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Abstract: Niching techniques are commonly used in Evolutionary 
Computation to maintain population diversity and help to explore 
more efficiently the solutions space. In complex optimization 
problems, the definition of a distance measure between individuals 
is a serious difficulty for this type of techniques. The cluster 
geometry optimization problem has singularities that make the use 
of a reliable distance function computationally prohibitive. We 
analyze the behavior of an alternative niching technique, the 
Spatially-Dispersed Genetic Algorithm, and its application on the 
cluster geometry optimization. Results show that the algorithm is 
able do efficiently discovers several niches when searching for good 
solutions. We also present a detailed parametric analysis that helps 
to understand the role played by the different parameters of the 
method. 

Keywords: Niches, cluster geometry optimization, parameter 
analysis. 

 

1. INTRODUCTION 
 

Atomic and molecular clusters may have from a few to a huge number of aggregated 
particles (atoms or molecules). The function describing the interactions among those 
particles is designated as Potential Energy Surface (PES) and plays a central role in 
Chemistry. Then, exploring the energy landscapes of such a multi-dimensional PES 
has long been a desiderata but also a very hard task to achieve. In particular, finding 
the arrangement of the cluster’s particles that corresponds to the lowest energy (global 
minimum) has been a key-step to the research in this scientific domain. 

Since the early 1990’s, Evolutionary Algorithms (EAs) have been increasingly 
applied to several problems from the Chemistry/Biochemistry area. Cluster geometry 



optimization is an example of one of these problems [5], [8], [10]. Nearly all the 
approaches rely on hybrid algorithms combining EAs with local methods that use first 
order derivative information to guide search into the nearest local optimum. 

In the real world, we can find a variety of problems for which there are many good 
solutions. Even when we can identify the optimal solution for a given situation, there 
might be some alternatives also recognized as good solutions for that problem. As a 
result of the need to look for more than one single point in the search space, niching 
techniques have been developed during the last two decades [6], [11]. When enhanced 
with these techniques, EAs are capable to efficiently explore the search space and to 
look for different good solutions simultaneously. 

Cluster geometry optimization is an example of one of these problems. Usually we are 
interested in discovering, not only the global minimum, but also some good quality 
local minima, as they correspond to stable geometries with relevant structural 
properties. 

Therefore, the aim of this work is to develop and test an evolutionary architecture that 
is able to search for good solutions simultaneously. Spatially Dispersed Genetic 
Algorithm (sdGA) [2] , a niching technique recently proposed, will be used for this 
purpose. The main advantage of sdGA over standard techniques is that is does not 
require the definition of a distance measure between individuals to create and 
maintain niches throughout the optimization. This is an important feature, as 
measuring the distance between solutions for a given cluster geometry optimization 
problem is not a trivial task. The research described in this paper comprises a 
comprehensive analysis concerning the influence of different parameters on the 
efficiency of the sdGA. 

The structure of this paper is the following: In section 2, Morse clusters and the 
evolutionary algorithm used in this work are described. In section 3 we briefly present 
two classical niching techniques. Section 4 describes the sdGA method. The 
experimental results and interpretation are presented in section 5. In section 6 the 
main conclusions are gathered.  

 

2. MORSE CLUSTERS AND EAS 
 

2.1. Problem Description 
Morse clusters are considered a benchmark for testing the performance of new 
methods for cluster structure optimization. The energy of such a cluster is represented 
by the N-particle pair-wise additive potential [13] defined as 

 
 

where the variable rij is the Cartesian distance between atoms i and j in the cluster 
structure. The bond dissociation energy ε, the equilibrium bond length ro and the 
range exponent of the potential β are parameters defined for each individual pair-wise 

VMorse = ε Σ Σ [ e               - 2e            ] 

N-1    N  

i     j > i 

-2β ( rij - r 0 ) -β ( rij - r 0 ) (1) 



Morse interaction. Usually, these are assumed to be constant for all interactions in a 
cluster formed by only one type of atoms. 

 

2.2. Evolutionary Approaches 
EAs have been used since 1993 for cluster geometry optimization. A comprehensive 
review of these efforts, including an outline of state-of-the-art applications, can be 
found at [7] . In what concerns the application of EAs to Morse clusters, the most 
important works are from Johnston and collaborators [10], [14] . The EA used in this 
research is similar to the one used by these researchers. Its main components have 
been proposed and evaluated by different teams [1], [8], [10], [16]. Also, in a previous 
work [17], we studied its properties and determined the specific role played by each 
one of the genetic operators. Here we adopt the same evolutionary model, enhancing 
it with tools to create and maintain niches during search. Next we briefly describe its 
main components. 

