli distribution with probability p = Prob(B=1) = 
1/N. Since the number of attempts is limited, given the search space is finite, variable 
Y also has a finite support S = {1…N}. The probability of being successful after k 
attempts is given by: ܾܲ݋ݎሺܻ ൌ ݇ሻ ൌ ҧܣሺܾ݋ݎܲ ת ҧܣ ת … ת ҧܣ ת ሻܣ ൌ ቀ1 െ ଵேቁ௞ିଵ . ଵே  , k=1… N 

Note that the probability of being needed more than m attempts is given by: ܾܲ݋ݎሺܻ ൐ ݉ሻ ൌ  ∑ ሺܻܾ݋ݎܲ ൌ ݇ሻ ൌ  ∑ ቀ1 െ ଵேቁ௞ିଵ . ଵே ൌ ሺ1 െ 1/ܰሻ௠. ൤൬1 െ ቀ1 െ ଵேቁேି௠൰൨ே௞ୀ௠ାଵே௞ୀ௠ାଵ . 

The probability of needing n more attempts, given m initial unsuccessful attempts 
(for m > 1 and n > 1) is given by Prob(Y >m+n | Y >m) = Prob(Y>m+n) / Prob(Y>m), 
since the event {Y > m+n} is contained in {Y > m}, which means that after having m 
unsuccessful attempts, being successful after n more attempts only depends on those n 
additional attempts and not on the initial m attempts, i.e., it does not depend on the 
past. For the complete search space, the average number of attempts is then given by: ∑ ݇. ሺܻܾ݋ݎܲ ൌ ݇ሻ ൌ ଵே ∑ ݇ ቀ1 െ ଵேቁ௞ିଵ ൌ ሺכሻே௞ୀଵே௞ୀଵ . 

From the series theory it is known that  ∑ ௞ݔ ൌ ଵଵି௫ାஶ௞ୀ଴   , if |1>|ݔ, which is the case 

in ሺכሻ for ቀ1 െ ଵேቁ. Thus, ሺ∑ ௞ାஶ௞ୀଵݔ ሻᇱ ൌ ቀ ଵଵି௫ቁᇱ
⇔ ∑ ݇. ௞ିଵାஶ௞ୀଵݔ ൌ ଵሺଵି௫ሻమ , |1>|ݔ. 

Thus, the average number of attempts for finding the keys is ሺכሻ ൌ 1ܰ . 1൬1െቀ1െ1ܰቁ൰2 ൌ ܰ 

which is equal to the dimension of the key search space (N). Note however, that this is 
the worst case complexity. It is possible for the attacker to reduce the key search space 
by chosen plaintext attacks. Since the same TabK key is used for encrypting all RowK, 
as explained in previous subsection (CN+1(row j) = RowK[j] ⊕ TabK), the information 
leakage given by y1⊕y2=(x1⊕TabK)⊕(x2⊕TabK) ⇔ y1⊕y2=(x1⊕x2)⊕(TabK⊕TabK) 
⇔ y1⊕y2=x1⊕x2 implies that CN+1(row j) ⊕ CN+1(row j+1) = RowK[j] ⊕ RowK[j+1], 
reducing the possible search space for RowK to 264 instead of 2128 in each row. If the 
attacker manages to use very low RowK values, which are most probably smaller than 



the value of the ModK encryption keys (i.e. RowK<ModK[t]), then the (RowK MOD 
ModK[t]) – ModK[t] operation in the cipher will be reduced to RowK – ModK[t], thus 
further reducing complexity. In this case, for example, taking more than one (plain-
text, ciphertext) pair y1 = Encrypt(x1,2) and y2 = Encrypt(x2,2) for 2 encryption rounds 
on the same row, where Operation=[0,1]: ݕଵ⊕ ݕଶ ൌ ሺݔଵ⊕ ܺܭݎ݋ሾ1ሿ ൅ ܭݓ݋ܴ െ ሾ1ሿܭݎ݋ܺ ⊕ଶݔሾ2ሿሻ ⊕ ሺܭ݀݋ܯ ൅ ܭݓ݋ܴ െ   ሾ2ሿሻܭ݀݋ܯ

Considering that each xi has a length of β bits, given the encryption key RowK has a 
reduced search space of 264 (as previously mentioned) and each XorK and ModK have 
a search space of 2β, the key search space in this example is given by 22β+64. Since 
XorK[1] and ModK[2] are just half the keys for the 2 round SES-DW, to obtain the 
remaining XorK[2] and ModK[1] keys, the search space is incremented by 22β. Since 
the number of XorK and ModK encryption keys is the same as the number of rounds, 
the generic expression for the reduced key search space in this type of attack is given 
by G(x) = 2NRi*β+64 + 2NRi*β. Note that for an 8 bit value (β = 8) encrypted by 16 rounds 
(NRi = 16), using 16 XorK and ModK subkeys with 8 bits each (each total key length 
for XorK and ModK is 16*8 = 128 bits), the key search space complexity is 2192 + 2128 ≅ 6,3x1057, which remains a considerable measure of security strength. 

