
Incremental and Hierarchical Document Clustering

Rui Encarnação and Paulo Gomes

CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
{race, pgomes}@dei.uc.pt

Abstract. Over the past few decades, the volume of existing text data increased
exponentially. Automatic tools to organize these huge collections of documents
are becoming unprecedentedly important. Document clustering is important for
organizing automatically documents into clusters. Most of the clustering algo-
rithms process document collections as a whole; however, it is important to pro-
cess these documents dynamically. This research aims to develop an incremental
algorithm of hierarchical document clustering where each document is processed
as soon as it is available. The algorithm is based on two well-known data cluster-
ing algorithms (COBWEB and CLASSIT), which create hierarchies of probabilistic
concepts, and seldom have been applied to text data. The main contribution of
this research is a new framework for incremental document clustering, based on
extended versions of these algorithms in conjunction with a set of traditional
techniques, modified to work in incremental environments.

Keywords: conceptual clustering, dimensionality reduction, document cluster-
ing, hierarchical clustering, incremental clustering, vector space model

1 Introduction

There is a growing gap between the rate of generation of documents and our ability to
organize and use them. This overload of information demands automatic tools to or-
ganize documents. Document clustering [1, 3] arranges documents into automatically
created clusters.

Clustering is the division of data into clusters or “the art of finding groups in data”
[12]. Each group (cluster) is made of objects that are similar between themselves (high
intra-cluster similarity) but dissimilar to objects of other clusters (low inter-cluster sim-
ilarity). Unlike classification, where a set of predefined classes is provided, in clustering
the system must decide not only to which cluster each object must be assigned but also
which clusters must be created. The items to be clustered are usually represented by a set
of features, denoted by a vector of numeric or nominal values.

The main difference between document clustering and the general data clustering is
the non-existence of a predefined set of features, since the features are defined from the
content of the documents.

When dealing with documents the most used representation is the vector space model
[19] where each document is represented by a vector of numeric features. Usually the
features are the words occurring in the collection and we call it the bag-of-words model

because a document is represented as a set of words. A collection of n documents con-
taining m different terms, can be represented by a term-document matrix of dimensions
m x n. This matrix is extremely sparse because a document contains only a few hundreds
from the tens of thousands of different words contained in the collection. There are many
different ways to determine the weight of each word [13]. The most obvious is term fre-
quency (tf) that counts how many times the term appears in the text. The simplest is term
occurrence, a binary value indicating if the term occurs in the text. However, the most
used weighting scheme in document clustering is TF-IDF that combines term frequency
and inverse document frequency to assign a weight to each term in the document [20].
The most usual formula for TF-IDF is:

- , = , × = , × (1)
where N is the total number of documents and dft is the document frequency or the
number of documents that contain the term t. Thus, the weight assigned by TF-IDF to
a term in a document is high when the term occurs frequently in a small number of
documents (giving a high discriminating power) and low when the term occurs in many
documents or occurs fewer times in a document.

The use of the vector space model to represent documents leads to a huge number of
features. Usually, there are some thousands of terms in a vocabulary, making the term
space high-dimensional. This is the curse of dimensionality, the main issue of text clus-
tering. High dimensionality leads to very sparse vectors and makes it harder to detect
the relationships among terms. High dimensionality also increases time and space com-
plexity, affecting dramatically the performance. To overcome these problems, two
types of dimensionality reduction techniques have been proposed [22]:

Feature transformation, which projects the original high dimensional space onto a
lower dimensional space where each new dimension is a combination of the original
features, widely used examples being LSI [4] and LDA [9];
Feature selection, which selects a subset from the original features, based on a meas-
ure computed from the document collection.

Many clustering algorithms [10] have been proposed but most of them cannot be ap-
plied to documents, because text data poses several new challenges:

Scalability - Many clustering algorithms perform well on small datasets, but some
fail to handle real world datasets containing millions of documents;
Dimensionality - The number of terms can reach tens of thousands;
Sparsity - The vast majority of entries in the term-document matrix is zero;
Word correlation - The number of concepts is much smaller than the feature space;
Cluster descriptions - The hierarchy created by the algorithm should contain mean-
ingful cluster descriptions, to enable interactive browsing;
Prior domain knowledge - Many clustering algorithms require some input parame-
ters (the number of clusters being the most common one). Often, the user does not
have such knowledge or makes wrong choices, so the clustering quality may be poor.

