
Self-Adaptive System Case-Study of
Architecture-Based Software Reliability

João M. Franco
University of Coimbra, Portugal

jmfranco@dei.uc.pt

Abstract

In the last two decades different methods to assess reli-
ability from an architecture-based system were proposed.
Surveys and systematic reviews done in the last decade,
summarize those methods and provide information about
their applicability and suitability. However, those surveys
and reviews also identify several shortcomings that today
still exist in the architecture-based reliability research. The
lack of studies applied to real world scenarios and the
nonexistence of a common case-study used to compare dif-
ferent methods, are important and unsettle reliability short-
comings. As a result, they lead to a poor method validation
and to several questions that still need to be answered.
We try to address some of these shortcomings by applying
our work to a real case-study and compare our predicted
reliability values with the ones extracted from the real sys-
tem. In addition, we apply our method to a self-adaptive
system to understand the evolution of an architecture which
its major quality requirement is reliability.

1. Introduction and Related Work

Reliability has been widely considered, tested and sev-
eral methods have been presented to address its prediction
on the software architecture level. Several studies address
the reliability assessment from a software architecture de-
scription [1–4]. Among the firsts to propose architecture
reliability modeling using Markov chains was Cheung [5]
and several surveys were presented since then [6–9]. Ac-
cording to these surveys, there are important shortcomings
on the current state-of-the-art research which should be con-
sidered in future research:

• Lack of automated processes to assess and analyze the
architecture;

• Lack of support to account with architectural styles
(e.g., fault-tolerant, parallelization or call-and-return)
in reliability prediction;

• Assumption that reliability and usage profile values are
known a priori;

• Poor method validation.

In previous studies [10, 11] we addressed the two firsts
shortcomings by applying an automated reliability predic-
tion and a sensitivity analysis from an architecture specifi-
cation. Our approaches took into consideration several ar-
chitectural features, such as the system usage profile, com-
ponents’ reliabilities and different architectural styles. The
main goals were to predict reliability in an early phase, sup-
port architectural evolution and discard any manual activity
regarding reliability prediction and analysis. As a result, our
approaches guide architects on initial design decisions and
help to avoid, prevent and detect undesired or infeasible ar-
chitectural redesigns which could result in a loss in overall
system reliability.

However, our work, as well as most of other studies on
this topic, have some limitations which are reflected in the
last two shortcomings. In particular, proposed methods are
most often applied to made-up examples with a poor bind-
ing to real world scenarios. Reliability and usage profile
values do not have real substantiation, in part because soft-
ware architecture is still in its infancy and there are no pub-
lic available architectures to test the proposed methods on
real systems. The deficit of real world case-studies leads to
a poor method validation in which authors are constrained
to compare their results with the already accepted made-up
examples or they have to pull up their sleeves and get a way
of obtaining this information. Such examples of reliabil-
ity studies applied to real world applications are Gokhale et
al. [12] and Goseva-Popstojanova et al. [13]. The for-
mer applied their method to the SHARPE application and
the latter applied to the C programming language. In both
studies, reliability values were extracted using regression
test suites from two different versions of the application and
their respective software architectures were created by their
authors for the purpose of the study.

This work intends to address the limitations identified
above by applying different reliability prediction methods



to a case study. For this, we will use a real scenario with
values extracted from the system which would let us com-
pare the predicted reliability values with the real ones. In
addition, the case-study will be under a self-adaptive sys-
tem which will provide us answers to the unsettling research
questions presented in Section 2.
Section 3 explains how our experimentation will be con-
ducted and Section 4 concludes the paper.

2 Research Questions

The use of a self-adaptive system together with a real
case-study in the architecture-based reliability prediction
topic raises the following research questions:

• Are the reliability prediction methods accurate
enough? Several reliability prediction methods have
been presented [7], but after ten years the question still
remains the same: Are they suitable to express the reli-
ability from a real system? In this work we plan to per-
form a comparison between the predicted values with
the real ones obtained from the deployed system.

• Can the initial ”guesstimated” values from expert
knowledge be used to predict reliability in an early
phase without any development has been done? Sev-
eral studies [1–4, 10, 14–17] address reliability predic-
tion in an early phase of the software development life-
cycle. However, there is the recurring problem of lack
of information in such early phases, without any pro-
duced code or a deployed system is hard to obtain an
estimative of the values. Some of them [14–17] ad-
dress this problem with a guess-estimation of these
values from the expert knowledge of architects and de-
velopers. But, are these values meaningful? We plan
to contact two developers and the maintenance team of
our case-study in order to obtain guess-estimated val-
ues, according to the defined failure behavior, for both
reliability and usage profile and compare them to the
ones obtained from the real system.

