
Automated reliability prediction from formal
architectural descriptions
João M. Franco, Raul Barbosa and Mário Zenha-Rela

University of Coimbra, Portugal
Email: {jmfranco,rbarbosa,mzrela}@dei.uc.pt

Abstract—Quantitative assessment of quality attributes (i.e.,
non-functional requirements, such as performance, safety or
reliability) of software architectures during design supports
important early decisions and validates the quality requirements
established by the stakeholder. In current practice, these quality
requirements are most often manually checked, which is time-
consuming and error-prone due to the overwhelmingly complex
designs. We propose an automated approach to assess the
reliability of software architectures. It consists in extracting a
Markov model from the system specification written in an Ar-
chitecture Description Language (ADL). Our approach translates
the specified architecture to a high-level probabilistic model-
checking language, supporting system validation and quantitative
reliability prediction against usage profile, component arrange-
ment and architectural styles. We validate our approach by
applying it to different architectural styles and comparing those
with two different quantitative reliability assessment methods
presented in the literature: the composite and the hierarchical
methods.

Index Terms—software architecture, reliability modelling,
model checking

I. INTRODUCTION

Software architecture is a discipline of software engineering,
supporting the specification of non-functional requirements
(e.g., performance, maintainability, security, reliability) dur-
ing the design stage of the software development cycle. At
this software development stage, architectural decisions will
largely influence the quality of the software and determine
if a particular non-functional requirement defined by the
stakeholder is complied by the system under construction.
Architecture Description Languages (ADLs) allow one to
model, represent and describe a software architecture, thereby
improving the artefacts used for communication among de-
signers, developers and stakeholders. ADLs, such as Acme [1],
Wright [2], AADL [3], support annotations to specify relevant
properties for analysis and validation of quality attributes.

As one of the key metrics for determining the quality of
software, reliability prediction is important to assure that a
particular architecture provides a correct and accurate proba-
bility of failure-free operation within a specified exposure time
interval.

Early reliability prediction in the software development life
cycle allows architects to reason about how the constituents
of the architecture will affect the overall system reliability. In
other words, the practitioners can improve, test and validate a
software architecture according to the components’ reliability,
architectural styles, component and connector arrangements

and the expected usage profile of the system. Reliability
assessment in an early design stage, also provides architects
with the assurance that a particular architecture meets the qual-
ity requirements established by the stakeholders, preventing
additional costs of fixing problems detected late during the
life cycle and architectural redesigns of the system.

In current practice, very few of the non-functional re-
quirements are automatically checked. This manual checking
activity is prone to errors and time-consuming due to the
overwhelming complex designs, as a result of a high number
of components, connectors and the interconnections between
them, as well as the possible architectural decisions. Therefore,
an automated verification, validation and testing of the quality
attributes of a software architecture is becoming more needed
for practitioners.

In this work, we present an approach that takes a de-
scribed architecture through an ADL, extracting automatically
a stochastic model. The models generated allow the architect
with validation and prediction procedures against a quality
attribute, the reliability. Our approach also supports experi-
mentation to inform the practitioner on what solution is the
most reliable. Particularly, the architect can test the system
by varying all the architecture constituents (e.g., architectural
styles) and their reliabilities, test and compare it by obtaining
the reliability output given by that set.

The contribution of this paper is the automated generation
of a stochastic model from an architecture specification. We
applied our approach to assess the reliability of the system by
generating a mathematical model which allows the architect
to validate, verify and test different architectural solutions
and select what best suits the stakeholders requirements. Four
degrees of freedom are at the disposal of the architect, namely
the architectural styles, component reliabilities, interactions
between components and the usage profile. Those degrees of
freedom can be applied to any architecture, letting practitioners
make use of them to find the most reliable solution.

We validate our approach through two different steps.
Firstly, we validate our reliability prediction method with the
results presented in previous researches by applying the same
scenarios [4], [5]. In the second step, we validate our approach
by including architectural styles to our reliability prediction
method and compare the results obtained from the methods
presented in Wang et al. [6] with ours.

This paper is organised as follows. Section 2 presents the
background and related work. Section 3 introduces the method



adopted in our approach and Section 4 describes the validation
process of our approach and compares the results obtained
with previous research studies. Finally, Section 5 reveals
the limitations and Section 6 discusses our insights about
automated reliability prediction before Section 7 concludes.