Document clustering has been used with many purposes: to organize the results re-
turned by a search engine (creating a more effective presentation to the user), to im-
prove information retrieval systems, to enable browsing collections of documents, to

find the nearest neighbors of a document, to detect new topics in news streams, and
even to ascribe authorship of texts.

Document clustering algorithms can be classified in many ways [1, 3, 10]. Accord-
ing to the number of levels of the clustering created, the methods can be divided in
hierarchical clustering which creates a tree of clusters, or partitioning clustering which
creates a flat partition of clusters. According to the way the algorithm processes the
documents, they can be classified in batch algorithms if the document set is processed
as a whole (possibly with several iterations), and incremental algorithms, which process
one document at a time, without the need of reprocessing the previous documents. An-
other division can be made between deterministic and probabilistic algorithms. Deter-
ministic algorithms assign each document to only one cluster, while in probabilistic (or
fuzzy) algorithms a document can be assigned to several clusters, possibly with differ-
ent probabilities (soft clustering).

In our proposed approach, we choose hierarchical clustering because the hierarchy
of clusters enables a quick browse of the topics of interest, allowing for searches at
different levels, and it circumvents the problem of specifying the number of clusters,
producing a satisfactory solution for users with different needs.

Most existing systems require that all the documents be present at the start, but this
restriction is hard to satisfy in cases where documents are constantly being added. Clus-
tering algorithms should be able to process a text as soon as it arrives, without repro-
cessing the previous ones, but maintaining the hierarchy updated. Such a situation calls
for an incremental approach, which we believe will become more and more important.

In addition, most approaches to document clustering require a similarity measure
and rely on distance between documents. This makes hierarchical clustering hard to
apply to text data because it can be computationally expensive. We propose the use of
conceptual clustering, an approach mostly used with non-textual data.

The main contributions of this work will be:
An incremental and hierarchical algorithm based on COBWEB [5] and CLASSIT [7];
The definition of a new framework for incremental document clustering, with the
adaptation of some traditional techniques;
The development of more sophisticated mechanisms of backtracking and tree reor-
ganization which reduce sensitivity to the order of the documents;

In the next section, we present the most important work in this field. In section 3, we
will describe our approach and the options made in our system. Next, we present some
preliminary experiments and we will end with some ideas for future research.

2 Related Work

For the time being, we will review the clustering algorithms related to our work. We
start with a brief description of the two main types (hierarchical and partitional) to de-
scribe later the two algorithms in which our system is based on. We will end with a
brief overview of other incremental systems.

2.1 Hierarchical Clustering

Hierarchical clustering [6] organizes clusters into a tree, with the root containing the
entire corpus of documents and leaves containing single documents. Depending on the
direction of tree construction, hierarchical methods can be classified as divisive (start-
ing with a node with all the documents and iteratively splits it until only singleton nodes
remain) or agglomerative (starting with a node for each document and joining the most
similar pair of clusters, in a bottom-up fashion, until the most general node is created).
Unlike other techniques, here we do not need to specify the number of clusters.

Hierarchical methods usually suffer from their inability to recover from a wrong
decision (a merge or a split). Furthermore, due to the complexity of computing the sim-
ilarity between every pair of clusters, these methods are not scalable for handling large
datasets, since the time complexity is quadratic with the number of documents.

2.2 Partitional Clustering

K-means [21] is the most widely used clustering algorithm due to its simplicity and
efficiency. It is a distance-based algorithm, which builds a flat partition of K clusters.
This number is a user-predefined parameter. K-means is based on the idea that a center
point (centroid) can represent a cluster. The algorithm starts with a random set of K
initial centroids and assigns each object to its closest centroid. Then, iteratively, new
centroids are calculated from the objects assigned to each cluster and assignments are
changed if necessary. The algorithm finishes when no reassignment occurs.

