
Reliability Analysis of Software Architecture Evolution

João M. Franco, Raul Barbosa, Mário Zenha-Rela
University of Coimbra, Portugal

{jmfranco,rbarbosa,mzrela}@dei.uc.pt

Abstract

Software engineers and practitioners regard software ar-
chitecture as an important artifact, providing the means to
model the structure and behavior of systems and to sup-
port early decisions on dependability and other quality at-
tributes. Since systems are most often subject to evolution,
the software architecture can be used as an early indica-
tor on the impact of the planned evolution on quality at-
tributes. We propose an automated approach to evaluate
the impact on reliability of architecture evolution. Our ap-
proach provides relevant information for architects to pre-
dict the impact of component reliabilities, usage profile and
system structure on the overall reliability. We translate a
system’s architectural description written in an Architecture
Description Language (ADL) to a stochastic model suitable
for performing a thorough analysis on the possible archi-
tectural modifications. We applied our method to a case
study widely used in research in which we identified the re-
liability bottlenecks and performed structural modifications
to obtain an improved architecture regarding its reliability.

1. Introduction

Software architecture is a fundamental activity of soft-
ware development, in which designers are able to reason
about a system’s structure and properties at a high level of
abstraction, before any design and implementation effort is
made. As such, software architecture facilitates early de-
cisions on systemic properties such as reliability, maintain-
ability, and performance. Although it is very useful at the
early stages of development, a software architecture is even
more valuable as the software evolves and new versions are
planned and developed.

Software systems are modified over time in order to ad-
dress new and changing requirements. The software archi-
tecture provides a privileged perspective to reason about the
consequences of such changes and how to meet changing
requirements in a cost-effective manner. There is therefore

a benefit in maintaining a system’s architecture updated as
the system evolves.

This paper proposes an approach, which we automate, to
evaluate the impact on reliability of the evolution of a soft-
ware architecture. We take a system description written in
the Acme architecture description language [10] as input,
and generate a reliability model to predict the overall sys-
tem reliability. To achieve this, we take advantage of the
formalism provided by an ADL (Architecture Description
Language) to automate the extraction of a probabilistic reli-
ability model. We then conduct a sensitivity analysis on the
results, to predict the impact of varying the reliability of in-
dividual components, changing the system’s usage profile,
and modifying the system structure.

As software systems evolve, designers seek to improve
reliability or to minimize the impact of accommodating re-
quirement changes on the existing reliability. Although
there exist methods for reliability modeling and evalua-
tion [27], surveys [15, 18] outline the need for tool support
to make reliability prediction a fluent part of software de-
velopment.

Acme is a generic software architecture description lan-
guage which can be used for developing new architectural
design and analysis tools. It allows the specification of ar-
chitectural structures, types and styles as well as the anno-
tation of properties for each one of the constituents on the
software architecture, extending the ADL specification in
order to perform an analysis on different quality attributes.
One important feature of Acme is the human readable inter-
change format which enables architects to integrate comple-
mentary tools and plug-ins to perform architectural analysis
or export the architectural description to different architec-
tural design tools.

When planning changes to a software architecture, de-
signers take into consideration the reliability of individual
components as well as the system’s usage profile. This al-
lows them to identify reliability bottlenecks, i.e., compo-
nents and connectors which limit the overall reliability, and
to recognize diminishing returns on the effort required to
improve sub-systems.

To support these activities, we allow architects to con-

duct a sensitivity analysis on the automatically extracted
stochastic models, in order to determine how the reliability
function changes as its input varies (where the input consists
on the reliability of individual components and their us-
age profile). Regarding the reliability of individual compo-
nents, our approach determines the magnitude of the impact
of each component on the overall reliability; regarding the
usage profile, our analysis focuses on the inter-component
transition probability to determine which transitions affect
the system the most.

We implemented the proposed method and applied it to
a case study consisting of a software architecture based on
the batch-sequential architectural style. The results of the
analysis allow one to identify which evolutions of the ar-
chitecture are the most promising as well as scenarios in
which the returns are already diminished. As the case study
shows, it is possible to evaluate not only relatively small ar-
chitectural changes but also complex architectural evolution
scenarios.