II. RELATED WORK

The main objective of reliability prediction (as the proba-
bility of failure-free operation in a given time span) based on
software architecture is to obtain an estimate of the system re-
liability. Several studies address the reliability assessment from
a software architecture description [7]–[10], among the firsts to
propose architecture reliability modelling using Markov chains
was Cheung [11] and several surveys were presented since
then [12]–[15].

According to these surveys and as depicted by Figure 1
the reliability assessment of software architectures can be
performed through three different approaches which combine
the architecture with the failure behaviour [13]: additive, path-
based and state-based models.

Additive
Model

Path-based
Model

State-based
Model

Composite Hierarchical

Architecture
+

Failure Behaviour

Fig. 1: Approaches to combine the architecture with the failure
behaviour

The former estimates the reliability using the component’s
failure data and does not consider explicitly the architecture
of the software. Hence, as the architecture arrangement, used
styles and its usage profile are the main focus in our reliability
assessment, the additive model will not be considered in this
paper.

The path-based model assesses the reliability of the system
according to the possible execution paths of the program,
which can be obtained experimentally, by testing or algorith-
mically. In other words, the reliability of each path is obtained
as a product of the reliabilities of the components along the
path. System reliability is calculated by averaging the path
reliabilities, which can be a drawback due to the presence
of loops in the architecture, providing only an approximate
estimation of the system reliability.

The latter, state-based model, assumes that the transitions
between states have a Markov property, meaning that at
any time the future behaviour of components or transitions
between them is conditionally independent of the past be-
haviour. In addition, the state-based models can be divided
into composite [11], [16] and hierarchical [4] methods. The
former combines the architecture of the system and the failure
behaviour of its components into a single model. The hierar-
chical method considers that the architecture and the failure

behaviour are detached, more specifically the architecture is
modelled by a semi-Markov process and the failure behaviour
can be modelled according to a Poisson process [17] or by a
time-independent failure rate [18].

Hierarchical methods are simpler to compute than the
composite ones. Since the failure behaviour is detached from
the architecture, the reliability prediction can be computed
directly by applying a mathematical formula, without re-
constructing and re-solving the combined models as in the
composite method. Therefore, the advantages of hierarchical
over composite are essentially about performance; however,
the major drawback of the hierarchical method is that it only
provides an approximation of the reliability, and hence the
reliability metrics obtained using this model are not as accurate
as the ones from composite models.

Above methods are theoretical mathematical models to
assess the reliability in an early software development stage
that are accurate enough to be applied to real case studies.
Popstojanova et al. [19] studied and tested the test suite
of the C compiler to prove the adequacy, applicability and
accuracy of software reliability models. The results obtained
show that the actual reliability differs only by less than 3%
from the theoretical methods, proving that both the composite
and hierarchical models are very accurate and applicable for
real case studies.

Over the years, common patterns of structural organization
of components and connectors have been identified and docu-
mented [20]. The so-called architectural styles are commonly
used in any architecture, but they impose constraints in relia-
bility assessment: each architectural style maps to a different
state-space model and it must be extended to reflect some
architectural choices, such as concurrency or fault-tolerance.
Abd-allah [21] identified the issues of reliability assessment of
architectural styles using reliability block diagrams and Wang
et al. [6] described the process of mapping a limited number
of architectural styles to state space models for reliability
analysis. Only few research studies address the reliability
analysis on architectural styles. More interest is needed on
this topic to analyse the reliability on important styles that
were not considered before, such as event-based or black-
board repository.

Martens et al. [22] present an approach to quantitatively
predict the performance, reliability and cost of a software
architecture. Their approach supports a multi-criteria genetic
algorithm to find the best trade-off between those quality
attributes. Regarding reliability analysis, they performed two
types of analysis: transform the software architecture into
an absorbing discrete-time Markov chain and a reliability
simulation to derive the probability of failure on demand.
Their work differs from ours in two aspects: they predicted
the system reliability by introducing hardware faults and they
did not take into consideration the different architectural styles
that may be used.