SES-DW Entropy. In information theory, entropy is a measure of randomness or 
uncertainty. In this context, the term usually refers to Shannon’s entropy, which quan-
tifies the randomness of a variable based upon the knowledge of the information con-
tained in its message. The entropy of a discrete variable X with n bits in length is giv-
en by the following expression, where Prob(xi) is the probability of occurrence of 
each xi within the probability distribution of all possible integer values [1…2n]: ݕ݌݋ݎݐ݊ܧሺܺሻ ൌ െ ∑ ൫ܾܲ݋ݎሺܺ ൌ .௜ሻݔ ሺܾܺ݋ݎଶܲ݃݋݈ ൌ ௜ሻ൯ଶ೙௜ୀଵݔ    

Since numeric datatype storage sizes are typically 8, 16, 32, 64 or 128 bits, each of 
our cipher’s input/output values (as well as the encryption keys) respectively have a 
number of 28, 216, 232, 264, or 2128 possible combinations. While it is computationally 
fast to obtain the probability distribution in the first case by combining all possible 
input and encryption key values (with all 8 bit values = [1...28]) using two cipher 
rounds (the minimum number of rounds), for the remaining (216, 232, 264 and 2128) the 
task gets exponentially time-expensive. Therefore, after a series of statistical regres-
sion experiments using the calculated 8 bit probability distribution for SES-DW, we 
found that the logarithmic regression ( ݕ ൌ ܽ ൅ ܾ. ݈݊ሺݔሻ ) generated the most adjusted 
statistical model for representing the cipher’s probability distribution (with R2>=0.98 
and a standard error of 0.001). Knowing that the accumulated probability for n bits 
must be equal to 1, using the logarithmic regression function we must ensure that: ׬ ܽ ൅ ܾ. ݈݊ሺݔሻ ݀ݔଶ೙ଵ ൌ 1  

This expression leads to ܾܲ݋ݎሺݔ௜ሻ ൌ ොܽ ൅ ෠ܾ. ݈݊ሺݔ௜ሻ, representing the estimated proba-
bility distribution function for n bits SES-DW, where: ොܽ ൌ ଵି௡.௕.ଶ೙.௟௡ሺଶሻଶ೙ିଵ ൅ ܾ     ∧     ෠ܾ ൌ ௑തିቀଶ೙షభାభమቁଶమ೙షమ ି భర – ௡ . ଶ೙షభ .  ୪୬ ሺଶሻ     



Given ܾܲ݋ݎሺݔሻ, the entropy of SES-DW for n=8, 16, 32, 64 and 128 bits is shown 
in Table 1. As seen, the entropy produced for n bits is nearly n, thus meaning the gen-
erated ciphertexts are very close to a uniformly random n bit value. 

Table 1. Estimated SES-DW entropy values 
Number of bits (n) SES-DW Entropy 

8 7,967144 
16 15,972308 
32 31,979863 
64 63,986246 

128 127,989741 

4 Experimental Evaluation 

We used the TPC-H benchmark [17] (1GB and 10GB scale sizes) and a real-world 
sales DW storing one year of commercial data (taking up 2GB of data). We tested all 
scenarios using Oracle 11g and Microsoft SQL Server 2008 DBMS, on a Pentium 
Core2Duo 3GHz CPU with a 1.5TB SATA hard disk and 2GB RAM (512MB of 
devoted to database memory cache), with Windows 2003 Server. The TPC-H schema 
has one fact table (LineItem), and seven dimension tables. The Sales DW database 
schema has one fact table (Sales) and four dimension tables. In TPC-H setups, four 
numerical columns of LineItem were encrypted (L_Quantity, L_ExtendedPrice, L_Tax 
and L_Discount). In the Sales DW, five numerical columns were encrypted 
(S_ShipToCost, S_Tax, S_Quantity, S_Profit, and S_SalesAmount). We compare our 
solution with the column-based AES128, AES256 and 3DES168 algorithms, and 
OPES [3] and Salsa20 [5, 6]. OPES and Salsa20 were implemented using C++. 

