

Health

Monitoring

Sensor Suppliers

Integration

David Sousa Nunes

Faculty of Sciences and Technology

University of Coimbra 2009/2010

 Health Monitoring Sensor Suppliers Integration

i

Abstract

Some of the elderly population is unable to live on their own and require assistance

and supervision. Assisted Living facilities ensure their health and well being through

supervision of their vital conditions, helping with medication routines and assisting them

whenever necessary. Wisedome is a platform that enables residents in Assisted Living

facilities or Long-Term Care institutions to be continuously monitored by using sensor

devices, warning caregivers of potential harmful situations such as elderly patient falls or

changes in cardiac heart rate.

In order to provide its customers with the best state-of-the-art sensors, the Wisedome

health monitoring platform should be sensor agnostic and integrate multiple types of sensors

from different hardware suppliers, that adapt to different types of senior patients with different

necessities.

The goal of this project was to contribute to the development and evolution of the

Wisedome health monitoring application. This overall goal can be divided into three main

tasks: research of industry coalitions that try to achieve interoperability between sensor

devices; extension of Wisedome’s currently functionality by enabling it to not only use

different types of sensors from different vendors, but to also be able to use them

simultaneously and dynamically; contributions in the software’s quality management system,

namely in requirement analysis and system testing.

This document serves as a report on the performed tasks and contributions made to the

Wisedome platform during this project’s execution.

 Health Monitoring Sensor Suppliers Integration

ii

Resumo

Alguma da população idosa é incapaz de viver de uma maneira independente e requer

algum tipo de apoio e supervisão. Instituições que fornecem assistência ou cuidados a longo

prazo a idosos servem o propósito de garantir o bem-estar e a saúde de pessoas da terceira

idade, tendo em atenção os seus sinais vitais, garantindo a medicação apropriada e ajudando

nas suas necessidades diárias. A plataforma Wisedome permite que os idosos nestas

instituições tenham os seus sinais vitais monitorizados de forma contínua recorrendo ao uso de

sensores, alertando os profissionais prestadores de cuidados de situações potencialmente

perigosas como quedas de um idoso ou alterações do seu ritmo cardíaco.

De maneira a garantir que os seus clientes tenham sempre os melhores e mais actuais

sensores, a plataforma de monitorização de saúde Wisedome deverá ser independente do tipo

de sensores utilizado e permitir integrar vários sensores de diferentes fornecedores, que se

adaptem a diferentes tipos de idosos com diferentes necessidades.

O objectivo deste projecto foi o de contribuir para o desenvolvimento e evolução da

aplicação de monitorização Wisedome. Este objectivo pode ser dividido em três grandes

tarefas: pesquisar as principais alianças que procuram atingir a interoperabilidade entre

sensores de saúde; melhorar as funcionalidades da plataforma Wisedome para que esta possa

vir a suportar não só o uso de diferentes tipos de sensores, mas que os suporte

simultaneamente e de uma forma dinâmica; contribuir para o controlo de qualidade do

software, nomeadamente em termos análise de requisitos e testes de sistema.

Este documento serve de relatório das tarefas desempenhadas e das contribuições feitas

para o desenvolvimento do Wisedome durante a execução deste projecto.

 Health Monitoring Sensor Suppliers Integration

iii

Acknowledgments

I would like to express my gratitude to all people that directly or indirectly made this

project’s completion possible.

A big thank you to all of my current and former colleagues at Critical Health, for the

fun environment, activities and team spirit by them provided, which made me feel an integrate

part of the team.

I would like to express my gratitude in particular for the support of all the members of

the Critical Health’s Health Monitoring team. I am in debt to Tânia Baptista for her patience

and help during my time working on quality management and to Bernardo Raposo for his

promptly assistance whenever I required it. A very special thank you is due to André Lemos,

for all his patience, invaluable guidance, critical reviews and supervision throughout my

internship at Critical. Another special thank you is due to Gregory Stern for being responsible

for this project’s existence, for the opportunity to work in Critical Health’s health monitoring

team and for his guidance and supervision throughout my time at Critical.

I am also in great debt to Professor Jorge Sá Silva, for undertaking the task of being

my project’s mentor, for all his assistance during the project’s execution and for the

opportunities that he gave to me.

I would also like to express my gratitude to Professor Miguel Morgado, for accepting

this project’s idea, managing the creation process and making the project happen.

I also own a great deal to my closest friends, who always stood by me and humored my

life, as I would certainly not be able to enjoy it as much as I do without them.

For last, but not least, I would like to thank my mother, father and brother for their

unconditional support during my whole life and for being the main pillar that maintains my

existence in balance.

 Health Monitoring Sensor Suppliers Integration

iv

Index

Abstract ... i

Resumo ... ii

Acknowledgments ... iii

Index ... iv

Acronyms .. viii

List of Figures .. x

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Project Overview and Objectives... 2

1.3 Audience .. 3

1.4 Document Structure and Organization .. 3

2 Wisedome Health Monitoring System .. 4

2.1 Wisedome General Description ... 4

2.2 Wisedome’s Technology Architecture .. 8

3 Alliances and Technology Research ... 10

3.1 The Necessity for Standards and Industry Coalitions 10

3.1.1 Continua Health Alliance ... 12

3.1.2 ANT+ Alliance .. 15

3.2 Alliances and Technology Comparison ... 17

 Health Monitoring Sensor Suppliers Integration

v

3.2.1 Wireless Specification ... 17

3.2.2 Energy Consumption ... 20

3.2.3 Supported Network Topologies ... 26

3.2.4 Interoperability Standards .. 31

3.2.5 Health Monitoring Devices .. 35

3.3 Wireless Interference Research.. 37

3.3.1 ZigBee Interference Avoidance Techniques .. 37

3.3.2 Bluetooth Interference Avoidance Techniques .. 40

3.3.3 ANT Interference Avoidance Techniques ... 40

3.3.4 Wireless Interference Studies .. 42

3.4 Comparison Matrix .. 46

4 Integration Framework .. 47

4.1 Earlier Integration Attempt .. 47

4.2 Integration Requirements ... 48

4.3 Choosing a technology ... 51

4.4 The OSGi Specifications ... 52

4.4.1 OSGi Technology Usage ... 52

4.4.2 OSGi Specifications’ Features ... 54

4.5 Implementation Process ... 57

4.5.1 Before the Integration Framework ... 57

 Health Monitoring Sensor Suppliers Integration

vi

4.5.2 Architecture Overview ... 62

4.5.3 Service Methods Overview .. 69

4.5.4 Design and Implementation Process .. 73

4.5.5 Developing New Vendor Bundles ... 84

5 Wisedome’s Quality Management Processes ... 87

5.1 Requirements Analysis .. 89

5.2 Software Testing .. 91

6 Conclusion and Future Work .. 93

6.1 Current Limitations and Future Developments ... 93

6.1.1 Functionality Announcement Feature .. 94

6.1.2 New Features Limitation ... 95

6.2 Final Appreciation ... 96

Bibliography .. 97

Annex A Documentation .. 107

A.I ReturnObject Class .. 107

A.II Vendor Service ... 109

A.III Service Provider ... 118

A.IV Database Service .. 118

A.V Process Event Service .. 122

Annex B Emails .. 127

 Health Monitoring Sensor Suppliers Integration

vii

B.I Exchanged Email Regarding ANT Device Profiles 127

Annex C Project’s Gantt Diagram .. 130

 Health Monitoring Sensor Suppliers Integration

viii

Acronyms

AFH Adaptive Frequency Hopping

API Application Programming Interface

CLH Cluster Head

CMISE Common management information service

Continua Continua Health Alliance

CSMA Carrier Sense Multiple Access

CVS Concurrent Versioning System

DSSS Direct Sequence Spread Spectrum

ECG Electrocardiogram

FDMA Frequency Division Multiple Access

GHz Gigahertz (1GHz = 109 Hertz)

HR Heart Rate

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISM band industrial, scientific and medical band

ISO International Organization for Standardization

JAR Java ARchive

JVM Java Virtual Machine

Kb Kilobits (1Kb = 103 bits)

 Health Monitoring Sensor Suppliers Integration

ix

Kbps Kilobits Per Second

LDAP Lightweight Directory Access Protocol

MAC Medium Access Control Sub-layer

Mbps Megabits Per Second (1 Mb = 106 bits)

MHz Megahertz (1MHz = 106 Hertz)

ms Millisecond (1 ms = 10-3 seconds)

OSI model Open Systems Interconnection model

PAN Personal Area Network

PHY Physical Sub-layer

POJO Plain Old Java Object

QMS Quality Management System

RF Radio Frequency

SNMP Simple Network Management Protocol

SOA Service Oriented Architecture

SSH Secure Shell

TCP Transmission Control Protocol

USB Universal Serial Bus

XHR XMLHttpRequest

XML Extensible Markup Language

μs Microsecond (1 μs = 10−6 seconds)

 Health Monitoring Sensor Suppliers Integration

x

List of Figures

Figure 1 – Wisedome’s Logo. ... 4

Figure 2 – Wisedome’s alarm displays. In the left showing a single high priority alarm

and in the right showing two low priority alarms and a high priority alarm 6

Figure 3 - Wisedome’s patient chart, where heart rate and event history are displayed. 7

Figure 4 - Wisedome’s Technical Architecture. .. 8

Figure 5 – Continua Health Alliance Logo. .. 12

Figure 6 – The ANT logo. ... 15

Figure 7 - The ZigBee Stack (23). ... 18

Figure 8 – OSI Layer model of ANT protocol stack (35). .. 20

Figure 9 – ANT’s comparison of the energy consumption between some of the current

wireless technologies (21). .. 23

Figure 10 - ANT’s expectation of the energy consumption of the new Bluetooth Low

Energy protocol (21). ... 24

Figure 11 – ANT’s comparison of the duration of a coin cell 2032 battery using

different wireless technologies (52). ... 25

Figure 12 – Network topologies supported by ZigBee (24). ... 27

Figure 13 – ZigBee is capable of multipath routing (23). ... 28

Figure 14 – Example of a Bluetooth scatternet composed of 3 piconets. 29

Figure 15 – ANT supported network types: peer to peer, star, tree and complex

networks (mesh) (89). .. 30

 Health Monitoring Sensor Suppliers Integration

xi

Figure 16 – IEEE Std 11073-20601™ model constitution (60). 32

Figure 17 – Collision of a spread Signal with a Narrow Band Signal (23). 38

Figure 18 – The 802.15.4 standard 2.4 GHz ISM band channels (90). 39

Figure 19 – ANT’s adaptive isochronous scheme (22). .. 41

Figure 20 – Representation of the distribution of devices within the ―test-bed‖. (68). . 43

Figure 21 – Test setup used to measure the interference of Bluetooth on ZigBee and

vice-versa. .. 44

Figure 22 – Initial idea of the Integration Framework’s function in the Wisedome

System. The Integration Framework would abstract Wisedome from device communication,

independently of the device manufacturer or the communication technology. 48

Figure 23 – Knoplerfish 2.2.0 UI. This figure displays a pre-integration framework

implementation, containing the Wisedome, Wisedome_patients and Hibernate Core bundles.

 ... 57

Figure 24- Scheme illustrating how Wisedome uses the Plux Gateway to communicate

with the devices. .. 58

Figure 25 - Network socket communication between the Plux Gateway application and

Wisedome. ... 59

Figure 26 – Figure representing Wisedome’s early integration attempt. Depending on

the vendor being used, different methods of communication and different messages are sent,

since each vendor has its own API. ... 61

Figure 27 – Representation of the Integration Framework’s hierarchy. Bundles are

represented by the ellipses and the Services published by each bundle are mentioned inside the

speech balloons. ... 63

Figure 28 – Representation of how the Main Integration Bundle uses the various

services to bridge communication between the Wisedome Bundle and the Vendor Bundles. . 65

 Health Monitoring Sensor Suppliers Integration

xii

Figure 29 - Simplified schematic of the workflow of an event raised by a device. The

Process Event Service allows Vendor Bundles to report alarms to Wisedome......................... 69

Figure 30 – Illustration of the workflow for the bundles of hardware vendors that do

not hold information regarding person ID’s. ... 78

Figure 31 - Representation of a complete workflow for an assignment request. 80

Figure 32 – Scheme illustrating various components of the Vendor Bundle. 85

Figure 33 – Example of an issue detected during the test phases and reported on the

issue tracking software JIRA. .. 92

 Health Monitoring Sensor Suppliers Integration

1

1 Introduction

This document is a thesis for a master degree in Biomedical Engineering at the

University of Coimbra. It acts as a report of a research project developed in an internship at

Critical Health, a spin-off of Critical Software. Its objectives are to present the work there

developed and also to serve as a reference for future developments and improvements on

Wisedome’s health monitoring sensor integration effort.

1.1 Motivation

Advances in the medical field allow human beings to live better for longer periods of

time. This trend results in an increase of the elderly people population. While some of the

elderly are able to live independently on their homes, there are also many who are unable to

live on their own and require assistance and supervision. Assisted Living facilities ensure their

health and well being by supervising their health condition; medication routines and making

sure that their personal needs are satisfied.

Wisedome is a platform that is being developed by Critical Health that enables

residents in Assisted Living facilities to be monitored using wireless wearable sensors to

automatically detect falls, capture heart rate and monitor elderly patient’s location within the

facility. Patients are also able to call for assistance from a nurse by pressing a built-in button

on their sensor. It is desirable for a health-monitoring platform such as Wisedome to be able to

be sensor agnostic designed to be used with multiple sensors from multiple hardware

providers. In order to support their clients with the best state-of-the-art sensors, the Wisedome

platform should be able to integrate multiple types of sensors, in order to provide solutions for

different types of senior patients: independent, dependent, rehab and dementia seniors.

 Health Monitoring Sensor Suppliers Integration

2

1.2 Project Overview and Objectives

Critical Health is a spin-off of Critical Software encompassing all the healthcare

activities that were being developed since 2006. Critical Health was created to improve the

Quality of Life and to reduce the total Healthcare Spending. It aims to achieve this vision by

providing critical health information to everyone through the marketing of innovative and

accessible technological products.

Wisedome is Critical Health’s Health Monitoring Solution for Assisted Living

Facilities. At the beginning of the project here documented, Wisedome was unable to properly

integrate various health monitoring devices from different vendors, only being able to

effectively work with a set of sensor devices (caregiver device, chest-strap and bracelet

sensors) from a single hardware vendor. This project was born from an effort to improve the

Wisedome platform, allowing it to support different kinds of devices from different vendors,

in order to increase the platform’s flexibility and increase its value. This project was not

limited to work on integration efforts, however, but also included work in other areas of

Wisedome development and quality management, namely Requirement Analysis and Software

Testing.

The objective of this project was to contribute to the development and evolution of the

Wisedome health monitoring application. Its main component is related to the improvement of

Wisedome’s capability of using multiple sensor devices, firstly with a research effort on the

major health monitoring industry coalitions and their hardware integration efforts, and

secondly on the development of an integration framework that facilitates the integration of

new types of device hardware with the Wisedome system. A secondary component is related

to contributions to Wisedome’s quality management system, where work on requirement

definitions and system testing was performed.

 Health Monitoring Sensor Suppliers Integration

3

1.3 Audience

This document’s target audience is Critical Health’s collaborators that will continue to

work on the Wisedome platform and this project’s juries and supervisors, as well as the

biomedical and informatics academic community.

1.4 Document Structure and Organization

This document’s structure comprises six major chapters. Chapter 1 serves as an

introduction to the project and outlines its context and major objectives. Chapter 2 provides a

general description of the Wisedome system, which is the software to where the work

described on thesis was directed. Chapter 3 presents the research made on two of the main

health industry coalitions and describes the technologies adopted by each one. Chapter 4 is

dedicated to the description of the design and implementation process of a device integration

system made for the Wisedome platform. Chapter 5 explains the tasks performed in

Wisedome’s requirement analysis and software testing. Finally, chapter 6 presents the

conclusion and personal opinions on project and also a future work analysis.

 Health Monitoring Sensor Suppliers Integration

4

2 Wisedome Health Monitoring System

Wisedome is the application where most of the work presented in this thesis is directed

to. This section will describe the application, its purposes and architecture.

2.1 Wisedome General Description

Wisedome is a Senior Health Monitoring application currently being developed by

Critical Health and directed towards Assisted Living Facilities or Long-Term Care institutions.

It consists on a system that monitors elderly patient well being and raises alarms for caregiver

personnel whenever a potentially hazardous situation occurs, such as a patient’s heart beat

being too high or a patient’s fall. It monitors the elderly by having them wear various sensors

that continuously feed information to the health monitoring application. These sensors have

hardware capable of monitoring various vital signs, possess a button that can be pressed for

requesting a caregiver’s help and also have a locking mechanism that straps them on to the

patient. Caregivers also possess devices that warn them whenever there are unresolved active

alarms. There are also various alarm screens spread throughout the building that show

information about currently active alarms. The system also serves as a tool for documentation

of a patient’s situation, allowing caregivers to register notes, document alarms or edit patient’s

information and share this data with other caregivers. Wisedome has three primary goals (1):

 To improve quality of care of elderly people in residential living.

 Save caregivers’ time by providing them with tools to document and store important

information or notes.

 To alert caregivers of patient alarms and potential risk situations and to allow alarm

detection parameters to be individually configured for each patient.

Figure 1 – Wisedome’s Logo.

 Health Monitoring Sensor Suppliers Integration

5

Wisedome developed its adopted features based on the functionalities provided by a few

reference vendors. One of these reference vendors was Plux, which will be used as an example

for this point onwards. Wisedome is capable of monitoring various patient conditions and raise

alarms when these conditions stray out of predefined states. Wisedome is currently capable of

warning caregivers if a patient has fallen, if a patient’s heart rate is higher or lower than

normal, if a patient has called for assistance (by pressing a button on his/hers sensor device) or

if a patient has entered a restricted area. It will be capable of monitoring additional alarm

conditions in the future with the addition of new types of sensor devices. Additionally to the

alarms, Wisedome also warns caregivers of several system related events, such as sensor

device’s battery running low (average battery life for Plux devices is three days),

communication with a sensor being lost or if a sensor’s locking mechanism has been opened

when it wasn’t supposed to be (by a dement patient trying to remove the sensor, for instance).

Alarms and events can be classified as low priority and high priority: call for help button

alarm or low battery events are considered low priority, while a falls or excessive heart rate

value alarms are considered high priority. Low priority events can, however, be promoted to

high priority, in case they are unattended for a certain period of time.

A device may be in an un-assigned (inactive) or assigned (active) state. A sensor

device is always assigned to a given patient, and when in an assigned state, the device should

be locked onto the patient in order to start monitoring the patient’s condition. Assigned

devices are capable of detecting alarm situations and issue alarm events to the Wisedome

application, which will then process the event and warn the caregiver personnel. Wisedome

currently supports two types of sensor devices: bracelets and chest-straps. Bracelets are the

most basic type of device and are worn in the patient’s wrist; they simply possess a call button,

which may be pressed by the elder to request a caregivers assistance. Chest-straps are worn in

a patient’s torso and in addition to the call button, they also possess an accelerometer capable

of detecting patient’s falls and electrodes capable of detecting a patient’s heart rate.

Caregivers can also be assigned with devices that are designed to warn them of alarm

situations that require their attention. The devices are equipped with a light and beeping

mechanisms and emit light signals and beep frequently in order to draw the caregiver’s

attention. The devices are, however, incapable of giving any additional information about the

 Health Monitoring Sensor Suppliers Integration

6

nature of the alarm. To this purpose, exist the Wisedome’s alarm displays and workstations,

which are spread throughout the residential care building. The alarm displays are screens that

give information about the active alarms’ nature, priority and associated patient, as shown in

Figure 2. They also emit sounds when there are active alarms, in order to draw caregiver’s

attention.

Alarm displays give information about alarms that occur in different floors of the building,

with each floor divided in several wings. Alarms and events are separated by the location

where they occurred, and the system first tries to notify caregivers assigned to the same

location of the alarm. Only if an alarm is not promptly addressed by the local caregivers will

the system notify caregivers of a different wing or floor. Caregivers are also divided in two

categories: TAPs (Técnico de Apoio Permanente) and nurses. TAPs are technicians that attend

to the elderly person’s needs while nurses are more responsible for health concerns. Low

priority events are only sent to TAPs, while high priority events are sent to both TAPs and

nurses.

Alarm situations are resolved by having a caregiver acknowledging them. Caregivers can

resort to two mechanisms for resolving an alarm: they can either use their device or a

workstation. Caregiver devices possess a button that allows them to perform an

acknowledgment sequence, which consists on a sequential pressing of their device’s button

Figure 2 – Wisedome’s alarm displays. In the left showing a single high priority alarm and in the right showing two
low priority alarms and a high priority alarm

 Health Monitoring Sensor Suppliers Integration

7

and the patient’s device button, thus resolving the active alarms for that patient. Caregiver

devices can also be used to initiate a patient’s escort sequence, allowing caregivers to escort

patients through restricted areas without raising any alarms.

Alternatively, workstations can be used to acknowledge and resolve active alarms, but they are

also used to perform many other system management tasks. Workstations are used by nurses

to see detailed information about every alarm currently active in the system. Nurses can

silence alarms in the workstation, meaning that nurse devices, patient devices and alarm

displays will no longer emit sound for a given alarm, although the alarm remains active. The

workstation can also be used to, as mentioned above, effectively resolve alarms, allowing

nurses to document them, leaving notes that may depict what was the source of the alarm or

what actions were taken to resolve the situation, for instance, what medication was given to

the patient. It is also possible suspend a patient’s device using the workstation so that it won’t

raise any alarms until it is resumed, allowing nurses to escort patients. It is also through the

workstation that nurses can assign or un-assign patient sensors.

The workstation lists all patients currently using the system, allowing nurses to consult and

edit each patient’s personal information and configuration parameters. Nurses can, for

instance, edit the maximum and minimum permitted hear rate values for a given patient, set

the patient’s fall detection sensitivity (low, medium or high) or configure what areas of the

building the patient is allowed in.

Figure 3 - Wisedome’s patient chart, where heart rate and event history are displayed.

 Health Monitoring Sensor Suppliers Integration

8

Nurses can also consult the patient chart page, which contains the history of measured heart

rates and raised alarms for a given patient. In this view, nurses can add custom events and

notes or commentaries for previously resolved events. This input is stored, allowing nurses to

easily share important information with other nurses during shift change. It also allows them

to classify alarms as false alarms.

2.2 Wisedome’s Technology Architecture

 In order to give a greater insight of the technologies employed in the Wisedome

system, this section will talk about its technological architecture.

As seen in Figure 4, Wisedome is comprised of several components, each having its own

tasks:

 PostgreSQL Database – This is Wisedome’s database. The database stores information

that is important to the whole system, such as patient personal information, a patient’s

unique identification number (patient’s ID), user credential information, device

Figure 4 - Wisedome’s Technical Architecture.

 Health Monitoring Sensor Suppliers Integration

9

information (including the device’s serial number), device current state (for instance, if

it is locked or not), system event history, and configuration values. It communicates

with the rest of the system through Structured Query Language (SQL).

 Backend Java Implementation - This is Wisedome’s ―brain‖, its core. It’s where the

database information, alarm and device management occurs. The application was

developed using Java programming language. It communicates with all the other parts

of the system: several classes call upon the database for querying information; two

communication classes receive events from and send commands to the device gateway

in order to communicate with the sensor devices; the graphical user interface uses

webservices to communicate with the backend and process user requests.

 Graphical User Interface – This is Wisedome’s ―face‖, the part of the system users

effectively see and use. It consists on a browser application where users input and

request information. It also allows users to manage the whole system. It doesn’t

perform any processing tasks by its own, so it communicates with the Backend Java

Implementation through webservices in order to satisfy user requests.

 Device Gateway – The device gateway is a part of the system that bridges Wisedome’s

communication with the sensor devices. It may exist as a separate application inside

Wisedome’s machine, be a part of Wisedome or even exist in a separate machine. Its

nature depends on the sensor’s hardware manufacturer. It offers Wisedome various

services, usually through a proprietary set of development tools or communication

language, known as the vendor’s Application Programming Interface (API). It allows

Wisedome to communicate with the devices, in order to issue commands or receive

events. The communication with the devices is made through a wireless technology, of

the hardware vendor’s choice.

These 4 elements compose the Wisedome Health Monitoring system. Most of the work

described in this thesis will focus on the device gateway, backend implementation, and on the

database components. The next sections will each focus on one aspect of the work dedicated to

improving the Wisedome platform during this project’s execution.

 Health Monitoring Sensor Suppliers Integration

10

3 Alliances and Technology Research

One important strategy for Wisedome is to support multiple types of sensor devices.