The run time of K-means and its variants is very attractive when compared to hier-
archical techniques, particularly if the dataset is large. One disadvantage of K-means is
the need to specify the number of clusters, which may lead to poor clustering. The
algorithm is too sensitive to the initial seeds and can find itself trapped in a local mini-
mum. Noise and outliers can also be a problem, as a small number of points can influ-
ence the mean value.

2.3 Conceptual Clustering

Conceptual clustering algorithms are incremental methods and build a hierarchy of
probabilistic concepts. COBWEB and CLASSIT are the most notable among them.

COBWEB [5] is an algorithm that clusters objects described by categorical values. It
creates a hierarchy where each node stores the conditional probability of each possible
value for every attribute (probabilistic concept). The algorithm traverses the tree top-
down until it reaches a leaf, updating the values in the nodes.

It is not a distance-based method. Instead, COBWEB uses category utility [8] as the
evaluation function. Category utility is a heuristic trade-off between intra-class similar-
ity and inter-class dissimilarity. Intra-class similarity (P(Ai=Vij|Ck)) measures the pre-
dictability of the class for that value of the attribute. Likewise, the inter-class dissimi-
larity (P(Ck|Ai=Vij)) measures the predictiveness of the class given the value of the at-
tribute. A clustering is good if features are predictable by the classes and, simultane-
ously, predictive of classes, and this should be more important for values that are more

common. This trade-off can be expressed as the product of predictability, predictive-
ness and commonness and - using Bayes’ Rule - we get () =j .
The inner expression is the expected number of values one could guess, given the class
and following a probability matching strategy, where a value is guessed with the same
probability of its occurrence. Finally, the category utility of a clustering C = {C , . . , C }
is defined as the average of the category utility of the clusters:

CU(C) =
())

(2)

When classifying an object in a node, the algorithm considers four possible operators:
classify the object in an existing cluster;
create a new cluster with the object;
merge the two clusters with the highest scores into a new cluster;
split the cluster with the highest score in its children;

Finally, it performs the one that yields the highest CU value.
CLASSIT [7] is the successor of COBWEB and overcomes some of its limitations. It

uses only numeric attributes and this implies a generalization of the evaluation function
used in COBWEB because the domain is continuous. Since there is no prior information
about the distribution of the values, the best estimation is the normal (Gaussian) distri-
bution. With this distribution, the squared probabilities in CU formula are replaced by
1/ where is the standard deviation of the attribute i. There is a problem with this
expression when standard deviation is zero (all objects in a cluster have the same value
for an attribute). To solve this, CLASSIT uses acuity, a parameter that imposes a mini-
mum standard deviation. Another useful parameter used in CLASSIT is cutoff, which
enables stopping the classification whenever the category utility drops below that
threshold. This prevents the system from continuing until it reaches a leaf, increasing
performance, and reducing hierarchy complexity (as well as the risk of overfitting).

We can say that COBWEB and CLASSIT do a hill-climbing search in the space of
concept hierarchies guided by category utility. The merge and split operators enable
recovering from previous wrong decisions and make the algorithms less sensitive to the
order of instances. These systems satisfy the criteria proposed for incremental cluster-
ing evaluation [5]: the cost of incorporating an instance is low, the hierarchies produced
have high quality and promote correct predictions. They introduce some interesting
features in clustering such as an evaluation function grounded in Probability Theory,
the backtracking mechanisms, and the use of conceptual clustering for inference.

2.4 Incremental Document Clustering

Some research in incremental text clustering has been done in the field of topic model-
ing to detect and track new events in a stream of online news [2]. Topic modeling uses
a time stamp attached to each text and a decaying function to reduce the importance of
older texts. Generally, these systems create flat partitions where each document can
belong to more than one cluster simultaneously (fuzzy clustering).

As far as we know, the first utilization of conceptual clustering algorithms in docu-
ment clustering was [16, 17]. That work was based on a modified version of CLASSIT.
It stated that the normal CLASSIT, without modifications, is unsuitable for document
clustering because it assumes that the values of the attributes follow a normal distribu-
tion. This is a valid assumption for generic attributes, but not for word occurrences in
documents, which are non-negative integer counts. The frequency of words in a docu-
ment collection follows Zipf’s law [24] - the frequency of any word is inversely pro-
portional to its rank in the frequency table, sorted in decreasing order.