This paper is organized as follows. Section 2 describes
the background and related work. Section 3 introduces the
method adopted in our approach and Section 4 presents the
results obtained by conducting an analysis on a case-study.
Finally, Section 5 reveals the limitations of our approach
before Section 6 concludes this paper.

2 Related Work

The notion that the software is continuously evolving
through either intentional or unintentional changes was first
discussed at the end of the seventies [22]. More recently,
Lehman et al. [21] clarified the term evolution by distin-
guishing it in two different groups. The first one addresses
evolution as a noun and is concerned with the question
“what”, focusing in the investigation of the nature of the
term and its phenomenon. The second group and the one
in which we operate, is concerned with the “how” and ad-
dresses evolution as a verb, focusing in tools and methods
to evolve a software system.

The survey by Chen et al. [6] examines the progress in
software architecture and its evolution from the year 2000
to 2010 and Breivold et al. [3] published a systematic re-
view about software architecture evolution. These studies
classified the broad evolution topic into five different cate-
gories.

• Quality considerations during software architecture
design. The software quality is introduced and explic-
itly considered during the design phase of the software
development lifecycle.

• Architectural quality evaluation. This category ad-
dresses the situation when the architecture is already
defined and performs evaluations on the quality of the

software, supporting architectural decisions related to
quality attribute requirements previously defined by
the stakeholders.

• Economic valuation. Considers the cost, effort and
value of performing changes on the architecture, fo-
cusing on the revenue obtained from the software qual-
ity.

• Architectural knowledge management. Captures archi-
tectural information from different sources to enrich
the documentation, improving architectural knowledge
for quality attributes and their rationale.

• Modeling techniques. Techniques to model the behav-
ior and possible impact of the evolution of software ar-
chitectures. These modeling techniques do not explic-
itly implement evolvability, but they support decisions
and improve software architecture evolution.

Although these studies help to clarify several architec-
tural evolution concepts and they can be the basis of future
research and practice, they do not take into account relia-
bility as a quality attribute and neither as a search term in
their research. Therefore, we address reliability as a quality
attribute of software architecture evolution by developing
an approach that belongs to the architectural quality evalua-
tion and in the modeling technique categories. In the former
category, our approach takes a software architecture already
described in an ADL and evaluates it according to its relia-
bility, helping the architect to reason about decisions related
to the topology, interconnection of components, their relia-
bilities and also the expected usage profile of the system.
Our approach also enters in the latter category, modeling
techniques, because we generate a stochastic model from
the ADL specification reproducing how the system will be-
have in respect to the system reliability.

Barais et al. [1] studied diverse state-of-the-art ap-
proaches to evolve software architectures. They conclude
that even though there are several ADLs that enable archi-
tects to specify their software systems, most of them do
not provide means to evolve the architecture. Our approach
adds value to these ADLs by assessing the reliability at the
software architecture level. In addition, our approach is de-
tached from the architecture, allowing it to be applied to
any available ADL that complies with the ISO/IEC/IEEE
42010 [19] standard.

Reliability has been subject to evaluation on the software
architecture level since the late seventies by Cheung [7],
who was among the first to propose architecture-based re-
liability evaluation using Markov chains. Since then, sev-
eral studies have improved his method and proposed new
ones [4,11–14,23,24]. Gokhale et al. [13] and Lo et al. [24]
perform a sensitivity analysis on the reliability of a soft-
ware architecture by varying the expected usage profile and

the reliability of each component. It allows to find existent
bottlenecks that are affecting negatively the overall reliabil-
ity, such as components that are overused or connectors that
need to redistribute the system load. Our approach differs
from these by applying a non-linear variation on component
reliabilities, addressing the issue of exceeding the range of
possible values, detailed in Section 3.3.1. In addition, our
work is applied directly from an ADL specification, making
it possible to automatically build a suitable stochastic model
to perform reliability prediction, discarding the issues car-
ried by manual activities (time-consuming and prone to er-
rors).