Currently, there exist several health industry alliances or coalitions that are composed by many

health device manufacturers. These alliances define how Devices produced within the alliance

should communicate with each other. If Critical Health joined one of these alliances, it would

have access to the documentation and guidelines that make possible for Wisedome to

communicate with every device certificated by that alliance. It is then important to know the

most significant alliances on the market, their supported technologies and what variety of

sensors do they offer. The health monitoring industry has several on-going trends, each trying

to achieve one purpose: system interoperability. Interoperability is achieved when different

devices, manufactured by different vendors, are able to communicate and work together. In

health monitoring, interoperability is very important since it may involve many different types

of devices: heart rate sensors, ECG sensors, thermometers, scales and so on. To establish a

standard communication protocol so that both devices and applications are able to work

together is one of the primary goals of health care industry coalitions. Joining an established

industry coalition and abiding by the agreed standards should ensure interoperability with any

device that was certified by the coalition and abides by the same standards. This

interoperability between many devices belonging to a single coalition is desirable for an

application such as Wisedome. Thus, there was time dedicated in this project to an analysis

and comparison of the current trends in the health monitoring sensor market to facilitate the

decision of picking the most appropriate industry coalitions to join and technologies to adopt.

This chapter’s purpose is to present the results of this research and also to comment and

present some conclusions in a form of a comparison matrix.

3.1 The Necessity for Standards and Industry Coalitions

Standards are an important part of health care systems. One of today’s healthcare

industries goals is to drive patient related information to be exchanged freely between the

various systems in the continuum care (2). One area of these systems is the health monitoring

 Health Monitoring Sensor Suppliers Integration

11

information, in which various types of sensors gather and send patient data. Integration and

data sharing between various types of devices, personal health records or alarm management

platforms enables new types of health monitoring applications such as home care and

residential care solutions. In today’s health monitoring market, devices and software platforms

are manufactured and developed by many different entities. In order for a health monitoring

system, such as Wisedome, to be able to support a wide range of vital signs, it is necessary to

use a wide variety of measurement devices such as blood pressure monitors, glucose meters,

heart rate monitors, weighing scales, ECG sensors and fall detection accelerometers. For each

type of device there are a number of companies manufacturing them, but no company makes

all of these devices. Therefore, it is necessary for systems such as Wisedome to work with

many different suppliers in order to provide a complete range of measurement devices to its

customers. Unfortunately, unlike other market areas such as the financial industry, healthcare

industry is still in its primordial phases when it comes to defining interoperability standards

(2). Particularly when it comes to wireless health monitoring sensor networks, there is yet to

appear a definitive standard that is adopted by the majority of the industry. Instead, many

sensor manufactures use their own proprietary solutions for device communication messages.

The proprietary solutions are closed and the majority lacks interoperability, thus making

difficult their integration on large scale health monitoring systems. Different device suppliers

use different communication technologies (Wi-Fi, Bluetooth, ZigBee, etc.) and even if they all

used the same technology for communication they would still use different ways of structuring

the messages transmitted over the transport technology (3). Thus, a system that seeks to

implement different types of sensor devices is left with the daunting task of integrating

different types of messages and technologies, a task that gave birth to Wisedome’s Integration

Framework, later described in section 4 of this thesis. Without standards that define how to

structure messages in order to share information and what technologies to use for

communication, it will never be possible to truly achieve system interoperability. Fortunately,

there are various attempts at defining what technologies and communication standards are to

be used between the various products in the health care industry: industry players gather to

develop and agree upon guidelines or profiles that define which standards to use on a given

situation and how to combine them in order to achieve interoperability. Collaboration between

these entities and the use of global standards is essential for the future of health monitoring

systems (2).

 Health Monitoring Sensor Suppliers Integration

12

In order for Wisedome to benefit from interoperability with devices produced by

entities belonging to an industry coalition, it is necessary that Critical Health joins such a

coalition. Therefore, it was necessary to determine what technologies and standards are best

suited for Wisedome’s needs. It was decided that the research would focus primarily on two

important health monitoring industry coalitions, the Continua Health Alliance and the ANT+

Alliance, and their respective sensor wireless technologies of choice: ZigBee, Bluetooth and

ANT.

3.1.1 Continua Health Alliance

Continua Health Alliance defines itself in its website as:

―(…) a non-profit, open industry coalition of the finest healthcare and

technology companies joining together in collaboration to improve the quality of

personal healthcare. With more than 200 member companies around the world,

Continua is dedicated to establishing a system of interoperable personal health

solutions with the knowledge that extending those solutions into the home

fosters independence, empowers individuals and provides the opportunity for

truly personalized health and wellness management (4).‖

The founding members of the group include BodyMedia, Cisco Systems, GE Healthcare,

IBM, Intel, Kaiser Permanente, Medtronic, Motorola, Nonin Medical, Omron Healthcare,

Panasonic, Partners HealthCare, Polar Electro, Royal Philips Electronics, RMD Networks,

Samsung Electronics, Sharp, The Tunstall Group, Welch Allyn and Zensys (5). The Continua

Health Alliance has, however, far outgrown its initial members and now bolsters an

impressive number of approximately 240 members, which are listed on Continua’s website.

Figure 5 – Continua Health Alliance Logo.

 Health Monitoring Sensor Suppliers Integration

13

By the definition above, one can see that the Continua Health Alliance seeks to achieve

the so-called interoperability between different elements of personal health solutions. Rather

than develop new standards, their focus is to agree upon already established standards and in

what situations they should be used (devices, sensors, application servers). Thus, they define

design guidelines that enable vendors to build interoperable sensors, home networks,

telehealth platforms and health wellness services (6). The Continua Health Alliance's Design

Guidelines is the document that references to the standards and specifications that Continua

selected for ensuring interoperability of devices (7). They were specifically written for device

manufacturers that intend to go through the Continua Certification process with their devices,

companies that integrate Continua devices in their solutions (which would be the case of

Critical Health) and test labs that certify compliance to Continua specifications (7).

Continua Health Alliance’s efforts focus primarily on three areas:

 Health & Wellness – The focus here is on devices that maximize the effectiveness of

fitness programs, perform training progress tracking and allow sharing of workout

results. By collecting information about an individual’s fitness, it is possible to

improve the results of workout programs and contribute to keep fitness routines fun,

interesting and engaging. By promoting and facilitating exercise among adults, the

Continua Health Alliance believes that is possible to make people stay healthier for

longer periods of time, thus reducing healthcare costs on the long run (8) (9).

 Disease Management – According to Continua, 860 million people around the world

have at least one chronic disease and the number is rising fast (9). Interoperability

amongst health products allows for a better management of chronic conditions at home

or at work. Integration between devices and health monitoring systems allow patients,

specialized care teams or family members to better keep track of disease’s condition

and to intervene as necessary (10).

 Independent Aging – Elderly monitoring can improve the quality of life of the aging

population. By providing interoperability between different kinds of sensor devices, it

is possible to reduce some of the burden in elderly care facilities or improve quality of

care at home. Products with the Continua logo collect information about an elderly

 Health Monitoring Sensor Suppliers Integration

14

person’s wellbeing on a daily basis and communicate it to family members and care

teams (9). This is the area which holds the most interest to Wisedome.

With the purpose of building trust among costumers and entities, each product within

the Continua Health Alliance has to pass a product certification program. Only the products

that pass this certification process and present the Continua Certified logo are considered

interoperable with other certified products. Certification allows Continua products to become

―future proof‖ as long as the new versions of the design guidelines ensure retro-compatibility.

Certification includes two processes: conformance testing towards the Continua

standards/specifications and interoperability testing (11).

Regarding wireless device connectivity, the Continua Health Alliance endorses two

wireless communication technologies: ZigBee and Bluetooth.

ZigBee technology offers a ―build reliable, cost effective, low-power‖ wireless solution for

use in residential, commercial and industrial applications (12). On June 8, 2009, the Continua

Health Alliance chose ZigBee as the wireless technology of choice for low power sensors

(13).

Bluetooth is a wireless technology standard specialized in exchanging data over short

distances (using short length radio waves) between fixed and mobile devices, creating

personal area networks with high levels of security (14).

Both these technologies are merely a vessel to transmit information; the way that

information is structured in messages is just as important. The ISO/IEEE 11073 family of

standards has been adopted by Continua Health Alliance as the protocol to be used in sensor

device communication, which guarantees that devices will understand each other (13) (15).

 Health Monitoring Sensor Suppliers Integration

15

3.1.2 ANT+ Alliance

The ANT+ Alliance defines the ANT+ connectivity solution in its website as:

―ANT+ facilitates the collection, automatic transfer and tracking of sensor

data for monitoring information anywhere, anytime. The key advantage of this

unique managed network is device specific interoperability which enables

wireless communication with other ANT+ products. This interoperability

function (added to the base ANT protocol) now facilitates the reliable transfer of

data between sensors and display devices such as watches, heart rate monitors

and bike computers. Applicable in sport, wellness management and home health

monitoring, ANT is proven with several million nodes shipped to date. ANT+

provides off –the-shelf interoperability to guarantee seamless digital wireless

communication in the 2.4 GHz license-free band (16).―

The ANT+ Alliance is an industry coalition that endorses the use of ANT Wireless

technology as basis for communication and interoperability between devices. Created as a

division of the Dynastream Innovations Inc (17), ANT was initially target at the sports sector,

particularly in the cycling and fitness areas, and was adopted by many of the industries’

significant players such as Garmin, Nike, Suunto and Tacx (17) (18). Since then, ANT+

initially success propelled the group to other areas such as the wellness and home health

monitoring markets. By the time of this thesis writing, ANT+ has reached approximately 250

members that cover the sports, wellness and health monitoring areas.

It is ANT+ Alliance’s objective to standardize communication between a wide variety

of sports, wellness and health monitoring devices in contrast with the proprietary solutions

imposed by many of the manufacturers in these industries (16). Standardization allows

interoperability between devices produced by many companies within the ANT+ Alliance,

Figure 6 – The ANT logo.

 Health Monitoring Sensor Suppliers Integration

16

which can then be integrated in health monitoring solutions such as Wisedome.

Standardization is achieved by firstly, using a unique wireless technology on all devices, the

ANT wireless technology and secondly thorough the ANT Device Profiles. The ANT Device

Profiles define the data packet format, in other words, how messages are structured and shared

between devices. The Device profiles also define the appropriate wireless channel parameters,

thus ensuring interoperability between different devices (19).

After joining the alliance, a company is then capable of acquiring the development

tools necessary to ensure that its device or system is compatible with other ANT+ devices and

then perform the ANT+ Self Compliance Test Process. The device can then bear ANT+ logo

in its packaging and labeling and becomes an official ANT+ Alliance product (19).

Unlike the Continua Health Alliance, the creation of the ANT+ Alliance was not

driven by the intent of defining communication standards and technologies, but to promote the

use of the ANT Wireless technology instead. The ANT wireless technology focuses on the

2.4Ghz wireless band and is designed for applications that require (20):

 Ultra low power – ANT wireless communication has very low energy

consumption. An ultra low power device has energy consumption in the range

of the milli-watt or the microwatt (21).

 High resource optimization – ANT wireless messages are optimized to have as

little overhead as possible (21) and the protocol fits into a compact sized

memory (20).

 Network flexibility and scalability – ANT wireless protocol allows for multiple

network topologies including mesh networks (22).

 Easy to use with low system cost - Operates independently with a single chip

(20).

ANT Wireless technology was engineered for being a reliable, ultra-low power wireless

solution.

 Health Monitoring Sensor Suppliers Integration

17

3.2 Alliances and Technology Comparison

In order to compare the industry coalitions and their supported technologies, it was

decided that a comparison should be made that would put describe how each Alliance and

their supported technologies fare on the following aspects:

 Wireless Specification – In what wireless specification do the supported

technologies base themselves on.

 Energy Consumption – A qualitative analysis of the technology’s energy

consumption levels.

 Network Types – A comparison on what network topologies are supported.

 Interoperability Standards – How are messages structured and how

interoperability is ensured between alliance certified devices?

 Health Monitoring Devices – A qualitative analysis on the number of health

monitoring devices certified in each alliance.

The following section will firstly present the research performed and compare Bluetooth,

ZigBee and ANT wireless technologies on each of these areas. Finally, it will culminate on the

presentation of the comparison matrix.

3.2.1 Wireless Specification

The Wireless Specification section describes the basis wireless specification used by

each of the technologies. The base specification determines most of the wireless technology

features and capabilities.

3.2.1.1 ZigBee - IEEE 802.15.4-2006

ZigBee is built upon the Institute of Electrical and Electronics Engineers (IEEE)

802.15.4 standard (23). The ZigBee group wanted to create a low data rate, low power

consumption, low cost wireless networking protocol while the IEEE 802.15.4 committee

 Health Monitoring Sensor Suppliers Integration

18

began to work on a low data rate standard shortly after. The ZigBee Alliance and the IEEE

group joined forces and ZigBee became the commercial name for the technology (24).

The 802.15.4 standard serves as basis for other wireless technologies, such as

6LoWPAN (25) and MiWi (26). ZigBee draws many of its features from its underlying

802.15.4 standard: the emphasis on low power consumption, low cost, self-organizing network

arrangement, network path adaptation, co-existence assurance with other IEEE 802 wireless

technologies, secure communication and low data rate. The standard has been designed with

applications which cannot handle the power consumption of heavier protocol stacks in mind

(24).

The ZigBee technology can be seen as a stack composed of four layers: the top high-

level layers are defined in the ZigBee specification while the bottom low-level layers are

defined in the IEEE 802.15.4-2006 standard, as shown in Figure 7. Thus, the ZigBee protocol

builds upon and acts as an intermediate between the low level 802.15.4 MAC and PHY sub

layers and the software that makes use of wireless communication. It defines the network layer

specifications and provides functionality for application programming (27).

Figure 7 - The ZigBee Stack (23).

 Health Monitoring Sensor Suppliers Integration

19

The 802.15.4 standard supports several wireless frequency bands. It is capable of

achieving speeds of 20 kbps on the 868 MHz band, 40 kbps on the 915 MHz band and 250

kbps on the 2.4 GHz band (27). The maximum communication range between two ZigBee

devices is approximately 100 meters (28).

3.2.1.2 Bluetooth - IEEE 802.15.1-2002/2005

Initially, the Bluetooth protocol stack was created by the IEEE group as the IEEE

802.15.1. The original version of this standard was based on portions of the Bluetooth v1.1

Specification. An updated version of the Bluetooth standard, Bluetooth v1.2, was released as

IEEE 802.15.1-2005 (29). However, after the release of v1.2, the IEEE Study Group 1b

discontinued their relationship with Bluetooth SIG. Thus, later versions of Bluetooth wouldn’t

become IEEE standards (30).

The 802.15.1 specification was originally designed by Ericsson (31) as a cable

replacement, an alternative to RS232 data cables (32). Thus, the basis technology has little

consideration over power saving. One particularity of Bluetooth is it’s usage of various

wireless frequencies. Bluetooth divides the data into several packets and transmits them over

79 frequencies in a pseudo-random pattern. Bluetooth radios ―hop‖ to a new frequency after

transmitting or receiving a packet, following the pseudo-random , known to all the devices in a

single Bluetooth connection (33). The Bluetooth technology can achieve speeds up to

approximately 3 mbps by using exclusively the Bluetooth protocol as of Bluetooth 2.0, but

since Bluetooth 3.0 the speed has been increased up to 24 mbps, by also using the 802.11 radio

protocol, the basis for Wi-Fi technology (34). The maximum expected range between two

Bluetooth devices is approximately 10 meters (28).

3.2.1.3 ANT Wireless

Ant Wireless uses its own proprietary physical layer and it is not based on any other

protocols. The ANT protocol stack provides ―reliable data communications, flexible and

adaptive network operation and cross-talk immunity‖ (35). The stack is compact and requires

minimal microcontroller resources.

 Health Monitoring Sensor Suppliers Integration

20

The ANT protocol ensures enough flexibility in terms of user control, allowing, for instance,

user-defined network security implementations. However, it also lightens computational

burden by abstracting most of the low level functions from the application developer. The

interface between ANT and the Host application has been designed with the intent of being as

simple as possible, thus allowing for an easy and quick implementation of the ANT protocol in

communication boards to be used by applications like Wisedome or sensor device processor

chips (35). Aside from being simple to implement, the protocol is also lightweight, has a low

handshaking overhead, and provides ultra-low power consumption and low latency (21) (22).

It boasts an over the air data rate of 1 mbps for low duty cycle operations (22) and a maximum

expected range between nodes of about 30 meters (28).

3.2.2 Energy Consumption

Energy consumption of the wireless communication protocol is one of the most

important issues when dealing with low power health monitoring sensor devices. The lower

the energy used for data transmission, the longer the device’s battery life becomes. Longer

battery life means less device charging. The less time nurses or TAPs have to spend charging

Figure 8 – OSI Layer model of ANT protocol stack (35).

 Health Monitoring Sensor Suppliers Integration

21

and replacing devices, the more time they have to focus on patient care, thus improving

customer satisfaction.

3.2.2.1 ZigBee Energy Consumption

One of the flagship features of the ZigBee technology is its design for ―low-power‖

applications. The ZigBee has been designed to deliver wireless networking to even the most

basic devices, including those that run on batteries lasting for years. ZigBee implements

various mechanisms in order to reduce overall power consumption.

ZigBee’s low power consumption is associated not with the RF power of ZigBee’s

nodes, but with a sleep mode, specifically designed to extend a device’s battery life (36).

Devices can remain asleep most of the time, thus saving battery life. ZigBee radios can switch

automatically to sleep mode whenever the device is not transmitting thus achieving very low

duty cycles. When a radio is sleeping, the RF power rating is irrelevant, only when

transmitting does the radio consume significant amounts of energy (36). Also, the sensor’s

processor itself usually consumes very little energy; it’s the radio that consumes most of the

power. Thus, with very low duty cycles, ZigBee solutions can effectively achieve a very low

average power usage. In order to reduce the amount of time the radio is on, the data is sent

through small-duration but high-rate bursts, which is an effective way of saving power (37)

(38). Since the active periods of the ZigBee radios can be very short, significant power can be

lost if the transceiver warm-up time is long. Fortunately, the ZigBee protocol uses various

techniques to lower this warm-up time. The wideband techniques used by ZigBee, such as the

Direct Sequence Spread Spectrum, have the advantage of their wide channel filters having

inherently short settling times (39).

From these efforts, the ZigBee alliance claims that battery lifetimes from a few months

up to several years can be expected (40). ZigBee Alliance’s confidence in their technologie’s

low energy consumption is evident in their certification process: individual devices must have

a battery life of at least two years to pass ZigBee certification (41).

However, according to the studies performed by Chaitanya S. Misal presented in his

thesis, energy consumption on ZigBee is heavily dependent on the network configuration.

Device battery life depends on factors such as the size of the packets transmitted or received

 Health Monitoring Sensor Suppliers Integration

22

over the air, the node being a recipient or a transmitter of data (recipients are expected to last

approximately 63% more than transmitters) or if the network uses transmission retries when

messages are not delivered (retries can bring down battery life by almost 45%) (42).

3.2.2.2 Bluetooth Energy Consumption

Up until very recently, the Bluetooth protocol did not have the same kind of low power

consumption features presented by its competitors. As previously mentioned in page 19,

Bluetooth was initially developed as a cable replacement technology, thus, not having much

concern about power consumption. According to (43), small low-powered devices cannot bear

the power consumption and cost associated to Bluetooth. This lead Nokia to create an alternate

Bluetooth-based protocol named Wibree, which would work alongside Bluetooth while

effectively circumventing Bluetooth’s high energy costs (44). In June 2007 it was decided that

Wibree would become an integrate part of the Bluetooth specification (45) and was recently

released as Bluetooth Low Energy, a part of the new Bluetooth 4.0 specification (46).

According to Bluetooth SIG director Michael Foley, the new specification reduces energy

consumption by nearly 90%. He also mentions that this energy reduction enables the use of

Bluetooth more effectively in many areas, one of them being health monitoring sensors (47).

Unfortunately, chip manufacturers have yet to disclose power consumption data on data

sheets, thus it is difficult to truly ascertain how much power the new Bluetooth protocol

consumes (48). Devices that support both Low Energy and Classic Bluetooth technology via a

dual-mode radio feature will be compatible with Classic Bluetooth devices. However, single-

mode Bluetooth Low Energy devices will not interoperate with existing Bluetooth devices

(49). Despite consuming less energy, the Low Energy specification has an over the air data

rate lower than Classic Bluetooth, transmitting at 1 Mbps. Just like ZigBee, Bluetooth low

energy applications are able to achieve ultra low duty cycles. Connection setup time was also

greatly reduced in this new version of the protocol, with connections being established, and

the data transferred in an amount of time as low as 3 ms. This can be particularly useful in the

health monitoring area, as the time it takes to detect an alarm event and send the alarm must be

as short as possible (50). The new Bluetooth 4.0 specification is still very recent, but devices

using it are expected to appear by the end of 2010 (49).

 Health Monitoring Sensor Suppliers Integration

23

3.2.2.3 ANT Energy Consumption

ANT Wireless distinguishes itself from its competitors by declaring itself as an ―Ultra

Low-Power‖ wireless solution.

―Ultra Low Power is an electronic gadget that has milli-watt or microwatt

power consumption.‖ (21).

They believe that they are the most energy-efficient wireless technology currently on the

market, claiming to be able to operate for up to several years on coin cell batteries (51).

Figure 9 shows ANT’s graphical comparison regarding energy consumption, range and data

rate for several wireless technologies on the market while Figure 10 shows their expectations

regarding the new Bluetooth Low Energy (the specification hadn’t been released at the time

these comparisons were presented).

ANT believes that ultra low power wireless can be achieved through efficiency, simplicity and

scalability:

Figure 9 – ANT’s comparison of the energy consumption between some of the current wireless technologies (21).

 Health Monitoring Sensor Suppliers Integration

24

Efficiency consists of communicating for a short period of time in order to save battery power.

ANT sought to create a lightweight protocol with as little message overhead as possible:

according to them, Bluetooth, Bluetooth Low Energy and ZigBee all have about twice as

much message overhead as ANT. ANT’s protocol stack size is also much smaller than its

competitors (21).

Simplicity consists on creating a clear message protocol that requires as little handshaking or

negotiation as possible. ANT decided to completely bypass handshaking, so unlike Bluetooth

and ZigBee, ANT does not require handshaking at all (21).

Scalability allows developers to create complex network configurations with simple ones as a

base. ANT is capable of scaling from complex inter-node communication methods, like multi-

frequency bidirectional communication, to simple methods such as single frequency single

direction communication (21).

Brian Macdonald, Director of ANT Networks, believes that an Ultra Low Power

wireless solution fares much better in comparison with other wireless protocol solutions. In an

article written for Nikkei Electronics Asia in December 2007, he gives an example of a sensor

transmitting 8 bytes of data, 24 hours a day with a message period of 0.5Hz. For this use case,

Figure 10 - ANT’s expectation of the energy consumption of the new Bluetooth Low Energy protocol (21).

 Health Monitoring Sensor Suppliers Integration

25

a technology that supports Ultra Low Power consumption such as ANT presents a battery life

of 7.2 months for the transmitter sensor and 6.3 months for the receiver sensor. According to

him, this solution has a much better battery performance than a ZigBee based solution which

presents a battery life of only 8 to 10 weeks for both the transmitter and the receiver (52).

Figure 11 shows a comparison of the battery life between ANT, ZigBee and Bluetooth using a

Coin Cell 2032 battery. Although interesting, it should be noted that this comparison is not

realistic. Peak current requirement for ZigBee and Bluetooth exceeds coin cell battery

capability so coin cell operation is impractical. Since both ZigBee and Bluetooth devices are

not capable of using 2032 Coin Cell batteries, the data presented in this graph is only

theoretical (28).

Figure 11 – ANT’s comparison of the duration of a coin cell 2032 battery using different
wireless technologies (52).

 Health Monitoring Sensor Suppliers Integration

26

3.2.3 Supported Network Topologies

Different network topologies fulfill different kinds of needs. The more types of

network topologies a technology supports, the more flexible that technology is. Both ZigBee

and ANT are capable of implementing mesh network types. The concept of a Mesh network is

powerful and consists on an environment where a given device is able to communicate with

any other device on the network. Mesh networks are ―self-healing‖ because the network is

able to route traffic by using different device paths: if a device that has been routing traffic

between two other devices on the network suddenly starts malfunctioning, the network should

be able to use other devices to create an alternate path and keep the communication going.

This section presents the topologies supported by ZigBee, Bluetooth and ANT.

3.2.3.1 ZigBee Supported Network Topologies

ZigBee supports various types of network topologies (mesh networks included) with a

maximum of 264 nodes per network (28). There are two types of devices on a ZigBee network

(27) (53):

 Reduced Function Devices (RFD) – is the simplest type of device, only applied as an

―end-point‖ in the network configuration. They have just enough functionality to relay

traffic to their parent nodes (a single FFD) and are unable to route traffic coming from

other devices.

 Full Function Devices (FFD) – these devices present full functionality and perform the

most complex network tasks. They are capable of full communication and to relay

traffic between other devices

These two types of devices are, in turn, capable of assuming three different roles on a ZigBee

network (27) (53):

 ZigBee PAN Coordinator – These devices assume role functions and manage the

whole network. They are the most functional device and are used to start the network

and provide the bridge to other networks. This function is always assumed by FFDs.