The authors presented several possibilities to model the occurrence of words across
documents and selected the Katz’s K-mixture model [11] since it is simpler and models
the occurrences of words in the documents better than most other distributions, and
about as well as the Negative Binomial (which fits the word occurrence very well, but
is computationally expensive). Some experiments to assess the quality of the clustering
obtained with Katz’s distribution versus the Normal version are presented. Katz’s ver-
sion was expected to be much better, but the results were unclear. The tests also showed
that Katz’s version is slower than Normal version.

We identified two issues in this often-cited work:
They use TF-IDF to calculate the document vectors but when trying to model the

distribution of values they consider just term frequency. This is a problem because TF-
IDF values are not integer counts and Zipf’s law cannot be applied to TF-IDF. Thus,
there is no clear proof that Katz’s distribution is a fair assumption for TF-IDF values.

A more serious issue is the utilization of a variant of TF-IDF in dynamic feature
selection. This is a usual choice in batch clustering, but cannot be used in an incremental
system without modifications. As the documents are not present at the beginning, we
cannot use global measures as IDF. We can use traditional datasets to establish com-
parisons with other systems, but simulating documents will arrive one at a time. In a
subsequent version of the work [18], all references to feature selection were omitted.
We contacted the main author and he agreed with our point of view.

3 Proposed Approach

In this section, we will describe the approach followed in this research, explain the
options made, and show the current stage of development of our system.

The main goal of this research is the creation of a new document clustering algorithm
with a specific set of requirements:

It must create a hierarchy of clusters of documents - hierarchical;
Each node must have a probabilistic description of the documents it contains - con-
ceptual clustering;
Documents are processed one at a time, with a processing rate greater than the ex-
pected arrival rate - incremental;
No additional information should be required - unsupervised.

We want to emphasize the main differences between our system and those earlier de-
scribed. Our system does not rely on the distance between documents, since the docu-
ment classification is guided by category utility; this makes it more scalable and enables

the execution of tree reorganization in parallel with document classification. Although
it is based on a combination of COBWEB and CLASSIT, it is specially designed for incre-
mental document processing, extending the previous operators, and implementing new
incremental techniques for dimensionality reduction.

We have implemented a preliminary version of our HIDOCLUS algorithm. This early
implementation is used for comparison against other published results, and serves as a
benchmark for future versions and as a test bed for experimentation on document rep-
resentation.

The algorithm was implemented in Python, using NLTK1 - a widely used framework
for NLP that provides access to traditional corpora and text processing libraries - and
Gensim2 - a Python library designed to efficient processing of large corpora, with in-
cremental implementations of many algorithms (including TF-IDF, LSI, and LDA) [15]
which do not require documents to stay in memory.

3.1 Document Representation

HIDOCLUS accepts documents in English or Portuguese (any other language can be
used, provided the necessary preprocessing tools are available) and performs some
standard preprocessing steps to reduce the size of the representation and improve the
effectiveness of the algorithm [13]:

Tokenization – splits the document into individual words (tokens)
Normalization – converts all characters to lower-case (case folding);
Stopwords removal – removes all the tokens contained in a predefined list of fre-
quent words with little discriminative power (articles, prepositions, conjunctions);
Lemmatization – ignores the inflected forms of a word and retains only the lemma.

For the moment, we use vector space model with numerical attributes and TF-IDF
weights. However, the system is prepared for two additional possibilities.

First, we can enrich the document representation with extra attributes providing con-
textual or additional information. Since our system accepts a mix of both types, these
attributes can be numeric or nominal and they can have an associated weight. (How-
ever, the presence of nominal attributes can be incompatible with some of the feature
transformation techniques for dimensionality reduction.)

Another possibility is the transformation of term frequencies (or even TF-IDF val-
ues) in nominal attributes (“discretization”). This model will be faster, produce simpler
cluster descriptions, and overcome the problem of model the frequencies distribution.

