Evolving Evolutionary Algorithms

Nuno Lourengo
CISUC, Department of
Informatics Engineering

University of Coimbra, 3030

Coimbra, Portugal

naml@dei.uc.pt

Francisco B. Pereira
'CISUC, Department of
Informatics Engineering
University of Coimbra, 3030
Coimbra, Portugal
2|SEC, Quinta da Nora, 3030

Ernesto Costa
CISUC, Department of
Informatics Engineering

University of Coimbra, 3030

Coimbra, Portugal

ernesto@dei.uc.pt

Coimbra, Portugal
xico@dei.uc.pt

ABSTRACT

This paper proposes a Grammatical Evolution framework to
the automatic design of Evolutionary Algorithms. We define
a grammar that has the ability to combine components reg-
ularly appearing in existing evolutionary algorithms, aiming
to achieve novel and fully functional optimization methods.
The problem of the Royal Road Functions is used to assess
the capacity of the framework to evolve algorithms. Results
show that the computational system is able to evolve sim-
ple evolutionary algorithms that can effectively solve Royal
Road instances. Moreover, some unusual design solutions,
competitive with standard approaches, are also proposed by
the grammatical evolution framework.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]|: Problem Solving, Control
Methods, and Search— Heuristic Methods

General Terms
Algorithms, Design

Keywords

Evolutionary Algorithms, Hyper-heurisitics, Automatic Evo-
lution

1. INTRODUCTION

Evolutionary Algorithms (EAs) are computational meth-
ods loosely inspired by the principles of natural selection
and genetics [7, 8]. When applied, EAs iteratively process a
population of candidate solutions. Each iteration is typically
composed by three processes: selection of the most promis-
ing individuals, creation of a new set of solutions by means
of variation operators (usually crossover and mutation) and
definition of survivors. In the last step, offspring solutions
compete with their parents for a place in the population and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’12 Companion, July 7-11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07...$10.00.

51

a new iteration immediately starts. The process stops when
a predetermined termination criterion is met (e.g., when a
maximum number of iterations is achieved). The general
structure of a simple EA is depicted in Alg. 1.

Algorithm 1 Evolutionary Algorithm

generate initial population
while termination condition not met do
evaluate individuals
select individuals
apply variation operators
define survivors to the next generation
end while
return best individual in the population

Despite these simple processing rules, EAs are robust search
procedures able to quickly identify good quality solutions in
hard problems. However, in many situations, the effective-
ness of EAs can be greatly enhanced if its components are
adjusted to the specific situation being addressed. Modifica-
tions are usually done manually and require a reasonable de-
gree of expertise. Some concrete challenges that arise when
ailming to maximize the effectiveness of an EA are:

1. How to represent/encode the candidate solutions pro-
cessed by the EA?

2. How to select individuals for reproduction? What is
the best selective pressure for a given optimization sce-
nario?

3. How to define and apply variation operators? Which
variations operators should be selected?

4. How to select the individuals that should survive?

In this paper we address these algorithmic design challenges
by proposing a Grammatical Evolution (GE) [17, 13] com-
putational framework that automatically evolves full-fledged
EAs. The proposed grammar guides the selection and com-
bination of common EA operators and it also defines the
corresponding parameter settings. The application of this
framework in the automatic design of EAs alleviates the task
of deciding the most appropriate specification for a given
problem. Moreover, this could introduce some benefits in
terms of performance improvement.

Royal Road Functions (RR) [10] are selected as the tar-
get problem to test the ability of the grammar to evolve EAs.

RR functions define optimization scenarios where population-
based algorithms with crossover and mutation tend to out-
perform methods that do not rely on a combination of these
variation operators. Moreover, the hardness of RR instances
can be easily adjusted by changing the value of some param-
eters. It is therefore an appropriate environment to study
the ability of a computational framework to automatically
discover algorithmic structures. A careful analysis of the
outcomes will allow us to gain insight into the evolved pat-
terns and check if they resemble standard evolutionary al-
gorithms or, on the contrary, contain unusual combinations
of components.

The structure of the paper is as follows: Section 2 gives
insight on recent work related to the automatic evolution
of algorithms. Section 3 introduces Royal Road functions,
whereas section 4 presents the GE framework built and the
grammar used in the experiments. Section 5 presents an
empirical study on the ability of the GE framework to evolve
EAs. Section 6 gathers the main conclusions and suggests
directions for future work.