 Health Monitoring Sensor Suppliers Integration

27

 ZigBee Router – The ZigBee routers function is to route information between different

nodes in the network, serving as ―communication bridges‖.

 ZigBee End-Device – These are the end-nodes on the network, usually the receivers or

the senders of network commands. Usually these types of nodes are part of sensors that

gather information or devices that perform some function that gather information or

receive commands. Each one of these is usually associated with a single ZigBee

Router. They are usually RFD, although they can also be FFD acting as simple

devices.

Using these types of devices, ZigBee is capable of supporting Star, Cluster and Mesh

network topologies.

In the Star topology, the PAN coordinator establishes communication between the devices.

The PAN coordinator’s tasks are demanding, so it is usually plugged onto a power source

while the other nodes are battery powered. Whenever a FFD device is activated, it may

establish a new start network and become the coordinator. By choosing a unique PAN

identifier, each star network may operate independently. The end-point devices may only

communicate with the network’s coordinator (24).

Mesh networks also require a PAN coordinator. Unlike the star topology, a device can

communicate with any other device, with messages being routed through the ZigBee routers

(24). One interesting feature about ZigBee’s mesh networks is the network’s self-healing

Figure 12 – Network topologies supported by ZigBee (24).

 Health Monitoring Sensor Suppliers Integration

28

properties. As Figure 13 shows, the network is capable of generating alternate paths in case of

device failure or external interference (23). Although mesh networks result in increased

robustness and flexibility, those advantages come with a price. In order to guarantee multi-

path routing, the ZigBee routers must increase their radio’s operating time so that they are

prepared to receive possibly incoming traffic from the network. Mesh networking requires

more complex network protocols and has a higher communications overhead. These factors

lead to an increase in overall power consumption and costs (53) (54).

The Cluster-tree network is a special case of a mesh network. Most of the devices in the

network are FFDs and RFDs usually connect only as ends of a branch. The network is

composed of various ―clusters‖, with each cluster having a cluster head (CLH). The PAN

coordinator forms the first cluster by establishing itself as the CLH and then broadcasting

―beacon‖ messages to neighboring devices. Devices that receive these beacons can request the

CLH to join the network. In case the PAN coordinator permits the device to join, it will add

this new device as a ―child-node‖ on its list of neighboring nodes. The child node will add the

CHL as its ―parent-node‖ and then begins to transmit new periodic beacons so that other

devices may then join the network at that device. As soon as application or network

requirements are met, the PAN coordinator may instruct one of its child nodes to become the

Figure 13 – ZigBee is capable of multipath routing (23).

 Health Monitoring Sensor Suppliers Integration

29

CLH of a new cluster adjacent to the first one. This topology presents increased coverage area

at the cost of increased message latency (24).

3.2.3.2 Bluetooth Supported Network Topologies

Bluetooth wireless links are always established within a piconet. Each piconet has one

master node and at least one slave node and can have at most 8 active members. Slave nodes

do not directly communicate with each other, but instead rely on the master as a transit node

(55). However, the terms ―master‖ and ―slave‖ only apply to a given piconet: a device can

assume both roles if it belongs to more than one piconet. A Bluetooth enabled device can only

be the master of a single piconet, but it may assume the role of slave for several independent

piconets (56). By belonging to several piconets, a Bluetooth device can act as a bridge

between them and when two or more piconets are connected, we are in the presence of a

scatternet.

The scatternets are not covered by current Bluetooth core protocols. The Bluetooth core

protocols do not, and are not intended to offer such functionality, thus, it has to be

implemented by higher level protocols (56).

Figure 14 – Example of a Bluetooth scatternet composed of 3 piconets.

 Health Monitoring Sensor Suppliers Integration

30

3.2.3.3 ANT Supported Wireless Topologies

ANT supports all the wireless topologies supported by ZigBee, but with a different

mechanism and with a maximum of 232 nodes (28). In ANT, devices do not have different

functions on the network unlike ZigBee’s several types of devices (Coordinator, Router and

End-Point). When setting up a ZigBee network, one of the limitations is that it isn’t easy to

extend the network on an ad hoc basis. This is because it is difficult for nodes to casually join

or leave the network unless they are of the right type (for instance, end-point devices can only

connect to one FFD). In ANT’s case, all nodes are identical and capable of acting as ―slaves‖

and ―masters‖, swapping roles whenever necessary. All the nodes can act as transmitters,

receivers or transceivers to route traffic and can leave or join the network in an ad hoc fashion.

Another interesting feature is that every node is capable of determining the best time to

transmit based on the activity of its neighbor nodes, thus, coordinators are not necessary. ANT

claims that the technology is capable of supporting this type of network with tens or hundreds

of nodes while keeping system resource overhead low (53).

 Figure 15 – ANT supported network types: peer to peer, star, tree and complex networks (mesh) (89).

 Health Monitoring Sensor Suppliers Integration

31

Just like ZigBee, ANT supports star, tree and mesh network topologies. The tree

topology is similar to the cluster-tree topology, in that it is like having several star topologies

connected to each other, much like the clusters were connected in the cluster-tree topology.

Mesh network is supported but, just like ZigBee, using this type of topology introduces

complexity and induces in a bigger power consumption and increased system resources. In

most cases, problems can be resolved using peer-to-peer, star or tree networks (22).

3.2.4 Interoperability Standards

It is not just enough that devices use the same means to communicate (same wireless

technology), they must also speak the same ―language‖ and that’s where interoperability

standards come in. Interoperability standards make devices able to understand each other by

following the same rules for message exchange. The standards define the data types, message

payload, communication handshaking, connection states and other overall communication

characteristics. This section will present the interoperability standards adopted by each

industry coalition and will also include a brief description of how they work and what they

offer.

3.2.4.1 IEEE 11073-20601™ - Optimized exchange protocol – PHD

Continua Health Alliance supports the ISO/IEEE 11073 as the standard message

protocol for sensor devices. The IEEE 11073 (also known as X73) is a family of medical

device communication standards that was defined by the Institute of Electrical and Electronics

Engineers in 1982 in order to seek interoperability, with the objective of defining a common

way for medical equipment to communicate. The 11073 family of standards has existed for

several years, but it used to be limited to intensive care unit devices or medical equipment that

is plugged to a continuous power source. The protocol had been criticized for being

excessively heavyweight and complex. Thus, Malcolm Clarke et al. (57) proposed an

adaptation of the former 11073 standard to fit the demands of personal health data (PHD)

devices, such as wireless health monitoring sensors. This resulted in the separation of the

IEEE 11073 family of standards into two main branches (58):

 Health Monitoring Sensor Suppliers Integration

32

 At the hospital level stands the former family of standards, the IEEE 11073-00101

PoC-MDC (Point of Care Medical Device Communication)

 For personal telehealth systems there is the more recent IEEE 11073-20601-2008 PHD

(Personal Health Device) family of standards.

The IEEE 11073-20601-2008 PHD is basically a simplified, ―lighter‖ version of the

former 11073 POC protocol. Its main differences reside within the OSI layer 7, the

communication layer. PHD provides an ―Optimized exchange protocol‖ that offers the same

functionally as OSI layer 7, but implemented in a lightweight fashion. The exchange protocol

is optimized for low capability devices that have limited energy resources and processing

power for communication. The existing nomenclature of the 11073 POC was used but was

simplified in the PHD version by constraining the scope of the model to the personal health

devices (58). In 11073 PHD, sensor devices are known as ―Agents‖ while the applications that

use them are known as ―Managers‖ (59).

As show in Figure 16, the 11073 PHD is composed of three modules, two of which are

defined using Abstract Syntax Notation One (ASN.1) language used for the abstract modeling

of data and interactions. The Domain Information Model (DIM) describes the sensor device

and physiological data. To do this, it uses an object - attribute approach: an ―object‖ is tailored

by a series of ―attributes‖. Objects are created from Classes which are a model that defines the

attributes and methods for that object type. Objects can represent sensor devices (Agents),

Figure 16 – IEEE Std 11073-20601™ model constitution (60).

 Health Monitoring Sensor Suppliers Integration

33

measurement metrics or specific data types and each possess a series of attributes that tailor it.

For instance, an object representing a sensor device may possess attributes that define the

device manufacturer, the model, the device ID or the battery level while an object representing

a weight measurement might include attributes that define a timestamp, the measurement

value, the units of the measurement (kg, lb, etc.) among others (59).

The Service Model part of the 11073 PHD defines interactions between devices and data. It

works by defining a series of services that are offered by the sensor devices. These services

include the Event Reporting Service, Object Access Service, Association Service and

Conversion Service. The Event Reporting Service allows Agents to send events, such as

updates on a measurement value or changes in device status. It is also used to send Agent

configuration during the association process, in which the Agent sends to the Manager what

attributes and message formats it supports. Event report message format can be pre-defined in

order to omit message headers (which indicate what kind of information is being transmitted),

thus optimizing the protocol. The Object Access Service allows the Manager to get and set all

kinds of information regarding an object and its attributes. The Manager can, for example, get

information on the Agents manufacturer or set the Agents date and time. The Association

Service provides various services that allow Agents to ―associate‖ with Managers in order to

establish a connection and pass on information. Finally, the Conversion Service allows the

conversion of data to various formats (59).

The Communication model describes communication characteristics, connection states and

legal interactions on each state. It supports two types of communication: Reliable and ‖Best

Effort‖. The Reliable communication guarantees that the data is delivered in order, free of

detectable errors, not duplicated and not missing. However, this kind of reliability comes at a

cost of delays and increased power consumption due to retries. In ―Best Effort‖

communication, data may be discarded or lost in its entirety, delivered disordered or

duplicated. The communication model also describes how Agents should connect to

Managers. This includes defining connection states (disconnected, associated and

disassociated) and what tasks should be performed in order to successfully associate an agent

to a manager and what kind of interactions can exist in each state. The protocol defines

various workflows explaining the steps required for each connection (59).

 Health Monitoring Sensor Suppliers Integration

34

In order to decrease communication overhead and to simplify the association process,

the 11073 PHD families of standards define a series of ―Device Specializations‖. As

previously mentioned, Agents must send their configuration (what kind of attributes they

possess and message formats) to the Managers during the association process. These

specializations provide standard configurations that are known a priori by both Agents and

Managers. The Agent merely sends particular Dev-Configuration-Ids that correspond to these

specifications and Managers automatically know what kind of Agents they are dealing with.

This increases the likelihood of interoperability, by defining specific objects, attributes, ids

and services. It also optimizes the configuration phase, since it is not necessary for the Agent

to send its full configuration to the Manager. These device specializations focus on describing

particular usages of the 11073 PHD. Some examples are the IEEE 11073-10404™ - Pulse

Oximeter and the IEEE 11073-10415™ - Weighing Scale (59).

The IEEE 11073-20601™ Application profile - Optimized exchange protocol is

transport independent. The Continua Health Alliance supports its implementation in different

communication technologies, like Bluetooth, ZigBee or USB (15) (60).

3.2.4.2 ANT Device Profiles

ANT+ seeks to ensure interoperability at the message level through ―Device Profiles‖.

Device profiles are keystone of interoperability in the ANT+ Alliance. They define uses cases

for a type of sensor, and considering the use case, they also define topology requirements,

pairing requirements and data requirements for the sensor. They also define how data should

be encoded and decoded for transmission between sensors, channel parameters and the

network key to be used. Additionally, implementation code examples on how to perform

channel configuration and node pairing are also included to facilitate development of the ANT

solution (61).

ANT Device Profiles are not a static documentation; they are designed to respond to

the needs of the ANT+ Alliance members. In case the current device profiles are not enough to

cover the needs of an application, it is possible for ANT+ members to work with ANT in order

to create new device profiles. The device profile is developed by the ANT+ company member

and reviewed with ANT+ team on an iterative process until an agreement is reached. When

 Health Monitoring Sensor Suppliers Integration

35

both parties agree on a device profile proposal, a new device profile is created and released for

other members of the alliance to use. The ANT+ Alliance ensures its members that backwards

compatibility will always be assured in new versions of the device profiles, so that legacy

devices won’t become obsolete (61).

On an email exchanged with Dallin Doney, an ANT+ Business Development Manager,

it was mentioned that ANT device profiles are designed in order to allow the collection

devices to map the data from the optimized ANT+ format into possible other XHR formats,

with specific reference to IEEE 11073-20601 compatibility. This email can be consulted in

Annex B.

3.2.5 Health Monitoring Devices

An important part of this research was to estimate how many health monitoring

devices are certified by both Alliances. For Critical Health, it wouldn’t be interesting to join

an Alliance which didn’t certify a considerable number of health monitoring devices that

could be used in the Wisedome system. Thus, it was necessary to know the amount and variety

of devices certified by each Alliance, before making a decision.

3.2.5.1 Continua Health Alliance Health Monitoring Devices

The number of health monitoring sensors currently certified by the Continua Health

Alliance is still poor, but has been growing. The Continua Health Alliance keeps a record of

every product currently certified on their website. At the time of this document’s writing, there

are 14 products certified by the Continua Health Alliance, from which only 6 can be

considered wireless health monitoring sensors. There are currently no certified devices using

ZigBee technology, and all of the devices use classic Bluetooth technology. The currently

Continua Certified wireless health monitoring devices are (62):

 Nonin Onyx® II 9560 Wireless Fingertip Pulse Oximeter – This pulse oximeter

uses classic Bluetooth technology to allow clinicians to remotely monitor

patients with chronic diseases.

 Health Monitoring Sensor Suppliers Integration

36

 A&D Medical UA-767PBT-C Blood Pressure Monitor – This Blood Pressure

monitor uses classic Bluetooth and is capable of sending data either in real-time

or in batch mode.

 A&D Medical UC-321PBT-C Weight Scale – This scale is capable of

measuring patient weight and sending data to a telemedicine access point

through classic Bluetooth.

 OMRON Bluetooth® Home Blood Pressure Monitor – The device has the

ability to easily transmit data to electronic health applications by using

Bluetooth.

 Bluetooth® Body Composition Monitor HBF-206IT Weighing Scale – This

scale gives a comprehensive view of a patient’s health level through several

fitness indicators and provides an ability to easily transmit data to electronic

health applications by using Bluetooth.

 Omron Pedometer with Bluetooth Docking Station - This pedometer along with

the Bluetooth® Docking station allows transmission of data to electronic health

applications.

The ZigBee Alliance itself (not directly associated with the Continua Health Alliance)

does not currently show any certified ZigBee health monitoring devices in their own webpage

(63). There are, however, non-certified health monitoring devices using ZigBee technology

produced by independent companies. Since these devices are not a part of the Continua Health

Alliance’s list of certified products, nothing guarantees that they are using IEEE 11073 PHD

as a communication standard, making them no different than any other proprietary solution.

Despite ZigBee being used sporadically, Bluetooth and Wi-Fi stand as the most popular

wireless technologies of choice for independent health monitoring device solutions.

3.2.5.2 ANT+ Alliance Health Montoring Devices

Unlike Continua Health Alliance, the ANT+ Alliance has an extensive list of certified

products in its website. However, most of these products belong to the sports and fitness areas,

while devices in the health area are fewer. Even so, there exist some products in the health

monitoring area and some of the devices from the sports area could theoretically be used with

 Health Monitoring Sensor Suppliers Integration

37

a health monitoring application, particularly bracelets, watches and chest-straps that measure

an individual’s heart rate.

During the MEDICA International Trade Fair 2009 health tradeshow, some ANT+

members such as Cosmed, HMM, IDT Technology, Beurer, Spantec and A&D Medical

launched various new healthcare sensor devices and demonstrated interoperability with ANT

(64) (65).

3.3 Wireless Interference Research

In an eventuality that Wisedome could come to use more than one kind of wireless

device simultaneously, it would be interesting to have an idea of the interference between

different wireless technologies operating on the same environment. This section gives an

overview of the mechanisms against interference employed by ZigBee, ANT and Bluetooth as

well as an analysis of a few studies that quantify the performance of these wireless

technologies when co-existing on a single environment.

3.3.1 ZigBee Interference Avoidance Techniques

ZigBee uses various techniques to avoid wireless interference, such as Direct Sequence

Spread Spectrum (DSSS), Multiple Channels, relatively high Data Rate, CSMA and

transmission retries.

The use of DSSS techniques consists on spreading the wireless signal over a broader

bandwidth than the information signal actually requires. This is in contrast with narrow-band

signals, that when happen to collide with other narrow-band signals result in great amounts of

overlapping and information loss. Signals that use a broader bandwidth can co-exist with

narrowband signals because in an event of a collision, the receiver sees it as merely a slight

reduction in the signal-to-noise ratio over the larger spectrum being used. Thus, by the use of

DSSS, ZigBee can coexist with narrow-band signals on the crowded 2.4Ghz band. This

specific spreading technique uses a pseudo-random code sequence called ―chipping sequence‖

 Health Monitoring Sensor Suppliers Integration

38

that is used to modulate the carrier signal and to encode the data being transmitted. Only the

radio receptors that are aware of the ―chipping sequence‖ are able to ―de-spread‖ and

reconstruct the original signal. This method is also used in 802.11b and 802.11g WLAN

technologies (23) (66).

The use of multiple frequency channels also allows ZigBee to avoid possible

interference. This technique is called frequency division multiple access (FDMA) and in the

802.15.4 standard it divides the 2.4 GHz ISM band into 16 non-overlapping channels, 5 MHz

apart from each other. The 802.15.4 standard ensures that devices operating in adjacent

channels can coexist comfortably. The wider the space used between channels, the bigger will

be the resistance against interference (23). The 802.15.4 standard PHY layer also provides the

ability to verify and report whether or not a channel is clear to transmit and measure the

interference present in a given channel. This can be used by higher layers in the protocol stack

to select the best available channel for operation. ZigBee supports a total of 27 wireless

channels over 3 different frequency specters (39):

• 2.4 GHz with 16 channels Bands for global use

• 915 MHz with 10 channels for N. America, Australia and a few additional countries

• 868 MHz with 1 channel for EU countries

Figure 17 – Collision of a spread Signal with a Narrow Band Signal (23).

 Health Monitoring Sensor Suppliers Integration

39

Even if ZigBee tries to minimize interference by using multiple channels, it may

happen that a device shares the same channel with other ZigBee device. This is particularly

important when the 863.3 MHz frequency that only has a single channel is being used. To

avoid signal collisions, there has to be some order as to when each device transmits. If a

device transmits whenever it wants to, collisions with other devices are prone to arise. IEEE

808.15.4 uses carrier sense multiple access (CSMA) to address this problem. It consists on the

strategy of ―listening before you talk―. The device checks if the channel is busy, and if it is,

waits for a random period of time before checking again. When the device finds the channel

free, it finally transmits its message (23).

The 802.15.4 designers chosen to use a relatively high data rate of 250 Kbps, even if

most of the target applications require a much lower data rate. One of the reasons for this is to

reduce channel occupancy and increase coexistence. A radio that transmits its data faster will

occupy the wireless channel for shorter amounts of time, thus reducing the probability of

collision and allowing others to use the channel more often (23).

Finally, ZigBee also employs a retransmissions system, in case a message that was sent

is not successfully received. All communication requires acknowledgement responses in

802.15.4: a device that receives a message has a small time interval to send back to the

sending device a short acknowledgment response that confirms the reception of the message.

If the sending device does not receive an acknowledgement within the specified time window,

it assumes that the message was not delivered and sends it again. The transmitting device

keeps re-transmitting the message until it either receives an acknowledgement response or,

after a few tries, gives up and reports a failure (23).

Figure 18 – The 802.15.4 standard 2.4 GHz ISM band channels (90).

 Health Monitoring Sensor Suppliers Integration

40

3.3.2 Bluetooth Interference Avoidance Techniques

In order to reduce interference and to increase security, Bluetooth uses Adaptive

Frequency Hopping (AFH) which is a type of Frequency-hopping spread spectrum (FHSS).

The FHSS is a spread spectrum modulation technique that uses a large bandwidth (much like

ZigBee), divides the data into packets and transmits it over numerous ―hop frequencies‖ with

1MHz of difference between them, in a pseudo-random pattern (Bluetooth uses 79 hop

frequencies). This pseudo-random pattern is derived from the clock of the piconet’s master

node, and each slave must remain synchronized with it (33). The pseudo-random pattern is

made known to both the master and the slaves and is used to map the sequence of frequencies

that will be used. Bluetooth radio modules after transmitting or receiving a packet follow the

sequence and ‖hop‖ to a new frequency, performing this task 1600 times per second (67).

3.3.3 ANT Interference Avoidance Techniques

ANT operates in the 2.4 GHz ISM frequency band which is prone to interference due

to its status as the global license-free band and the wide array of network solutions that use it.

ANT addresses the interference issues by using an adaptive isochronous scheme that

―effectively eliminates the vast majority of interference issues (22).‖

ANT divides the 2.4GHz band on several 1 MHz channels and each channel in several

timeslots. The adaptive isochronous scheme relies on each node transmitting on a clear

timeslot, within a defined 1 Mhz channel. Each radio only transmits for a very short period of

time (less than 150 μs per message) thus allowing a single frequency channel to

accommodate hundreds of timeslots. Although the system uses a timeslot mechanism, it does

not require synchronization with a master clock. Each node transmits at regular intervals, but

is able to change its transmission scheme if interference from a neighbor node is detected for a

particular timeslot. Besides having specific timeslots for each node, ANT provides yet an

additional level of co-existence: in case a particular frequency is suffering from too much

interference due, for example, to the existence of another 2.4 GHz wireless network (such as

 Health Monitoring Sensor Suppliers Integration

41

Bluetooth, Wi-Fi, ZigBee or even another ANT network), ANT is capable of hopping to a

different 1MHz frequency channel, thus avoiding the crowded frequency.

As seen in Figure 19, the 2.4GHz frequency band is divided in several 1MHz channels,

which are then divided into several timeslots. The timeslots are repeated according to a

determined message period (250 ms in the example). A timeslot is comprised of two guard

bands used to avoid interference and a transmission. Nodes 1, 2 and 3 share the same channel

by using different timeslots while nodes A, B and C use overlapping timeslots with Nodes 1, 2

and 3 but have hopped into a different channel, thus avoiding interference (22).

Figure 19 – ANT’s adaptive isochronous scheme (22).

 Health Monitoring Sensor Suppliers Integration

42

3.3.4 Wireless Interference Studies

Despite the interference avoidance techniques that each technology employs, there is

always a good probability that there will be a certain level of interference when more than one

type of wireless network co-exists at a location. So it was important to research information

about studies based on real experimentation that effectively measure interference levels

between different wireless technologies. This section’s purpose is to explain and present a few

results from some research studies, while trying to determine potential co-existence issues that

might arise if Wisedome were to work with multiple wireless technologies at the same

location.

This section base itself mainly on two studies: Co-existence of Zigbee and WLAN, A

Performance Study (68) and Coexistence of IEEE 802.15.4 with other Systems in the 2.4

GHz-ISM-Band (69). It is worth pointing out to the lack of independent research on newer

wireless technologies such as ANT. It was not possible to find any scientific studies regarding

wireless interference on ANT devices. Thus, there are only ANT’s claims regarding its high

interference immunity. From ANT’s website, about a new family of ANT chips produced by

Nordic Semiconductor, comes the following statement:

―This will make the nRF24P2 family (of ANT wireless chips) highly

immune to disturbance from other 2.4GHz radios like Bluetooth® wireless

technology and Wi-Fi™ operating in the vicinity. The net result will be fewer

retransmits and lost packets (and hence even more power savings) in noisy RF

operating environments (70).‖

In the Co-existence of Zigbee and WLAN, A Performance Study, the research team

studied the effects of the co-existence between ZigBee and Wi-Fi and between Wi-Fi and

Bluetooth. The tests were performed on a ―test-bed‖ environment in an open indoor cubical

office environment area, with no interference from any other radio frequency devices except

for the ones intended: a Wi-Fi router, one Wi-Fi laptop, two ZigBee laptops and two Bluetooth

laptops.

 Health Monitoring Sensor Suppliers Integration

43

The team performed various experiments and measured the performance loss for each

technologies throughput (the amount of bits transmitted per second). Most of the experiments

consisted on measuring the interference between networks of different wireless technologies

on a cubical environment, which is interesting since Wisedome is designed for assisted living

facilities, which also usually have multiple rooms for the various patients. A Wi-Fi client was

placed inside of a reference room communicating with a Wi-Fi router outside of the room.

Additionally, two other devices communicating with each other were placed with the Wi-Fi

client in between, as shown in Figure 20. The experiments alternate the wireless technologies

used on these communicating devices and present the results for both ZigBee and Bluetooth

technologies.