4.1 Analyzing Storage Size and Loading Time 

Tables 2 and 3 show the results of data storage size and loading time (in seconds), 
respectively, for loading the TPC-H 1GB LineItem table in each setup. The results in 
the remaining databases are similar, with absolute values nearly proportional to their 
database sizes, and due to lack of space and to avoid redundancy are not included. 
The results shown are an average of six executions for each tested scenario on each 
DBMS (with standard deviation in Oracle 11g between [2.27, 22.12], and in SQL 
Server 2008 between [3.19, 20.45]). 

Table 2. TPC-H 1GB Lineitem Fact Table Storage Size Overhead 

 
 

Oracle TPC-H 1GB  
Storage Size (Overhead) 

SQL Server TPC-H 1GB  
Storage Size (Overhead) 

Standard 772MB 1237MB 
AES128/256 1960MB (+1188MB / 154%) 2410MB (+1173MB / 95%) 

3DES168 1572MB (+800MB / 104%) 2181MB (+944MB / 76%) 
OPES 790MB (+18MB / 2%) 1258MB (+21MB / 2%) 

Salsa20 1064MB (+292MB / 38%) 1553MB (+316MB / 26%) 
SES-DW 868MB (+96MB / 12%) 1339MB (+102MB / 8%) 



Table 3. TPC-H 1GB Lineitem Fact Table Loading Time Overhead 

 
 

Oracle TPC-H 1GB  
Loading Time (Overhead) 

SQL Server TPC-H 1GB  
Loading Time (Overhead) 

Standard 253 s 171 s 
AES128 608 s (355 s / 141%) 382 s (211 s / 123%) 
AES256 636 s (383 s / 152%) 407 s (236 s / 138%) 

3DES168 617 s (364 s / 144%) 389 s (218 s / 127%) 
OPES 353 s (100 s / 40%) 229 s (58 s / 34%) 

Salsa20 419 s (166 s / 66%) 281 s (110 s / 64%) 
SES-DW128 279 s (26 s / 10%) 191 s (20 s / 12%) 
SES-DW256 294 s (41 s / 16%) 199 s (28 s / 16%) 

SES-DW1024 451 s (198 s / 78%) 284 s (113 s / 66%) 

As shown, OPES and SES-DW have much smaller storage space overheads (2% to 
12%, 18MB to 102MB) than Salsa20 (26% to 38%, 292MB to 316MB), 3DES168 
(76% to 104%, 800MB to 944MB) and AES (95% to 154%, 1173MB to 1188MB of 
overhead). However, in loading time, SES-DW presents the best results by far (10% 
to 16%, 20 to 41 seconds of overhead). Considering these results, SES-DW is much 
more efficient, introducing small overheads for similar key sizes. Note that the worst 
result for SES-DW 1024, which is similar to Salsa20; however, it refers to using 1024 
bit encryption keys, far higher than the remaining tested algorithms. Also note that the 
results for the TPC-H 10GB database are approximately proportional to those of the 
1GB database, which means ten times bigger. Since 1GB is actually a very small size 
for a DW database, it is easy to conclude that the overheads introduced by encryption 
are extremely significant and may in fact introduce considerable hardware cost. 

4.2 Analyzing Database Query Performance 

The TPC-H workload included the benchmark queries 1, 3, 6, 7, 8, 10, 12, 14, 15, 17, 
19 and 20 (all accessing fact table LineItem). For Sales DW, the workload was a set 
of 29 queries, all processing the Sales fact table, as a set of usual decision support 
daily (9 queries), monthly (9 queries) and annual (11 queries) queries. All results are 
an average from six executions in each scenario (Oracle 11g standard deviations be-
tween [0.47, 42.23] and [0.55, 61.34] for 1GB and 10GB TPC-H, respectively, and 
[0.63, 59.17] for the Sales DW, and SQL Server between [0.56, 49.56] and [0.63, 
58.30] for 1GB and 10GB TPC-H, respectively, and [0.47, 66.08] for the Sales DW). 
Figure 3 shows total workload execution time overhead for each scenario, while Fig-
ure 4 shows the same for CPU time overhead. The Standard execution time (execu-
tion time of the workload against a non-encrypted database) for each scenario is 492, 
5037, and 1766 seconds in Oracle 11g, and 452, 4294, and 1690 seconds in SQL 
Server 2008, for the 1GB, 10GB TPC-H and Sales DW, respectively. 