2.2.1. Chromosome Representation and Evaluation 
For aggregates with N atoms, a solution is composed by 3xN real values specifying 
the Cartesian coordinates of each one of the particles. Zeiri proposed this 
representation in 1995 [16] and, since then, it has become the most widely used in this 
context [8], [10] . The coordinate values range between 0 and λ. We set λ to N⅓. This 
interval ensures that the aggregate volume scales correctly with N [14] . To evaluate 
an individual we just have to calculate its potential energy. Equation 1 is used to 
assign fitness. 

 

2.2.2. Population Model and Genetic Operators 
A standard generational model is adopted. The current set of variation operators is 
used: crossover and mutation. 

Cut and splice crossover, proposed by Deaven and Ho [1] , is directly applied to the 
cluster structure and several authors claim that it enhances the performance of the 
algorithm [8], [14]. . The purpose of this operator is to exchange sub-clusters between 
parents. Therefore, it cuts them in two sections and creates descendants by combining 
complementary parts. 

Sigma mutation is used in this work. Mutation is performed in atoms, i.e., when 
applied it modifies the value of the three coordinates. The used operator is an 
evolutionary strategy like mutation and acts in the following way: when undergoing 
mutation, the new value vnew for each one of the three coordinates of an atom (x, y, z) 
is obtained from the old value vold in the following way: 

 
where N(0,1) represents a random value sampled from a standard Normal distribution 
and σ is a parameter from the algorithm. The new value must be between 0 and λ. 

 

vnew = vold + σ x N(0,1) (2) 



2.2.3. Local Optimization 
Local optimization is performed with the Broyden-Fletcher-Goldfarb-Shanno limited 
memory quasi-Newton method (L-BFGS) of Liu and Nocedal [12]. L-BFGS is a 
powerful optimization technique that aims to combine the modest storage and 
computational requirements of conjugate gradient methods with the superlinear 
convergence exhibited by full memory quasi Newton methods. 

L-BFGS is applied to every generated individual. During local search, the maximum 
number of iterations that can be performed is specified by a parameter of the 
algorithm, the Local Search Length (LSL). However, L-BFGS stops as soon as it 
finds a local optimum, so the effective number of iterations can be smaller than the 
value specified by LSL. 

 

3. CLASSICAL NICHING TECHNIQUES 
 

3.1. Niching Techniques 
The primary aim of using methods in EAs capable of create and maintain population 
niches throughout the evolution cycle is to look for more than on single solution for a 
problem. Their contribution resides on helping the populations to explore more 
efficiently the solutions space. Assuming that the created niches are exploring distinct 
sectors of the search space, niching techniques can also be seen as a way of promoting 
diversity and preventing the population from stagnation and premature convergence. 

There are several niching techniques successfully applied to a vast number of 
optimization problems. Sharing and crowding are two of the most widely used 
techniques. 

 

3.1.1. Sharing 
The fitness sharing technique, proposed by Goldberg [6] , consists in the penalization 
of each individual according to his similarity with the rest of the population. Thus, the 
individuals have higher probabilities of surviving when they are exploring portions of 
the search space with less density − the more the neighborhood of an individual is 
populated, the worst will be his fitness. 

When using this technique, the fitness of each individual is given by the formula 

where fi is the regular fitness for an individual, n is the population size and sh(dij) is 
the similarity function defined as 

F(i) = n 
∑ sh(dij), 

(3) 
fi



 
where dij is the distance between two individuals (i.e., the similarity function) and σsh 

is a threshold above which the algorithm considers that the individuals has no 
similarity. 

 

3.1.2. Crowding 
This technique, proposed by De Jong [11] , follows the same principle of fitness 
sharing: the similarity among the population individuals. Adopting the same concept 
of similarity from the previous technique, the algorithm ensures that the new 
individuals have higher probabilities of replacing old individuals that are more alike 
them. 

Although his main functioning is different from fitness sharing, this technique leads 
us to the same primary need: defining a reliable function capable of measuring the 
similarity among individuals. Once the distance between any two individuals can be 
correctly quantified, the algorithm ensures that the new individuals at each generation 
have higher probabilities of replacing the individuals of the previous population that 
are more alike them. 

 

4. SPATIALLY-DISPERSED GENETIC ALGORITHM 
 
The main goal on global cluster geometry optimization, like in almost every 
optimization problems, is to attain the optimal solution for the problem. However, 
some cluster structures may have worst PES than the best known solutions and still be 
considered good solutions. For Morse clusters [15] , there are some alternative good 
solutions beyond the best known solution for this potential. Usually, these alternative 
solutions consist in local optima and are also relevant because their different types of 
geometry and symmetry distinguish themselves from the best known solutions.  