Our work tries to address some shortcomings identi-
fied by research surveys on the architecture-based reliability
prediction, such as the lack of automated processes for relia-
bility prediction and analysis, absence of support for differ-
ent architectural styles and poor method validation. We pre-
viously performed an automatic translation from the archi-
tecture specification to a stochastic model [8]. This stochas-
tic model exhibits how the system will behave according to
the different architectural styles that are applied in the archi-
tecture. In addition, we performed validation of our method
by comparing our results with previous research studies that
used the same case-study. Thus, in this paper we addressed
the remaining shortcomings: perform a reliability analysis
in an automated fashion from an architecture specification
and validation of this method as an extent of the previous
work.
In particular, in this paper we accommodate system evolu-
tion by providing a thorough analysis on the possible modi-
fications that can be performed in the system. Hence, we
provide support for the architect on paramount decisions
and insightful architectural trade-offs.

3 Method

A sensitivity analysis can be understood as an exhaustive
test on the system in study by performing small changes in
the usage profile and reliability of each component or con-
nector. This type of analysis supports the architect deciding
on what and where in the system the evolution will have the
greatest benefit regarding its reliability.

In our approach we take an ADL specification and gen-
erate automatically a stochastic model of the system which
will be subject to a sensitivity analysis. In this section we
discuss the techniques we adopted and why were chosen in
detriment of others.

3.1 Translation from ADL to a Stochastic
Model

The translation procedure from a system described in an
ADL to a stochastic model was already been specified in

a previous work [8] in which was shown that it produces
accurate and correct models to predict reliability. Our ap-
proach requires the employment of ADL annotations by ex-
tending architectural entities with the required information
to perform reliability prediction [9]. More specifically, our
approach supports the following annotations to build an ac-
curate model of the system:

• Specification of the control flow of the system. We used
annotated ports to distinguish between output and in-
put transition, describing the transition flow that is be-
ing held from a component to another.

• Assignment of system usage profile. The average usage
of the system is specified through connector properties
in which the architect defines the transition probability
of passing control from a component to another.

• Component reliability specification. Each component
has annotated a probability of failure on demand,
which will determine its reliability value.

The translation process is illustrated in Figure 1. It can
be noticed that we take as input the ADL file with the ar-
chitectural constituents and the required annotations to gen-
erate a stochastic model capable of predicting the system
reliability. Our approach parses the ADL file into an in-
termediate representation, allowing any ADL that complies
with the ISO/IEC/IEEE 42010 [19] standard to be parsed
and analyzed. We have successfully used Acme, although
other ADLs may be target of future work.

Parser Translator

Input

Prism
File

Generate

ADL File

Annotations

Architectural
Constituents

Prism
Tool

Loaded into

Report

Figure 1: Translation Process Workflow

After the file has been parsed, our application translates
the architecture by building a stochastic model in a high-
level formal language, which is then loaded into the proba-
bilistic model checker Prism [20].

3.2 Reliability Prediction Process

Several approaches to perform reliability prediction were
described in previous research studies [12, 15, 18, 25], tar-
geting different failure behaviors and using distinct reliabil-
ity assessment methods. Our assumptions, and the methods
that we rely upon, were the following:

3.2.1 Architecture and Module Identification

Software architecture defines the software behavior with re-
spect to the interaction among modules. A module is con-
ceived as an independent component of the system, which
performs a clear and well-defined function in the system
[2]. Moreover, a module may represent an available service
(such as a web-service), a function, a class or even a group
of classes that have the same functionality or the same in-
terfaces [14, 15].

3.2.2 Failure Behavior

We consider the failure behavior as a failure that may occur
during the control transfer between two different compo-
nents, which is known as the probability of failure on de-
mand. The failure behavior of the modules is specified as
a percentage, denoting the number of successful requests
over the total requests performed to that specific module.
For instance, if a module has 80% of reliability, it means
that 8 out of 10 requests are well performed and the other 2
fail on some cause, such as malformed input or other source
of failure. The reliability of each component can be either
estimated or obtained from failure data collected on a pro-
duction system.

3.2.3 Combining the architecture with the failure be-
havior

The reliability assessment on the software architecture level
can be performed through three different approaches which
combine the architecture with the failure behavior: additive,
path-based and state-based models [15]. The former esti-
mates the reliability using the component’s failure data and
does not consider explicitly the architecture of the system.
Hence, as the architecture arrangement is the main focus
in our reliability assessment, the additive model will not be
considered in this paper.