2. RELATED WORK

The research area where an algorithm searches for algo-
rithms to solve a certain problem is called Hyper-Heuristics
(HH) [3, 16]. The aim of HH is to raise the level of gen-
erality at which algorithms can work. Most of the current
meta-heuristics have to be manually designed when we want
to apply them to a certain problem [3]. Hence they tend to
become specific to the problem in question. In [4], Burke
et al. propose a classification of HH into two classes: the
first class corresponds to the automatic selection of existing
heuristics. The second class corresponds to the automatic
generation / design of new heuristics. Examples of both
classes can be found in [4]. However the idea of having an
EA that has the capacity of adapting itself during the evo-
lutionary process has been studied for a while. In [1], An-
geline focuses on the evolution of certain parameters that
are part of EA techniques. For many tasks it is possible to
dynamically adapt aspects of EA techniques to anticipate
regularities in the environment and improve the search of
new solutions. Moreover Angeline makes a formal definition
of the different levels of adaptation: population-level, which
consist on adapting, during the evolutionary process, the set
of parameters that are shared by the population; individual-
level, which consist on adapting the parameters related to
the manipulation of the components that represent each in-
dividual; and component-level, which is the adaptation of
the way each component of an individual behaves when a
modification occurs. Following these ideas of automatically
evolve parameters and operators of evolutionary algorithms,
several proposals were made [2, 5, 6, 11, 12, 18].

In [2], Angeline introduced two adaptative crossover oper-
ations for GP: Selective Self-Adaptative Crossover (SSAC),
and Self-Adaptative Multi-Crossover (SAMC). Both opera-
tors were designed to evolve crossover points. The difference
between them is related to the adaptation-level where they
work: the first works at the individual-level, whilst the sec-
ond works at the component-level. In [6], Edmonds goes a
step further and instead of evolving only parameters it co-
evolves the genetic operators along with the candidate so-
lutions to the problem being tackled. The mechanism that
allows the construction of genetic operators is defined in such
a way that it should guarantee the diversity of the candidate

52

solutions. The evolved operators are applied to the popula-
tion of candidate solutions and the population of operators
itself. In [18] Tavares el al. proposed the evolution of the
functions that make the mapping between the genotype and
the phenotype. A good mapping function is essential in or-
der to achieve good results, and in their work the authors
propose a Genetic Programming algorithm that evolves a
population of mapping functions, that are then used by an
EA.

Several attempts to evolve complete evolutionary algo-
rithms have been performed. In [12] Oltean et al. relied
on Multi-Expression Programming (MEP) to evolve a non-
generational EA. Moreover, in [11] Oltean extended the pre-
vious work and a generational EA was evolved using Linear
Genetic Programming. In [5], Diogan et al. tried to evolve
a complete EA. They proposed to use EAs at two different
levels: the first level, the macro, the algorithm has a fixed
population size, fixed probability of variation operators. The
second level, the micro, corresponds to the solutions encoded
in the EA of the first level. A solution corresponds to an
evolved sequence of genetic operations and their parame-
ters, that will be used to solve a certain problem. Empirical
results showed that the evolved algorithms perform similarly
to the standard approaches to which they were compared [5,
11, 12]. In [15], Poli et al. evolved the main operator of a
Particle Swarm Optimization, using Genetic Programming.

Recently, Tavares et al. proposed a GE framework to
evolve Ant Colony Optimization Algorithms to the Traveling
Salesman Problem [19].

3. ROYAL ROAD FUNCTIONS

The Royal Road functions (RR) were introduced by Hol-
land, Mitchell and Forrest in 1992 [10], aiming to provide
insight into the optimization behavior of EAs. These func-
tions were designed in such a way that they can be solved
by a simple population-based algorithm with crossover and
mutation, but not by a hill-climber [9]. More precisely, the
study was searching for answers to the following questions
[10]:

1. Which problems are more suitable for EA’s?

2. What is the effect of crossover on the EA’s performance
on different landscapes? How does it help to find good
quality solutions?

A RR function takes a binary string as input, and pro-
duces a real value. The problem corresponds to a search task
in which one wants to find strings with high fitness values.
The RR can be described as a mapping: F : {0,1}" — R,
where n is the size of the binary string. Binary strings
encoding solutions are composed by a sequence of 2* non-
overlapping contiguous regions, where k is a parameter that
defines the instance of the RR. Each region is divided in
two sections: a section of b bits called block, followed by a
section of g bits called gap. Thus, a region is composed by
(b+ g) bits. A complete block is defined when all bits of the
block are set to 1. Furthermore, the RR functions are com-
posed by levels. Levels correspond to contiguous sequences
of 2! complete blocks, where 0 < I < k. Fig. 1 represents
how the levels are defined for a RR instance with k = 3.

The standard instance has the following parameters: k =
4, b =8, g = 7, which corresponds to a binary string of 240
bits, with 16 regions of 15 bits each [9].