III. METHOD

Software reliability prediction based on architecture consists
of several distinct techniques. In this section, we discuss which
of these techniques have been applied to our approach and how
our translation procedure is performed. In addition, we explain
how the architectural styles have been translated and we state
what are the assumptions on which we rely.

A. Reliability Prediction Process

Several different approaches to perform reliability prediction
were described in previous research studies, targeting different
failure behaviours and different reliability assessment methods.
For this reason, we specify what are our assumptions and
how our approach is performed to the process of reliability
prediction.

1) Architecture and Module identification: Software ar-
chitecture defines the software behaviour in respect to the
manner in which the different modules interact between them.
A module is conceived as an independent component of the
system, which performs a clear and well-defined function in
the system. Moreover, a module may represent an available
service (such as a web-service), a function, a class or even a
group of classes that have the same functionality or the same
interfaces [13], [19].

2) Failure Behaviour: In our approach a failure may occur
during the control transfer between two different modules and
is known as the Probability Of Failure On Demand. The failure
behaviour of the modules is specified in terms of a percentage,
denoting the number of successful requests over the total
requests performed to that specific module. For instance, if
a module has 80% of reliability, it means that 8 out of 10
requests are well performed and the other 2 fail on some cause,
such as malformed input or other source of failure, including
hardware and software failures.

To assure that the architecture complies the reliability re-
quirements, the reliability of each component can be estimated
by giving reliability ranges for each component in the design
phase or can be obtained using the failure data collected during
the testing and operational phases of a previous implemented
component.

3) Combining the architecture with the failure behaviour:
As stated in Section II, the composite model from the state-
based approach is the most accurate for reliability prediction
when compared to other solutions. Therefore, our approach
uses the composite model through the generation of an ab-
sorbing DTMC (Discrete-Time Markov Chain), where we add
two absorbing states C and F, which represent the correct
output and the failed one, respectively.

Our approach acts in accordance to the following assump-
tions:

• Every software component can fail. Each module that is
mapped from the architecture to the mathematical model
has a direct edge to the absorbing state F, which is
weighted by its probability of failing (i.e., one minus the
assigned reliability to the component).

• The failures are independent between software compo-
nents. Components in a software system can be viewed as
logically independent modules, which can be developed
and tested independently from each other [4], [5].

• The transfer of control among modules follows a Markov
Process. The transition probability from one component
to another is determined through the product of the
reliability of that component with the estimated usage
profile of the system. Therefore, the control transition is
independent of the past history of the system and depends
only upon the current state, following the memoryless
property of a Markov chain [23].

• System reliability is the probability of reaching the state
C. The computation of the system reliability is performed
through the probability of transit between all the compo-
nents in the system and reaching the absorbing state C,
which exhibits the correct behaviour of the system or
the probability of failure-free of every component in the
system.

B. Translation Process

We refer to translation process as the procedure of taking
as input a system description in an ADL format and generate
automatically a mathematical model, exhibiting the behaviour
and the control flow of the system. In particular, we exploit
ADL annotations by extending architectural design entities
with relevant information for architecture design and analysis
[24]. Our approach supports the following annotations to build
a complete model of the system:

• Specification of the control flow of the system. The
architect can specify the flow of transitions that are being
held from a component to another, by using annotated
ports to distinguish between output and input transition.

• Identification of architectural styles used in the system.
The identification of what styles are being used in the
architecture is a requirement for a faithful translation
from the architecture to the mathematical model.

• Assignment of system usage profile. This can be achiev-
able by specifying a transition probability annotation to
a connector, identifying the usage profile of the system.
For each component, all its transition probabilities must
sum up to one.

• Reliability specification for each one of the components
in the system. Each component must be annotated with a
probability of failure on demand, which will quantify its
reliability value.

The translation process is illustrated by Figure 2. It can be
observed that our approach parses the ADL file into an inter-
mediate representation of the constituents of the system along
with the proper annotations. The intermediate representation
allows any ADL that complies with the ISO/IEC/IEEE 42010
[25] standard to be parsed and analysed. We have successfully
used Acme, although other ADLs may be target of future
work.