The path-based model assesses the reliability of the sys-
tem according to the possible execution paths of the pro-
gram, which can be obtained experimentally, by testing or
algorithmically. System reliability is calculated by averag-
ing the path reliabilities, which can be a drawback due to
the presence of loops in the architecture, providing only an
approximate estimation of the system reliability.

The latter, state-based model, assumes that the transi-
tions between states have a Markov Property, meaning that
at any time the future behavior of components or transitions
between them is conditionally independent of the past be-
havior. This model is considered to be the most accurate
for reliability prediction [13] and for this reason we opted
to use the state-based model in our approach.

The generated mathematical model is an absorbing
DTMC (Discrete-Time Markov Chain), where we add two
absorbing states C and F, which represent the correct output
and the failed one, respectively.

Our approach acts in accordance to the following as-
sumptions:

• Every software component may fail. Each module that
is mapped from the architecture to the mathematical
model has a direct edge to the absorbing state F, which
is weighted by its probability of failing (i.e.,one minus
the assigned reliability to the component).

• Failure rates of software components are independent
between each other. Components in a software sys-
tem can be viewed as logically independent modules,
which can be developed and tested independently from
each other [13, 24]. Thus, each component will have
its unique failure rate which is independent of other
components that may be developed or executed con-
currently.

• The transfer of control among modules follows a
Markov Process. The transition probability from one
component to another is determined through the prod-
uct of the reliability of that component with the esti-
mated usage profile of the system. Therefore, the con-
trol transition is independent of the past history of the
system and depends only upon the current state, fol-
lowing the memoryless property of a Markov chain
[16].

• System reliability is the probability of reaching the
state C. The computation of the system reliability is
performed through the probability of transit between
all the components in the system and reaching the ab-
sorbing state C, which exhibits the correct behavior of
the system or the probability of failure-free of every
component in the system.

3.3 Sensitivity Analysis

A reliability analysis of a software architecture is an im-
portant aspect to identify which components and connectors
influence the system reliability the most. It supports the
evolution of an architecture by providing information about
the trade-off of the changes from the original architecture
to the evolved one. Thus, our sensitivity analysis informs

architects about what are the architectural constituents that
need urgent attention to be improved and what are the con-
sequences of changing the architecture.

Therefore, we developed a sensitivity analysis able to
support decisions about different architectural alternatives
by addressing the following issues:

• Identifying reliability bottlenecks – We study the ef-
fect of changes of components’ reliabilities allowing to
identify points in the architecture where the variation
has a higher impact on the overall system reliability.

• Analyze usage profile variation – We vary the tran-
sition probabilities between components in order to
identify which are the usage profiles that have the high-
est impact on system reliability.

• Analysis ranking – Our approach establishes a rank-
ing system to inform the architect about the impact of
different variations performed.

3.3.1 Component Reliability Variation

Analyzing the impact of variations in individual component
reliabilities (keeping the same usage profile) provides infor-
mation about the influence on the overall system reliability.
With this information in mind, the architect may impose
more effort on improving a particular component which is
influencing negatively the system by inducting more testing,
more code inspections or even, by correcting bugs.

A reliability value is understood as the probability that
a system will perform correctly over a given period of
time [26] and belongs to the interval R ∈ [0, 1]. Therefore,
we do not apply a linear variation as it might exceed the
range of the possible reliability values. This is illustrated
by the example in Equation 1, where Ri represents the re-
liability of component i. We perform a linear variation on
the reliability value, showing that the result falls outside the
interval of possible values for the reliability.

Ri = 0.99± 10% = {0.891, 1.089} /∈ [0,1] (1)

Hence, we apply a logarithmic variation to the reliability
of individual components as shown in Equation 2. Although
other research studies have applied a linear variation, we use
a logarithmic scale which we believe to be more adequate to
describe variations in reliability. As we approach 100% re-
liability it becomes more costly to obtain further increases.

R = 1− 10−x ⇔ x = − log10(1−R) (2)

Equation 3 shows how we deduced Equation 2 and
presents an example on how to calculate the logarithmic
variation, where R is the reliability and U represents the
unreliability.