Overall, this study shows that ZigBee has a good co-existence with Wi-Fi when different

central carrier frequencies (the frequency that transmits most of the data) are used, but

presents a bit of a performance loss when similar central carrier frequencies. Bluetooth also

shows low performance loss when using separate central frequencies, but loss is considerably

higher in this case when comparing with ZigBee. A possible explanation is that Bluetooth uses

frequency hopping, so whenever it hops into a frequency that is close to the one being used by

Wi-Fi, there will probably be interference, resulting in a greater performance loss. It is also

implied that ZigBee fares better than Bluetooth against interference, even when similar

central carrier frequencies are used. It is also show that Wi-Fi communications are suffer from

much more intereference when co-existing with Bluetooth rather than ZigBee.

Figure 20 – Representation of the distribution of devices within the ―test-bed‖. (68).

 Health Monitoring Sensor Suppliers Integration

44

The study Coexistence of IEEE802.15.4 with other Systems in the 2.4 GHz-ISM-Band,

shows yet some other interesting results regarding co-existence between ZigBee and Wi-Fi

and between ZigBee and Bluetooth. The tests were performed on worst case scenarios, and

therefore, on unrealistic situations of great bandwidth usage. Tests were performed where the

frequency channel selection for the 802.15.4 (ZigBee) is kept constant while the Wi-Fi

channel varies with time. The results show that the interference level is reduced with an

increasing distance of the channels used by ZigBee and Wi-Fi. The interference level on

ZigBee is the highest when its channel overlaps with the one being used by the Wi-Fi network,

which is consistent with the results presented in the previous study. ZigBee communication

suffers greatly from Wi-Fi interference, which is expected, especially as the transmission

power of IEEE 802.11 8 (Wi-Fi) is about 30 times larger than the one of IEEE802.15.4

(ZigBee) and the intensity is also about 4 times larger (69). Other tests reveal that the packet

loss rate is not monotonous with the distance between the ZigBee antennas for small distances

(lower than 2 meters). For distances greater than 2 meters, the packet loss rate increases with

larger distances. Thus, one can conclude that the use of different central carrier frequencies

allows for ZigBee and Wi-Fi to co-exist without suffering from significant interference.

Another interesting test performed in this study was the interference experiment using

Bluetooth devices. One notebook makes an FTP transfer to a PDA by using Bluetooth,

achieving a medium data rate of approximately 15 Kbps. Another notebook makes a FTP

transfer to a desktop PC using Bluetooth, with a medium data rate of approximately 50 Kbps.

At the same time, IEEE802.15.4 (ZigBee) stations are communicating in the area.

Figure 21 – Test setup used to measure the interference of Bluetooth on ZigBee and vice-versa.

 Health Monitoring Sensor Suppliers Integration

45

In this test case, only about 10% of ZigBee data packets were lost. IEEE802.15.4 data may be

destroyed by a Bluetooth transmission that occurs in the same time slot with the same

frequency as ZigBee; in other words, when Bluetooth hops to a frequency similar to the one

used by the ZigBee devices. No impact of the ZigBee stations onto the Bluetooth

communications was observed (69). Considering that this is a worst case scenario, it is

reasonable to assume that, under normal circumstances, ZigBee and Bluetooth can co-exist

without major issues.

 Health Monitoring Sensor Suppliers Integration

46

3.4 Comparison Matrix

The following matrix gives an overall and final perspective of the wireless

technologies supported by ANT and Continua.

 ZigBee Bluetooth ANT

Max. node size 264 8 (master included) 232

Maximum Range 100 meters 10 meters 30 meters

Energy

Consumption

ZigBee claims to have low

energy consumption and

research seems to back up

that claim

Energy consumption levels

high for Classic Bluetooth

technology, making it

inappropriate for portable

devices. New Bluetooth

Low Energy seems to

address this problem.

ANT claims that it achieves

Ultra Low energy

consumption, much lower

than its rivals ZigBee and

Bluetooth.

Interference ZigBee seems to have good

interference resistance,

although it may suffer from

interference if it’s central

carrier frequency is

coincides with other

networks

Bluetooth frequency

hopping gives good

protection, although some

interference may arise when

hopping to frequencies

coincident with other

networks’ frequency.

ANT claims to be highly

resistant to interference

issues do to its adaptive

isochronous scheme.

Interoperability Assured by IEEE 11073 Assured by IEEE 11073 Assured by Device Profiles

Number of

Sensors

No Continua certified

devices use ZigBee

Few Continua certified

devices

Many certified sports

sensors and some health

sensors.

 Health Monitoring Sensor Suppliers Integration

47

4 Integration Framework

At this project’s beginning, Wisedome was only able to work with one type of

hardware vendor. This section describes the efforts made to create an extension to the

Wisedome system: the Integration Framework, which allows Wisedome to use several

different hardware vendors, and more than one hardware vendor at a time.

4.1 Earlier Integration Attempt

Wisedome already had some embedded code that resulted from earlier attempts to

support different types of devices. This was the result of two proof-of-concepts that used

vendors other than the reference vendor; one proof-of-concept involving devices from a

vendor that provided an ECG signal and Heart Rate, and another proof-of-concept using

devices which monitored Heart Rate and allowed the use of the Internet to report values to

caregivers. However, this preliminary code was still very primitive and it hadn’t yet evolved

past this proof-of-concept phase. The purpose of this earlier code was not to provide full

functionality but rather, to prove that it was indeed possible to work with other types of

devices and to retrieve and display ECG values on Wisedome.

At this phase, Wisdome’s configuration file used to held information regarding the host

and port values to be used for TPC/IP communication with each device vendor and,

additionally, it held information that indicated whether or not to try and connect with these

hosts and ports. During its startup, Wisedome would then read its configuration file and store

its information on a configuration class. Integration at this point consisted mainly on a series

of ―if‖ verifications that would test the configuration class’ contents as to whether the

application was using reference vendor devices, ECG devices or the Internet communication

devices.

Even so, despite this early attempt at integration, the application would only effectively

work with one type of reference vendor. The Wisedome project’s next milestone was to

provide a working Health Monitoring solution by using this single reference vendor’s devices

 Health Monitoring Sensor Suppliers Integration

48

only, so working with other types of devices never went beyond mere proofs-of-concept.

Functionalities that supported the use of ECG devices and Internet using devices were very

few, mainly consisting on the assignment and un-assignment of devices to a patient and

retrieval of ECG or HR values. The support for these other vendors was also implemented in a

very ad-hoc way, since the purpose was not to establish a definitive code implementation but

rather to just prove that working with other vendors was possible. Also, the application at this

phase would only work with one vendor device at a time and the existing device

communication code was very coupled to the Wisedome application code. The addition of

new types of devices required great effort to implement and adding new functionalities to the

application would imply changing most of Wisedome’s device communication code.

4.2 Integration Requirements

 Figure 22 – Initial idea of the Integration Framework’s function in the Wisedome System. The Integration
Framework would abstract Wisedome from device communication, independently of the device manufacturer or the
communication technology.

 Health Monitoring Sensor Suppliers Integration

49

One of the lingering problems persisting in the Wisedome application was the lack of

ability to support different types of sensor suppliers, and use them simultaneously. The earlier

proof-of-concepts had proven that it would be productive to use a combination of different

types of devices with different functionalities, thus allowing the costumer to choose what kind

of device setup he would want to have implemented. Therefore, it was an important step on

the application’s development not only to support different vendors, but also to support

multiple vendors at the same time, thus allowing more flexibility to accommodate different

kinds of customer needs. The question was, how to create an integration framework that would

allow a developer to easily write code for Wisedome to work with a new type of device but, at

the same time, requiring as little amount of integration effort and changes on Wisedome as

possible? Additionally, how do we ensure that it is possible to use more than one device

vendor simultaneously? From these questions derived one of the most important tasks of this

project: the integration of different health monitoring sensor suppliers onto a single health

monitoring application.

In order to solve these integration issues, it was necessary to identify and accomplish a

series of goals:

 Wisedome should become sensor agnostic - Wisedome should not distinguish devices

based on their manufacturer. Wisedome shall also become oblivious to the base

technology used to communicate with the devices.

 Maintain current functionality – It would be the integration framework’s responsibility

to adapt new devices to work with current Wisedome’s functionalities. In other words,

the integration framework has to make sure that device behavior, responses and events

are in within the boundaries of what Wisedome can handle. This includes, for instance

fitting every device into one of the already defined Wisedome basic device types:

Cheststrap, Bracelet or Caregiver device. It also implies that the integration framework

would have to perform the conversion of vendor specific measurements and thresholds

such as fall detection sensibility levels, ECG signal amplitudes or heart rate values into

values that are understood by Wisedome.

 Create a loosely coupled / modular application – Wisedome’s implementation at the

time was too tightly coupled with device communication. Although there was some

 Health Monitoring Sensor Suppliers Integration

50

modularity due to two classes dedicated exclusively to sending and receiving

commands from devices, there were still many device commands sent in application

workflows. It was necessary to remove all sensor communication commands from

Wisedome and move them on to the new integration framework in order to achieve

true communication abstraction.

 Remove device related workflows – Many of the device configuration workflows were

a part of Wisedome’s application workflows. For instance, assigning a device to a

patient implied not only performing Wisedome application workflow tasks such as

updating assignment information on the database, but also performing parameter

configuration of the newly assigned Plux devices. Since different vendors would have

different device configuration workflows and different parameters to be set, it is easy

to conclude that this implementation was not very integration friendly. So, it was

necessary to first distinguish between device configuration workflows and Wisedome

application workflows, separate them, and then move all the device configuration

workflows on to the integration framework, while at the same time making sure that

doing these tasks wouldn’t alter or break Wisedome functionality.

 Find a command issuing method common to all devices – Since the objective was to

abstract Wisedome from device communication, it was necessary to relay device

commands (such as assignment, parameter configuration or request of vital signs) and

handle the respective command responses in a way independent of the vendor

manufacturer of the device being used.

 Find an event reporting method common to all devices – Issuing device commands is

important, but also equally important is the ability to receive events from the devices.

These events include not only the alarms that may be sent (for instance, fall alarms or

call button alarms) but also battery events (if a device is running low on battery),

location events, unreachable events and so on. True device communication abstraction

implies that Wisedome does not distinguish between an alarm that is sent from a

Device Manufacturer #1 or Device Manufacturer #2. Therefore, a vendor independent

method of receiving events had to be devised.

 Support a Multi-Vendor device environment – As previously mentioned, one of the

features that were desired to be included on Wisedome was the ability to support

 Health Monitoring Sensor Suppliers Integration

51

different kinds of devices coming from different vendors, at the same time. Thus, any

approach at creating an Integration Framework should allow the existence of multiple

vendor devices co-existing at the same time.

 Easy implementation of future devices – The Integration Framework would have to be

written in such a way that would minimize the integration effort when adding new

devices to the Wisedome system.

After identifying the goals to be achieved by the Integration Framework, it was time to

choose an appropriate technology to implement it.

4.3 Choosing a technology

Now that the integration goals were identified, it was necessary to select which

technology would be used to implement the integration framework. Considering the list of

goals described above, there are several desired features that were important to be present in

the technology of choice:

 Support a modular architecture - The integration framework would support several

vendors, all offering similar functionalities to Wisedome but with each vendor

implementing the functionalities differently, in order to support a different type of

hardware. An elegant and effective way of supporting this would be to use a loosely

coupled software architecture: each vendor implementation would consist of a

―module‖ and adding support for new vendors would be a matter of adding new

modules.

 Multiple modules running at the same time – Since one of the goals is to support a

multiple-vendor environment, it would be crucial for the integration framework to be

able to run multiple vendor modules at the same time. However, it is also crucial that

while the modules must be able to run simultaneously, they conflict neither with each

other nor with the Wisedome application.

 Support a Service-Oriented Architecture – Running the application on a modular

environment would mean that the Wisedome application side and the communication

 Health Monitoring Sensor Suppliers Integration

52

side would run in different modules. Therefore, in order to exchange commands and

events, the implementation technology must allow some kind of inter-module

communication. This inter-module communication should have good performance so

that the latency between an alarm event occurrence and the display of the alarm is not

significantly affected by the integration effort. This idea of a modular framework

where multiple vendor modules offer similar services to an application, but

implemented in different ways fits the idea of a SOA. According to (71), a SOA is

basically a collection of services, which communicate with each other.

 Preference for Java based technologies – As previously mentioned in section 2.2, the

core Wisedome application was implemented using Java, therefore, technologies that

use this programming language would be preferred.

Choosing the technology was a very natural process, since Wisedome was already

implemented using a standard that includes all of the features mentioned above, and more: an

OSGi based Framework.

4.4 The OSGi Specifications

4.4.1 OSGi Technology Usage

―The OSGi specifications define a standardized, component-oriented, computing

environment for networked services that is the foundation of an enhanced service-oriented

architecture‖ (72). Although it was initially designed to target residential Internet gateways

with Home Automation applications, the standard has achieved considerable success in other

areas of development such as smartphones, vehicles, telematics, industrial computers and

high-end servers (72). The following section will present a few examples of areas where the

OSGi technology is being used.

In today’s mobile phone market, mobile application software plays a crucial role. Due

to the increasing number of mobile applications filling the market, mobile phone

manufacturers need a service platform that is scalable, flexible, reliable, and, most

 Health Monitoring Sensor Suppliers Integration

53

importantly, has a small footprint (72)(73). In response to this necessity, Nokia and Motorola,

both being members of the OSGi Alliance, drove an OSGi technology standard for the next

generation of smart phones. According to Jon Bostrom, Director of Java Technology, Nokia:

―The OSGi Service Platform is an open deployment platform which offers

life-cycle management for mobile applications and services. It enables operators,

enterprises, and mobile device and application manufacturers to dynamically

extend the platforms features after manufacturing. For example, an IT Manager

can install new APIs or applications to employees’ existing mobile devices over-

the-air independent of the mobile phone model.‖ (72)

This ability to dynamically extend an existing platform can be used to fulfill the need

of Wisedome to support new vendor manufacturers in the future. The OSGi specifications

allow for application scalability: implementing support for new vendors is a matter of adding

new software modules.

The vehicle industry has also adopted the OSGi specifications by making them an

intrinsic part of the GST specifications (Global System for Telematics specifications specify a

set of services and libraries for the creation of mobile applications), which is supported by

many car manufacturers (72). The BMW Group, for instance, uses the OSGi specifications as

the base technology for its high-end infotainment platform, the ConnetedDrive (72). BMW’s

interest in the OSGi specifications comes from the desire to update its system’s functionally in

an easy way and to reduce costs by sharing one platform instead of having many different ones

(72).

The OSGi specifications are also used in the home automation business. Siemens’

serve@home is a system that includes a complete range of household devices linked via a

power-line interface. These devices are coordinated in a central gateway running an OSGi

Service Plataform which provides the aggregated services, thus allowing the user to control

the various devices and appliances within the house via cellphone or Internet(72)(74). The

greatest advantage of using OSGi in this case is also shared with Wisedome: drivers and

scenarios can be updated and added after the initial sale, much like additional vendor drivers

can be added to Wisedome.

 Health Monitoring Sensor Suppliers Integration

54

OSGi specifications have also found their way into many other applications. For

instance, Eclipse, a popular used open-source Integrated Development Environment (IDE)

uses the OSGi specifications in its plugin system. OSGi specifications allow dynamically

installing and updating of Eclipse’s plugins, without requiring an application restart(72)(75).

IBM also uses OSGi technology in many of its products, including the widely used

WebSphere Application Server(76).

4.4.2 OSGi Specifications’ Features

An OSGi framework is written in Java programming language. The OSGi

specifications offer many useful features to be used in software development (72). The most

significant features used in the implementation of the integration framework were:

Each software module is compiled onto a package – The OSGi specifications define

each software component as a ―Bundle‖. Bundles consist of Java applications (or software

components) compiled and packaged onto a standard JAR file. This allows for an easy

distribution of new modules or updates for existing modules.

Run multiple bundles at the same time - One of the main reasons why OSGi is so

widely accepted in the industry is because the OSGi service platform allows multiple Java-

based components to execute together, simultaneously, in a single JVM and cooperate

efficiently by using a SOA-based architecture(77).

Manage bundles life-cycles - Also important is ability to manage the life-cycle of each

component without compromising the normal operation of the whole framework:

 Install bundles – The OSGi-based frameworks support the addition of new

bundles to the framework without interrupting framework operation.

 Start/Stop bundles – Installed bundles can be started and stopped in an OSGi

Framework. Starting a bundle initiates bundle operation and makes whichever

resources the bundle provides to become available to other bundles on the

framework. Stopping a bundle interrupts bundle operation and cleans up

resources that were made available by it. In an OSGi Service Platform, all

 Health Monitoring Sensor Suppliers Integration

55

applications are started in the same JVM, thereby saving memory, resources,

and CPU cycles (72).

 Update bundles – Updating a bundle allows developers to update their bundle

code, without having to reinstall a bundle completely.

 Uninstall bundles – Ends the bundle’s life and removes the code and its

resources from the system.

Java Package Importing and Exporting – The OSGi platform allows developers to

share code between bundles. A bundle can export certain class definitions or libraries to the

framework environment, which can then be imported by other bundles. This contribution of

code is relevant because it reduces the amount of implementation on each bundle and the

amount of total memory used by a system. Take, for instance, the following example: a certain

class that occupies 30 Kb is used by six different applications. If these applications were

running on a closed environment, each application would have to implement its copy of the

class. This would mean that there are 150 Kb of memory wasted in comparison to a scenario

where a single application implements the class and the others simply use it. Memory usage is

reduced in an OSGi Service Platform because a library can be installed once and then shared

to all bundle applications.

Service Oriented Model – A ―publish, find and bind‖ service model is implemented on

OSGi-based frameworks. This is an extremely important feature and was extensively used on

the integration framework’s development. A Service is defined as ―a mechanism that allows

one bundle to provide functionality to other bundles‖ (72). Please note that this is different

from sharing class definitions and libraries: sharing a class definition only allows a bundle to

share how to ―build‖ an object based on that class. A Service is actually an actual object that is

shared by a bundle in the framework.

Each bundle is, at any time, capable of registering new services on the framework’s

Service Registry. Registering a service means that that service becomes available for every

bundle that wishes and has permission to use it. Bundles can request the service registry for a

list of all the services of a desired type and can also use ―service listeners‖. Service listeners

listen to events related to services of their interest. The OSGi framework informs service

 Health Monitoring Sensor Suppliers Integration

56

listeners whenever a service of a type being listened to is registered or unregistered, thus

allowing an easy management of the services available.

 Services are always registered with an interface name (which defines the type of

service), and a set of properties that distinguishes the service from others of the same type. For

instance, let’s assume that there is an interface called Vendor Communication, and that there

are two services (which are in fact, Java objects) implementing that interface. One of these

services implements communication for hardware devices produced by ―Vendor A‖ while the

other implements the same communication methods but adapted for hardware produced by

―Vendor B‖. Although these services implement the same interface and, therefore, are of the

same type, they implement the same functions in different ways. In order to distinguish these

services it’s possible to register them with a property that possesses different values for each

one. If we create a property called ―Vendor Type‖ we can distinguish the services by

accrediting different property values: we accredit the value ―Vendor A‖ and ―Vendor B‖ to the

respective communication services. Now, whenever a bundle seeks services or a listener

listens to events from services implementing the Vendor Communication interface, it is

possible to filter the results and events to the vendors of interest(78). This filtering is done by

using a simple yet powerful filter language named Lightweight Directory Access Protocol

(LDAP).

This type emphasis on services allows developers to build loosely coupled software

components that are then ―glued‖ together by the Service Registry. One of the greatest

advantages of the OSGi framework is that the Service Registry provides a dynamic system,

where bundles and their respective services can be added and removed without disrupting the

overall environment.

 Health Monitoring Sensor Suppliers Integration

57

4.5 Implementation Process

The following section will describe the integration framework’s implementation process,

beginning with an explanation of Wisedome’s state before the integration attempt, an

overview of the framework’s architecture and finally a description of the design and

implementation process. Finally, some insight is given on how to extend the current

framework to support new types of devices.

4.5.1 Before the Integration Framework

As previously mentioned, before the work on the integration framework begun,

Wisedome was already implemented in an OSGi Framework environment.

There are various OSGi Service Platforms available. The one chosen to support

Wisedome was Knoplerfish version 2.2.0. The Knopflerfish OSGi is a complete, open source,

OSGi R3 and OSGi R4 distribution, led and maintained by Makewave(79).

Figure 23 – Knoplerfish 2.2.0 UI. This figure displays a pre-integration framework implementation, containing the
Wisedome, Wisedome_patients and Hibernate Core bundles.

 Health Monitoring Sensor Suppliers Integration

58

Figure 23 displays the Knoplerfishe’s UI display window implementing a version of

Wisedome previous to the Integration Framework. Since it is running on an OSGi Framework,

Wisedome is implemented on the form of Bundles. The most important Bundles for

Wisedome were:

- Wisedome – This bundle contains the main Wisedome application and is

responsible for device communication, alarm management, general database

management amongst other functions. This Bundle is also responsible for

providing the webservices to be used by the UI regarding location management,

alarm events and alarm documentation, vital sign values, assignment and un-

assignment of devices and device database management.

- Wisedome_patients – This bundle is also known as ―Person Management Bundle‖

and is dedicated to managing system users (administers, nurses and TAPs) and

patient information. It provides webservices to the UI for patient and user

management.

- Hibernate Core – The Hibernate Bundle is an OSGi Bundle version of the

Hibernate library, which allows an easy way to communicate with the PostgreSQL

database by using POJOs. This bundle has been modified to include Hibernate

mapping definitions important for the Wisedome’s functionality.

At this point, the Wisedome Bundle was responsible for the device communication.

Wisedome was designed to work with Plux devices by communicating with a gateway

provided by Plux.

Figure 24- Scheme illustrating how Wisedome uses the Plux Gateway to communicate with the devices.

 Health Monitoring Sensor Suppliers Integration

59

Device management consisted on sending commands to and receiving events from the

gateway, by using network sockets. A socket is defined as ―(...) one endpoint of a two-way

communication link between two programs running on the network. A socket is bound to a

port number so that the TCP layer can identify the application that data is destined to be

sent‖(80). The Plux gateway consists on an application running on the same machine as

Wisedome that directly manages wireless communication with the devices, by the means of an

USB ZigBee-based router. There are two network sockets used to communicate with the Plux

gateway. One socket named ―Command Socket‖ is used to send commands to the devices to

acknowledge alarms or suspend devices. A second socked named ―Event Socket‖ is used to

receive events from the devices, such as battery state changes or alarms. The API (the

communication nomenclature) defined by Plux is based on strings with various comma-

separated parameters. For every command sent by Wisedome, the Plux gateway returns an

acknowledgement response accompanied by any requested values. The event port is only used

to receive messages, so it’s a one-way communication socket. Figure 25 shows an example of

Wisedome requesting a heart rate value for a patient through the Command port and the Plux

Gateway sending a call button alarm through the Event port.

The Plux API is a document that defines what ports and message nomenclature are to

be used to communicate with its gateway. One of the particularities of this API is the fact that

the Plux gateway stores the ID numbers of the persons assigned to a particular device. All

commands sent to the gateway use the person ID as device identification. In order to initiate

device use, it is first necessary to send an assignment command which includes the ID of the

person to whom the device will be assigned. The gateway then returns an acknowledgement

Figure 25 - Network socket communication between the Plux Gateway application and Wisedome.

WISEDOME

Command

Port

Event

Port

PLUX

GATEWAY

Command

Port

Event

Port

getMeasurement, personID, hr

Ok, 82

alarm,2010-07-15|17:14:00,personID,routerID,button

 Health Monitoring Sensor Suppliers Integration

60

response, which includes the serial of the device that was assigned to the person. However, in

order to issue commands to the newly assigned device, it is not the device serial that is used as

an identifier, but the assigned person’s ID instead. This is rather useful for the Wisedome

application side since it is simpler to just send the ID of person who needs, for instance, a

reading of heart rate values, instead of querying the database for the proper device serial each

time the person needs his HR values measured. However it is important to keep in mind that

not all future device vendors may store this kind of information.

During its startup, Wisedome would verify if it could connect to Plux’s Command and

Event ports and only then would it become operational. Most of the communication with the

Plux gateway was managed in two Java classes named WriteImplementation and

ListenImplementation. The WriteImplementation handled the commands to be sent by the

devices, while the ListenImplementation would listen to incoming messages from the Event

port, and then send them to a parser class.

It has been said before that Wisedome would only effectively work with a single

reference vendor (Plux is used as an example in this thesis), despite the fact that some of its

functions had preliminary code to be used with other device vendors. The system was

incapable of using these other device vendors because Wisedome had several Plux-only

commands scattered across its application code and also because this preliminary integration

attempt was very ―incomplete‖ and was insufficient to make the application work. Wisedome

stored in its own configuration file device communication information, namely the IPs and

ports used by the vendor gateways and whether or not it should try to connect with them. The

preliminary integration code consisted on various ―if‖ clauses that would test Wisedome’s

configuration file as to whether or not a certain vendor configuration was being used and,

depending on the vendor, different APIs were used to send messages.