Using niching techniques can be an effective way of looking for different good cluster 
geometries simultaneously. The most common niching techniques, already described, 
have been successfully applied to different multiobjective problems, helping the 
populations to efficiently explore the solutions space. Nevertheless, both these 
traditional techniques have a limitation: a reliable similarity measure between any two 
individuals of the population is required. 

As a result of the need to define the similarity measure, niching techniques become, in 
some way, problem-dependant.  Calibrating this function, which plays a central role 
on the niching process, can be a serious obstacle when applying the traditional 
techniques to some problems. A reliable similarity function can be computationally 
prohibitive or even impossible to define. 

sh(dij) = 
1 -

dij

σsh 

0

, if dij < σsh 

, otherwise, 
(4) 



For the problem of cluster geometry optimization, defining a reliable function that can 
measure the individuals similarity in a reasonable amount of time turns out to be a 
very hard task. The same cluster structure can be encoded in innumerable ways. A 
single translation or rotation performed in the structure can lead to different genotypes 
for similar structures, thus increasing the difficulty of defining a good similarity 
function. 

Considering the complexity of such a function for this particular problem, the 
Spatially-Dispersed Genetic Algorithm (sdGA) proposed by Grant Dick [2] , seems to 
be a suitable option to preserve niches in the population, once this architecture is 
totally free from similarity functions. Further than the search for different good 
solutions for the problem, this work has two additional motivation factors. On the one 
hand, there are no records of applications of the sdGA to optimization problems with 
such complexity − to the best of our knowledge, this architecture was only tested in 
the optimization of a few mathematical functions and some classic EAs problems [3], 
[4] , such as the Griewangk’s function or the One-Max Problem. 

On the other hand, known approaches [9] to the cluster geometry problem that rely on 
niching methods adopt fitness based criteria to preserve diversity (i.e., these methods 
aim to maintain clusters with different potential energy, but they do not try to look for 
alternative good solutions simultaneously). 

In the next we present a comprehensive description of the main components of sdGA. 

  

4.1. Starting the Algorithm 
The sdGA functioning is based on the distribution of the individuals on a Euclidean 
space in two dimensions. Each individual of the population gets a x and y initial 
coordinate which corresponds to his start position on the spatial model. This values 
are assigned from a random value between 0 and max_dim, a specified parameter of 
the algorithm, compelling all the individuals to a max_dim² area, as shown on Figure 
1 to a population of 20 individuals. 

 
Figure 1 - spatial distribution of the individuals 

 

After the assignment of the initial coordinates, the bounds are removed and, in the 
course of the optimization, the new individuals can take positions out of this area. 

- individual 

max_dim 

y 

x 
max_dim 



 

4.2. Selection 
Beyond the initial space boundaries, a visibility radius is defined for all the 
individuals. This visibility radius is used to decide which individuals can mate with 
each selected individual, like shown in Figure 2 (from where the initial space bounds 
have already been removed). 

 

 
Figure 2 - Selection mechanism: visibility radius 

 

The selection mechanism ensures that an individual can only mate with individuals 
visible to him. Thus, the first individual is selected accordingly with whichever 
selection method is being used. If no individuals are found inside the visibility radius 
of the first individual selected, a slight mutation in his coordinates is executed and a 
new first individual is selected. 

The mate for the crossover process is selected from the set of individuals nearby the 
first selected individual, i.e., the individuals present on his visibility radius. In this 
work, tournament selection is used in both steps of the selection mechanism. The sizes 
of these tournaments are specified parameters of the algorithm. 

 

4.3. Offspring placement 
After applying the crossover operator, the new individuals are placed in a position 
visible to at least one of the parents. Thus, for each descendant, one parent is 
randomly selected and the new individual is placed at a random position inside his 
visibility radius, like shown in Figure 3. 
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Figure 3 - Offspring placement considering descendants visibility radius 

 

4.4. Mutation operator 
Although there is no reference to the behaviour of the mutation operator in the 
architecture proposed by Grant Dick [2], here we introduce a simple mechanism that, 
when undergoing mutation, can do small modifications to both the x and y coordinates 
of the individuals. The introduction of this mechanism becomes from the concept that, 
once the individual is no longer the same after mutation, he should not occupy the 
same exactly position. 