Ri = 0.99

Ui = 1−Ri = 0.01 = 10−2 ⇔
⇔ Ri = 1− 10−2 ⇒ x = 2

x± 10% = 2± 10% = {1.8, 2.2} (3)

Ri min = 1− 10−1.8 = 0.9845

Ri max = 1− 10−2.2 = 0.99369

3.3.2 Usage Profile Analysis

Each user performs different tasks on the system, leading
to distinctive invocations of different methods or functions.
The system usage profile is understood as the estimation
of how the system will be used and refers to the inter-
components transition probability.

The variation of the usage profile must comply with a
constraint: the sum of all output transitions of a component
must equal to 1.

To solve this constraint we applied the Equation 4, where
Pij is the transition probability from the component i to the
component j. Then, we calculated P ′ik which represents the
new transition probability value for the other components k
connected to the component i.

P ′ij = Pij ± 10%

∆p = |Pij − P ′ij| (4)

P ′ik = Pik ∓
∆p ∗ Pik∑n

k 6=j Pik

In this analysis we change the system usage profile by
varying every transition probability by more and less 10%
than the original value.

3.3.3 Analysis ranking

In order to rank the sensitivity analysis performed for the
components’ reliabilities and usage profile, we calculated
the derivative of the reliability function around the point
where the variation is null (i.e., variation = 0%).

The value of the derivative of the reliability function de-
scribes the impact of the variation on the overall system reli-
ability. In particular, a higher value means that the variation
has a greater impact on the system reliability than lower val-
ues.

In order to produce an extensive analysis we derived the
reliability function with respect to every system variable by
calculating the gradient of R. Equations 5 and 6 show how
the gradient was calculated according to each component
reliability (RC1) and each usage profile (PC1−C2), respec-
tively.

∇R =

(
∂R

∂RC1
, ... ,

∂R

∂RC10

)
(5)

∇R =

(
∂R

∂PC1−C2
, ... ,

∂R

∂PC9−C10

)
(6)

These formulas allow to produce a thorough analysis
about what are the system variables that influence the sys-
tem reliability the most, allowing to inform the user about
important architectural changes that need to be performed
in the system.

4 Results

We applied the method described in the previous section
to a case study adapted from Gokhale et al. [12, 13] and Lo
et al. [24]. We built an ADL description of the software ar-
chitecture in Acme, which is illustrated in Figure 2a. Figure
2b depicts the state machine produced automatically from
our translation procedure. In this state machine it is also
possible to depict the usage profiles used which are speci-
fied in each inter-component transition. The used reliability
values are specified in Table 1.

Table 1: Component reliabilities

Ci Reliability of Ci

1 0.99

2 0.98

3 0.99

4 0.96

5 0.98

6 0.95

7 0.98

8 0.96

9 0.97

10 0.99

4.1 Sensitivity analysis

In the sensitivity analysis was performed variation on
both the system usage profile and in each component relia-
bility, allowing to identify which are the architectural con-
stituents that are negatively influencing the overall reliabil-
ity. Following, we detail the obtained results according to
each variation performed.

(a)

S1

S2

S3

S4

S5 S6

S7

S9 S8

S10C

0.6
0.2

0.2

0.5

0.7

0.3
1

0.4 0.6

0.3

0.10.3

0.3

0.6

0.4

0.5
0.1

0.9
0.75

0.25

F

From any
other state

(b)

Figure 2: Architecture described in Acme (a) and the asso-
ciated state model (b)

4.1.1 Component Reliabilities

After parsing the ADL and generating the stochastic model,
we are able to perform a sensitivity analysis on the system to
identify which component reliability is the bottleneck. Fig-
ure 3 depicts the variation of 10% of the reliability for each
component in the system with respect to the overall sys-
tem reliability. With this information along with the rank
given for each component presented in Table 2, is possible
to understand which are the components that influence the
system the most. More specifically, components C8 and C5
are on the top of the list, showing that they have a higher im-
pact in the overall system reliability and the architect should
perform improvements to these components in order to in-
crease the overall system reliability.