 Health Monitoring Sensor Suppliers Integration

61

It has also been mentioned that this integration attempt was written just as a proof-of-concept

in order to prove that Wisedome could work with vendors other than the reference one, and

was not designed to be a definitive integration solution. This approach at integrating devices

was, actually, far from being an ideal solution:

 This type of vendor verification only works on a system designed to use only one type

of device hardware vendor at a time. Keeping this implementation on a multi-vendor

device environment would be extremely ineffective. In a normal application workflow,

when sending commands to a patient’s device, the application would have first to test

for each device vendor if it was being used or not. For each vendor being used, the

application would then have to query the database to find out if it effectively was the

vendor of the device worn by the patient. This process would have to be repeated until

the correct vendor was found. This, of course, is not an optimized way of solving this

issue, since it would require multiple accesses to the database. It would be much more

effective to first query for the vendor of the device assigned to a patient, and then use

this information to communicate effectively.

 This type of implementation does not entice application modularity, since all of the

code for communication with different vendors was in the same class methods, merely

separated by the ―if‖ clauses.

 Adding new vendors would require much effort because it would be necessary to

search the whole application and then insert new ―if‖ clauses followed by the

Unassign

Device

Configuration:

Using Vendor#1

Configuration:

Using Vendor#2

unassign, personID

deviceUnassign, personID

Figure 26 – Figure representing Wisedome’s early integration attempt. Depending on the vendor being used,
different methods of communication and different messages are sent, since each vendor has its own API.

 Health Monitoring Sensor Suppliers Integration

62

appropriate communication code whenever communication with devices was

necessary.

Another issue that would difficult integration efforts was how application workflows were

tightly coupled with device specific workflows. In several functionalities, Plux device

workflows were an integrate part of Wisedome’s workflows. One example of this was, for

instance, the setting up of several device parameters during assignment, like fall threshold

values and minimum and maximum accepted heart rates.

Some Plux related tasks were also implemented as ―workarounds‖ to mold Plux devices

behavior towards a desired result or even sometimes to circumvent bugs in certain

functionalities. Some examples of these are, sending un-silencing commands to devices before

un-assignment or sending both an alarm acknowledgement request and a un-silence command

before trying to suspend a device.

It is possible that future device vendors might have the necessity for their own device specific

tasks in order to ensure proper system functionality. Maintaining an architecture similar to the

one described above would only bloat Wisedome application workflows with multiple ―if‖

clauses for each and every of these device specific workflows. This would further reduce

system modularity and would also, most likely, facilitate the introduction of bugs during

development and make the process of tracking down and fix them more difficult.

4.5.2 Architecture Overview

One of the first conclusions drawn from studying the Wisedome implementation

described above was that it was necessary to devise a completely new system to integrate

different vendor APIs. The already implemented efforts presented too many problems and

limitations to justify building an integration framework using them as basis. Since the whole

system was to be running on an OSGi framework, it would make sense to use the features the

OSGi specifications provided. It was then decided that in order to abstract Wisedome from

device communication it would be necessary to create new OSGi Bundles specifically

designed to handle that task.

 Health Monitoring Sensor Suppliers Integration

63

The architecture that was agreed upon uses a Main Integration Bundle that manages

several Vendor Integration Bundles, each implementing the integration with one device

vendor.

An individual bundle is able to communicate with other parts of the system by registering

services on the framework. These services are then used by other bundles, thus maintaining

system modularity. The Integration Framework is composed of five types of services that

allow Wisedome to communicate with the Main Integration Bundle which then communicates

with the Vendor Bundles. This section will explain, in a general way, the purpose of each type

of Bundle and Service available on the Integration Framework. A more detailed

Figure 27 – Representation of the Integration Framework’s hierarchy. Bundles are represented by the ellipses and the
Services published by each bundle are mentioned inside the speech balloons.

WISEDOME

MAIN

INTEGRATION

Vendor

Bundle 1

Vendor

Bundle 2

Vendor

Bundle 3

 Main Integration Service

 Service Provider Service

 Process Event Service

 Database Service

 Vendor Service

 Health Monitoring Sensor Suppliers Integration

64

documentation of the methods provided by each service interface is available the Annex A of

this document.

4.5.2.1 Main Integration Bundle

The Main Integration Bundle has five primary functions: to bridge communication

between Wisedome and the several Vendor Bundles, to manage the services published by

Wisedome so that the Vendor Bundles may access them easily, to manage the Vendor

Services that are currently available on the framework, to initiate the necessary Vendor

Bundles on application startup and, finally, to store the interfaces which define the methods

that must be implemented by each service on the Integration Framework. To accomplish these

tasks, the Main bundle publishes two services, the ―Main Integration‖ and the ―Service

Provider‖.

The Main Integration Service serves as the device communication abstraction layer

and is used by Wisedome to send commands to devices, such as assignment requests, getting

HR values or checking if a device is locked or unlocked. The Main Integration Service does

not perform device communication itself, but is capable of calling upon the correct services

provided by the Vendor Bundles to answer to Wisedome’s communication demands. The

Main Integration Bundle keeps track of every Vendor Service that is currently available in the

framework. Whenever a new vendor is registered or unregistered, the Main Integration Bundle

sends an updated list of the current available vendors to Wisedome through the Process Event

Service. When Wisedome calls upon the Main Integration Service, the Main Integration

Bundle seeks the correct Vendor Service to provide a response. If, for some reason, the correct

Vendor Service is not available, the Main Integration Service returns an error status, informing

Wisedome of the situation. The Vendor Service and Process Event Service are described in

sections 4.5.2.2, 4.5.2.3 and Annex A of this thesis.

Most of the methods provided by this service do not require references to the vendor of

the device being used. Although it is possible to specifically define what vendor to use when

calling a method, in most situations this information is omitted and Wisedome only sends the

patient’s identification number (patient’s ID) as an argument. In case the vendor is not

defined, the Main Integration driver queries the database to find out who is vendor of the

 Health Monitoring Sensor Suppliers Integration

65

device currently assigned to the indicated person. There are a few exceptions that do not allow

the vendor to be omitted. The most notorious one is the assignDevice method: in case

Wisedome is performing an assignment that means the person does not currently have any

device assigned. Therefore, it is not possible to query the database for the vendor of the device

assigned to that person. The vendor to be used in assignment must be chosen by the

application user: depending on the patient’s needs, a nurse chooses the most appropriate

device to be assigned. Thus, the assignDevice method must know what vendor it should send

an assignment request to. Any other method that does not receive a person’s ID as an

argument should also receive the vendor type information. This is the case for getRouterState,

which is used to query if a given router is communicable or not. Methods used to check

available vendors such as getAvailableVendors, hasVendors and checkStartedVendors do not

need to receive neither a person’s ID nor a vendor ID.

The Main Integration Bundle provides yet another service, called ―Service Provider‖.

As its name hints, the Service Provider’s purpose is to ―provide‖ services that are published by

the Wisedome application to the various Vendor Bundles. One might pose the question: since

Figure 28 – Representation of how the Main Integration Bundle uses the various services to bridge
communication between the Wisedome Bundle and the Vendor Bundles.

 Health Monitoring Sensor Suppliers Integration

66

a service is available to any Bundle on the OSGi framework, why do the Vendor Bundles not

use the services provided by Wisedome directly? The decision to use a service just to provide

other services came from desire to simplify the implementation of Vendor Bundles. The Main

Integration Bundle performs the search, keeping and management of the Wisedome services

so that the Vendor Bundles only have to retrieve them by using the Service Provider. If this

service didn’t exist all the Vendor Bundles would have to perform the management of both the

Process Event and the Database services. The Service Provider spares Vendor Bundle

programmers from this task so that each Vendor Bundle only has to manage a single service:

the Service Provider. This reduces both processing power and memory usage and increases

modularity. The Service Provider service in itself is rather simple and only has two methods:

one method to return the Process Event Service and other method to return the Database

Service. These two services will be further explained on section 4.5.2.3 and in Annex A.

This bundle is also responsible for starting pre-defined Vendor Bundles during startup.

The whole framework is dynamic; hence, Vendor Services for Wisedome to use may be

registered or unregistered at any time without disrupting Wisedome’s function. However, it is

convenient to define some Vendor Bundles to be automatically started during Wisedome’s

startup. These are defined on Wisedome’s XML configuration file, which is read by the

Wisedome Bundle during startup. The Main Integration Bundle then requests the Wisedome

Bundle for a list of Vendor Bundles to be started and starts them accordingly.

 Services in the Integration Framework are all defined by using Java interfaces. An

interface is a group of related methods with empty bodies(81). Interfaces cannot be

instantiated - they can only be implemented by classes or extended by other interfaces(82). As

previously explained in page 56, a Service in an OSGi Framework is in fact a Java Object,

which is defined by a Java class. In order to declare a service, the class should implement the

correct service interface. These interfaces hold information regarding the methods that must be

implemented by the service classes, thus guaranteeing that, no matter how the class is

implemented, the necessary methods will exist. The Main Integration module contains the

interfaces necessary to implement all the services used in the Integration Framework. These

interfaces are held in a Java package, which is exported to the OSGi Framework and then

imported by other Bundles.

 Health Monitoring Sensor Suppliers Integration

67

4.5.2.2 Vendor Bundles

The Integration Framework also houses a series of Vendor Bundles. Vendor Bundles

represent the part of the system where communication with devices effectively occurs: each

one of them provides communication with one type of device hardware vendor. It’s their

responsibility to handle startup connection and necessary device setup routines. Each Vendor

Bundle is also entitled to a XML configuration file where important information such as

gateway IPs and ports or default device configuration values may be stored.

A Vendor Bundle is known to the whole Integration Framework by its Vendor Name.

The Vendor Name must be unique and constant throughout the whole framework. It is used on

several occasions such as the Bundle’s JAR filename, the bundle’s symbolic name on the

framework, the XML Configuration file’s filename, in the Vendor Service’s ―VendorName‖

property tag and in Wisedome’s database.

Each Vendor Bundle must implement the ―Vendor Service‖. The Vendor Service is

used by the Main Integration Bundle to call upon methods that are used to perform device

related tasks such as assigning a device to a patient, silencing a caregiver device or setting new

fall detection sensitivity levels. The Vendor Service has many methods that are used to

perform device communication with names similar to those of the Main Integration Service.

If, for instance, Wisedome needs to know if a patient’s device is locked it will use the

isDeviceLocked method from the Main Integration Service. The Main Integration Bundle will

then select the appropriate vendor for that patient and call upon the isDeviceLocked method of

the respective Vendor Service. In order to register its Vendor Service on the framework, a

Vendor Bundle should use a java.util.Properties object to set the service’s ―VendorName‖

property tag. The ―VendorName‖ tag should correspond to the vendor’s Vendor Name. This is

important, as it will allow the Main Integration Bundle to correctly identify the vendor

associated with the registered service.

Vendor Bundles can communicate events to Wisedome by using the Service Provider

and calling upon the Process Event Service. The Process Event Service will be discussed on

the next section.

 Health Monitoring Sensor Suppliers Integration

68

4.5.2.3 Wisedome Bundle

The Wisedome Bundle is a modified version of original Wisedome Bundle, reworked

so that the application would work with the new Integration Framework. This Bundle is the

core of the Wisedome Health Monitoring application and still performs all of the underlying

alarm management workflows that it did before. It suffered, however, various modifications in

many classes and had its former communication classes removed, specifically the

WriteImplementation and ListenImplementation classes. The Wisedome Bundle

communicates with the rest of the Integration Framework through its two services: the Process

Event Service and the Database Service.

As stated before, it is necessary for the Main Integration Bundle to access the database

to, for instance, request sensor related information such as the hardware vendor. Some Vendor

Bundles also need to have access to information stored on Wisedome’s database, such as what

kind of events are currently active, what is the sensor’s lock state on the database, what is the

serial of the sensor associated with a person and so on. It is for these types of requests that the

Database Service exists. The Database Service provides multiple methods to access database

information relevant to the integration bundles. The implementation of this service on

Wisedome’s side handles all the queries to the database, and then returns the results through

the Database Service methods. The Database service also offers some non-database related

methods, such as the getConfigFilePath which returns the path of the Vendor Bundle

configuration files and the getStartVendorsList that returns the list of vendors to be

automatically started by the Main Integration Bundle.

The Process Event Service is particularly important to Wisedome’s application

workflow. This is the service that Vendor Bundles use (after using Service Provider to retrieve

it) in order to report events to Wisedome. Events include all types of alarms, such as fall

alarms, call button alarms and heart rate alarms. Events should also be sent whenever a device

changes its location, becomes locked or unlocked, has its battery depleted and so on. Vendor

Bundles retrieve event information sent by the sensor devices and then use the Process Event

Service to inform Wisedome. Wisedome’s implementation of the Process Event Service

processes the incoming events and integrates them into the overall system workflow.

 Health Monitoring Sensor Suppliers Integration

69

4.5.3 Service Methods Overview

This section will give an introductory description of the type of methods belonging to

the most relevant services of the Integration Framework implement. Each service is described

with more detail on Annex A of this thesis.

4.5.3.1 Database Service Methods

The database service has methods that provide information relevant to the Vendor

Bundles and the Main Integration Bundle.

The service provides specific methods, important for other bundles in the Framework.

Examples of this are the method getConfigFilePath that Vendor Bundles should use in order to

retrieve the correct system path to their own XML file, or the getStartVendorsList that the

Main Integration Bundle uses to know what vendor it should start automatically during system

startup. getVendorName is also used to retrieve a Vendor Name, based on a vendor’s ID.

Other methods are more directed towards retrieving user information. The method

personImp_getPatientSettings is used to retrieve general information about a person’s settings

such as the fall alarm sensibility level or the maximum permitted heart rate. These settings

Figure 29 - Simplified schematic of the workflow of an event raised by a device. The Process Event Service
allows Vendor Bundles to report alarms to Wisedome

 Health Monitoring Sensor Suppliers Integration

70

might be used for proper device configuration. Also important is to know if a given person is

an independent patient, a dement patient or even a nurse or a TAP, and that information is

made available by the personImp_getUserType method.

The service also hosts various methods that allow for person – vendor – device management.

Methods getPersonSensorVendor and getPersonSensorSerial are used to retrieve the Vendor

Name of the hardware manufacturer and the serial of a device associated with a given person.

It’s also possible to know the ID of the person associated with a device based on the device’s

serial, by using the getSensorPersonsID method.

There are also methods used to create events on Wisedome’s database. The method

createVendorDownEvent creates a ―vendor down‖ event that warns Wisedome that a given

hardware vendor stopped being available, while the method silenceVendorDownEvent is used

to ―silence‖ these ―vendor down‖ events when the vendor come back up. Method

changeRouterState can also be used to directly manipulate a router’s state on Wisedome’s

database, informing Wisedome if a given router is communicable or not.

Finally, there are several methods that are used on several workflows to retrieve the current

status of a device from Wisedome’s database. Such methods are the isPersonDeviceMuted,

isPersonDeviceSuspended, isPersonDeviceCharging, isPersonDeviceDischarged and

isPersonDeviceUnlocked which return the current database status for whether or not a device

is muted, suspended, charging, discharged or unlocked.

4.5.3.2 Vendor Service Methods

The Vendor Service makes sure that Wisedome is capable of retrieving necessary

information from the devices and send necessary comands.

There are methods for assignment and un-assignment workflows named assignDevice and

unassignDevice, respectively.

Several methods allow Wisedome to directly query a device for its status:

 isDeviceMuted – Used to know if a device is muted or not.

 getHrMin – Used to retrieve the minimum ―normal‖ heart rate value on a device.

 Health Monitoring Sensor Suppliers Integration

71

 getHrMax – Used to retrieve the maximum ―normal‖ heart rate value on a device.

 getFallThreshold – Used to retrieve the currently set fall sensitivity level on a device.

 isButtonAlarmEnabled – Used to know if button alarms are active on a device.

 isHrAlarmEnabled – Used to know if heart rate alarms are active on a device.

 isFallAlarmEnabled – Used to know if fall detection is active on a device.

 getPendingAlarms – Used to know how many alarms are currently active on a

caregiver device.

For each of these statuses, there are other methods that allow Wisedome to set their value:

 muteDevice – Used to mute or un-mute a device.

 setHrMin – Sets the minimum ―normal‖ heart rate value.

 setHrMax – Sets the maximum ―normal‖ heart rate value.

 setFallThreshold – Sets the fall sensitivity level on a device.

 setButtonAlarmEnabled – Activates or deactivates button alarms on a device.

 setHrAlarmEnabled – Activates or deactivates heart rate alarms on a device.

 setFallAlarmEnabled – Activates or deactivates fall detection on a device.

 setPendingAlarms – Sets the number of pending alarms on a caregiver device.

Other methods are used to retrieve a patient’s vital signs from the devices. The method

requestHeartRate is used to request the current heart rate measure from a device, while

startECGStream, stopECGStream, getECGStream and getECGValues are used to request

ECG information.

There are also several methods used on various application workflows, such as

suspendDevice and resumeDevice that allow Wisedome to suspend (a device no longer

raises alarms) or resume a device. Some methods are also used in device configuration,

such as the isDeviceLocked, which checks if a device has its locking mechanism opened

or closed, the getDeviceType, which returns if a device is a chest-strap, bracelet or a

caregiver device, and the getBatteryState which allows Wisedome to estimate how much

charge does a device battery have left.

 Health Monitoring Sensor Suppliers Integration

72

Some methods are used to know more about the devices’ and routers’ identification, and

location and status. The method getDeviceSensorSerial returns the serial of a given device

while the locateDeviceRouterSerial method is used to know the serial of the router that a

device is currently communicate with. Also, getRouterState allows Wisedome to know if a

given router is communicable or not.

Finally, there are the alarm workflow management commands, the acknowledgeAlarm and

the cancelAlarm, which are used to acknowledge or cancel the alarms on a device.

4.5.3.3 Process Event Service

The Process Event Service contains various methods that allow Vendor Bundles and

the Main Integration Bundle to ―warn‖ Wisedome in case there is an event coming from the

devices.

The Main Integration Bundle uses the method ProcessVendorStateChange to inform

Wisedome whenever a new vendor becomes available, or a previously available vendor

suddenly becomes unavailable.

There are also various methods dedicated to events regarding changes of state within the

sensor device. ProcessBatteryStateChange, ProcessLockedStateChange and

ProcessUnreachableStateChange are used to inform Wisedome of a change on the device’s

battery level, locking mechanism and network availability, respectively.

Several methods are used to report alarm events to Wisedome:

 ProcessAlarmEventButton – Used to report call button alarms.

 ProcessAlarmEventFall – Used to report fall detection alarms.

 ProcessAlarmEventHR – Used to report heart rate alarms.

 ProcessAlarmEventLocation – Used to report location alarms (when a patient enters a

restricted area).

Other methods are used in device workflows, such as the ProcessUserDeviceReplacement

used when a low battery device is replaced with a charged one, the

ProcessDeviceRouterChange used to inform Wisedome that a device is communicating with a

 Health Monitoring Sensor Suppliers Integration

73

new router, the ProcessSuspendDevice and the ProcessResumeDevice used to inform

Wisedome that a nurse is trying to suspend or resume a device by using device button

sequences, and the ProcessRouterStateChange, used to inform that a router has become

communicable or incommunicable. The ProcessHeartRate is also used in device workflows,

and allow to periodically, or by request, communicate the currently measured heart rate value

to Wisedome.

There are also two methods reserved for alarm management button sequences, the

ProcessAlarmAckRequest which processes acknowledgement requests and the

ProcessAlarmEventCancel which processes alarm cancelation requests.

4.5.3.4 Main Integration and Service Provider Services

The Main Integration Service has many methods with identical names to those of the

Vendor Service, used to abstract Wisedome from particular vendors. It is the Main Integration

Bundle’s responsibility to choose the appropriate Vendor Service to respond to Wisedome’s

requests, whenever it uses one of the Main Integration Service methods. The Main Integration

Service does possess, however, three methods exclusive to it. The getAvaiableVendors,

hasVendors and checkStartedVendors methods are used by Wisedome to ascertain what

vendors are currently available and to check if the auto-started vendors are active.

The Service Provider Service is very simple and only has two methods,

getDatabaseService and getProcessEventService that return the Database and Process Event

services, respectively.

4.5.4 Design and Implementation Process

Although the Integration Framework’s architecture and implementation are more

stable and consistent, it was not always so. The creation of the integration framework up to

this point was an iterative process that will most likely continue as long as Wisedome is

endowed with new improvements and features. Development began with the idea of using a

Main Integration Bundle and various Vendor Bundles. Some limitations of the current

implementation were ascertained at the beginning, while others were discovered during the

 Health Monitoring Sensor Suppliers Integration

74

creation process. The issues and limitations found during development gave birth to many of

the functionalities presented in the previous section. This section has the objective of

presenting to the reader the most relevant changes that were made to the Wisedome

application during the Integration Framework’s development, as well as the most significant

problems that arose and how they were solved.

The first step was to isolate communication methods from Wisedome, and transcribe

them into a new Vendor Bundle. This task also drove the creation of the Main Integration

Bundle and Service. Wisedome was analyzed and the communication code used with the Plux

gateway was slowly transcribed to what was later known as the ―Plux Bundle‖. The methods

were initially named after the Plux API, but later it was realized that it was not easy to discern

the method’s purpose from its name, so the method’s names were changed. The

communication classes WriteImplementation, ListenImplementation and the Parsing class

were removed and their tasks transferred to the new Vendor Bundle.

4.5.4.1 ReturnObject Class

Messages exchanged between applications through a socket are nothing more than byte

streams representing text strings. The Plux’s API uses comma-separated strings to return the

responses to command requests, which included both the acknowledgement of the request and,

if applicable, the value requested. In case something goes wrong, the acknowledgement

responses would return an error status, informing the health monitoring application of why it

wasn’t possible to perform the request. For instance, the Plux gateway would return

―DeviceUnreachable‖ if devices were out-of-range of router communication or ―InvalidName‖

if the command message was malformed. Wisedome used these acknowledgement returns in

its workflows in order to handle the situations where a command was not performed

successfully. The same level of functionality can be maintained while using vendor bundles,

as long as bundle developers have the means to send acknowledge messages to the Wisedome

application.

While Wisedome used to perform the parsing of the text strings received from the Plux

gateway, it would no longer make sense for it to continue to do so in an Integration

Framework. Each vendor bundle shall parse the messages received from their respective

 Health Monitoring Sensor Suppliers Integration

75

devices and pass these on to Wisedome. However, the vessel used to pass the responses from

device commands had to be common to all the vendor bundles because, if Wisedome had to

distinguish messages coming from different vendors, there wouldn’t be much of a

communication abstraction at all. Therefore, it was important to devise a means of passing

information coming from different vendors in a standardized and effective way. While

working on a Java environment, it would make no sense for vendor bundles to return comma-

separated strings like Wisedome was prepared to receive. It would be much more effective to

define a specific class to contain the information coming from the vendor bundles, a class

which Wisedome would know how to handle. This way, as long as the vendor bundles are able

to fit the command responses coming from the devices onto the return class, Wisedome

wouldn’t be able to tell the difference between responses coming from different hardware

vendors. It would be appropriate for this class to allow vendor bundle programmers to pass on

different acknowledgement status much like Plux used to do on their API. Also, it should

return values, such as heart rates or locked state Booleans, as Java basic data types. This

common vessel used as a response to command methods is known as the ReturnObject class.

 The ReturnObject class is capable of returning various data types such as Booleans,

Arrays and Doubles and also returns a ―Request Status‖ integer, which describes if the

command to the devices was successful or, if not, defines what kind of problem has occurred.

The ReturnObject also pre-defines values that may be returned for battery levels (ok, low,

depleted) or device types (chestband, caregiver or bracelet). One limitation of using a unique

return class for every command method is that there has to be consensus on what kind of

values are returned on each method. Vendor bundle programmers must know that, for

example, the method isDeviceLocked returns a ReturnObject object with a Boolean value, and

that the other possible return values (arrays, strings, and doubles) are null. This limitation can

be surpassed with documentation, which can be consulted in Annex A of this thesis.

One of the problems solved by using the ReturnObject class was how to handle

situations when a particular function is not supported by a device. Although Wisedome is

capable of working with devices that supply patient’s heart rate values, some devices might

not be able to provide them due to a lack of hardware capabilities for doing so. Whenever a

particular device vendor is not capable of performing one of the methods defined by the Main

 Health Monitoring Sensor Suppliers Integration

76

Integration Service, it may return a ReturnObject with the request status defined as ―Not

Supported‖. Wisedome must then be able to handle this response.

4.5.4.2 Modifying Wisedome Bundle

Making Wisedome work with a new integration framework was far from being just

removing its communication classes. The whole application had to be adjusted to start using

the new Main Integration Service, instead of the communication class WriteImplementation

and use the ProcessEventService to receive new events, instead of listening to messages in the

ListenImplementation. It was necessary to analyze every instance where Wisedome recurred

to device communication and adapt the code to use the new services. It was also necessary to

adapt Wisedome to use the new ReturnObject by replacing the parsing of acknowledgement

messages returned by Plux to use the ReturnObject values and request status instead.