The new values for x and y can differ from the previous values in ½ of the visibility 
radius. To prevent the individual to divert too much from the original position, the 
algorithm can only change the coordinates of each individual once per generation, 
despite of how many atoms are changed during this process. Huge modifications to 
the individual’s position can cause his isolation from the rest of the population and, in 
consequence, hinder him from being selected for the next generation. 

 

5. EXPERIMENTAL RESULTS 
 

The methods inherent to the sdGA were added to the EA described in section 2.2. 

This section is divided into three subsections, reflecting the three different stages of 
the experimental process. The first section shows some preliminary tests for the sdGA 
architecture. The main purpose of this set of experiments was to make sure that the 
implementation had been correctly made and the sdGA was running without bugs. 
However, it is relevant to include here a portion of those first results because they 
were determinant to identify some parameters with influence on creating and 
maintaining niches during the algorithm cycle. In the second section, a parameter 
analysis to the sdGA is presented. In section 5.3 we analyze the efficiency of the 
algorithm in what concerns its ability to discover good quality solutions. 

All the experiments had been performed for the 50 atom cluster and using 14 for the β 
value. This value was selected (instead of β=6, for instance) because it corresponds to 
a short range interaction and presents a more challenging optimization situation, since 
the search space has many local minima [5]. Also it allows an easier comparison with 
results from previous experiments for Morse clusters [5], [10]. 

The pictures shown in this section represent the individuals distribution on the bi-
dimensional space – each dot in the picture correspond to an individual. Although 

Space zone 
where the new 
individuals are 
placed 

- Progenitor 1 

- Progenitor 2 

- Descendants 



several runs were performed with each setting, the pictures presented stand for one 
single run illustrating the individuals distribution for a specific situation. Results 
presented are nevertheless representative of the behavior of the algorithm. 

 

5.1. Preliminary Tests 
In the first set of experiments, small variations on the tournaments size were made. 
The algorithm ended after 1000000 evaluations and the individuals were distributed 
on a 100x100 space with a visibility radius of 10. Figure 4 and Figure 5 illustrates the 
results observed for the indicated tournaments size. The creation of niches seems to be 
prejudiced when working with a higher selection pressure. This issue will be carefully 
analyzed in the next section. 

 
Figure 4 - Tournament 1-2 and 1-3 

 
Figure 5 - Tournament 3-1 and 3-3 

 

Beyond the capacity of creating niches, it is important to understand the behavior of 
the architecture in what concerns to his ability of maintain niches throughout the 
algorithm cycle. The following experiments were fundamental to identify some 
parameters with influence on the maintenance of niches. The figures shown 
correspond to the distribution frames of 100000 evaluations (until the niches are 
extinguished), sampled from experiments with 2000000 for populations of 100 
individuals distributed on 100x100 spaces. 



 
Figure 6 - Visibility 5 / Tournament 2-2 

 
Figure 7 - Visibility 5 / Tournament 3-3  

 

 
Figure 8 - Visibility 10 / Tournament 2-2 

 

 
Figure 9 - Visibility 10 / Tournament 3-3 

 

Regarding the results shown in Figure 6, Figure 7, Figure 8 and Figure 9, the visibility 
radius – or the compromise between visibility and the space dimensions – seems to 
have direct influence on the proximity between individuals inside the same niche. It is 
also notorious that the higher is the selection pressure, the faster the whole population 
is concentrated in the same niche. 

In other experiments with higher visibility values (15, 20 and 25), the presence of 
niches was never detected. One possible justification for such incapacity of creating 



niches is the fact that a higher visibility radius leads to higher distances between 
individuals inside the same niche. In consequence, the dimensions of each niche are 
inevitably increased, compelling the invididuals to scatter themselves all over the bi-
dimensional space, instead of creating niches. 

The last results presented in this section were sampled from experiments with the 
same basic configuration of the previous tests, increasing the population size to 200 
individuals and fixing the visibility value in 5. Various combinations of tournaments 
size and space dimensions were tested. The results presented in Figure 10, Figure 11, 
Figure 12, Figure 13, Figure 14 and Figure 15 are the distribution frames for 100000 
and 500000 experiments. 

 
Figure 10 - Space 100x100 / Tournament 1-2  

 

 
Figure 11 - Space 100x100 / Tournament 1-3 

 

 
Figure 12 - Space 150x150 / Tournament 1-2 

 



 
Figure 13 - Space 150x150 / Tournament 1-3 

 

 
Figure 14 - Space 200x200 / Tournament 1-2  

 

 
Figure 15 - Space 200x200 / Tournament 1-3 

 

The standard results observed in this set of experiments starts to show a reasonable 
capacity for maintaining niches throughout the algorithm execution. Although only 
the first 500000 evaluations were considered, in some isolated runs the niches had 
only extinguished a few frames later in the 100000 scale. However, the standard 
behavior observed indicates that the population tends to inhabit the same niche after 
500000 evaluations. 