Figure 3: Sensitivity analysis with respect to reliability

Table 2: Results on the component reliability analysis

Ci Partial Derivative
C8 0.096

C5 0.088

C2 0.059

C4 0.043

C10 0.039

C1 0.039

C7 0.039

C3 0.034

C9 0.034

C6 0.030

4.1.2 Usage profile analysis

The analysis on the variation of the system usage profile
is presented in Figure 4, where is illustrated the three best
and worst usage profile variations from the total of nineteen

inter-component transitions. To support Figure 4, Table 3
lists the sorted ranks obtained from the analysis. It can be
concluded that the inter-component transition from C8 to
C10 is the one that has a higher impact on the overall system
reliability. On the other hand, increasing the usage of the
connection between component C8 to C4 will have a neg-
ative impact on the system reliability. This is explained by
the fact that the more we raise the usage profile of C8−C4,
more loops will happen, increasing the number of visits on
system components and at same time raising the chance of
the requests may fail on some cause.

Figure 4: Sensitivity analysis with respect to the usage pro-
file

Table 3: Results on the usage profile analysis

Ci-Cj Partial Derivative
C8-C10 0.087

C8-C4 0.029

C7-C9 0.024

C2-C5 0.002

C6-C7 0.001

C6-C8 1.5E-4

4.2 Performing structural changes

Implementing changes in the architecture may lead to
different reliability values which may not correspond to
the reliability requirements established by the stakeholder.
Thus, our work aims to provide sufficient information for
architects to reason about system evolution, even when very
little is known about the system itself. In this case-study, al-
though we use a well-known architectural example, we do
not have information about other quality attributes such as
cost or performance, as well as if it maps to a real system.
Hence, we inform architects on what are the most suitable

design decisions by comparing different architectural alter-
natives.

The sensitivity analysis performed on the case study
showed that the architect could improve the overall sys-
tem reliability by performing few architectural changes. In
particular, the components that act as reliability bottlenecks
were identified as the C8 and C5. Regarding the analy-
sis on the usage profile and if it were possible to redirect
traffic or change the usage profile of the system, the archi-
tect should focus on the transitions from the component C8
(i.e.,decrease the usage of C8 − C4 and increase the load
on the C8− C10).

Thus, we propose an evolution of the architecture by per-
forming the following architectural changes:

• Reliability improvement of 10% on components C5
and C8.

• Usage profile variation of 10% on C8−C4 and C8−
C10.

• Changes on the topology by adding one extra compo-
nent (C11). This component replicates the functional-
ity of C8 in order to ease the connection from C5−C8.

Figure 5 illustrates the new architecture and Table 4
presents the used reliabilities for each component in the sys-
tem.

S1

S2

S3

S4

S5 S6

S7

S9 S8

S10C

0.6
0.2

0.2

0.5

0.7

0.3

1

0.4 0.6

0.3

0.10.3

0.3

0.6

0.4

0.5

0.1

0.9

0.825

0.175

F

From any
other state

S11

1

Figure 5: State model of the new architecture

Table 4: Component reliabilities of the new architecture

Ci Reliability of Ci

1 0.99

2 0.98

3 0.99

4 0.96

5 0.9864751

6 0.95

7 0.98

8 0.97100884

9 0.97

10 0.99

11 0.99

The estimated system reliability before the changes
were performed, was of 0.8512 and after performing the
structural changes, the estimated system reliability was of
0.9023. This signifies a reduction in unreliability of about
one third.

As a result, the sensitivity analysis gives important in-
sights to the architect about architectural changes that im-
prove greatly the overall system reliability. In this case, the
reliability was improved by applying simple architectural
changes, based on observations resulting from the analysis.

To compute these results, our implementation requires
the Prism model checker to be executed once for each vari-
ation of the architecture. In total, using a MacBook Pro
(early 2011) with an intel i7 processor and 8GB of RAM,
the iterations of the Prism model checker took about 13
minutes to complete. This completion time can be consid-
ered small when compared to the amount of time spent fix-
ing late detected reliability issues in the architecture. These
issues can happen when the architect does not perform the
required tests and analysis on the system in development,
which may not satisfy the reliability requirements estab-
lished by the stakeholders.

5 Limitations

The limiting factors that our approach face are discussed
below along with references to research studies or tools that
address those same limitations.