After the file has been parsed, our application translates the
architecture by building a mathematical model in a high-level



Parser Translator

Input

Prism
File

Generate

ADL File

Annotations

Architectural
Constituents

Prism
Tool

Loaded into

Report

Fig. 2: Translation Process Workflow

formal language, which can be loaded into the probabilistic
model checking tool, Prism [26].

Prism allows to perform three types of analysis: verification,
simulation and experimentation. The verification process al-
lows testing the correctness of the model, the absence of dead-
locks and provides the reliability value of a single execution
without testing it for the occurrence of loops. Regarding the
simulation process, Prism allows to generate a large number
of random paths through the model, evaluating each one of
the paths, and using this values to generate an approximate
result.

It is also possible to make experimentations on Prism by,
for instance, varying the components’ number or their reliabil-
ities. Experimentations in Prism are represented by graphical
visualizations, providing insights to the architects about what
is the test suite that best fits the stakeholder requirements.

C. Architectural Styles

Architectural styles, also known as architectural patterns, are
well-documented solutions to commonly occurring problems.
In addition, the application of these styles may exhibit known
quality attributes, so architects may use one particular style to
solve performance or availability problems [27], [28].

In our approach we used the same architectural styles
presented by Wang et al. [6], in order to compare and validate
our approach. We shall now describe each one of the styles
and how the translation process was performed.

1) Batch-sequential: In the batch-sequential style, the com-
ponents are executed in a sequential order, therefore, only one
component is executed at any instance of time. This style can
be modelled as shown in Figure 3, where s1, s2, ... , sk are the
mapping states from the software components and represent its
execution. Upon the completion of their execution, the control
is transferred to one of its following components. If there is
more than one component to pass the control to, the selection
is made through the transition probability from the state i to
state j. This probability corresponds to the estimated usage
profile of the system, denoted by Pi,j and summing up to one
for each state.

The absorbing states C and F, express the correct and the
failed output, respectively. Each state has a probability of
failing, so there is a non-null probability of transit to the F
state, which is equal to one minus its reliability value, denoted
by R1, R2, ... , Rk. The system reliability is computed from
the transitions across all the states and reaching the correct
output state, the C state (probability of failure-free operation).

S1 S2

S3

S4R2 * P2,4

R2 * P2,3

R1 * P1,2

R3 * P3,4

F

C

1 - R1 1 - R2

1 - R3

1 - R4

R4

Fig. 3: Batch-sequential style state model

2) Parallel and Pipe-filter: Parallel and pipe-filter styles
are commonly used to model systems that exhibit concurrent
executions to improve performance. In these styles, the work
is partitioned and each component works on a small subtask
to complete a larger task. Wang et al. joined these two
styles, because they both share the same behaviour, although
they differ on the processing environment. The parallel style
assumes multi-processor while the pipe-filter is usually applied
to a single processor.

The state space model is depicted in Figure 4, where
architectural components that represent a single execution are
mapped to states s1 and s3, in the same way as the batch-
sequential style. The inherent concurrent executions to the
parallel and pipe-filter styles are mapped to different states,
as shown by states s21, s22, ... , s2k. These states are wrapped
in the s2 state, which is responsible for the synchronization
process of when a transition to these states occur and when
the concurrent executions of all parallel states are completed.

In case of failure of one of the concurrent states, the
computation of the subtask will not be completed and the
system will go into a failed state.

3) Fault-tolerance: A fault-tolerance style may be applied
to a system in order to obtain higher reliability or few failures
in a specified time period. This style is composed of a set
of components that try to compensate the failures of each
other. More specifically, only one component is performing
computation, the active component. When it fails, one of
the redundant components takes over the failed, becoming
the active one. The system only enters in a failed state,
when all the components in the fault-tolerant set fail. Our
approach supports different reliability values for each one of
the components in the set, as they may involve different data
structures or algorithms to improve the system reliability.

The state model of this style is illustrated by Figure 5,
where the fault-tolerant set wrapped in the state s2 is shown.



S1 S3

S21

S22

.

.

.

S2k

R1 * P1,2 R2 * P2,3

S2

F

CR3

1 - R1

1 - R2

1 - R3

Fig. 4: Parallel and pipe-filter style state model

The active state is depicted with a gray background and the
redundant states with a white one.

S1 S3

S21

S22

.