As told before, the preliminary tests were essential to the comprehension of the 
architecture sensibility to the variation of some basic parameters. This test period was 
also important to perform adjustments in the algorithm – as, for instance, decreasing 
the weight of the mutation operator when modifying the individuals position. 

 



5.2. Parameter Analysis 
In this section all the experiments ran for 4000000 generations and with a fixed 
crossover rate of 70%. These values were chosen regarding to the previous work with 
Morse clusters [17]. The number of evaluations was extended for a more accurate 
observation of niches behavior. 

For a better understanding of the results presented in this section, Figure 16 shows the 
standard evolution of the niches for the specified algorithm lifetime. The individuals 
distribution is exposed in frames of 500000 evaluations. The following settings were 
adopted in this base experiment: Population size: 200; Mutation rate 10%; 
Tournament size: 1-2; Space dimensions: 300x300; Visibility: 5. 

 
Figure 16 - Standard niches evolution 

 

In the next subsections we will vary some parameters to analyze how they modify the 
algorithm behavior. 

 

5.2.1. Population Size 
For the first analyzed parameter, the following settings were adopted: Population 
sizes: {50, 100, 200, 250}; Mutation rate: 10%; Tournament size: 1-2; Space 
dimensions: 300x300; Visibility: 5. The next figures show the last three frames of 
1000000 evaluations and illustrate the standard behavior for the indicated population 
sizes. 



 
Figure 17 - Population of 50 individuals  

 

 
Figure 18 - Population of 100 individuals  

 

 
Figure 19 - Population of 200 individuals 

 

 
Figure 20 - Population of 250 individuals 

 

The results attained reveal that the niches maintenance is directly related to the 
quantity of individuals of the population. Like shown in Figure 17 and Figure 18, the 
standard behavior for the experiments with 50 and 100 individuals was the extinction 
of the niches before the 2000000 evaluations. This fact was observed in all the 
repetitions for these experiments. For the 200 individuals population, the standard 
behavior is presented in Figure 19, with the niches well defined after the 4000000 
evaluations. Even so, in a few runs for this experiment the niches disappeared before 
the end of the execution. The behavior presented for 250 individuals, in Figure 20, 
was regular in all the runs for that experiment. 

 



5.2.2. Selection – Tournaments Size 
The results shown here correspond to the final distribution of the population for the 
4000000 evaluations. For each configuration two experiments were chosen to 
illustrate the standard behavior. For all the experiments, the following settings were 
taken: Population size: 200; Mutation rate: 10%; Tourney sizes: {1-2, 2-2, 1-3}; 
Space dimensions: 300x300; Visibility: 5. 

 

 
Figure 21 - Tournament 1-2 

 

 
Figure 22 - Tournament 2-2  

 

 
Figure 23 - Tournament 1-3 

 

Regarding the results on Figure 21, Figure 22 and Figure 23, it is perceptible that the 
selection pressure has some influence on the niches behavior, essentially when the 
size of the first tournament is increased. In some way, these results confirm the first 
observations during the preliminary tests. The size of the second tournament, although 



it has almost no influence on the niches creation, seems to lead the individuals to a 
faster convergence to specific space locations. 

For a better understanding of the influence of the size of the second tournament, the 
experiments with tournaments 1-2 and 1-3 were repeated for more 30 runs. The 
distributions of the next pictures correspond to the frames in the beginning, in the 
middle and in the end of the 4000000 evaluations. 

 

 
Figure 24 - Tournament 1-2  

 

 
Figure 25 - Tournament 1-3 

 

Figure 24 and Figure 25 show the detected standard distribution for these 
experiments. Although the distributions might have some slight differences, they are 
not significant enough to consider that they are influencing the creation and 
maintenance of niches. 

The results presented in this section show that only the size of the first tournament is 
determinant for the creation of niches. Even so, the size of the second tournament 
must be regarded, once a higher selection pressure can help the niches to converge to 
good solutions. On the other hand, if the selection pressure is too high, it might be 
prejudicial to the diversity inside the niches, leading to a premature convergence. 

 

5.2.3. Mutation Rate 
In the experiments performed to analyze the influence of the mutation rate in the 
niching process, the following settings were adopted:  Population size: 200; Mutation 
rates: {0.01, 0.05, 0.1, 0.15}1; Tourney size: 1-2; Space dimensions: 300x300; 
Visibility: 5. The next results correspond to the standard behavior observed in the last 
three 1000000 evaluations frames for the indicated mutation rates. 