• Reliability and usage profile values must be known.
We assume that if a system is under evolution, the
reliability and usage profile values have already been
extracted from the deployed system. The work of
Casanova et al. [5] show that is possible to monitor a

running system and collect a set of transactions which
allow to localize system faults in the architecture.
Thus, architects can determine from a deployed sys-
tem what is the reliability value for each architectural
constituent, as well as infer from the transactions
what is the average usage profile of the system under
evolution.
However, if this information is not available to the
architect, he may apply few techniques to extract
the required values. Usage profile can be extracted
from the source code by using profilers or test
coverage tools [28]. Reliability can be obtained by
consulting with the commercial entities that developed
Commercial Off-The-Shelf (COTS) components or
estimated from expert knowledge or historical data
for components developed in house. Regarding the
system architectural specification, we assume that it
is updated in each system evolution step in order to
have an architecture that matches the deployed system.

• State-space explosion. Model checking tools face a
common problem, the combinatorial growth of the
state-space. This occurs when the model has a large
number of states and a great number of transitions be-
tween those states exceeding the memory available. In
our approach we have not faced this problem, not only
because we used simple architectures, but also because
the translation procedure to the Prism language is opti-
mized by using the smallest number of states and tran-
sitions possible. Groote et al. [17] explain how to re-
duce the size and avoid extremely large models, pre-
venting the occurrence of state-space explosion.

• Fault handling. Fault detection and repairing at the
component level impacts the overall system reliability.
Our approach does not consider explicitly fault han-
dling, although it could be introduced in the model.
Specifically, architects can introduce fault detection
and repairing by two different methods, either by mod-
ifying the generated stochastic model and incorporate
the required behavior or by accounting with fault han-
dling directly in the reliability percentage of each mod-
ule.

6 Conclusions

In this paper we propose a method to automatically per-
form a sensitivity analysis from an ADL description, re-
garding its reliability. Our approach makes an extensive
analysis on every component reliability and usage profile,
identifying bottlenecks and supporting decisions about the
required adjustments to adequately evolve a system.

We applied our method to a well-known case study, in
which we evolved the architecture by performing small
changes in the existent bottlenecks. As a result, the overall
system reliability was increased from 0.85 to 0.90, thereby
decreasing the unreliability by one third. Lastly, not only
was it possible to identify components and connectors that
can be modified in order to improve the overall reliability,
but we were also able to identify those for which the returns
are already diminished.

In future work, we intend to apply our approach to a real
case study, extracting real reliability and usage profile val-
ues from the deployed system. The generated stochastic
model would be able to produce accurate predictions, warn-
ing the architect for concrete architectural problems before
faults become noticed.

In addition, we plan to represent different failure be-
haviors besides the probability of failure on demand.
Representing time-dependent failure intensities through
Continuous-Time Markov Chains would allow to model the
dependent execution between components. With these en-
hancements in our approach it would give support to prac-
titioners and researchers to avoid, prevent and detect unde-
sired or infeasible architectural redesigns which could result
in a loss in overall system reliability.

Acknowledgments

This research was supported by a grant from
the Carnegie Mellon|Portugal project AFFIDAVIT
(PT/ELE/0035/2009).

References

[1] O. Barais, A. L. Meur, and L. Duchien. Software Evolution.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice (2nd Edition). Addison-Wesley Professional, 2
edition, Apr. 2003.

[3] H. P. Breivold, I. Crnkovic, and M. Larsson. A systematic
review of software architecture evolution research. Informa-
tion and Software Technology, 54(1):16–40, Jan. 2012.

[4] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner. Reli-
ability prediction for fault-tolerant software architectures. In
Proceedings of the joint ACM SIGSOFT conference–QoSA
and ACM SIGSOFT symposium–ISARCS on Quality of soft-
ware architectures-QoSA and architecting critical systems-
ISARCS, pages 75–84. ACM, 2011.

[5] P. Casanova, B. Schmerl, D. Garlan, and R. Abreu.
Architecture-based Run-time Fault Diagnosis. Engineering,
(September):13–16, 2011.

[6] Y. Chen, X. Li, L. Yi, D. Liu, L. Tang, and H. Yang. A
ten-year survey of software architecture. 2010 IEEE Inter-
national Conference on Software Engineering and Service
Sciences, pages 729–733, July 2010.