• How the system will adapt itself over the time? We
expect that the system will face an initial period in
which it will adapt itself in order to be the most reliable
as possible. This adaptation process will be done by
rerouting request to servers that are more reliable than
others and by adding more servers. However, a highly-
reliable server under a high load of requests may take
more time to process those requests. Hence, if the re-
sponse time of a request exceeds the reasonable time to
be processed, it may be addressed as unsuccessful (al-
though the response is correct) and automatically the
reliability of that server will be decreased. As an illus-
tration is the example of requesting a page to a web-
server. If it takes an excessive time to load a web-page,

the user may consider it unreasonable and he will prob-
ably be less confident on that server, considering it as
unreliable.

3. Proposed Approach

In this work we will use as a case-study a web-
based news provider called Znn.com. This case-study will
be subject to adaptation by applying Rainbow [18], an
architecture-based self-adaptive system. The following sub-
sections present in a higher level of detail both the Znn.com
and Rainbow.

3.1 Znn.com Scenario

Znn.com diagram is depicted in Figure 1 and it con-
sists on a typical infrastructure for a news websites like
CNN.com. Znn.com has a tiered architecture with a set of
web-servers that serve content (graphical and textual) from
backend databases to clients through a front-end presenta-
tion logic. In addition, Znn.com uses a load balancer to
reroute the requests from the client to a pool of replicated
servers. The number of available servers will depend on the
amount of workload to be processed by the system.

Client 1

Client 2

WebServer
1

WebServer
2

WebServer
3

Load-
Balancer DataBase

Figure 1: Znn Diagram

To perform reliability prediction and analysis in the
system we need to extract a number of parameters from
Znn.com. The required parameters are following detailed.

• Reliability of every component in the system, except
Clients. The failure behavior adopted in this work will
be the number of requests that are successfully served
inside a time window of two seconds. The reliability
value will be computed from the number of success-
ful resolved requests over the total number of requests
performed by the client.

• Time that each request takes to be resolved. We plan to
introduce a timestamp in each request when they arrive
to the system for reliability calculation purposes. Af-
ter they have been processed by the web-servers, they



pass through the load-balancer which uses the current
timestamp and the one attached to the packet to calcu-
late the time that it took to be resolved.

• System usage profile (also known as operational pro-
file). In order to calculate an accurate reliability value
we need to know how the system works and how many
times a particular component is invoked. For this, we
need to keep track of the system usage profile and,
since this is a simple system, we only need to know
the number of requests that are served between the dif-
ferent web-servers.

In order to extract those parameters from the system we
will apply the method presented by Casanova et al. [19]. In
particular, we obtain the system transactions which have the
required information about what components were involved
in the transaction and if it has failed or not.

3.2 Rainbow System

The Salehie et al. [20] presented a survey comparing
sixteen different self-adaptive software projects that are cur-
rently available. Rainbow was identified as the one that
addressed the highest number of self* properties: config-
uring, healing and optimizing. From the sixteen projects,
only two use the software architecture to adapt and Rain-
bow is identified as the best between both. Hence, we will
use Rainbow [18, 21], a software-architecture-based self-
adaptation tool, to self-adapt our system. Our case-study is
specified in an architecture which is described in the Acme
language. Rainbow will parse the architecture, evaluate the
system for reliability improvement and request adaptation
by picking the most suitable strategy. The adaptation pro-
cess will occur in distinct ways: by rerouting requests from
the load-balancer to higher-reliable servers, by adding or
removing web-servers depending on the requests demand
made to the system and by applying software rejuvenation
to web-servers if they present a high level of degradation.

4. Conclusions

In this paper we identified some research questions that
are yet to be solved by the research community and which
we devote our efforts to solve them. In addition, we present
a new approach that combines a real case-study, which al-
lows to extract real reliability and usage profile values, with
a self-adaptive system that seeks for the best architectural
strategy to obtain the highest system reliability.

We acknowledge that our approach still has some limi-
tations regarding the statistical significance results obtained
using a single case-study. One example is the verification of

the usefulness of the ”guesstimated” values in system relia-
bility prediction in early phases. Since these values are ob-
tained from human expert knowledge, they are independent
from a case-study to another and we cannot make definitive
conclusions. However, our study provides information if, in
this particular system, the ”guesstimated” values are close
to the real ones.

With this study we intend to make a step forward to find a
solution to the identified research questions and also, warn-
ing both practitioner and research communities to the short-
comings that still remain today.

References

[1] V. Cortellessa, H. Singh, and B. Cukic, “Early reliabil-
ity assessment of uml based software models,” in Pro-
ceedings of the 3rd international workshop on Soft-
ware and performance, ser. WOSP ’02. New York,
NY, USA: ACM, 2002, pp. 302–309.