.

.

S2k

R1 * P1,2 R2 * P2,3

S2

F

CR3

1 - R3

1 - R2

1 - R1

Fig. 5: Fault-tolerance style state model

4) Call-and-return: In the call-and-return style, a caller
component may request services provided by other called
components. When the services are requested, the caller
component holds its execution, until the called one fulfils
the requests. After that, the caller component resumes its
execution where it left. This style is often used on remote
procedure calls and it can be translated to the state space model
as follows: a state represents an execution of a component

and a transition takes place when the execution in each state
is completed or the execution encounters a service request
transferring temporarily the control to the called component.

Figure 6 depicts a call-and-return style, where state s1 is
the caller and s2 is the called component. After calling the
state s2, the caller state will transfer the control to the state
s3, which, if everything went as expected, the control will be
transferred to the absorbing component C. As it can be seen in
Figure 6, the transition P1,2 does not consider the reliability
of the caller component, because, as stated in Wang et al. [6],
s1 will be visited only once before transferring the control to
state s3 regardless the number of times the state s2 is called.

S1 S2

P1,2

F

C

1 - R1

1 - R2

S3

R1 * P1,3

R2 * P2,1
1 - R3

R3

Fig. 6: Call-and-return style state model

IV. VALIDATION

The validation procedure of our approach was divided in
two different steps. First we validated our reliability prediction
method by applying a software architecture widely used in
the literature and comparing the accuracy of our results to
the ones stated in the cited publications. The second step of
our validation procedure, contemplates the validation of the
reliability by applying architectural styles, so we compared our
reliability values against the results obtained from the method
presented by Wang et al. [6].

A. Reliability Prediction

To validate the accuracy of our reliability prediction method
we built a software architecture in Acme, depicted in Figure
7a, which was adapted from the examples by Cheung [11],
Lo et al. [5] and Gokhale et al. [4]. The architecture includes
all the required annotations to enable the complete parsing
and translation procedure, generating an accurate mathematical
model. In Figure 7b is depicted the state model generated by
our approach.

All the compared publications use the same architecture,
although they use different reliability values for each compo-
nent, as depicted in Table I. So, we applied the same software
architecture, usage profile and reliability values from each one
of the publications to compare and validate our results.

Finally, we loaded the mathematical model into the proba-
bilistic model-checking tool, Prism, and obtained the reliability
values for the specified architecture. In Table II we compare



(a)

S1

S2

S3

S4

S5 S6

S7

S9 S8

S10C

0.6
0.2

0.2

0.5

0.7

0.3
1

0.4 0.6

0.3

0.10.3

0.3

0.6

0.4

0.5
0.1

0.9
0.75

0.25

F

From any 
other state

(b)

Fig. 7: Architecture described in Acme (a) and the associated
state model (b)

TABLE I: Component reliabilities

Ri Gokhale et al. [4] Lo et al. [5]
1 0.999 0.99
2 0.980 0.98
3 0.990 0.99
4 0.970 0.96
5 0.950 0.98
6 0.995 0.95
7 0.985 0.98
8 0.950 0.96
9 0.975 0.97
10 0.985 0.99

the reliability values with the ones from the literature. Cheung

et al. [11] used a composite method through an absorbing
DTMC to predict the reliability of an architecture. Lo et al.
[5] made use of a hierarchical method to predict the reliability
and Gokhale et al. [4] presented the results using both methods
of the state-based approach, the composite and hierarchical
methods.

As a result, Table II shows that our approach provides
reliability values that match to the ones presented in the
literature. More specifically, our reliability values are exactly
the same as the ones provided by the composite methods and
they are close to the values obtained from the hierarchical.
Since, as stated in the Section II, the hierarchical method only
allows us to obtain an approximation of the reliability values
and the maximum difference to our results is 0.35% which is
below 1%, the significance level.

TABLE II: Validation of the reliability prediction method

Literature Our
Approach Difference

Cheung et al. [11] 0.8512 0.8512 0.00%
Lo et al. [5] 0.8482 0.8512 0.35%

Gokhale [4]
Composite 0.8299

0.8299
0.00%

Hierarchical 0.8280 0.22%

B. Architectural styles

In the second part of our validation procedure, we certify
that our approach generates a correct mathematical model and
provides an accurate reliability value when an architectural
style is applied.