3.2 Dimensionality Reduction

Many document clustering batch algorithms use TF-IDF to select the most informative
terms. However, to achieve it they need to know a priori the document frequency of

1 http://nltk.org
2 http://radimrehurek.com/gensim

every term, which is impossible in incremental systems, since we do not have a previ-
ous knowledge of the corpus. This is a key challenge in incremental document cluster-
ing systems and, strangely, has been ignored in many works in this field, as in [17] and
many subsequent works that used it acritically. To overcome this problem, some solu-
tions are possible:

Use incremental versions of the dimensionality reduction techniques that transform
the set of initial feature in a much more reduced set, e.g. LSI or LDA.
Use a weighting scheme not affected by new documents like TF-ICF [14]. This
scheme replaces IDF by inverse corpus frequency (ICF) of other known corpus. This
idea is similar to the use of training data in classification. TF-ICF is fast and effective
in general domains if a large representative corpus is available. However, in specific
domains, an appropriate corpus can be harder to determine;
Use TF-IDF but recalculate periodically the selected features and the document vec-
tors. This recalculation updates the system with the information conveyed by the
documents that have arrived in the meantime, since the IDF of previous documents
is affected by each incoming document. The interval between recalculations can be
progressively increased, since the impact of adding a new document is becoming
gradually smaller.

The current version of HIDOCLUS uses the latter. Whenever we need to update the set
of K most informative features, we compute the sum of TF-IDF for each term, across
all the documents so far processed, and choose the K with highest scores. In this stage,
there is a fixed interval between “refreshes” but we intend to increase dynamically the
interval in the future.

Our initial work plan did not include the utilization of LSI and related semantic tech-
niques for dimensionality reduction, since the recalculation of the model from scratch
- with the arrival of each document - will forbid its use in incremental environments.
However, having found the incremental versions of these algorithms used by Gensim,
we have already implemented LSI and are actually working on LDA implementation.

3.3 Evaluation Function

The evaluation function used by HiDoclus is based on the functions used by Cobweb
and Classit. When the dataset contains attributes of only one type, the function is es-
sentially the same used by these systems.

In the case of numerical attributes, for the moment, and in the absence of a clear
better solution, we decided to maintain the assumption of CLASSIT and the evaluation
is based on the standard deviation of the attributes in each cluster:

CU() =
()

(3)
where C is a cluster with N children, ik and ip are the standard deviation of the attrib-
ute i, in child cluster k and in parent cluster p, respectively. We maintain the acuity
parameter to specify the minimum value for and prevent clusters with null deviation.

When mixed type attributes are used, the function is the sum of (2) and (3).

3.4 Algorithm

The control strategy and learning mechanism used in the preliminary version of the
HIDOCLUS algorithm are very similar to those used in COBWEB and CLASSIT.

When inserting a document in a hierarchy of clusters we use the same four operators:
Place the document in an existing cluster (it tries every child of the current cluster);
Create a new cluster with the incoming document;
Merge two clusters into a new cluster (we extend this operator to consider the merge
of every pair of children and not only the two with highest scores);
Split a cluster, promoting its children (we have also extended this operator to con-
sider every child of the current cluster and not only the best);

These two last operators implement the backtracking mechanism to recover from pre-
vious wrong choices. Whenever the algorithm uses these operators, it stops the classi-
fication of the document for a while to rearrange locally the hierarchy. After this, the
classification proceeds in the same node. We present the algorithm below:
N = root of the tree
WHILE N is not a leaf
 Update the probability concept of N
 Compute the score of placing Document in each child of N
 Compute the score of creating a new child of N with Document
 Compute the scores for using the Merge and Split operators

IF best score < cutoff
THEN Stop classification
ELSE

 Apply the operator with the best score
IF Merge or Split are used
THEN Proceed with the classification in updated Node
ELSE Proceed to next level (best or new child of Node)

4 Experimentation

Since our research is yet in an early stage, much work is still in progress, and many
implementation decisions need to be taken and validated. However, some preliminary
experiments have been conducted and a number of conclusions can already be drawn.

First experiments with non-textual data allowed us to validate the algorithm and con-
firm that it produces the same results as COBWEB and CLASSIT, for the same dataset.