                                                 
1 Mutation rates are higher than the standard values adopted for evolutionary optimization. 
Nevertheless previous experiments showed that fairly high rates improve the efficiency of the 
algorithm when searching for clusters with low PES.    



 

 
Figure 26 - Mutation rate 1% 

 

 
Figure 27 - Mutation rate 5% 

 

 
Figure 28 - Mutation rate 10% 

 

 
Figure 29 - Mutation rate 15% 

 

The results show that small modifications in the mutation rate can influence the 
maintenance of niches. When a mutation rate of 1% is used (Figure 26) , niches 
usually disappear before 1000000 evaluations. For the experiments with the 5% 
mutation rate, the niches tend to extinguish before the 200000 evaluations, as 
illustrated in Figure 27. For the last two mutation rates observed, in Figure 28 and 
Figure 29, the standard behavior is the maintenance of the niches throughout the 
4000000 evaluations. Even so, the experiments with a 15% rate showed a more 
consistent behavior in what concerns the niches maintenance: in all the runs 
performed with this setting, several niches survived until the end of the optimization. 

 



5.2.4. Space Dimensions and Visibility 
The last analyzed parameter is the relation between the space dimensions and the 
defined visibility radius. Therefore, we opted to fix the visibility value, and vary the 
space dimensions to analyze the impact of their relation on the niching process. The 
following settings were adopted for these experiments: Population size: 200; Mutation 
rate: 10%; Tournament size: 1-2; Space dimensions: {150x150, 300x300, 500x500}; 
Visibility: 5. 

The results shown in Figure 30, Figure 31 and Figure 32 correspond to the standard 
behavior observed in the last three 1000000 evaluations frames for the indicated space 
dimensions. 

 
Figure 30 - Space 150x150 

 

 
Figure 31 - Space 300x300 

 

 
Figure 32 - Space 500x500 

 

In a few experiments with the 500x500 space, the niches prevailed until the end of the 
execution. Even so, that was not the standard behavior detected. These results show 
that the space dimensions influence, fundamentally, the proximity between niches. 
When working on smaller spaces, the disappearing – or fusion – of niches can be 
dictated by the proximity of niches populating close areas. Although that was not the 
standard behavior, it was a phenomena observed in a few experiments with space 
150x150. 

Considering this disadvantage of using small spaces and the standard behavior 
detected for the 500x500 space, where the niches tend to disappear after the 3000000 



evaluations, the space 300x300 and visibility 5 figures out to be the most solid tested 
configuration. 

 

5.3. Solutions Quality and Statistics 
The most significant issue in this section is the ability of the niches to explore 
different search spaces, thus achieving distinct solutions. To understand how 
efficiently niches are exploring different solutions, various experiments were made 
using the default settings. In this section, four experiments (#1, #2, #3 and #4) are 
analyzed. The easiest way to determine if the search space is different is to compare 
the best individual and the average fitness of each niche. Once the algorithm is using 
all his local optimization power, the best solutions found in each niche must 
correspond to the nearest local optimum. 

 

5.3.1. Solutions Quality 
Figure 33 shows the final individuals distribution for two repetitions of the 
experiment where niches prevailed till the end of the execution. The best and average 
fitness are shown for each niche. 

Despite all the variations tested in the previous sections, the settings used for these 
experiments are mainly considered the default settings for the algorithm: Runs: 30; 
Population size: {250, 1000}; Number of evaluations: {4000000, 6000000}; 
Crossover rate: 70%; Mutation rate: 10%; Tourney size: 1-2; Space dimensions: 
300x300; Visibility: 5; Optimization rate: 100%; Optimization length (iterations): 
200.  

 
Figure 33 - Experiments with 4.000.000 evaluations (#1) 

 

Figure 34 shows the final individuals distribution for experiments with the same 
default settings from the experiments before, except for the number of evaluations: 
6000000. 

avg: -190,094
min: -191,842

avg: -191,712
min: -194,356

avg: -192,004
min: -197,907 avg: -190,564

min: -192,461

avg: -191,858
min: -193,229



 
Figure 34 - Experiments with 6.000.000 evaluations (#2) 

 

Regarding these results, for both the tested number of evaluations, different niches 
seems to explore different portions of the search space. Also the average fitness found 
in each niche appears to follow the best solution found in the niche, thus emphasizing 
that each niche is exploring a distinct portion of the solutions space. 