The input architectures used to test the validity of our
approach are the ones presented in Section III-C. They were
modelled in Acme and we used our approach to generate the
mathematical model. Finally, they were loaded into the Prism
model checker tool, to verify and simulate the architecture.
We tested the fault-tolerant style with one active and two
redundant components and the parallel style with three parallel
components.

The comparison between the results obtained from our
approach and the ones achieved through the methods presented
by Wang et al. [6], are exposed in Table III.

TABLE III: Validation of the architectural styles

Style Wang [6] Our approach
Reliability Diff.

Batch-sequential 0.9248722 0.9248722 0.0%
Parallel 0.8945088 0.8945088 0.0%
Fault-tolerance 0.9503923 0.9503923 0.0%
Call-and-return 0.9317644 0.9317631 ∼ 0.0%

Considering the values provided by previous research stud-
ies, our results are identical, proving that our approach gen-
erates accurate and correct mathematical models when using
architectural styles.



V. LIMITATIONS

The existing limitations in our approach are discussed
below, alongside with references to tools or research studies
that address those same limitations.

• Components reliability must be known. Our approach
requires that architects know beforehand a value, or
at least a range, for the reliability of the components
in early phases of the software development life-cycle,
which can be difficult. L. Cheung et al. [29] address this
uncertainty by using hidden Markov chains to determine
the component failure probability. Other studies [4], [5],
[30] compute the sensitivity of the system’s reliability by
varying the components reliability and the usage profile.

• Usage profile has to be defined. During design time, inter-
component transition probabilities can be estimated by
consulting with experts who are familiar with the system
or by defining various possible scenarios and determine
what will be the expected usage profile of the system.
If the reliability analysis is to be employed during the
operational phase, the usage profile can be extracted from
the source code by using profilers [31] or test coverage
tools [32].

• State-space explosion. Model checking tools face a com-
mon problem, the combinatorial growth of the state-
space. This occurs when the model has a large number
of states and a great number of transitions between those
states exceeding the memory available. In our approach
we have not faced this problem, not only because we
used simple architectures, but also because the translation
procedure to the Prism language is optimized by using
the smallest number of states and transitions possible.
Groote et al. [33] explain how to reduce the size and
avoid extremely large models, preventing the occurrence
of state-space explosion.

VI. IMPLICATIONS FOR PRACTICE

In this section we share several insights from our work,
contributing with answers to future research on the topic of
reliability prediction of software architectures.

• Different architectural styles will provide different relia-
bility values. We were able to predict different reliability
values for distinct architectural styles, even though the
architecture arrangement is the same. This is achieved by
using annotations to describe which styles were applied in
the architecture. In Section IV we show the validity of this
assumption by applying two different architectural styles
(fault-tolerance and parallel styles) to the same architec-
ture description, obtaining different reliability values.

• Correctness of the generated mathematical model. Math-
ematical models from the architecture description rep-
resent correctly the system’s behaviour and provides
accurate reliability values as shown in the validation
phase, Section IV.

• Application to real case studies. One of our concerns
was if the generated models could be applied to real

case studies. Goseva-Popstojanova et al. [19] determined
the applicability of the reliability prediction methods
provided by the literature on a real case study and the
results show that the theoretical methods only differ on
3% from the real values.

• Influence of our work on the current techniques. The
automated generation of mathematical models from the
architecture specification is an important topic, since
until today the verification and testing procedures were
manually built. This manual activity is prone to errors,
time-consuming and almost impossible to achieve on
complex and large architectures.

• Application to other quality attributes. In the generated
mathematical model we have only predicted the system’s
reliability, but it can be applied to other system’s quality
attributes, such as cost and performance. This is ad-
dressed as future work, in which we could join work
with other studies that have predicted the system’s per-
formance. Their work focus on building a mathematical
model with specific annotations to load it on a probabilis-
tic model checking tool. This way, architects would be
able to assure a more thorough quality of the designed
software architecture, complying the requirements of the
stakeholders.