Levelo [B1|[B2]|[B3|[B4||B5||B6|[B7]|BS]
Level1 | B1B2 || B3B4 || BSBE || B7.B8 |
Level2 | B1,82,B3,84 | B5,B6,87,B8 |
Level3 | B1,B2,B3,B4,B5,86,87,88 |

Figure 1: Levels example to a Royal Road Function
with k=3. Bi, i={1..8} are the blocks.

3.1 Evaluation of the Royal Roads

The evaluation of the RR functions proceeds in 2 steps:
the PART calculation and the BONUS calculation [9]. The
parameters that are necessary to the fitness assessment are:

m”* Used in the PART fitness. It is the maximum number
of 1’s that a block may contain before being penal-
ized. As an exception, if a block is complete it is not
penalized;

v Used in the PART fitness. If the number of 1’s of the
block is m™* or less, it adds v, else it adds -v. If the
block is complete it does not receive anything.

u* Value added to the BONUS part by the first completed
blocks at each level;

u Value added to the BONUS part by the second or subse-
quent completed block sets.

PART

This part of the evaluation considers each block individually.
Each block receives a fitness score and in the end the indi-
vidual block fitnesses are all summed to produce the PART
contribution to the overall fitness. The fitness of each block
is based only in the number of bits 1 that it contains. Every
1 up to a limit m™ adds a value v to the block’s fitness. How-
ever if a block contains more than m™* 1s, but less than b 1s,
it receives —v for each 1 over the limit. Finally, if a block has
all bits set to 1 it receives nothing from the PART calcula-
tion. Assuming m” = 4 and v = 0.02 (Table 1) the PART fit-
ness of Fig. 2is: PART = 0.00+0.08+0.00+(—0.04) = 0.04.

BONUS

In the bonus part, we want to reward complete blocks and
some combinations of complete blocks. In RR functions
there are k + 1 distinct levels At all levels, the first se-
quence of completed blocks receives fitness u*, and addi-
tional sequences of completed blocks receive u. Assuming
u* = 1.0 and v = 0.2 the BONUS fitness of Fig. 2 is:
BONUS =1.0+02=1.2.

The total fitness corresponds to the sum of the both PART
and BONUS. Using the results that were calculated to the
example used, the total fitness is: PART + BONUS =
0.04+ 1.2 =1.24.

4. GRAMMATICAL EVOLUTION FRAME-
WORK

GE is a recent bio-inspired technique proposed by Ryan
et al. [17]. As in other Genetic Programming (GP) variants,

53

the goal of GE is to evolve executable programs/algorithmic
strategies that can exhibit good behavior when solving a
given task. In early GP representations, programs were codi-
fied as syntax trees, and all the evolutionary operations were
performed on the programs directly. On the contrary, in GE
all operations are performed in binary strings. A mapping
process is required to map the binary string to an executable
program, via productions rules of a grammar. A grammar is
a tuple G = (N, T, S, P), where N is a non-empty set of non
terminal symbols, 7" is a non-empty set of terminal symbols,
S is an element of NV called axiom, and P is a set of produc-
tion rules of the form A := a, with A € N and o € (NUT)".
N and T are disjoint. Each grammar G defines a language
L(G), that is the set of all sequences of terminal symbols
that can be derived from the axiom, also called words, that
is L(G) = {w : S = w, w € T*}. The grammar used to
build EA structures is depicted in Fig. 3. Two examples
of words generated by the grammar (i.e., algorithms) are
presented in Alg. 2 and Alg. 3. The key issue in GE is
the mapping from the genotype into the phenotype, i.e., the
translation of the binary string to an executable program.
GE introduces a genotype to phenotype mapping in succes-
sive steps (see Fig. 4). Initially the genome is a binary linear
sequence. The binary string is transcribed onto a sequence of
integers, each one called a codon. Then a translation starts:
a derivation tree (the phenotype) is obtained from the axiom
of the grammar, and will be further decoded to an expres-
sion tree, the program. Each codon is used to determine the
rule for a non-terminal symbol when it is expanded.
Suppose that we have the following production rule,

< expr >u= < expr >< op >< expr > (0)
[(< expr >< op >< expr >) (1)
| < pre—op > (< expr >) (2)
| <wvar > (3)

where there are four options to rewrite its left hand side
symbol < expr >. In the beginning we have our genome
transcribed into a string of integers and a syntactical form
equal to the axiom < expr >. We want to rewrite the axiom
and must choose which alternative will be used. We take
the first integer and divide it by the number of options for
< expr >. The remainder of that operation will indicate the
option to be used. In the example above, if we admit that the
integer is 9 then we will have 9%4 = 1 and the axiom will be
rewritten in (< expr >< op >< expr >). Then we read the
second integer and apply the same method to the left most
non-terminal of the derivation. We iterate this process, that
stops when we do not have more non-terminals to rewrite.
If we run out of integers we use a wrapping mechanism: we
restart from the beginning of the string of integers. The
existence of redundancy is also worth noting, for different
integers may correspond to the same alternative due to the
nature of the operation remainder. In the example above,
the integers 5,9,13,... all codify for the same production
alternative for < expr >. GE has been applied with success
to different problems (for details see [17, 13, 14]).