It can be seen that SES-DW with 128-bit and 256-bit security has the best response 
and CPU time overheads for all scenarios, followed by Salsa20 and further by AES, 
while OPES has results leveled between AES and 3DES. Notice that observing the 
results for the TPC-H database, SES-DW shows better scalability than the remaining 
ciphers. In fact, SES-DW 1024-bit in the TPC-H 10GB is nearly as fast as Salsa20, 
the best solution after SES-DW. This means that the relative gains by using SES-DW 



increases as database size scales up, compared with the remaining ciphers. Notice that 
being 100% faster in TPC-H 10GB means a saving of 5037 seconds (almost 1,5 
hours) in total query workload response time. 

 
Oracle 

TPC-H 1GB 
SQL Server 
TPC-H 1GB 

Oracle  
TPC-H 10GB 

SQL Server 
TPC-H 10GB 

Oracle 
Sales DW 2GB 

SQL Server Sales 
DW 2GB 

 
Fig. 3. Total query workload response time overheads (%) for each setup  

Oracle 
TPC-H 1GB 

SQL Server 
TPC-H 1GB 

Oracle  
TPC-H 10GB 

SQL Server 
TPC-H 10GB 

Oracle 
Sales DW 2GB 

SQL Server Sales 
DW 2GB 

 
Fig. 4. Total query workload CPU time overheads (%) for each setup 

 
Fig. 5. TPC-H 10GB individual query exec. time overhead p/encrypt. algorithm in Oracle 11g 

Considering these results, since 10GB is actually a small size for a DW database, it 
is easy to conclude from the overall results that performance overheads introduced by 
data encryption algorithms in DWs are in fact extremely significant, and even mini-
mum gain in response/CPU time is an important achievement.  

The results for individual query execution time in Oracle 11g for TPC-H 10GB 
scenarios are shown in Figure 5, with a logarithmic scale. These results show that all 
queries have similar proportional overhead to those of the complete workload. This is 
also true for all the other scenarios, making it redundant to include all in this section. 
It can be seen that most queries processed by AES and 3DES have overheads of sev-
eral orders of magnitude higher than SES-DW. 

The number of CPU clock cycles spent on encryption and decryption depends on 
the algorithm and CPU architecture in which they are executed. As an example, the 
work in [7] refers that AES [2] with a 128 bit key takes up, on average, 20 clock 
cycles per encrypted byte on a Pentium IV, for encrypting a 16 byte value, resulting in 
a total of 20 x 16 = 320 clock cycles. The same algorithm with a 256 bit key takes up 
an average of 28 clock cycles per encrypted byte, meaning it needs 28*16 = 448 clock 
cycles for encrypting the same 16 byte value. We measured a speed of 8.53 cycles per 
byte for SES-DW on a Pentium IV for 128 bits encryption values. This makes SES-
DW more than twice as fast as AES 128 on the same CPU model. 



5 Related Work 

The work in [4] proposes perturbed tables in a DW for preserving privacy that obfus-
cates data and explain data reconstruction for executing queries. Although providing 
strong guarantees against privacy breaches, these methods produce errors in data re-
construction, which we avoid. A lightweight database encryption scheme for column-
oriented DBMS is proposed in [9], with low decryption overhead. In [3] an Order 
Preserving Encryption Scheme (OPES) for numeric data is proposed, by flattening 
and transforming the plain text distribution onto a target distribution, based on value-
based buckets. This solution allows any comparison operation to be directly applied 
on encrypted data. A similar solution for processing queries without decrypting data 
was proposed by [10], using the database-as-a-service paradigm.  

The Data Encryption Standard (DES) [8] is a 64 bit block cipher which uses a 56 
bit key. As an enhancement of DES, the Triple DES (3DES) encryption standard was 
proposed [1]. The 3DES encryption method is similar to the original DES, but it is 
applied three times to increase the encryption level, using three different 56 bit keys. 
Thus, the effective key length is 168 bits. The algorithm increases the number of 
cryptographic operations, making it one of the slowest block cipher methods. The 
Advanced Encryption Standard (AES) is currently the most used encryption standard 
[2]. AES provides three key lengths: 128, 192 and 256 bits. It is fast and able to pro-
vide stronger encryption, compared to other algorithms such as DES [13]. Brute force 
attack is the only known effective attack known against it. As we have demonstrated 
in [16], these ciphers introduce very much performance overhead for DWs. 

In the search for more computationally efficient algorithms by exchanging a small 
number of complex operations such as S-box lookups for longer chains of simpler 
operations, the Salsa20 (alias Snuffle) family of ciphers [6] was proposed. These ci-
phers have been well studied and are considered fast high security solutions. 