The results presented in Figure 35 and Figure 36 were sampled from experiments with 
the same default settings from the experiments above, but for populations of 1000 
individuals. Again, two values for the number of evaluations were experimented: 
4000000 and 6000000 evaluations. 

 

 
Figure 35 - Experiments with 4.000.000 evaluations (#3) 

 

 
Figure 36 - Experiments with 6.000.000 evaluations (#4) 

 

avg: -193,960
avg: -195,100

avg: -195,029
min: -198,456
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avg: -190,166
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avg: -191,154
min: -193,054

avg: -190,778
min: -194,436

avg: -187,317
min: -190,837

avg: -191,063
min: -193,680

avg: -193,703
min: -194,468

avg: -192,341
min: -193,890

avg: -193,952
min: -195,950

avg: -193,048
min: -194,391

avg: -194,104
min: -196,333



Like in experiments #1 and #2 (Figure 33 and Figure 34) , in experiments #3 and #4 
different niches seem to explore different portions of the solutions space. Like before, 
the average fitness for each niche tends to follow the best individual found, suggesting 
that individuals in the same niche are looking for the same solution. 

 

5.3.2. Looking for Good Solutions 
The solutions space when looking for Morse clusters is plenty of local minima for 
each number of particles. However, some specific structures are known as good 
alternatives to the best solutions [15].  

The values presented on Table 1 (column “Sols.”), correspond to the fitness of the 
best known solution and the solutions considered good alternatives for N50. The 
column “M.” contains the number of times that each one of these structures were 
found in an experiment without niching techniques taken as reference [17] for the 
analysis presented in this section. The remaining columns map the number of times 
these values were achieved on the four experiments described in the last section.  

 

Table 1 – Reference structures for N50 

Sols. Morse Exp #1 Exp #2 Exp #3 Exp #4 

-191,240 0 1 0 0 0 

-197,907 4 3 2 1 3 

-198,456 2 2 1 1 0 

 

Considering the amount of times the algorithm found these specific structures, the 
chosen reference experiment shows already a good behavior. Only the worst PES 
cluster was never achieved. The two structures with lower PES were found 4 and 2 
times, more than in each one of the four sdGA experiments. 

The experiments #1 and #2, for populations with 250 individuals, revealed, as 
expected, a better performance than the experiments #3 and #4 when looking for these 
three PES structures. This fact can be explained because these last two experiments 
ran for populations of 1000 individuals, thus decreasing the number of evaluations per 
individual. 

It is also relevant that the niching architecture tested is capable of outputting a greater 
variety of local minima than the standard EC algorithm: the sdGA returns all the best 
individuals found in his visibility radius, while the standard algorithm returns only the 
best individual of the whole population. When there are well defined niches in the 
population, the probability of the sdGA to return a large set of local minima increases. 
All the analyzed sdGA experiments were capable of returning more good quality local 
minima than the reference experiment. Even if the most of these local optima have not 
the same importance of the three considered solutions for N50, this ability of 
returning a large set of good solutions is a central issue for the sdGA functioning and 
should not be mistreated. 

 



5.3.3. Statistical Analysis 
A statistical significance analysis T-Test (significance level of 0.05), between the 
reference experiment and the four experiments described in the last subsection, was 
performed. The p-values attained for each experiment are shown in Table 2. Also the 
best solutions found in the 30 runs for these experiments are presented. 