The Wisedome Bundle startup had to be reworked. The application startup routines

were heavily coupled with the establishment of communication with the Plux gateway and this

had to be changed. Now, where once the application would verify if it could connect to the

Plux gateway, it queries its service listeners instead, to check if the Main Integration Service is

available and if any Vendor Services are published. New integration related tasks were also

added, such as registering the Database and Process Event Services and starting the Main

Integration Bundle in case it is not already running.

More important than just replacing the communication classes, was to separate device

specific workflows from Wisedome workflows. As explained in section 4.5.1, page 62,

Wisedome workflows were tightly coupled with device specific workflows. It was necessary

to abstract the whole application from these device specific tasks, which lead in some cases to

realizing the necessity of creating new Main Integration Service methods, beyond those

necessary to communicate with the current vendors.

A good example of this situation is the alarm cancelation workflow on Wisedome. It is

possible for a user to cancel currently active alarms on the health monitoring application. This

workflow involves resolving the alarms on the database and sending alarm acknowledgement

requests and mute commands to the Plux devices. Although methods like acknowledgeAlarm

and muteDevice exist on the Main Integration Service that accomplish these tasks, nothing

 Health Monitoring Sensor Suppliers Integration

77

guarantees that other types of devices will require these exact commands to successfully

cancel an alarm. They may even have a cancelation command of their own, or require the

usage of other types of commands. Clearly in this situation, the alarm cancelation is a

command on its own right that needs a new Main Integration Service method which will allow

Wisedome to be abstracted from sending the alarm acknowledgement requests and mute

commands that may not be necessary for other types of devices. This particular situation led to

the creation of the cancelAlarm method, on the Main Integration and Vendor Services. There

were other situations of device specific workflows that weren’t always easy to detect and

isolate, spread throughout Wisedome’s implementation but for the sake of simplicity they will

not be mentioned here.

4.5.4.3 Changing the Database Structure and Creating the Database Service

As mentioned in section 4.5.2.3, the Main Integration Bundle and Vendor Bundles

need to query the Wisedome’s database for several types of information. It would have been

possible to import the libraries necessary to perform database queries directly on each of these

integration bundles. However, this approach raises some issues. Wisedome is not a static

application and is constantly being modified in order to add new features and to fix issues. In a

situation where each integration bundle performs database queries directly, database

modifications could possibly affect every bundle in the framework. Thus, with multiple

Vendor Bundles and the Main Integration bundle, each database change could require much

effort to implement. So, for the sake of a loosely coupled application and to avoid the situation

described above, it is preferable that the Wisedome bundles handle all the database

communication. This led to the creation of the Database Service.

One of the obstacles that had to be surpassed was how Wisedome was designed to use

a person’s ID as an argument to sent commands to the correspondently assigned device. As

mentioned in page 60, Plux was capable of using person IDs sent by Wisedome to identify the

devices to which it should relay the commands to. However, this may not hold true for every

hardware vendor to be used with Wisedome. Assuming that every vendor will at least have

some sort of ―device serial‖ to identify each individual device, a viable solution would be to

allow the Vendor Bundles to know the serial of a device currently assigned to a given patient.

 Health Monitoring Sensor Suppliers Integration

78

Fortunately, Wisedome maintains a record on its database for every device currently

being used on the system and its respective serial number. It also stores information on which

device is assigned to each person. Surpassing the problem described above was just a matter of

creating a method in the Database Service, getPersonSensorSerial, which allows Vendor

Bundles to access the serial of the device currently assigned to a person. They may then use

this serial to communicate with the correct device, as illustrated in Figure 30.

Another obstacle that had to be surpassed was how to allow the Main Integration

Bundle to know which vendor to communicate with when receiving commands from

Wisedome. Unfortunately, Wisedome was only designed to work with one type of device, so

while it maintained information regarding the serial of a device, it did not maintain any

information regarding the vendor of a device. It was necessary to modify the database to

include this information. The table that contained information on the devices was modified to

include a new column with a vendor ID. This vendor ID was a foreign-key that referenced to a

new table containing the Vendor Names of all the vendors currently supported by the system.

Since the Vendor Names are unique throughout the application and are also present in the

Figure 30 – Illustration of the workflow for the bundles of hardware vendors that do not hold information
regarding person ID’s.

 Health Monitoring Sensor Suppliers Integration

79

properties of the Vendor Service, the Main Integration Module would then use this

information to seek the correct vendor service for each command request, as shown in Figure

28. The method getPersonSensorVendor was created on the Database Service, which returns a

String containing the Vendor Name of the hardware vendor of the device currently assigned to

a person. The webservice methods used to handle device management tasks, such as adding a

sensor or editing sensor information were also modified to support the inclusion of the vendor

ID.

The vendor ID is also used as an argument in all the Main Integration Service methods

that need to know which vendor to be used, as explained in section 4.5.2.1, page 65. The Main

Integration Bundle converts the provided vendor ID to a Vendor Name by using the Database

Service Method getVendorName, and uses this information to seek the correct Vendor

Service. This also implied changing the webservice invoked by the UI that is used to assign

devices to start providing the vendor ID. This makes sense since it is the user (most likely a

nurse) that will chose in the UI which type of device hardware should be assigned to a patient,

after considering the patient’s necessities.

Another change made to the database was the addition of two new types of database

events. Database events are created and stored in various situations such as when a device

triggers an alarm, a nurse inserts a note or a new patient is created. They allow Wisedome to

keep track of the system’s behavior. The new events were specifically created to handle

situations with multiple device vendors. The first event is known as ―Vendor Down‖ event,

and is created whenever a Vendor Bundle that was configured to startup automatically is

unable to do so or when a Vendor Bundle ceases its function due to the loss of communication

with the devices. The second event is known as ―No Vendors‖ and is created when there are

no Vendor Services available on the framework. This will result in an alarm being displayed

on Wisedome’s alarms display in order to notify the users of this issue.

 Health Monitoring Sensor Suppliers Integration

80

Figure 31 - Representation of a complete workflow for an assignment request.

 Health Monitoring Sensor Suppliers Integration

81

4.5.4.4 Abstracting Device Configuration, Device Values and Configuration files

It was also necessary to abstract Wisedome from device configuration, since each type

of device would have its own characteristics and settings to be configured. Device

configuration is an integrate part of some of Wisedome’s workflows: for instance, when a user

defines new settings for a patient on the UI, such as new minimum and maximum heart rates

or new fall detection sensibilities, the UI uses a webservice to update these changes on the

sensor devices. It is important to update the patient’s sensor device settings to reflect these

new values. However, each type of hardware can have different set of functionalities: some

devices might support fall detection, others might not. So how could Wisedome know if it

should send a setFallThreshold command to a device or not?

There were two solutions considered to resolve this problem:

 Wisedome could have become completely abstracted from device configuration

and use a generic method for setting device values which would receive every

possible setting (heart rates, fall detection levels, alarm cancelation

permissions) and let each vendor bundle sort what information would be useful

to use for configuring the device

 Wisedome could maintain a basic level of knowledge of types of devices, and

only send the appropriate commands for each basic type.

Eventually, it was decided to opt for the second alternative. Wisedome handles three basic

types of devices:

 Caregiver – This is the device used by nurses and TAPs, which beeps when

there are active alarms and allows for alarm acknowledgement routines.

 Bracelet – This is the simplest type of device, usually assuming the form of a

bracelet and only possesses call button capabilities.

 Cheststrap – This is a more advanced type of device that includes call button,

fall detection and heart rate detection functionalities.

 Health Monitoring Sensor Suppliers Integration

82

Every device in the system shall be classified as one of the three basic types of devices. In

case a device does not support one of the functionalities defined in the basic type, it should

send a ―Not Supported‖ response to commands related to that feature.

The reason why this solution was chosen was because Wisedome was designed to use these

basic types and already had various workflows that would depend on them. Some of these

workflows were part of core features, such as not allowing patients classified as ―dementia‖ to

use chest-straps. However, this solution can be viewed as a limitation of the current integration

framework implementation, as it is discussed in section 6.1.1.

Some device configuration values had also to be abstracted. This was mostly related

with configuring fall detection sensitivity levels for different Vendor Bundles. Wisedome is

designed to support three distinct levels of fall detection sensitivity: high, medium and low.

Even if a device supports fall detection, nothing guarantees that it has the same pre-defined

values for fall detection thresholds. For example, although Wisedome has three defined levels

of fall detection sensitivity, a device hardware vendor might configure its fall detection

sensitivity level with a value ranging from 0 to 200. In this case, it is necessary for the vendor

bundles to ―convert‖ the vendors fall detection sensitivity level into something that Wisedome

would understand. In order to allow some flexibility and room for future improvements,

Wisedome might set the fall sensibility as a value between 0 and 40, where:

 0 is the equivalent to low fall sensibility

 20 is the normal fall sensibility

 40 is the high normal sensibility.

These values are consistent with the information stored on Wisedome’s database and it’s up to

the vendor bundles to convert these values to the nearest equivalents of their hardware

solution. It was only necessary to perform this type of abstraction for fall sensitivity levels, but

if new features are added to Wisedome in the future, it may be necessary to define new

standardized values for those.

As mentioned in page 60, Wisedome already maintained a configuration XML file

where it stored important configuration information such as database TCP/IP communication

host and port values or the time it takes to promote an unattended low priority alarm to a high

 Health Monitoring Sensor Suppliers Integration

83

priority alarm. This configuration XML file was also used to maintain device specific

configuration values, such as the host and ports of the Plux gateway application, the default

fall threshold values for Plux devices, among others. On a multi-vendor environment, it

wouldn’t make sense to store this type of configuration on Wisedome’s XML configuration

file, since it would regard many different types of vendors. Therefore, it was necessary to

allow each hardware vendor to store configuration information in their own file. Each Vendor

Bundle is now entitled to one XML configuration file (stored in the same location as the

Wisedome’s configuration file) that should be read and handled by the bundle itself. This file

may contain any configuration values deemed necessary for the bundle’s proper function.

Wisedome’s own configuration file was also modified to allow users to define which

Vendor Bundles are to be automatically initiated on application startup by inserting the correct

Vendor Names. As explained in section 4.5.2.1, page 66, the Main Integration Bundle uses

this information to startup bundles automatically; however, bundles may still be started or

stopped while Wisedome is running without disrupting the system’s normal functionality.

4.5.4.5 Main Branch Application Merging

The Critical Health uses the CVS (Concurrent Versioning System) while developing

software. The Integration Framework was developed in a separate CVS branch of the project,

which means that it was developed in parallel as an alternate version of Wisedome. When the

development of the Integration Framework begun, the current state of the Wisedome

application was branched onto 2 different paths: one of these paths continued Wisedome’s

development normally, without any integration, while the other resulted on a modified version

of Wisedome working with the Integration Framework. Thus, the development of the

Integration Framework did not occur on a static implementation of Wisedome: while the

Integration Framework was being developed on the integration branch, Wisedome was also

being changed and improved on the main branch with new features and bug-fixes constantly

being added. One of the challenges in development was for the integration branch to keep on

par with the changes of the main branch in order to avoid building the Integration Framework

onto a completely outdated version of Wisedome. The process of introducing the changes

made on the main branch into the integration branch is called branch merging and consists on

carefully revising the main branch code modifications and passing them on to the integration

 Health Monitoring Sensor Suppliers Integration

84

branch while making the necessary modifications to support the new integration features and

assuring that the new code does not break the integration branch functionality. Since a small

change can have repercussions on the whole system, merging was a complex and rather

tiresome task, but necessary in order to assure the Integration Framework’s usefulness.

4.5.5 Developing New Vendor Bundles

Developing new vendor bundles allows Wisedome to work with new types of device

hardware vendors. Vendor Bundles act as ―drivers‖: computer programs that allow higher-

level computer programs to interact with a hardware device (83). The Integration Framework

was designed with the intent of making the process of creating new drivers as simple as

possible by offering interfaces that define what methods should be implemented and also by

providing services (Process Event and Database Services) that allow driver developers to

easily communicate with Wisedome. During the creation of the Integration Framework, two

device drivers were developed (for Plux and Biodevices) and documentation on how to create

new ones was also written. Driver developers also have access to a ―backbone‖ driver which

consists on a basic skeleton from which new drivers may be created, containing various

comments explaining what should be implemented and why, what does each resource do and

preliminary documentation of each service available to the vendor bundle. This section’s

purpose is to explain the basic structure of a device driver and to make reference to the

resources that allow for the creation of new drivers.

4.5.5.1 Basic Structure of a Vendor Bundle

 Next, a suggested driver structure is presented. It should be noted that this is merely a

suggestion: the system does not bound driver developers to any pre-defined structure. As a

long as the Vendor Service is correctly implemented and registered on the OSGi Framework,

Wisedome will be able to use it effectively.

 Health Monitoring Sensor Suppliers Integration

85

 Activator – The activator class implements the OSGi’s BundleActivator interface and

is an integrate part of every OSGi bundle, functioning as the bundle’s main class. It

defines what a bundle should do when it is started and how it should be stopped(84).

For Vendor Bundles, this class usually executes any startup workflows such as

establishing communication with the devices and setting up initial parameters. This

class is also usually responsible for registering the Vendor Service and setting up the

Bundle’s service listeners.

 Service Provider Listener – This class usually implements the OSGi’s ServiceListener

interface and seeks the Service Provider provided by the Main Integration Bundle. It is

responsible for managing the Service Provider object and handling what happens when

the service becomes unavailable.

 Configuration class – The configuration class acts as repository for the information

defined in the vendor’s XML configuration file. It holds this information in memory

for easy access by other parts of the bundle.

Figure 32 – Scheme illustrating various components of the Vendor Bundle.

 Health Monitoring Sensor Suppliers Integration

86

 Communication Listener class – The communication listener is responsible for

listening to incoming events from the devices, such as alarms or device state changes.

Whenever a new message arrives, it should be sent to the Parser class.

 Parser class – The parser receives messages from the communication listener and

converts the information within so that it may be used as arguments for the Process

Event Service methods. After parsing the information, the Parser class calls the Process

Event Service to notify Wisedome of the event.

 Communication Writer class – The communication writer is responsible for sending

commands to the devices, such as setting up parameters or silencing devices. Usually,

it is this class who implements the Vendor Service interface and all the methods it

defines, such as assignDevice, isButtonAlarmEnabled and so on.

 Utility class – This is a helper class that provides several methods that are used by

other classes. Examples of methods usually included on the utility classes are date

format conversion methods or device parameter conversion methods that convert the

information sent by the devices to a format that is understood by Wisedome.

4.5.5.2 Backbone Example and Service Documentation

The Backbone bundle serves as a skeleton driver that may be used as basis to write

new drivers. The Backbone driver example respects the structure described above and has

already some basic tasks implemented, such as registering the Vendor Service and

implementing the Service Provider Listener. The driver serves as a tutorial and contains many

comments explaining why is it necessary to include a certain line of code and some

preliminary documentation on the methods that must be implemented and resources that are

available to the vendor bundle.

It is important for the driver developer to know, for instance, what type of tasks should

each of the Vendor Service methods implement, what kind of ReturnObjects he should return

for each method, what kind of Process Event Service methods he should call upon for each

type of alarm and what functionalities does the Database Service method offer. This

information is present in the Integration Framework documentation, which is in Annex A.

 Health Monitoring Sensor Suppliers Integration

87

5 Wisedome’s Quality Management Processes

Additionally to wireless technology research and software development, the work

described in this thesis also involved working on Wisedome’s quality management process. It

is worth noting that the work described in this section is independent from the work described

in other sections of this thesis. This work is related to the quality management of the

Wisedome application and not with integration efforts.

As a spinoff of Critical Software and part of the Critical Group, Critical Health’s

quality management system (QMS) is heavily based on the original Critical Software’s QMS.

The development of software at Critical follows the processes defined by the QMS, which

consist on a set of procedures, guidelines, checklists, templates and other documents (85). As

described in (85), Critical defines its QMS as a system to improve product development time

and overall quality:

―The QMS is designed to enable projects and other activities to achieve

their objectives efficiently and effectively, by the use of proven defined

processes and practices. Where problems arise or errors are found, the QMS

enables changes to be made and lessons to be learned. It also ensures that the

focus of Critical's QMS is satisfying customers and improving products and

services efficiency and effectiveness.‖

Critical’s QMS is comprised of a series of processes that define and guide the initiation,

development, delivery and support of Critical’s products and services. The product

development phase is mostly guided by the engineering processes. The engineering processes

define and describe how projects are managed and developed throughout their lifecycle, from

requirements analysis and specification, passing through design and construction and finishing

with product validation through customer acceptance and product maintenance (85). Within

Critical’s QMS exist five engineering processes:

 Requirements Analysis Process - This process guarantees that high level customer

requirements are analyzed and detailed in a way that can efficiently be translated to the

 Health Monitoring Sensor Suppliers Integration

88

project. This is important to guarantee that the final product will conform to the

costumer’s needs.

 Software Design – This process ensures that software design is produced with a high

level of quality and that the design will be able to support the Software Construction

process, assuring that software requirements are fulfilled.

 Software Construction – The objective is that software development is conducted with

a high level of quality, responds to all software requirements, promotes code reuse and

allows requirement traceability. This process also guarantees that the software

implementation properly reflects software design.

 Software Testing – This process is driven by the necessity of determining if the

software is compliant with the defined requirements and to ensure software’s stability

and quality.

 Maintenance - The purpose of this process is to modify a system/software product after

delivery to correct faults, improve performance or other attributes, or to adapt to a

changed environment.

Besides the work on the Software Construction process (with the development of the

Integration Framework described in section 4 of this thesis) there was also work done in the

Requirement Analysis and Software Testing processes. This section’s purpose is to describe

what kind of work was performed in these areas, which contributed the improvement of

Wisedome’s quality and allow further participation on Wisedome’s development process.

 Health Monitoring Sensor Suppliers Integration

89

5.1 Requirements Analysis

Prior to the beginning of this project to obtain the Master’s degree in Biomedical

Engineering by Coimbra University, there was some work developed during an internship on

Critical Health, mainly consisting on requirement analysis, which was further continued

during the course of the project here described. The objective of requirement’s analysis is to

guarantee that the customer’s expectations of the software’s functionality are met in full. This

involves specifically defining every single feature that the software should support in order to

meet customer’s needs and expectations. These expectations and needs come in the form of

requirements that the software must meet.

Requirements definition is a critical step towards the success of a project. It is not an

easy task, and requires proper documentation. Requirements should be written in way that

they are non-ambiguous, easy to understand, testable, accurate, non-excessive or repeating and

with a sufficient level of detail to allow proper software and hardware implementation (86)

(87). Requirement analysis often goes further than just describing costumer’s needs, but also

describe every necessary feature in order to produce a fully functional product, including

safety, usability and design attributes. The analysis comprises different levels of detail,

starting with high-level business requirements that state the overall customer needs such as

―the software should only allow authorized users to have access to certain functionalities‖,

following to deeper, lower-levels of detail that include specific software implementation

necessities such as ―the software shall have a username field in the login menu‖.

In the case of Wisedome, it was necessary to read several documents such as project

proposals, costumer meeting minutes and other internal documentation. It was also necessary

to use earlier prototype versions of the software in order to grasp a complete idea of the

project and figure its necessities in order to write proper requirements. There were literally

hundreds of requirements written, that fulfilled different levels of detail and referenced

different parts of the system. It was necessary to write business level requirements, system

requirements and software requirements.

 Health Monitoring Sensor Suppliers Integration

90

Requirements also played an important part when handling with device manufacturers,

as it was necessary to define specifically what kind of features a sensor device should possess.

Features such as its maximum permitted weight (since the target population is elderly people,

it is not convenient for the sensors to be heavy), minimum caregiver device beep sound

intensity, device button configuration or device wireless interference resistance had to be

taken into account.

Wisedome’s own software requirements were equally important to define. One of the

main reasons for this is that, requirements are not merely static definitions of what a system

must to, that are written just as a keepsake. Requirements drive other parts of the quality

management process, particularly system testing. While writing requirements, it’s very

important that they are kept unambiguous and simple, because a requirement will then be used

to create system tests that are used in order to verify if the software is behaving accordingly to

what has been defined. Thus, each test is designed to verify if a given requirement has been

fulfilled and always traces back to this same requirement that originally led to its creation.

Software features such as the maximum permitted time between the detection and display of

an alarm event, the necessity of security for the database information, options available in

menus or the ability to add and remove patients from the system need to be properly defined in

requirements. Design features are also important, such as the need to have different alarm

display colors for different alarm priorities and different icons for each type of alarm.

The Requirement’s analysis is not static, but an iterative process: requirement

definitions must be reviewed with the project’s team and continuously evolve as the project

itself evolves. As the project advances, requirements are updated to conform to new project

needs. The requirements written as part of the work developed during this project’s execution

merely served as a basis for later writing a more complete set of requirements. Such task was

not a part of the work that led to the writing of this thesis.

 Health Monitoring Sensor Suppliers Integration

91

5.2 Software Testing

There was also work performed on the Software Testing Process. Previous to a major

Wisedome release, where new features would be included (this release did not include the

Integration Framework developed in this project), it was necessary to thoughtfully test the

system before implementing it on the client’s assisted living facilities. Thus, a month was

dedicated to extensively test the system in order to guarantee that it was performing with the

desired quality level and in compliance with the specified requirements. The purpose of

software testing is to (88):

 Increase the confidence in the quality of the software product.

 Show that the software does what it is supposed to do, and doesn’t do what it

not supposed to (positive and negative testing).

 Detect software problems as soon as possible, in order to facilitate their

resolution.

The tests were performed were driven from the system’s requirements and were compiled on a

testing matrix, where the test output could be classified as either ―Passed‖ or ―Not Passed‖.

Tests ranged from basic functions like being able to login or access a patient’s chart, to more

complex workflows such as silencing devices or escorting patient’s while going out of router

range. These were particularly important for the sensor devices, since they allowed to verify if

the device’s behavior was as expected. Many issues were found during this test phase: device

charging mechanism problems, application typos, non-working pop-ups and non-working

functionalities are some examples.

The testing process was an iterative process where the testing members would run tests and

create issues on an issue tracking software, while development members would fix the found

issues. The final result was a much more stable and functional version than the one at the

beginning of the testing phase.

 Health Monitoring Sensor Suppliers Integration

92

The overall testing phase experience was very stimulating, allowing a deeper understanding of

the importance of proper system testing and furthering personal relationship with Wisedome’s

development.

Figure 33 – Example of an issue detected during the test phases and reported on the issue tracking software JIRA.

 Health Monitoring Sensor Suppliers Integration

93

6 Conclusion and Future Work

By the time of this project’s conclusion, Wisedome, a platform being developed by

Critical Health that enables monitoring of residents in Assisted Living facilities, has already

successfully achieved a second major software release, leaving the prototype phase and about

to go live at a client’s facilities. To this successful release, the efforts made by the team during

the test phase were invaluable, efforts that were part of this project’s objectives.

Although it has left prototype phase, Wisedome is still being developed and improved.

It has now reached a crucial time on its development, where the system’s capabilities will be

expanded with the introduction of several new types of devices coming from different

vendors, which will use different communication technologies and different API’s. The

developed Integration Framework solution described on this thesis is already being used as a

means to facilitate development and integrate the several types of sensor devices onto a single

health monitoring solution. The integration efforts with system modularity and expansion in

mind will contribute to the Wisedome platform’s adoption of new state-of-the-art sensors that

include new features which will result in a more flexible and valuable application when

compared with other alternatives on the market.

With the conclusion of the health monitoring industry coalitions and wireless

technology research, the work on testing that lead to a successful Wisedome’s milestone

release and development of an already in-use Integration Framework that will most likely

become an integrate part of Wisedome’s next releases, it can be said that this project has

achieved its primary goals which were to develop a health monitoring sensor integration

solution and contribute to the development and evolution of the Wisedome application.

6.1 Current Limitations and Future Developments

The Integration Framework is part of the Wisedome system and as Wisedome evolves

the Integration Framework must also evolve in order to support the new features and

modifications introduced. At the time of this document’s writing, the Integration Framework is

 Health Monitoring Sensor Suppliers Integration

94

already being used as an integral part of the Wisedome’s system. The integration branch

mentioned in section 4.5.4.5, page 83, has effectively replaced the main branch and new

vendor bundles are being developed to support new kinds of hardware vendors. Due to its

complex nature and the fact that it effectively tries to serve as a bridge between two different

systems (the Wisedome Health Monitoring application and the several hardware devices) it is

very possible that the Integration Framework’s current implementation still retains some

minor bugs, which will probably be discovered in the future, as the framework is used.

Although the current integration effort works, that doesn’t mean that it does not have

room for future improvements. This section presents some perspective on what could be done

to improve the current integration solution and describes some of its current limitations.