An Enterprise Application Security solution is presented in [15], acting as a wrap-
per/interface between user applications and the encrypted database server. This solu-
tion aims to ensure data integrity and efficient query execution over encrypted data-
bases, by evaluating most queries at the application server and retrieving only the 
necessary records from the database server. 

6 Conclusions and Future Work 

We propose an encryption solution specifically designed for enhancing data confi-
dentiality in DWs. This solution is transparent and only require user applications to 
send their queries to a middleware security broker instead of the DBMS. Only the 
final processed results are returned to the authorized user applications that requested 
them. All SQL commands and actions are encrypted and stored in a log by the securi-
ty broker, which can be audited by any user with administration rights. In the data-
base, the data always stays encrypted, never allowing breaches before queries finish 
execution. If an attacker bypasses the broker and gains direct access, s/he just sees 
encrypted “realistic-looking” values. In addition, since data schemas and column-



types are preserved and the encrypted data is realistic but not real, our method allows 
using the database (or “as-is” replicas) for testing purposes and direct querying during 
application software development, generating realistic but not real results. This also 
avoids disclosure of the real original data if any attacker bypasses database access 
control and can retrieve data directly from the database. The proposed solution is 
independent from DBMS and CPU specific features and requires small computational 
efforts and can be straightforward and easily implemented in any database. Since it 
basically works by transparently rewriting user queries, it minimizes efforts in chang-
ing user applications and does not jeopardize network and I/O bandwidth. Our tech-
nique shows better database performance than standard and state-of-the-art encryption 
solutions while providing considerable security strength, making it a valid option for 
balancing performance with security from the DW perspective. As future work, we 
intend to take advantage of the history log stored in the Black Box in order to manage 
intrusion detection for attackers that obtain valid database login credentials. 

7 References 

1. 3DES, Triple DES, National Bureau of Standards, Nat. Inst. of Standards and Technology 
(NIST), Fed. Inform. Processing Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3, 2005. 

2. AES, “Advanced Encryption Standard”, NIST, FIPS-197, 2001. 
3. R. Agarwal, J. Kiernan, R. Srikant, and Y. Xu, “Order-Preserving Encryption for Numeric 

Data”, ACM SIG Conf. on Management Of Data (SIGMOD), 2004. 
4. R. Agrawal, R. Srikant, and D. Thomas, “Privacy Preserving OLAP”, ACM SIG Conf. 

Management Of Data (SIGMOD), 2005. 
5. D. J. Bernstein, Snuffle 2005: The Salsa Encryption Function, http://cr.yp.to/snuffle.html. 
6. D. J., Bernstein, “The Salsa20 Family of Stream Ciphers”, New Stream Cipher Designs - 

The eSTREAM Finalists 2008, Springer LNCS 4986, 2008.  
7. D. J. Bernstein, and P. Schwabe, “New AES Software Speed Records”, Int. Conf. Cryptog-

raphy in India (INDOCRYPT), 2010. 
8. DES, Data Encryption Standard, National Bureau of Standards, Nat. Inst. of Standards and 

Technology (NIST), Federal Inform. Processing Standards (FIPS) Pub 46, 1977. 
9. T. Ge and S. Zdonik, “Fast, Secure Encryption for Indexing in a Column-Oriented 

DBMS”, Int. Conf. Data Engineering (ICDE), 2007. 
10. H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra, “Executing SQL over Encrypted Data in 

the Database-Service-Provider Model”, ACM C. Management Of Data (SIGMOD), 2002. 
11. P. Huey, “Oracle Database Security Guide 11g”, Oracle Corp., 2008. 
12. R. Kimball and M. Ross, “The Data Warehouse Toolkit”, 2nd Ed, Wiley & Sons Inc., 2002. 
13. A. Nadeem and M. Y. Javed, “A Performance Comparison of Data Encryption Algo-

rithms”, IEEE Int. Conf. on Information and Communication Technologies (ICICT), 2005. 
14. Oracle Corporation, “Oracle Advanced Security Transparent Data Encryption Best Prac-

tices”, Oracle White Paper, July 2010. 
15. V. Radha and N. H. Kumar, “EISA – An Enterprise Application Security Solution for Da-

tabases”, Int. Conf. Inf. Systems Security (ICISS), Springer LNCS 3803, 2005. 
16. R. J. Santos, J. Bernardino, and M. Vieira, “Evaluating the Feasibility Issues of Data Con-

fidentiality Solutions from a Data Warehousing Perspective”, International Conference on 
Data Warehousing and Knowledge Discovery (DAWAK), 2012. 

17. Transaction Processing Council, “The TPC Decision Support Benchmark H”, 
http://www.tpc.org/tpch/default.asp 