VII. CONCLUSION

In this paper we presented an approach to automate the
reliability prediction of software architectures considering the
application of different architectural styles. Our approach takes
advantage of the progress made to ADLs in the last two
decades, leveraging the formalization of ADLs to extract a
mathematical model. This would not be possible without a for-
mal representation and description of software architectures.

Our work tried to overcome some of the shortcomings
identified by the surveys of reliability prediction methods on
software architectures [12], [14], [15], such as the lack of
support for tools and for variability, weak reliability analysis
and weak validation of the methods. Hence, our approach
addresses most of these issues by providing a tool that supports
strong variability with four degrees of freedom and strong
validation of our results by comparing them with the methods
presented in the literature. In addition, by providing a mathe-
matical model that can be used for verification, simulation and
experimentation, architects are now capable of performing a
strong reliability analysis.

An automated generation of a mathematical model from an
ADL saves software architects the effort to manually build it
by providing a correct, accurate and error-free formal model,
which describes the system behaviour. In addition, software
architects are now able to find alternatives to the architecture
thanks to the degrees of freedom provided by our approach.
Thus, architects can vary the number of components, their
reliabilities, architectural styles and the usage profile of the
system, obtaining information about what test suite best fits
the stakeholders’ requirements regarding the reliability of the
system.



In the next steps to extend our work, we will perform a
sensitivity analysis to gather information about how the system
behaves relatively to the uncertainty of the reliability of a
particular component. Thus, it allows pointing out in the archi-
tecture what are the reliability hotspots that are influencing the
most the reliability of the whole system. We plan to add more
styles to our prediction procedure, enriching knowledge to the
research community, since there is a notorious lack of studies
on this topic. In addition, we plan to join our work with other
studies that have predicted different quality attributes, such
as performance or maintainability, to have a more complete
prediction of the system quality. Therefore, our approach
can help avoid undesired or infeasible architectural designs
and prevent extra costs in fixing late life cycle undetected
problems.

ACKNOWLEDGEMENTS

This research was supported by a grant from the Carnegie
Mellon|Portugal project AFFIDAVIT (PT/ELE/0035/2009).
The authors would also like to thank the contribution from
David Garlan and Bradley Schmerl.

REFERENCES

[1] D. Garlan, R. T. Monroe, and D. Wile, “Acme: An architecture descrip-
tion interchange language,” in Proceedings of CASCON’97, Toronto,
Ontario, November 1997, pp. 169–183.

[2] R. Allen, “A formal approach to software architecture,” Ph.D. disser-
tation, Carnegie Mellon, School of Computer Science, January 1997,
issued as CMU Technical Report CMU-CS-97-144.

[3] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The Architecture Analysis
& Design Language (AADL): An Introduction,” Software Engineering
Institute, Tech. Rep., 2006.

[4] S. S. Gokhale and K. S. Trivedi, “Reliability Prediction and Sensitivity
Analysis Based on Software Architecture,” Reliability Engineering,
2002.

[5] J.-H. Lo, C.-Y. Huang, I.-Y. Chen, S.-Y. Kuo, and M. R. Lyu, “Relia-
bility assessment and sensitivity analysis of software reliability growth
modeling based on software module structure,” Journal of Systems and
Software, vol. 76, no. 1, pp. 3–13, Apr. 2005.

[6] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software
reliability modeling,” Journal of Systems and Software, vol. 79, no. 1,
pp. 132–146, Jan. 2006.

[7] V. Cortellessa, “Early reliability assessment of UML based software
models,” Electrical Engineering, pp. 302–309, 2002.

[8] S. Yacoub, B. Cukic, and H. Ammar, “Scenario-based reliability analysis
of component-based software,” Proceedings 10th International Sympo-
sium on Software Reliability Engineering (Cat. No.PR00443), pp. 22–31,
1999.

[9] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner, “Reliability
prediction for fault-tolerant software architectures,” in Proceedings of
the joint ACM SIGSOFT conferenceQoSA and ACM SIGSOFT sympo-
siumISARCS on Quality of software architecturesQoSA and architecting
critical systemsISARCS. ACM, 2011, pp. 75–84.

[10] R. Reussner and Heinz W., “Reliability prediction for component-based
software architectures,” Journal of Systems and Software, vol. 66, no. 3,
pp. 241–252, Jun. 2003.