6.1.1 Functionality Announcement Feature

Perhaps the most important feature lacking in the current integration implementation is

a functionality announcement feature. This feature would surpass most of the limitations of the

current implementation and would be very useful to further reduce communication abstraction.

The idea is that each vendor bundle announces what kind of features it offers: heart rate

measurement, ECG, fall detection, button alarms, localization and so on.

This type of information could be used by the Wisedome bundle on several workflows.

A good example would be during the device configuration mentioned in section 4.5.4.4. If

each vendor had a way of announcing their supported functionalities, Wisedome would no

longer have to assume that chest-band devices support heart rate and bracelets only support

button calls. Instead, it could ask the Main Integration Bundle what kind of functionalities

does a vendor support and use this information for device configuration or even to determine

if it can display heart rate values for a given patient or not. This type of feature would also

render the use of the ―Not Supported‖ request status useless, since either Wisedome or the

Main Integration Bundle could verify if a vendor supports, for instance, fall detection before

trying to issue an enable fall detection command. It would even be possible, after discussing

the matter with the Wisedome development team, to simplify the device types to ―caregiver‖

devices and ―patient‖ devices only and remove the distinction between chest-bands and

 Health Monitoring Sensor Suppliers Integration

95

bracelets since it would be now possible to know what kind of features a given device

supports.

Implementing this functionality would require some effort in modifying Wisedome,

since the application depends on the distinction between bracelets and chest-straps on several

workflows. Each one of these workflows would have to be analyzed and discussed in order to

discover how to use the functionality announcement feature to its full potential. As an

example, we can consider the situation mentioned in page 82 where a dementia patient cannot

use chest-straps. It would be necessary to discuss with the development team what device

functionalities are patients classified as ―dementia‖ not allowed to use (as opposed to not

being able to use chest-straps). It would also be necessary to choose how to implement this

function: the announcement of services could be an intrinsic part of the workflow for vendor

devices or the Main Integration Bundle could request each vendor bundle for what features

does it offer instead. The information on the available features could be stored either in

memory or on a table in the database.

6.1.2 New Features Limitation

Another limitation of the current Integration Implementation is how new features

implemented in Wisedome can affect all of the vendor bundles. In a situation where a device

offers features different than those currently used, which Wisedome will adopt (for example,

measuring a person’s body temperature) it is necessary to change Wisedome’s code to support

these new features. Since we are adding a new feature to Wisedome (temperature reading) it is

also necessary to add new methods to the Vendor Service, so that Wisedome may

communicate with the devices that have this functionality. However, changing the Vendor

Service interface affects all vendor bundles, because every single one of them implements it.

This increases the effort of trying to implement new features, since every device driver has to

be updated. However, this limitation is understandable and also manifests itself in other

software or hardware applications: if the software or hardware suffers changes, then most of

the time drivers also have to be updated in order to conform to the new features.

 Health Monitoring Sensor Suppliers Integration

96

6.2 Final Appreciation

Working on a commercial Assisted Living solution comes with a sense of fulfillment

and with the knowledge that the work developed will contribute to the elderly population’s

well-being and to the improvement of elderly care.

It is my understanding that the tasks performed during my internship on Critical Health

greatly contributed to my growth as an engineer. I feel that the tasks performed greatly

enhanced my knowledge of the Java programming language, my understanding on how

wireless technology works and the importance of interoperability between different systems. I

also came to understand the importance of quality management and how significant

requirement definition and testing are during software development. The time spent on a group

as big as Critical Software’s gave me a good insight on what is it like to work in a

development team and the challenges associated with the enterprise world. My internship as a

part of Wisedome’s team allowed me to acquire technical knowledge and soft-skills that will

certainly be useful in future projects that I might participate.

 Health Monitoring Sensor Suppliers Integration

97

Bibliography

1. Wisedome Quick Guide phase 1. s.l. : Critical Health.

2. Boucher, Alan, et al. The Importance of Standards and Its Use in Healthcare.

[Online] [Cited: July 24, 2010.] http://www.itsc.org.sg/pdf/5_Healthcare.pdf.

3. Continua: The Impact of a Personal Telehealth Ecosystem. Wartena, Frank, et al.

International Conference on eHealth, Telemedicine, and Social Medicine.

4. About the Alliance. Continua Health Alliance. [Online] Continua Health Alliance.

[Cited: July 24, 2010.] http://www.continuaalliance.org/about-the-alliance.html.

5. FAQs. Continua Health Alliance. [Online] Continua Health Alliance. [Cited: July

25, 2010.] http://www.continuaalliance.org/faqs.html.

6. Mission and Objectives. Continua Health Alliance. [Online] Continua Health

Alliance. [Cited: July 24, 2010.] http://www.continuaalliance.org/about-the-alliance/mission-

and-objectives.html.

7. Design Guideines. Continua Health Alliance. [Online] Continua Health Alliance.

[Cited: July 24, 2010.] http://www.continuaalliance.org/products/design-guidelines.html.

8. Health & Wellness. Continua Health Alliance. [Online] Continua Health Alliance.

[Cited: July 25, 2010.] http://www.continuaalliance.org/connected-health-vision/health-and-

wellness.html.

9. Continua Use Case Flyers. Continua Health Alliance. [Online] Continua Health

Alliance. [Cited: July 25, 2010.]

http://www.continuaalliance.org/static/binary/cms_workspace/5.04-CH1-CC-401-

Continua_flyers.pdf.

10. Chronic Disease Management. Continua Health Alliance. [Online] Continua Health

Alliance. [Cited: July 25, 2010.] http://www.continuaalliance.org/connected-health-

vision/disease-management.html.

 Health Monitoring Sensor Suppliers Integration

98

11. Continua Certification. [Online] 1.0, Continua Health Alliance, February 23, 2009.

[Cited: July 24, 2010.]

http://www.continuaalliance.org/static/cms_workspace/Continua_Certification_Public.pdf.

12. Products & Certification Overview. ZigBee Alliance. [Online] ZigBee Alliance.

[Cited: August 4, 2010.] http://www.zigbee.org/Products/Overview.aspx.

13. Ramon, San. ZIGBEE SELECTED BY CONTINUA HEALTH ALLIANCE FOR

NEXT GENERATION GUIDELINES. [Online] ZigBee Alliance, June 8, 2009. [Cited:

December 18, 2009.]

http://zigbee.org/imwp/idms/popups/pop_download.asp?contentID=16015.

14. Bluetooth. Wikipedia, the free encyclopedia. [Online] [Cited: August 4, 2010.]

http://en.wikipedia.org/wiki/Bluetooth.

15. Continua Overview Presentation. [Online] 19.3, Continua Health Alliance. [Cited:

August 1, 2010.]

http://www.continuaalliance.org/static/cms_workspace/Continua_Overview_Presentation_v19

.3.pdf.

16. ANT+ Connecting Sensors for Life! This is ANT. [Online] ANT+ Alliance. [Cited:

August 2, 2010.] http://www.thisisant.com/ant/ant-interoperability.

17. Company. This is ANT. [Online] ANT+ Alliance. [Cited: August 1, 2010.]

http://www.thisisant.com/company.

18. Horikiri, Chikashi, et al. Inside 'Nike+iPod' -- Diaphragm is Used as Sensor. Tech

On! [Online] July 24, 2006. [Cited: August 1, 2010.]

http://techon.nikkeibp.co.jp/english/NEWS_EN/20060724/119373/.

19. ANT+ Self Compliance Test Process. This is ANT. [Online] ANT+ Alliance.

[Cited: August 2, 2010.] http://www.thisisant.com/pages/ant/self-compliance-test-process.

20. Technology. This is ANT. [Online] ANT+ Alliance. [Cited: August 2, 2010.]

http://www.thisisant.com/technology.

 Health Monitoring Sensor Suppliers Integration

99

21. ULP – Advantage ANT. [Online] ANT+ Alliance, October 2008. [Cited: August 3,

2010.] http://www.thisisant.com/images/Resources/PDF/ULP-

Advantage%20ANT%20Oct%2008.pdf.

22. ANT Q&A’s. [Online] ANT+ Alliance, June 2008. [Cited: December 15, 2010.]

http://www.thisisant.com/images/Resources/PDF/ant_qandas.pdf.

23. ZigBee and Wireless Frequency Coexistances - ZigBee White Paper. [Online]

ZigBee Alliance, June 2007. [Cited: December 15, 2010.]

www.zigbee.org/imwp/download.asp?ContentID=11745.

24. Ergen, Sinem. ZigBee/IEEE 802.15.4 Summary. [Online] September 10, 2004.

[Cited: August 6, 2010.]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.6333&rep=rep1&type=pdf.

25. 6LowPAN.org. [Online] [Cited: August 3, 2010.] http://www.6lowpan.org.

26. Microchip MiWi P2P Wireless Protocol. Microchip Technology. [Online]

Microchip Technology Inc., July 2010. [Cited: August 3, 2010.]

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appn

ote=en536181.

27. Stevanovic, Dusan. Zigbee / IEEE 802.15.4 Standard. [Online] June 20, 2007.

[Cited: August 5, 2010.] http://www.cse.yorku.ca/~dusan/Zigbee-Standard-Talk.pdf.

28. How ANT Compares. This is ANT. [Online] ANT+ Alliance. [Cited: January 10,

2010.] http://www.thisisant.com/why-ant/how-ant-compares.

29. IEEE 802.15.1. [Online] IEEE. [Cited: August 6, 2010.]

http://www.ieee802.org/15/pub/TG1a.html.

30. IEEE 802.15. Wikipedia, the free encyclopedia. [Online] [Cited: August 7, 2010.]

http://en.wikipedia.org/wiki/IEEE_802.15.

31. Bluetooth On The Road. Hoovers. [Online] [Cited: August 7, 2010.]

http://www.hoovers.com/business-information/--pageid__13751--/global-hoov-index.xhtml.

 Health Monitoring Sensor Suppliers Integration

100

32. James, Baldwin. Know More Knowledge Of Bluetooth. ArticleSnatch.com.

[Online] [Cited: August 7, 2010.] http://www.articlesnatch.com/Article/Know-More-

Knowledge-Of-Bluetooth/889308.

33. Woodings, Ryan Winfield and Gerrior, Mark. Avoiding Interference in the 2.4-

GHz ISM Band. EE Times. [Online] July 1, 2006. [Cited: August 16, 2010.]

http://www.eetimes.com/design/automotive-design/4012556/Avoiding-Interference-in-the-2-

4-GHz-ISM-Band.

34. Meyer, David. Bluetooth 3.0 released without ultrawideband. ZDNet UK. [Online]

April 22, 2009. [Cited: August 7, 2010.]

http://www.zdnet.co.uk/news/networking/2009/04/22/bluetooth-30-released-without-

ultrawideband-39643174/.

35. ANT Message Protocol and Usage. [Online] 4.1, ANT+ Alliance. [Cited: August 8,

2010.]

http://www.thisisant.com/images/Resources/PDF/1204662412_ant%20message%20protocol%

20and%20usage.pdf.

36. RF Power Options in ZigBee™ Solutions - White Paper. [Online] Cirronet, Inc.,

2005. [Cited: August 7, 2010.] http://www.cirronet.com/pdf/wp_ZigBeePowerOptions.pdf.

37. Reggiani, L. and Maggio, G. Orthogonal convolutional modulation for UWB-

impulse radio systems: performance analysis and adaptive schemes. IEEE Transactions on

Wireless Communications. September 2009, Vol. 8, 9, pp. 4550 - 4560.

38. ZigBee. John' s Specifications. [Online] [Cited: August 9, 2010.]

http://www.specifications.nl/zigbee/zigbee_UK.php.

39. Callaway, Ed. Low Power Consumption Features of the IEEE 802.15.4/ZigBee

LR-WPAN Standard. [Online] November 6, 2003. [Cited: December 20, 2009.]

http://www.cens.ucla.edu/sensys03/sensys03-callaway.pdf.

 Health Monitoring Sensor Suppliers Integration

101

40. Kinney, Patrick. ZigBee Technology: Wireless Control that Simply Works.

[Online] October 2, 2003. [Cited: August 8, 2010.]

http://www.zigbee.org/imwp/idms/popups/pop_download.asp?contentID=5162.

41. Giovino, Bill. New Atmel Microcontrollers Target Low-Power ZigBee.

microcontroller.com. [Online] March 20, 2006. [Cited: August 8, 2010.]

http://www.microcontroller.com/news/atmel_microcontrollers_avr.asp.

42. Misal, Chaitanya S. Analysis of power comsumption of an end device in a ZigBee

mesh network. 2007.

43. Low end extension for Bluetooth. Honkanen, M., et al. Nokia Res. Center,

Tampere, Finland : s.n., 2004. Radio and Wireless Conference, 2004 IEEE. pp. 199 - 202.

44. Bluetooth rival unveiled by Nokia. BBC News. [Online] October 4, 2006. [Cited:

August 10, 2010.] http://news.bbc.co.uk/2/hi/technology/5403564.stm.

45. Reynolds, Melanie. Wibree becomes ULP Bluetooth. ElectronicsWeekly.com.

[Online] June 12, 2007. [Cited: August 10, 2010.]

http://www.electronicsweekly.com/Articles/2007/06/12/41582/wibree-becomes-ulp-

bluetooth.htm.

46. Bluetooth Low Energy – WiBree. BuddeBlog. [Online] April 14, 2009.

http://www.buddeblog.com.au/news-and-views/bluetooth-low-energy-wibree/.

47. Bluetooth 4 spec reduces energy consumption by 90%. TGDaily. [Online] July 7,

2010. [Cited: August 10, 2010.] http://www.tgdaily.com/mobility-features/50548-bluetooth-4-

spec-reduces-energy-consumption-by-90.

48. Bluetooth Low Energy. Wikipedia, the free encyclopedia. [Online] [Cited: August

9, 2010.] http://en.wikipedia.org/wiki/Bluetooth_low_energy.

49. Bluetooth Low Energy Technology FAQ. [Online] Bluetooth SIG, December 2009.

[Cited: August 10, 2010.]

 Health Monitoring Sensor Suppliers Integration

102

http://bluetooth.com/SiteCollectionDocuments/Low_Energy_FAQ_External_General_Public.

pdf.

50. Bluetooth Low Energy Technology - Technical Info. Bluetooth. [Online] Bluetooth

SIG. [Cited: August 10, 2010.]

http://www.bluetooth.com/English/Products/Pages/Bluetooth_Low_Energy_Technology__Tec

hnical_Info.aspx.

51. Macdonald, Brian. 2008 ANT+ SYMPOSIUM - The Opportunities. [Online] 2008.

[Cited: December 17, 2010.]

http://www.thisisant.com/images/Resources/PDF/ANT%2B%20%20The%20Opportunities%2

0Oct%2008.pdf.

52. —. Building a Practical Wireless Sensor Network. Nikkei Electronics Asia.

[Online] November 27, 2007. [Cited: December 16, 2009.]

http://techon.nikkeibp.co.jp/article/HONSHI/20071127/143123/.

53. Morris, Rod. ANT VS Zigbee. [Online] March 31, 2008. [Cited: December 10,

2009.] http://hi.baidu.com/vvfang/blog/item/eef9b1affcbf4ec87dd92a53.html.

54. What’s so good about mesh networks? [Online] Daintree Networks, January 2007.

[Cited: August 12, 2010.] http://www.daintree.net/downloads/whitepapers/mesh-

networking.pdf.

55. Forming Connected Topologies in Bluetooth Ad-hoc Networks - An Algorithmic

Perspective. Guerin, R., et al. 2002. International Teletraffic Congress.

56. Communication Topology. Bluetooth. [Online] Bluetooth SIG. [Cited: August 12,

2010.]

http://www.bluetooth.com/English/Technology/Works/Pages/Communications_Topology.asp

x.

57. Developing a Standard for Personal Health Devices based on 11073. Clarke, M., et

al. 2007. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual

International Conference of the IEEE. pp. 6174 - 6176.

 Health Monitoring Sensor Suppliers Integration

103

58. Carvalho, Paulo de and Henriques, Jorge. Telemedicina. Departamento de

Engenharia Informática, Universidade de Coimbra : s.n.

59. Bogia, Douglas. ISO/IEEE 11073 Personal Health Data Tutorial. [Online]

December 21, 2007. [Cited: November 29, 2009.]

http://www.lampreynetworks.com/assets/documents/2007-12-21-IEEE-PHD-tutorial.pdf.

60. Clarke, Malcolm. ISO/IEEE 11073 Personal Health Devices. [Online] May 26,

2008. [Cited: November 29, 2009.]

http://person.hst.aau.dk/ska/MIE2008/ParalleSessions/PresentationsForDownloads/Mon-

1530/Sta-30_Clarke.pdf.

61. Doney, Dallin. ANT+ Device Profiles. [Online] ANT+ Alliance. [Cited: January

20, 2010.]

http://www.thisisant.com/images/Resources/PDF/ANT+%20Device%20Profiles%20Oct%200

8.pdf.

62. Certified Products. Continua Health Alliance. [Online] Continua Health Alliance.

[Cited: August 15, 2010.] http://www.continuaalliance.org/products/certified-products.html.

63. Certified Products Overview. ZigBee Alliance. [Online] ZigBee Alliance. [Cited:

August 15, 2010.]

http://www.zigbee.org/Products/CertifiedProducts/CertifiedProductsOverview.aspx.

64. Medica.de. [Online] http://www.medica-tradefair.com/.

65. Leading Health Brands Demonstrate ANT+ Interoperability at MEDICA. This is

ANT. [Online] ANT+ Alliance, November 19, 2009. [Cited: August 12, 2010.]

http://www.thisisant.com/news/stories/leading-health-brands-demonstrate-ant-interoperability-

at-medica.

66. Direct-sequence spread spectrum. Wikipedia, the free encyclopedia. [Online]

[Cited: August 12, 2010.] http://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum.

 Health Monitoring Sensor Suppliers Integration

104

67. Bluetooth: What´s the advantage of frequency-hopping? SwedeTrack System.

[Online] Johnson Consulting. [Cited: August 16, 2010.]

http://www.swedetrack.com/images/bluet11.htm.

68. Co-existence of Zigbee and WLAN, A Performance Study. Shuaib, K., et al. 2006.

Wireless Telecommunications Symposium. pp. 1 - 6.

69. Coexistence of IEEE802.15.4 with other Systems in the 2.4 GHz-ISM-Band.

Sikora, Axel and Groza, Voicu F. 2005. Instrumentation and Measurement Technology

Conference. pp. 1786 - 1791.

70. Nordic Semiconductor previews next generation ANT chips that will redefine

industry benchmarks for ultra low power wireless sensoring. This is ANT. [Online] ANT+

Alliance, March 25, 2009. [Cited: August 16, 2010.]

http://www.thisisant.com/news/stories/nordic-semiconductor-previews-next-generation.

71. Barry, Douglas K. Service-oriented architecture (SOA) definition. Web Services

and Service-Oriented Architectures. [Online] [Cited: July 18, 2010.] http://www.service-

architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html.

72. About the OSGi Service Platform - Technical Whitepaper. OSGi Alliance. [Online]

4.1, OSGi Alliance, June 7, 2007. [Cited: July 20, 2010.]

http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf.

73. Mobile Market. OSGi Alliance. [Online] OSGi Alliance. [Cited: July 21, 2010.]

http://www.osgi.org/Markets/Mobile.

74. Siemens Serve@Home home management system. Appliancist. [Online] February

23, 2007. [Cited: July 21, 2010.] http://www.appliancist.com/accessories/siemens-home-

management-system.html.

75. OSGi. Eclipse. [Online] Eclipse Foundation. [Cited: July 21, 2010.]

http://www.eclipse.org/osgi/.

 Health Monitoring Sensor Suppliers Integration

105

76. Enterprise Market. OSGi Alliance. [Online] OSGi Alliance. [Cited: July 21, 2010.]

http://www.osgi.org/Markets/Enterprise.

77. Vergara, Jorge E. López de, et al. An autonomic approach to offer services in

OSGi-based home gateways. Computer Communications. 2008, Vol. 31, 13, pp. 3049-3058.

78. Apache Felix OSGi Tutorial. Apache Felix. [Online] [Cited: March 15, 2010.]

http://felix.apache.org/site/apache-felix-osgi-tutorial.html.

79. Knopflerfish. [Online] [Cited: July 22, 2010.] http://www.knopflerfish.org/.

80. What Is a Socket? The Java Tutorials. [Online] Oracle. [Cited: July 22, 2010.]

http://download-llnw.oracle.com/javase/tutorial/networking/sockets/definition.html.

81. What Is an Interface? The Java Tutorials. [Online] Oracle. http://download-

llnw.oracle.com/javase/tutorial/java/concepts/interface.html.

82. Interfaces. The Java Tutorials. [Online] Oracle. http://download-

llnw.oracle.com/javase/tutorial/java/IandI/createinterface.html.

83. Device driver. Wikipedia, the free encyclopedia. [Online] [Cited: July 23, 2010.]

http://en.wikipedia.org/wiki/Device_driver.

84. Interface BundleActivator. OSGi Service Platform Release 4 Version 4.2. [Online]

OSGi Alliance. [Cited: July 23, 2010.]

http://www.osgi.org/javadoc/r4v42/org/osgi/framework/BundleActivator.html.

85. Quality Manual. s.l. : Critical Software, S.A.

86. ENG.1 Requirements Analysis. s.l. : Critical Software S.A.

87. Requirements analysis. Wikipedia, the free encyclopedia. [Online] [Cited: August

17, 2010.] http://en.wikipedia.org/wiki/Requirements_analysis.

88. ENG.4 Software Testing Process. s.l. : Critical Software S.A.

 Health Monitoring Sensor Suppliers Integration

106

89. Product Brief - 1-channel nRF24AP2. [Online] 1.1, Nordic Semiconductor. [Cited:

December 16, 2010.]

http://www.nordicsemi.com/files/Product/brochures_presentations/PB_nRF24AP2_1ch_v1_1.

pdf.

90. Thonet, Gilles, et al. ZigBee – WiFi Coexistence - White Paper and Test Report.

[Online] Schneider Electric, April 15, 2008. [Cited: January 18, 2010.]

http://www.zigbee.org/imwp/idms/popups/pop_download.asp?contentID=13184.

 Health Monitoring Sensor Suppliers Integration

107

Annex A Documentation

This section documents the ReturnObject class and the Vendor, Database and Process

Event services that were introduced by the Integration Framework which are relevant to

Vendor Bundle’s development. Standard Java notation is used to describe method returns and

arguments. This documentation is not meant to be very extensive and avoids going into much

detail regarding implementation. It should be viewed as more of a general introduction and

assumes that the Vendor Bundle developer has some knowledge of Wisedome’s workflows,

which are not mentioned on this thesis.

A.I ReturnObject Class

A.I.i Request Status

The request status is used to describe the status of a request made by the Wisedome

application.

The class methods that handle the request status are:

 void setRequestStatus(int requestStatus) – used to set the request status of a

ReturnObject.

 int getRequestStatus() – used to get the request status of a ReturnObject.

 String getRequestString() – returns a String whose content illustrates the current

Request Status of a ReturnObject.

 boolean isSuccessful() – this method returns ―true‖ in case the request status has been

set to ―successful‖.

The request statuses are defined by integers that are declared within the ReturnObject class.

The following request statuses are supported:

 RS_SUCCESSFUL - The Request was handled successfully.

 Health Monitoring Sensor Suppliers Integration

108

 RS_UnknownID - The PatientID provided is not known.

 RS_DeviceNotReady - The device is not capable of performing the request at this

moment.

 RS_InvalidParameter - The command provided is not valid.

 RS_InvalidValue - The argument value provided is not valid.

 RS_NetworkDown – Communication Failure.

 RS_NoDevices - No devices are available.

 RS_InvalidResponse - The gateway / device returned an unexpected response.

 RS_FailedSetupDevice - Failed to perform device setup workflows necessary to satisfy

the request.

 RS_NotSupported - the method is not supported by the current vendor.

 RS_InvalidID - the provided ID is known, but not valid at this point.

A.I.ii Return Data

The ReturnObject class supports the returning of following types of data:

 Double – Double is a numerical type of data, supported by a variable belonging to the

fundamental Java data type ―double‖.

 String – A string of text.

 Boolean – A boolean value.

 State – A pre-defined integer that give information about a particular state. The

supported states are:

o STATE_BATTERY_OK – Reports that the device’s battery level is normal.

o STATE_BATTERY_LOW – Reports that the device’s battery level is low.

o STATE_BATTERY_DISCHARGED – Reports that the device’s battery is

discharged.

o STATE_BATTERY_CHARGING – Reports that a device in a charging state.

o STATE_DEVTYPE_CAREGIVER – Reports that the device is a caregiver

device

 Health Monitoring Sensor Suppliers Integration

109

o STATE_DEVTYPE_CHESTBAND- Reports that the device is a sensor of the

type chest-strap.

o STATE_DEVTYPE_BRACELET – Reports that the device is a sensor of the

type bracelet.

o STATE_EMPTY – This should be used whenever there are no states to report.