Next, we used reduced versions of several NLTK corpora to study the sensitivity of
the algorithm to its parameters. The cutoff parameter stops the classification whenever
the category utility drops below that threshold. This prevents the system from continu-
ing until it reaches a leaf, reducing the height and complexity of the hierarchy. A null
cutoff forces the system to retain all documents as leaves of the tree, leading to an
overfitting effect, as the algorithm will sort new documents as far down as possible.
With higher values, the system produces simpler hierarchies with more general clusters
as terminal nodes. This reduces notoriously the processing time of future documents.

The acuity parameter can be thought as the minimum perceptible difference, setting
the breadth of the hierarchy. Low values of this parameter increase the branching factor
of the tree and increase the number of singleton clusters. However, the role of this pa-
rameter is not clear, since it also affects the category utility of clusters having attributes
with null or very small deviation. In this case, the value of CU is given by the product
of the inverse of acuity by the number of features used. This is usually a big value since
the number of features is large - even after dimensionality reduction – and the acuity is
an extremely small value (same order of magnitude of the weights in document vectors,
due to normalization). In order to get a deeper understanding of this relation between
acuity, number of features and CU values, we need to do additional experiments.

We also evaluated the behavior of merge and split operators, using several possibil-
ities for the nodes considered by the operators. We verified that processing time is very
similar in all the cases (less than 10% between the best and worst cases). Testing more
nodes takes longer but the system makes better choices, which saves time in future
steps. We noted a slight increase in clustering quality when the split operator considers
all the nodes. The merge operator obtains best results when it considers only the two
best nodes, but the difference is insignificant. For now, we keep considering every
node, until further experiments enable a deeper insight.

In other experiments, we used tagged corpora from NLTK (Brown and Movie Re-
views) to compare the top levels of the obtained hierarchy with the predefined classes.
The results ranged from 50% to 85% of purity in clusters at top levels. We think this is
caused by the variability of category utility values aforementioned.

We have also studied the distribution of TF-IDF values, and we observed that the
vast majority of values are zero or near zero. This is caused by the sparsity of the space
and the normalization process.

Finally, we tried to figure out how many documents are needed to vocabulary stabi-
lization. We ran experiments where the vocabulary is recalculated from scratch after
the arrival of every new document. We observed an expected initial period (5 to 10
documents) of big changes, but then the vocabulary stabilizes gradually and the changes
become more and more rare. For instance, with a corpus of 1000 documents from the
Reuters corpus and a vocabulary size of 50, we see that after the 20th document none
caused more than two changes, with the majority causing no change. This reinforces
our belief in increasing intervals between refreshes.

5 Future Work

Many initial ideas are still not implemented and many other possible paths are sug-
gested by the work done so far. Among them, we highlight the following:

Implement feature hashing (aka hashing-trick) [23], an extension of VSM that uses
a hash dictionary. This approach speeds-up the model, leads to huge savings in
memory, and allows adding new features dynamically;
Compare the hierarchies obtained using different weighting schemes and different
dimensionality reduction techniques;

Determine an appropriate number of features for each corpus and study the sensitiv-
ity of the algorithm to different values for the number of features. Additional exper-
imentation is needed to study how the tree is affected by vocabulary changes;
Standardize the range of values returned by the evaluation function;
Find appropriate values for acuity and cutoff parameters for each corpus;
Isolate the tree reorganization from the document processing. The hierarchy reor-
ganization can be performed concurrently, in background, searching for outliers or
portions of the tree with low quality. The merge and split operators could be isolated
from the other two operators, and extended to perform more global operations;
Allow a document to be classified in more than one cluster (fuzzy clustering);
Implement other cluster quality measures (internal and external) for more accurate
evaluation of the produced hierarchies;
Study to what extent the incremental requirement degrades clustering quality, com-
paring the results obtained with different orders of document presentation and then
compare the clustering produced by our system with the results produced by batch
systems knowing the whole corpus at the beginning.

6 Conclusion

This research is an answer to the growing demand for automatic document organization
tools. We present a new document clustering application combining two features sel-
dom used in conjunction: incremental and hierarchical. To make this possible, we adapt
some of the usual techniques in Text Mining to an incremental environment. At the
same time, we seek the best solutions for some open issues in incremental documental
clustering such as the document representation and the dimensionality.