[11] R. C. Cheung, “A user-oriented software reliability model bell telephone
laboratories, naperville, illinois 60540,” Computer Software and Appli-
cations Conference, 1978. COMPSAC ’78., 1978.

[12] A. Immonen and E. Niemelä, “Survey of reliability and availability pre-
diction methods from the viewpoint of software architecture,” Software
and Systems Modeling, vol. 7, no. 1, pp. 49–65, Jan. 2008.

[13] K. Goševa-Popstojanova and K. Trivedi, “Architecture-based approach
to reliability assessment of software systems,” Performance Evaluation,
vol. 45, no. 2, pp. 179–204, 2001.

[14] S. S. Gokhale, “Architecture-Based Software Reliability Analysis :
Overview and Limitations,” IEEE Transactions On Dependable And
Secure Computing, vol. 4, no. 1, pp. 32–40, 2007.

[15] D. Pengoria, S. Kumar, and M. S. Se, “A Study on Software Reliability
Engineering Present Paradigms and its Future Considerations,” Comput-
ing, 2009.

[16] R. Reussner, “Reliability prediction for component-based software archi-
tectures,” Journal of Systems and Software, vol. 66, no. 3, pp. 241–252,
Jun. 2003.

[17] B. Littlewood, “Software reliability model for modular program struc-
ture,” IEEE Transactions on Reliability, vol. R-28, no. 3, pp. 241–246,
August 1979.

[18] J. Laprie and K. Kanoun, “Software reliability and system reliability,”
Handbook of software reliability engineering, pp. 27–69, 1996.

[19] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli, “Large Empir-
ical Case Study of Architecture based Software Reliability,” Reliability
Engineering, 2005.

[20] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, NJ: Prentice Hall, 1996.

[21] A. Abd-allah, “Extending reliability block diagrams to software archi-
tectures,” Dept. of Computer Science, Univ. Southern California, Tech.
Rep. USC-CSE-97-501, 1997.

[22] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Automatically
Improve Software Architecture Models for Performance , Reliability ,
and Cost Using Evolutionary Algorithms,” Population (English Edition),
2010.

[23] C. M. Grinstead and L. J. Snell, Grinstead and Snell’s Introduction to
Probability, 4th ed. American Mathematical Society, 2006.

[24] D. Garlan, R. T. Monroe, and D. Wile, “Acme: Architectural description
of component-based systems,” in Foundations of Component-Based
Systems, G. T. Leavens and M. Sitaraman, Eds. Cambridge University
Press, 2000, pp. 47–68.

[25] ISO/IEC/(IEEE), “ISO/IEC 42010 (IEEE Std) 1471-2000 : Systems and
Software engineering - Recomended practice for architectural descrip-
tion of software-intensive systems,” July 2007.

[26] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
model checking for performance and reliability analysis,” ACM SIG-
METRICS Performance Evaluation Review, vol. 36, no. 4, pp. 40–45,
2009.

[27] D. Garlan and M. Shaw, “An Introduction to Software Architecture,”
Knowledge Creation Diffusion Utilization, no. January, 1994.

[28] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice
(2nd Edition), 2nd ed. Addison-Wesley Professional, Apr. 2003.

[29] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early
prediction of software component reliability,” in Proceedings of the 30th
international conference on Software engineering. New York, New
York, USA: ACM, 2008, pp. 111–120.

[30] K. Goseva-Popstojanova and S. Kamavaram, “Software reliability esti-
mation under uncertainty: Generalization of the method of moments,”
High-Assurance Systems Engineering, IEEE International Symposium
on, vol. 0, pp. 209–218, 2004.

[31] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: a call graph
execution profiler,” SIGPLAN Not., vol. 39, no. 4, pp. 49–57, Apr. 2004.

[32] Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage based testing
tools,” in Proceedings of the 2006 international workshop on Automation
of software test, ser. AST ’06. New York, NY, USA: ACM, 2006, pp.
99–103.

[33] J. F. Groote, T. W. D. M. Kouters, and A. A. H. Osaiweran, “Specifica-
tion guidelines to avoid the state space explosion problem,” Fundamen-
tals of Software Engineering (FSEN), April 2011.