 
Table 2 – Statistical Analysis 

Morse Exp #1 Exp #2 Exp #3 Exp #4 

-191,50 -196,43 -193,44 -191,88 -196,47 

-198,46 -194,36 -194,86 -190,89 -196,47 

-195,15 -194,92 -192,03 -197,91 -194,82 

-195,55 -195,14 -196,47 -194,80 -195,04 

-192,71 -195,16 -195,25 -196,95 -196,79 

-198,46 -195,25 -195,25 -197,91 -196,47 

-197,91 -198,46 -196,77 -196,95 -197,91 

-196,95 -197,91 -191,40 -196,02 -195,95 

-191,69 -198,46 -192,71 -195,69 -196,33 

-195,93 -191,24 -194,97 -196,79 -195,10 

-195,08 -195,42 -196,46 -196,46 -196,46 

-191,82 -196,47 -197,91 -195,20 -194,47 

-197,91 -195,25 -196,45 -195,82 -195,16 

-195,77 -195,81 -195,81 -191,67 -196,95 

-197,91 -192,35 -191,85 -197,91 -196,95 

-194,06 -196,70 -191,68 -196,02 -196,47 

-197,91 -195,16 -194,95 -191,73 -195,46 

-192,03 -194,80 -195,07 -195,55 -197,91 

-196,47 -192,28 -191,37 -195,09 -192,35 

-194,71 -197,91 -196,47 -196,45 -197,91 

-191,81 -196,45 -197,91 -195,06 -195,81 

-195,20 -196,46 -195,43 -196,44 -196,47 

-194,71 -195,08 -194,87 -196,46 -195,13 

-191,66 -192,71 -191,79 -195,16 -192,35 

-196,45 -191,22 -192,35 -196,46 -195,14 

-192,28 -197,91 -191,47 -194,82 -196,79 

-196,11 -196,47 -198,46 -196,45 -195,46 

-191,26 -194,47 -195,14 -197,91 -196,79 

-195,55 -195,20 -195,42 -197,91 -192,35 

-196,12 -194,86 -195,16 -194,46 -196,70 

T-TEST 0,50759 0,56949 0,24187 0,10289 



 

Regarding this results, it is clear that there are no significant differences in using the 
base algorithm or the sdGA approach. The T-Test shows a higher deviation for 
experiments #3 and #4. This can be due to the fact, already mentioned, that these two 
experiments were performed using 1000 individuals for same number of evaluations, 
thus decreasing the evaluations per individual. 

 

6. CONCLUSIONS 
 

In this work we presented some experiments regarding the viability of applying the 
sdGA approach to a complex problem such as Cluster Geometry Optimization. 
Results show that this architecture is able to create and maintain niches, thus 
increasing the likelihood of discovering good solutions in a single optimization run. 

Experimental results also revealed some sensitivity to the variation of some algorithm 
parameters, in what concerns the preservation of niches. 

 

6.1. Parameter Analysis 
The population size figured out to have a great influence in the niching process. Thus, 
increasing the number of individuals also increases the capacity of the algorithm to 
create and maintain niches. In turn, small populations are not able to maintain niches 
for half the lifetime of the algorithm, which can be considered an evidently bad 
performance. The population size was found the parameter with more influence in the 
niching process. 

The tourney size during the selection process is also a considerable influent 
parameter. The size of the second tournament has almost no influence on the 
maintenance of niches, although the quality of the solutions inside each niche can be 
affected by this parameter. On the other hand, the size of the first tournament can be 
considered critical for the maintenance of niches. The results shown revealed that, for 
the studied population size, and even when using a low selection pressure, this 
parameter can seriously compromise the creation of niches. Even so, it remains the 
doubt about the influence of the tournaments size when using bigger populations. 

Another parameter with some influence on the formation of niches is the mutation 
rate. When using lower mutation rates, the variations on the individuals positions 
induced by this operator are hindered. The great proximity between individuals inside 
the same niche observed can be associated with this inhibition. However, it does not 
seem to be the reason to the rapid extinction of niches, remaining this issue open for 
future research. On the other hand, using higher mutation rates can lead to a huge 
dispersion of the individuals at each generation, increasing the possibilities of a niche 
to extinguish. 

The last analyzed parameter, the relation between the space dimensions and the 
individuals visibility, also revealed some influence on the niching process, even 
though this influence is more perceptible in the maintenance of niches rather than in 
the formation process. In contradiction to the initial expectations, the compromise 
between these two parameters figures out to be the least influent from the analyzed 



parameters. The tested variations showed that using smaller spaces tends to increase 
the proximity between niches. Despite the fact that this proximity increases the 
probability of the niches to fuse themselves with the others, those revealed the 
capacity to cohabit even in the limits of proximity. In the tested spaces with bigger 
dimensions, although the niches seem to take some advantage of the protection 
provided by the hypothetic distance between niches, the niching process seems to be 
harmed, once the results showed difficulties on creating and maintaining niches. One 
possible explanation for such incapacity can be, when the algorithm starts, the 
inevitable dispersion of the individuals, reducing the number of members inside the 
visibility radius of each individual. 

 

6.2. Solutions Quality 
After understanding how far the sdGA architecture was able to run an acceptable 
number of evaluations for this problem without loosing niches, the main issue turns 
again to be the initial motivation for this work: the capacity of looking for good 
solutions simultaneously on cluster geometry optimization. 

The results show that the architecture is capable of achieving the initial aim of 
creating niches (and explore more efficiently the search space) and still look for good 
solutions. In what concerns the quality of the solutions, it seems that the sdGA can be 
applied without loosing quality on the optimization. In the specific mission of finding 
the three reference solutions for N50, there are no clear advantages on using the 
niches architecture. Even so, the sdGA revealed to be capable of finding a substantial 
number of local minima with good quality if only the fitness of the individuals is 
considered. 
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