We believe that our work could be important to create a framework for future incre-
mental and hierarchical document clustering research and we think our system to be an
invaluable tool to prevent us from being overwhelmed with documents.

Acknowledgements

This paper was submitted to the SDIA 2013 - 4th Doctoral Symposium on Artificial
Intelligence and reports research work for the PhD Thesis of the Doctoral Program in
Information Sciences and Technologies of Faculty of Science and Technology of the
University of Coimbra. The research, which started in April 2011, is being supervised
by Professor Paulo Gomes, and the foreseen conclusion date is September 2014. It is
partially supported by the FCT scholarship grant SFRH/BD/73543/2010.

References

1. Aggarwal, C.C., Zhai, C.: A Survey of Text Clustering Algorithms. In: Aggarwal, C.C. and
Zhai, C. (eds.) Mining Text Data. pp. 77–128 Springer, Boston, MA (2012).

2. Allan, J. et al.: On-line New Event Detection and Tracking. Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’98). pp. 37–45 ACM Press, Melbourne, Australia (1998).

3. Andrews, N.O., Fox, E.A.: Recent Developments in Document Clustering. (2007).
4. Deerwester, S. et al.: Indexing by Latent Semantic Analysis. Journal of the American

Society for Information Science. 41, 6, 391–407 (1990).
5. Fisher, D.H.: Knowledge Acquisition Via Incremental Conceptual Clustering. Machine

Learning. 2, 2, 139–172 (1987).
6. Fung, B.C.M. et al.: Hierarchical Document Clustering. Encyclopedia of Data Warehousing

and Mining. pp. 970–975 Information Science Reference (2009).
7. Gennari, J.H. et al.: Models of Incremental Concept Formation. Artificial Intelligence. 40,

1-3, 11–61 (1989).
8. Gluck, M.A., Corter, J.E.: Information, uncertainty and the utility of categories.

Proceedings of the 7th Annual Conference of the Cognitive Science Society. pp. 283–287 ,
Irvine, USA (1985).

9. Hoffman, M.D. et al.: Online Learning for Latent Dirichlet Allocation. Advances in Neural
Information Processing Systems (NIPS). 856–864 (2010).

10. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters. 31, 8,
651–666 (2010).

11. Katz, S.M.: Distribution of content words and phrases in text and language modelling.
Natural Language Engineering. 2, 1, 15–59 (1996).

12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons (2005).

13. Manning, C.D. et al.: Introduction to Information Retrieval. Cambridge University Press,
Cambridge, UK (2008).

14. Reed, J.W. et al.: TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data
Streams. Proceedings of 5th International Conference on Machine Learning and
Applications (ICMLA’06). pp. 258–263 IEEE (2006).

15. Rehurek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora.
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. pp.
45–50 ELRA, Valletta, Malta (2010).

16. Sahoo, N.: Incremental Hierarchical Clustering of Text Documents. Carnegie Mellon
University (2006).

17. Sahoo, N. et al.: Incremental Hierarchical Clustering of Text Documents. Proceedings of
the 15th ACM International Conference on Information and Knowledge Management -
CIKM’06. pp. 357–366 ACM Press, Arlington, USA (2006).

18. Sahoo, N.: Three Essays on Enterprise Information System Mining for Business
Intelligence. Carnegie Mellon University (2009).

19. Salton, G. et al.: A vector space model for automatic indexing. Communications of the
ACM. 18, 11, 613–620 (1975).

20. Spärck Jones, K.: A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation. 28, 1, 11–21 (1972).

21. Steinbach, M. et al.: A Comparison of Document Clustering Techniques. KDD Workshop
on Text Mining. IEEE (2000).

22. Tang, B. et al.: Comparing and Combining Dimension Reduction Techniques for Efficient
Text Clustering. Feature Selection for Data Mining. 17 (2005).

23. Weinberger, K.Q. et al.: Feature Hashing for Large Scale Multitask Learning. 26th
International Conference on Machine Learning ICML’09. (2009).

24. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley Press Inc.,
Cambridge, MA, USA (1949).