 Array – This type of data is used to return an array of other types of data. It is

supported by the java.util.List class.

 Hashtable – This type of data is used to return a hashtable and is supported by the

java.util.Hashtable class.

Each of the types of data described above is supported by get and set types of methods,

which allow Vendor Bundle developers to manipulate the contents of the ReturnObject.

There are also hasDataType methods for each data type that allow developers to test if a

ReturnObject contains a given data type (hasDouble or hasArray are examples of these).

A.II Vendor Service

This section describes the Vendor Service interface and explains what is expected from

each method that should be implemented. Every method shall return a ReturnObject with the

appropriate request status. In case a method is not supported by a given Vendor Bundle, the

request status shall be returned as ―RS_NotSupported‖. In case a Vendor Bundle is incapable

of maintaining the state of the currently assigned patient for every device, it should use the

Database service to seek that information.

A.II.i ReturnObject assignDevice(int personID, boolean isPatient)

This method handles device assignment. A device is assigned to a person with the ID

personID, which is a patient if the Boolean ―isPatient‖ is true or a caregiver if it is false. An

assigned device should be active and ready to sent events to Wisedome.

 Health Monitoring Sensor Suppliers Integration

110

This method shall return a ReturnObject containing a String data type with the serial of

the device that was assigned to the person, which should match the one’s defined in the

sensor’s table of Wisedome’s database.

A.II.ii ReturnObject unassignDevice(int personID, boolean isPatient)

This method handles device un-assignment. An unassigned device shall not send any

events to Wisedome. The arguments personID and isPatient perform similar roles to the ones

described in the method ―assignDevice‖. This method’s ReturnObject does not need to return

any kind of data.

A.II.iii ReturnObject isDeviceMuted(int personID)

This method returns a ReturnObject with Boolean type of data. In case a device

assigned to the person with the ID ―personID‖ has its sound disabled, the Boolean should be

set as ―true‖. Otherwise, the Boolean shall be set as ―false‖.

A.II.iv ReturnObject getHrMin(int personID)

This method shall return a ReturnObject with numerical type of data, containing the

current setting for the minimum permitted heart rate for the device assigned to the patient with

the ID ―personID‖.

A.II.v ReturnObject getHrMax(int personID)

This method shall return a ReturnObject with numerical type of data, containing the

current setting for the maximum permitted heart rate for the device assigned to the patient with

the ID ―personID‖.

 Health Monitoring Sensor Suppliers Integration

111

A.II.vi ReturnObject getFallThreshold(int personID)

This method shall return a ReturnObject with numerical type of data, containing the

current setting for the fall threshold for the device assigned to the patient with the ID

―personID‖.

It returns an integer between 0 (Low) and 40 (High). The normal values are:

0 Low

0 Medium

40 High

It is possible to return any integer value between 0 and 40. The Wisedome application

should be able to handle values in-between.

A.II.vii ReturnObject isButtonAlarmEnabled(int personID)

This method returns a ReturnObject with Boolean type of data. In case a device

assigned to the person with the ID ―personID‖ has been set to be capable of raising Button

alarms, the Boolean should be set as ―true‖. Otherwise, the Boolean shall be set as ―false‖.

A.II.viii ReturnObject isHrAlarmEnabled(int personID)

This method returns a ReturnObject with Boolean type of data. In case a device

assigned to the person with the ID ―personID‖ has been set to be capable of raising Heat Rate

alarms, the Boolean should be set as ―true‖. Otherwise, the Boolean shall be set as ―false‖.

 Health Monitoring Sensor Suppliers Integration

112

A.II.ix ReturnObject isFallAlarmEnabled(int personID)

This method returns a ReturnObject with Boolean type of data. In case a device

assigned to the person with the ID ―personID‖ has been set to be capable of raising fall alarms,

the Boolean should be set as ―true‖. Otherwise, the Boolean shall be set as ―false‖.

A.II.x ReturnObject getPendingAlarms(int personID)

This method shall return a ReturnObject with numerical type of data, the number of

pending alarms that are set on a caregiver device assigned to the person with the ID

―personID‖.

A.II.xi ReturnObject muteDevice(int personID, boolean muteDevice)

If the Boolean muteDevice is set to be true, this method should silence the device

assigned to the person with the ID ―personID‖. Otherwise, the method should un-silence the

device. This method is not required to return any type of data.

A.II.xii ReturnObject setHrMin(int personID, int hrMin)

This method should set the minimum permitted heart rate on the device assigned to the

patient with the ID ―personID‖ to the value of the argument‖ hrMin‖. This method is not

required to return any type of data.

 Health Monitoring Sensor Suppliers Integration

113

A.II.xiii ReturnObject setHrMax(int personID, int hrMax)

This method should set the maximum permitted heart rate on the device assigned to the

patient with the ID ―personID‖ to the value of the argument‖ hrMax‖. This method is not

required to return any type of data.

A.II.xiv ReturnObject setFallThreshold(int personID, int fdTh)

This method should set the maximum permitted fall threshold on the device assigned

to the patient with the ID ―personID‖ to a setting equivalent to the value of the argument

‖fdTh‖. The normal values are:

0 Low

20 Medium

40 High

It is possible to set any integer value between 0 and 40. The Vendor Bundle application

should be able to handle values in-between. This method is not required to return any type of

data.

A.II.xv ReturnObject setHrAlarmEnabled(int personID, boolean hrAlarm)

If the Boolean ―hrAlarm‖ is set to be true, this method should enable heart rate alarms

to be sent by the device assigned to the patient with the ID ―personID‖. Otherwise, the method

should unable the device to send such alarms. This method is not required to return any type of

data.

 Health Monitoring Sensor Suppliers Integration

114

A.II.xvi ReturnObject setFallAlarmEnabled(int personID, boolean fdAlarm)

If the Boolean ―fdAlarm‖ is set to be true, this method should enable fall alarms to be

sent by the device assigned to the patient with the ID ―personID‖. Otherwise, the method

should unable the device to send such alarms. This method is not required to return any type of

data.

A.II.xvii ReturnObject setPendingAlarms(int personID, int pendingAlarms)

This method should set the number of alarms pending on a caregiver device assigned

to the person with the ID ―personID‖ to the value of the argument‖ pendingAlarms‖. This

method is not required to return any type of data.

A.II.xviii ReturnObject requestHeartRate(int personID)

This method is used by Wisedome to request the current Heart Rate measured by the

device assigned to the patient with the ID ―personID‖. The heart rate value shall be returned

through a ProcessEvent service method: ProcessHeartRate (int ID, int value, Date timestamp).

A.II.xix ReturnObject getBatteryState(int personID)

This method is used by Wisedome to request the current Battery level of the device

assigned to the person with the ID ―personID‖. It should return a ReturnObject with the

appropriate state, as defined in the ReturnObject section.

 Health Monitoring Sensor Suppliers Integration

115

A.II.xx ReturnObject getDeviceSensorSerial(int personID)

This method is used by Wisedome to request the serial of the device assigned to the

person with the ID ―personID‖. It should return a ReturnObject with a string containing the

serial, in accordance to the device information stored in Wisedome’s database.

A.II.xxi ReturnObject getDeviceType(int personID)

This method is used by Wisedome to request the type of the device assigned to the

person with the ID ―personID‖. It should return a ReturnObject with the appropriate state, as

defined in the ReturnObject section.

A.II.xxii ReturnObject isDeviceLocked(int personID)

This method is used by Wisedome to query the state of the lock mechanism of the

device assigned to the person with the ID ―personID‖. It should return a ReturnObject with a

Boolean, which value is ―true‖ if the device is locked and ―false‖ if otherwise.

A.II.xxiii LocateDeviceRouterSerial(int personID)

This method should return a ReturnObject with a string containing the serial of the

router to which a given device is currently paired with. The serial should be in accord with the

information on Wisedome’s database.

 Health Monitoring Sensor Suppliers Integration

116

A.II.xxiv ReturnObject acknowledgeAlarm(int personID)

Wisedome uses this method to acknowledge all alarms currently active on the device

assigned to the patient with the ID ―personID‖. It is not required to return any type of data.

A.II.xxv ReturnObject cancelAlarm(int personID)

Wisedome uses this method to cancel all alarms currently active on the device assigned

to the patient with the ID ―personID‖. It is not required to return any type of data.

A.II.xxvi ReturnObject getRouterState(String routerSerial)

This method is used to know if the router with the serial ―routerSerial‖ is currently

communicable or not. It should return a ReturnObject with a Boolean set to ―true‖ in case the

router is communicable and ―false‖ if otherwise.

A.II.xxvii ReturnObject suspendDevice(int personID)

This method shall suspend the device assigned to the person with the ID ―personID‖. A

suspended device shall not raise any alarms but should continue to be assigned.

A.II.xxviii ReturnObject resumeDevice(int personID)

This method shall resume a previously suspended device assigned to the person with

the ID ―personID‖.

 Health Monitoring Sensor Suppliers Integration

117

A.II.xxix ReturnObject startECGStream(int personID)

This method is used to start acquiring an ECG stream for a patient, and store the values

in memory. The acquired values are returned through the method getECGStream. Wisedome

may not make multiple calls for a startECGStream, for the same patient: calling the

startECGStream more than once without calling the stopECGStream in between, will cause

the method to return a ReturnObject with InvalidID request status. A hashtable shall be used to

associate each ECG value with a timestamp.

A.II.xxx ReturnObject stopECGStream(int personID)

This method is used to inform the Integration driver to stop acquiring and storing ECG values

from the device assigned to the person with the ID ―personID‖. Calling this method will return

all the values available in memory for the provided patient, through a ReturnObject returning a

hashtable that associates each value with a timestamp. Invoking this method without

previously calling startECGStream will return an InvalidID request status.

A.II.xxxi ReturnObject getECGStream(int personID)

This method is used to retrieve the ECG values currently stored in memory after calling the

startECGStream method. Values are returned through a ReturnObject containing a hashtable

that associates each value with a timestamp. Invoking this method without previously

invoking the method startECGStream will result in a ReturnObject with InvalidID request

status.

 Health Monitoring Sensor Suppliers Integration

118

A.II.xxxii ReturnObject getECGValues(int personID, int numberOfValues)

This method returns a ReturnObject with a List containing a total of

―numberOfValues‖ ECG values for a given patient with an ID ―personID‖. It’s possible to

invoke this method after calling startECGStream but it is not necessary since they are

independent methods. If this method is called while there is a request for ECG Stream values

(initiated with a startECGStream method), the ECG Stream will contain the values returned by

this method, but associated with a timestamp.

A.III Service Provider

The service provider merely offers two methods, getDatabaseService and

getProcessEventService, which should be used to retrieve the Database and Process Event

Services.

A.IV Database Service

A.IV.i String getConfigFilePath()

This method returns the system path where the configuration files are stored, and

should be used to retrieve the Vendor Bundle’s configuration file.

A.IV.ii RetPatientSettings personImp_getPatientSettings(int personID)

This method returns a RetPatientSettings object, exported by the Wisedome_patients

bundle, which contains relevant patient information stored in the Wisedome’s database. The

object contains information like the currently set fall sensibility and heart rate values.

 Health Monitoring Sensor Suppliers Integration

119

A.IV.iii int personImp_getUserType(int personID)

This method returns an integer that indicates the type of the user with the ID personID.

The integer might identify an independent, dementia or dependent patient, as well as a nurse,

TAP or administrator. The possible values of the returned integer are defined in the

PersonsImplementation class of the Wisedome Bundle.

A.IV.iv String getVendorName(int vendorType)

This is used to retrieve a String containing the Vendor Name correspondent to the

provided vendorType, as defined in Wisedome’s database.

A.IV.v List<Integer> getSensorPersonsID (String sensorSerial)

This method returns a list with the ID’s of the persons associated with the device that

has the serial ―sensorSerial‖.

A.IV.vi String getPersonSensorVendor(int personID)

This method returns a String containing the Vendor Name for the vendor of the device

associated to the person that possesses the ID ―personID‖.

A.IV.vii String getPersonSensorSerial(int personID)

This returns a String containing the Serial of the device currently associated to the

person with the ID ―personID‖.

 Health Monitoring Sensor Suppliers Integration

120

A.IV.viii void changeRouterState(String routerSerial, boolean state)

This method is used to directly change the database state of the router with the serial

―routerSerial‖. The Boolean ―state‖ is used to define if the router is communicable (true), or if

the router is incommunicable (false).

A.IV.ix void createVendorDownEvent(String vendor)

Invoking this method will create a ―vendor down‖ event on Wisedome’s database. This

is used by the Main Integration Bundle to inform Wisedome that a vendor that was supposed

to auto-start did not initiate properly, or that a vendor that was available suddenly became

unavailable. The String ―vendor‖ corresponds to the Vendor Name.

A.IV.x void silenceVendorDownEvent(String vendor)

This method should be invoked to ―clean‖ a previously created ―vendor down‖ event,

if the vendor in question has become available. The String ―vendor‖ corresponds to the

Vendor Name.

A.IV.xi boolean isPersonDeviceMuted(int personID)

This method checks the database for the current muted status of a device associated

with the person with the ID ―personID‖. The Boolean returned has the value ―true‖ in case the

device is muted or ―false‖ if the device is not muted. Please note that this is the value existent

on Wisedome’s database and might not be in sync with the actual state of the device.

 Health Monitoring Sensor Suppliers Integration

121

A.IV.xii boolean isPersonDeviceSuspended(int personID)

This method checks the database and returns if the device associated with the person

with the ID ―personID‖ is suspended or not. The Boolean returned has the value ―true‖ in case

the device is suspended or ―false‖ if the device is active. Please note that this is the value

existent on Wisedome’s database and might not be in sync with the actual state of the device.

A.IV.xiii public boolean isPersonDeviceCharging(int personID)

This method checks the database and returns if the device associated with the person

with the ID ―personID‖ is currently charging or not. The Boolean returned has the value ―true‖

in case the device is charging or ―false‖ if the device is not charging. Please note that this is

the value existent on Wisedome’s database and might not be in sync with the actual state of

the device.

A.IV.xiv boolean isPersonDeviceDischarged(int personID)

This method checks the database and returns if the battery of the device associated

with the person with the ID ―personID‖ is discharged or not. The Boolean returned has the

value ―true‖ in case the battery is discharged or ―false‖ if the battery is not discharged. Please

note that this is the value existent on Wisedome’s database and might not be in sync with the

actual state of the battery.

A.IV.xv boolean isPersonDeviceUnlocked(int personID)

This method checks the database and returns if the device associated with the person

with the ID ―personID‖ has its locking mechanism opened or not. The Boolean returned has

the value ―true‖ in case the locking mechanism is opened or ―false‖ if the locking mechanism

 Health Monitoring Sensor Suppliers Integration

122

is closed. Please note that this is the value existent on Wisedome’s database and might not be

in sync with the actual state of the locking mechanism.

A.V Process Event Service

A.V.i void ProcessVendorStateChange(List<String> vendorlist)

This method is used by the Main Integration Bundle, in order to update the list of

available vendors to Wisedome.

A.V.ii void ProcessBatteryStateChange(int ID, int stateValue, Date

timestamp)

This method should be used whenever the state of the battery of a device changes. The

device shall be identified by its associated person’s ID, ―ID‖ and the state of the battery shall

be described by an integer, ―stateValue‖, defined in the ProcessEventService interface. The

event shall also be accompanied by a timestamp, which is comprised of a java.util.Date object.

A.V.iii void ProcessLockedStateChange(int ID, boolean isLocked, Date

timestamp)

This method should be used whenever the state of the locking mechanism of a device

changes. The device shall be identified by its associated person’s ID, ―ID‖ and the state of the

locking mechanism shall be described by a Boolean, ―isLocked‖, that should have the value

―true‖ if the device has been locked and false if the device has been unlocked. The event shall

also be accompanied by a timestamp, which is comprised of a java.util.Date object.

 Health Monitoring Sensor Suppliers Integration

123

A.V.iv void ProcessUnreachableStateChange(int ID, boolean isUnreachable,

Date timestamp)

This method should be used whenever the state of the network availability of a device

changes. The device shall be identified by its associated person’s ID, ―ID‖ and the state of the

network avaiability shall be described by a Boolean, ―isUnreachable‖, that should have the

value ―true‖ if the device became not communicable and false if the device became

communicable. The event shall also be accompanied by a timestamp, which is comprised of a

java.util.Date object.

A.V.v void ProcessUserDeviceReplacement(int ID, String newDeviceID,

Date timestamp)

This method shall be used to notify Wisedome whenever a caregiver tries to change a

person’s currently associated device to a new one, by performing a specific button sequence.

The device shall be identified by its associated person’s ID, ―ID‖ and serial of the new device

shall be passed on as a String, ―newDeviceID‖. The event shall also be accompanied by a

timestamp, which is comprised of a java.util.Date object.

A.V.vi void ProcessRouterStateChange(String ID, boolean routerState, Date

timestamp)

This method should be used whenever the state of a network router changes. The

router shall be identified by its serial, in the String ―ID‖, and the state of the router availability

shall be described by a Boolean, ―routerState‖, that should have the value ―true‖ if the router is

active and communicable and false if the router became is inactive or incommunicable. The

event shall also be accompanied by a timestamp, which is comprised of a java.util.Date object.

 Health Monitoring Sensor Suppliers Integration

124

A.V.vii void ProcessAlarmEventButton(int ID, String routerSerial, Date

timestamp)

This method is used to report a button alarm, generated by a sensor device, to

Wisedome. The device shall be identified by its associated person’s ID, ―ID‖ and the router

the device is currently communicating with shall be identified by its serial, in the String

―routerSerial‖. The event shall also be accompanied by a timestamp, which is comprised of a

java.util.Date object.

A.V.viii void ProcessAlarmEventFall(int ID, String routerSerial, Date

timestamp)

This method is used to report a fall detection alarm, generated by a sensor device, to

Wisedome. The device shall be identified by its associated person’s ID, ―ID‖ and the router

the device is currently communicating with shall be identified by its serial, in the String

―routerSerial‖. The event shall also be accompanied by a timestamp, which is comprised of a

java.util.Date object.

A.V.ix void ProcessAlarmEventHR(int ID, String routerSerial, Date

timestamp, int value)

This method is used to report a heart rate alarm, generated by a sensor device, to

Wisedome. The device shall be identified by its associated person’s ID, ―ID‖ and the router

the device is currently communicating with shall be identified by its serial, in the String

―routerSerial‖. The heart rate value that was in the origin of the alarm shall be passed as an

integer, ―value‖. The event shall also be accompanied by a timestamp, which is comprised of

a java.util.Date object.

 Health Monitoring Sensor Suppliers Integration

125

A.V.x void ProcessAlarmEventLocation(int ID, String routerSerial, Date

timestamp)

This method is used to report a location alarm, generated by a sensor device, to

Wisedome. The device shall be identified by its associated person’s ID, ―ID‖ and the router

the device is currently communicating with shall be identified by its serial, in the String

―routerSerial‖. The event shall also be accompanied by a timestamp, which is comprised of a

java.util.Date object.

A.V.xi void ProcessAlarmEventCancel(int ID, String routerSerial, Date

timestamp)

This method is used to report a cancelation of an alarm to Wisedome. The device in

question shall be identified by its associated person’s ID, ―ID‖ and the router the device is

currently communicating with shall be identified by its serial, in the String ―routerSerial‖. The

event shall also be accompanied by a timestamp, which is comprised of a java.util.Date object.

A.V.xii boolean ProcessAlarmAckRequest(int patientID, int careTakerID, Date

timestamp)

This method is used to report an alarm acknowledgement request to Wisedome. The

device in question shall be identified by its associated person’s ID, ―ID‖ and the router the

device is currently communicating with shall be identified by its serial, in the String

―routerSerial‖. The event shall also be accompanied by a timestamp, which is comprised of a

java.util.Date object. In case the processing of the acknowledgement is successful, a Boolean

is returned with the value ―true‖, otherwise, the Boolean returned has the value ―false‖.

 Health Monitoring Sensor Suppliers Integration

126

A.V.xiii void ProcessDeviceRouterChange(int ID, String routerSerial, Date

timestamp)

This method should be used whenever a device changes the router that is currently

using for communication. The device shall be identified by its associated person’s ID, ―ID‖

and the router the device is now using shall be identified by its serial, in the String

―routerSerial‖. The event shall also be accompanied by a timestamp, which is comprised of a

java.util.Date object.

A.V.xiv public void ProcessHeartRate(int ID, int value, Date timestamp)

This method is used to report a heart rate value to Wisedome. This is true for both

heart rate values requested by the requestHeartRate method and periodic values. The device

that measured the heart rate shall be identified by its associated person’s ID, ―ID‖ and the

heart rate value shall be passed on as an integer, ―value‖. The event shall also be accompanied

by a timestamp, which is comprised of a java.util.Date object.

A.V.xv void ProcessSuspendDevice(int patientID, int careTakerID)

This method is used to report a device suspension request to Wisedome. The device to

be suspended shall be identified by its associated person’s ID, ―ID‖ and the caregiver device in

the origin of the request shall be identified by its associated person’s ID, ―careTakerID‖.

A.V.xvi void ProcessResumeDevice(int patientID, int careTakerID)

This method is used to report a device resume request to Wisedome. The device to be

resumed shall be identified by its associated person’s ID, ―ID‖ and the caregiver device in the

origin of the request shall be identified by its associated person’s ID, ―careTakerID‖.

 Health Monitoring Sensor Suppliers Integration

127

Annex B Emails

B.I Exchanged Email Regarding ANT Device Profiles

B.I.i Email Sent to ANT

From: David Nunes

Sent: December 4, 2009 7:32 AM

Subject: Questions about ANT+ Profiles

Greetings,

My name is David Nunes, and I am researching ANT wireless technology as a possible

integration solution for a HealthCare Monitoring solution.

So far, I have found ANT a very interesting solution, but I would like to know more

about the device profiles specified by the ANT+ Alliance. By researching your website, I have

found that currently, ANT+ has defined profiles that cover Heart Rate Monitors, Temperatures

sensors, Weight Scale and others.I am interested in profiles that could prove usefull in a

HealthCare monitoring solution. Is there any work being done in profiles regarding ECG

monitors and Fall detection.

I would also like to know how interoperability between sensors is achieved. How well

defined the data payload between the devices is? Do these profiles guarantee interoperability

at the same level as other possible solutions, such as ZigBee with IEEE 11073?

Finally, I would be interested in knowing if there are any sensor suppliers within the

ANT+ Alliance that use common health device integration standards such as the IEEE 11073-

 Health Monitoring Sensor Suppliers Integration

128

20601-2008 -Personal health device communication, implemented using an ANT+ Wireless

solution.

Thank you for your time,

David Nunes

B.I.ii Response from ANT

Hello David,

Thank you for your interest in ANT technology and the ANT+ Managed Network as

solutions to your Health Care Monitoring solution.

There are many device profiles that are defined by ANT+ for health sensors as well as some

that are in development, these are:

Heart Rate – Gives BPM and R-R values, ECG is in early development at the moment

Temperature Sensor – Gives temperature and other environmental parameters

Weight Scale – This includes body composition parameters

Blood Pressure – Completing development soon

Activity Monitor – In active development

Blood Glucose – In early development

The device profiles that are created by the ANT+ Design Team are driven by the needs of the

members of the ANT+ Alliance. So if you were to join the ANT+ Alliance and required a

profile to be created that did not currently exist, a process could be started to create the

necessary profile to help you meet your goals.

For fall detection specifically, we have a member of the ANT+ Alliance that has created a fall

detection sensor and uses ANT as its radio technology. They are in the process of

 Health Monitoring Sensor Suppliers Integration

129

commercializing their product and we will create a profile for this sensor when they are ready

for commercial implementation.

In answer to your question ―I would also like to know how interoperability between

sensors is achieved‖: The ANT+ device profiles define how sensors operate, the topology,

channelization, and data payload of the wireless connection is for each specific sensor. This

allows collection devices (PDA, cell phones, watches, laptops, etc.) to communicate with

these devices by adhering to the profiles regardless of the manufacturer of the specific sensor.

All of the ANT+ Device Profiles that deal with health and related data sets have been carefully

developed to ensure that the necessary data fields are present to allow for the collection

devices to map the data from the optimized ANT+ format into possible other XHR formats,

with specific reference to 11073-20601 compatibility. This relieves the sensor manufacturers

from the additional overhead of the 11073 standard which cannot be run on an ULP (Ultra

Low Power) device, but maintains compatibility at the collection device level.

I hope that this answers your immediate questions. I have attached the ANT+ license

agreements for your convenience. There are two licenses, the Product Developer License

gives you access to the ANT+ Device profiles and other documentation necessary for device

development. The Commercial Product License provides the proper branding and other

guidelines to allow for commercially deployed products.

If you have any further questions about ANT, ANT+, or the licensing, please do not

hesitate to contact me.

Thanks,

Dallin Doney

Business Development Manager – Wireless

 Health Monitoring Sensor Suppliers Integration

130

Annex C Project’s Gantt Diagram