[7] R. Cheung. A user-oriented software reliability model. IEEE
Transactions on Software Engineering, 6(2):118–125, 1980.

[8] J. Franco, R. Barbosa, and M. Zenha-Rela. Automated reli-
ability prediction from formal architectural descriptions. In
2012 Joint Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA) and European Conference on Software
Architecture (ECSA), pages 302 –309, Aug. 2012.

[9] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural
description of component-based systems. In G. T. Leav-
ens and M. Sitaraman, editors, Foundations of Component-
Based Systems, pages 47–68. Cambridge University Press,
2000.

[10] D. Garlan, R. T. Monroe, and D. Wile. Foundations of
component-based systems. chapter Acme: architectural de-
scription of component-based systems, pages 47–67. Cam-
bridge University Press, New York, NY, USA, 2000.

[11] S. Gokhale. Analytical models for architecture-based soft-
ware reliability prediction: A unification framework. IEEE
Transactions on Reliability, 55(4):578–590, 2006.

[12] S. S. Gokhale. Architecture-Based Software Reliability
Analysis : Overview and Limitations. IEEE Transactions
On Dependable And Secure Computing, 4(1):32–40, 2007.

[13] S. S. Gokhale and K. S. Trivedi. Reliability prediction and
sensitivity analysis based on software architecture. Inter-
national Symposium on Software Reliability Engineering,
page 64, 2002.

[14] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli.
Large empirical case study of architecture-based software
reliability. In Proceedings of the 16th IEEE International
Symposium on Software Reliability Engineering, ISSRE ’05,
pages 43–52, Washington, DC, USA, 2005. IEEE Computer
Society.

[15] K. Goseva-Popstojanova and K. S. Trivedi. Architecture-
based approach to reliability assessment of software sys-
tems. Perform. Eval., 45(2-3):179–204, 2001.

[16] C. M. Grinstead and L. J. Snell. Grinstead and Snell’s In-
troduction to Probability. American Mathematical Society,
4 july 2006 edition, 2006.

[17] J. F. Groote, T. W. D. M. Kouters, and A. A. H. Osaiweran.
Specification guidelines to avoid the state space explosion
problem. Fundamentals of Software Engineering (FSEN),
April 2011.

[18] A. Immonen and E. Niemelä. Survey of reliability and avail-
ability prediction methods from the viewpoint of software
architecture. Software and Systems Modeling, 7(1):49–65,
Jan. 2008.

[19] ISO/IEC/(IEEE). ISO/IEC 42010 (IEEE Std) 1471-2000 :
Systems and Software engineering - Recomended practice
for architectural description of software-intensive systems,
July 2007.

[20] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Proba-
bilistic model checking for performance and reliability anal-
ysis. ACM SIGMETRICS Performance Evaluation Review,
36(4):40–45, 2009.

[21] M. Lehman, J. F. Ramil, and G. Kahen. Evolution as a noun
and evolution as a verb. In Proc. Workshop on Software and
Organisation Co-evolution (SOCE), July 2000.

[22] M. M. Lehman. Programs, cities, students, limits to growth?
Programming Methodology, pages 42–62, 1978. Inaugural
Lecture.

[23] B. Littlewood. Software reliability model for modular
program structure. IEEE Transactions on Reliability, R-
28(3):241 –246, aug. 1979.

[24] J.-H. Lo, C.-Y. Huang, I.-Y. Chen, S.-Y. Kuo, and M. R.
Lyu. Reliability assessment and sensitivity analysis of soft-
ware reliability growth modeling based on software module
structure. Journal of Systems and Software, 76(1):3–13, Apr.
2005.

[25] D. Pengoria, S. Kumar, and M. S. Se. A Study on Soft-
ware Reliability Engineering Present Paradigms and its Fu-
ture Considerations. Computing, 2009.

[26] N. R. Storey. Safety Critical Computer Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996.

[27] K. S. Trivedi. Probability and Statistics with Reliability,
Queueing, and Computer Science Applications, 2nd Edition.
Wiley-Interscience, 1 edition, Oct. 2001.

[28] Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based
testing tools. In Proceedings of the 2006 international work-
shop on Automation of software test, AST ’06, pages 99–
103, New York, NY, USA, 2006. ACM.