[2] S. M. Yacoub, B. Cukic, and H. H. Ammar, “Scenario-
based reliability analysis of component-based soft-
ware,” in Proceedings of the 10th International Sym-
posium on Software Reliability Engineering, ser. IS-
SRE ’99. Washington, DC, USA: IEEE Computer
Society, 1999, pp. 22–.

[3] F. Brosch, B. Buhnova, H. Koziolek, and R. Reuss-
ner, “Reliability prediction for fault-tolerant soft-
ware architectures,” in Proceedings of the joint
ACM SIGSOFT conferenceQoSA and ACM SIGSOFT
symposiumISARCS on Quality of software architec-
turesQoSA and architecting critical systemsISARCS.
ACM, 2011, pp. 75–84.

[4] R. Reussner, “Reliability prediction for component-
based software architectures,” Journal of Systems and
Software, vol. 66, no. 3, pp. 241–252, Jun. 2003.

[5] R. Cheung, “A user-oriented software reliability
model,” IEEE Transactions on Software Engineering,
vol. 6, no. 2, pp. 118–125, 1980.

[6] A. Immonen and E. Niemelä, “Survey of reliability
and availability prediction methods from the view-
point of software architecture,” Software and Systems
Modeling, vol. 7, no. 1, pp. 49–65, Jan. 2008.

[7] K. Goševa-Popstojanova and K. Trivedi,
“Architecture-based approach to reliability assess-
ment of software systems,” Performance Evaluation,
vol. 45, no. 2, pp. 179–204, 2001.

[8] S. S. Gokhale, “Architecture-Based Software Relia-
bility Analysis : Overview and Limitations,” IEEE



Transactions On Dependable And Secure Computing,
vol. 4, no. 1, pp. 32–40, 2007.

[9] D. Pengoria, S. Kumar, and M. S. Se, “A Study on
Software Reliability Engineering Present Paradigms
and its Future Considerations,” Computing, 2009.

[10] J. Franco, R. Barbosa, and M. Zenha-Rela, “Au-
tomated reliability prediction from formal architec-
tural descriptions,” in Software Architecture (WICSA)
and European Conference on Software Architecture
(ECSA), 2012 Joint Working IEEE/IFIP Conference
on, aug. 2012, pp. 302 –309.

[11] J. M. Franco, R. Barbosa, and M. Z. Rela, “Relia-
bility analysis of software architecture evolution.” in
Latin-American Symposium on Dependable Comput-
ing (LADC) (to appear), 2013.

[12] S. Gokhale, W. Wong, K. Trivedi, and J. Horgan, “An
analytical approach to architecture-based software re-
liability prediction,” in Computer Performance and
Dependability Symposium, 1998. IPDS ’98. Proceed-
ings. IEEE International, sep 1998, pp. 13 –22.

[13] K. Goseva-Popstojanova, M. Hamill, and R. Perugu-
palli, “Large Empirical Case Study of Architecture-
Based Software Reliability,” in 16th IEEE Interna-
tional Symposium on Software Reliability Engineering
(ISSRE’05). IEEE, 2005, pp. 43–52.

[14] L. Cheung, R. Roshandel, N. Medvidovic, and L. Gol-
ubchik, “Early prediction of software component reli-
ability,” in Proceedings of the 30th international con-
ference on Software engineering. New York, New
York, USA: ACM, 2008, pp. 111–120.

[15] S. Gokhale, “Analytical models for architecture-based
software reliability prediction: A unification frame-
work,” Reliability, IEEE Transactions on, vol. 55,
no. 4, pp. 578–590, 2006.

[16] S. Gokhale and K. Trivedi, “Reliability prediction and
sensitivity analysis based on software architecture,” in
13th International Symposium on Software Reliability
Engineering, 2002. Proceedings. IEEE Comput. Soc,
2002, pp. 64–75.

[17] H. Hellebro, “Architecture-based reliability modelling
of software applications,” Ph.D. dissertation, Royal
Institute of Technology of Stockholm, Sweden, 2009.

[18] S. Cheng, Rainbow: cost-effective software
architecture-based self-adaptation. Pittsburgh,
PA, USA: Carnegie Mellon University, 2008, vol.
0389, no. May.

[19] P. Casanova, B. Schmerl, D. Garlan, and R. Abreu,
“Architecture-based Run-time Fault Diagnosis,” En-
gineering, no. September, pp. 13–16, 2011.

[20] M. Salehie and L. Tahvildari, “Self-Adaptive Soft-
ware: Landscape and Research Challenges,” ACM
Transactions on Autonomous and Adaptive Systems,
vol. 4, no. 2, pp. 1–42, May 2009.

[21] S.-W. Cheng and D. Garlan, “Stitch: A language
for architecture-based self-adaptation,” J. Syst. Softw.,
vol. 85, no. 12, pp. 2860–2875, Dec. 2012.