S. EXPERIMENTS

In this section we study the capacity of evolving EAs to
solve the RR problem, using the GE with the grammar al-
ready described. Firstly we study the ability of the GE

Region 1

11111111 1111011 01010110 1111011

block gap

Region 22

11111111 1111011 01111110 1111011

Figure 2: Royal Road Binary String with k =2, b=8,g =7

Table 1: PART block fitness for The RR default parameters with m™ =4 and v = 0.02

1’s in block 0 1 2

3

4 5 6 7 8

Block Fitness | 0.00 | 0.02 | 0.04

0.06

0.08 | -0.02 | -0.04 | -0.06 | 0.00

Algorithm 2 Traditional Genetic Algorithm

1: (lambda,0.5)

evaluate
RouleteWheelSelection
SinglePointCrossover(0.9)
PointMutation(0.05)
RnkReplacement
Elite(0.01)

N

framework to evolve EA algorithms using a simple RR in-
stance. Secondly we study the generalization ability by ap-
plying the obtained algorithms to several different RR in-
stances, and analyze their solving capacity. The RR in-
stances used are described in Table 2.

Table 2: Royal Road functions used

Parameters
Instance [k [b | g | m” v u* | u [Optimum
1 3165 3 [002][1.0]0.3 7.3
2 4187 4 1002|1002 12.8
3 4 (8|7 2 |0.02]1.0]0.2 12.8
4 518 (7| 2 [0.02]10]|0.2 23.1
5 5|87 4 [002]|10]0.2 23.1

5.1 Training

The first phase of the experimental study was dedicated
to analyze the capacity of the GE framework to evolve EAs.
The settings used in the framework are presented in Table
3.

The quality of each individual generated by the GE is
assessed by solving the instance 1 of Table 2. When solv-
ing one RR instance, the most effective algorithms are able
to accomplish three main tasks: 1) create complete blocks
from scratch; 2) complete nearly finished blocks; and &) join
complete blocks; Therefore, to assign fitness to a solution
generated by the GE, we perform 3 runs (one for each task),

54

Algorithm 3 (20, 5) Evolutionary Strategy
1: (lambda,0.25)

evaluate

RouleteWheelSelection
PointMutation(0.8)
GenerationalReplacement

Table 3: Parameters of the Grammatical Evolution

Framework
Parameter Value
One Point Crossover Probability 0.9
Bit Flip Mutation 0.01
Codon Duplication Probability 0.01
Codon Pruning Probability 0.01
Population Size 100

Selection Tournament with size equal 5
Replacement Steady State
Codon Size 8
Number of Wraps 3
Codons in the initial population 10-16
Generations 50
Number of Runs 30

of the aforementioned instance. In each different run we
seed the initial population with solutions that allow to ac-
cess the ability of the EA to succeed in one of the previously
identified tasks (e.g., the ability to join complete blocks is
tested by starting the EA with an initial population contain-
ing solutions with already some completed blocks). EAs ran
for 2000 evaluations and the fitness value provided as feed-
back to the GE corresponds to the mean of the best level
achieved in each of the scenarios. The limited number of
runs was adopted because evaluating an EA is a computa-
tional intensive task.

The algorithms evolved by the GE were able to find the
best solution for the selected training instance. The average

(start) == (<pop-parameter>, <proportion>)(<EA>)

(proportion) ::== 0.25
| 0.5
| 0.75
| 1.0

(pop_parameter) ::= lambda
| mu

(FA) == evaluate <selection> <variation> <replace-

ment> <elitism>

(selection) ::= RouleteWheel
| SUS

| RankBased

| Tournament(<t_size>)
| A

(t_size) ::= <integer_const>
(integer_const) ::= random_integer

(variation) ::= <operator><variation>

| A

(operator) ::= <recombination>(<prob>)
| <mutation>(<prob>)
| A

(recombination) ::= OnePoint
| NPoint(<integer_const>)
| Uniform
[A

(mutation) ::= BitFlip
| A

(replacement) ::= Generational
| RnkReplacement
| A

e_size) ::= 0.01
()
| 0.05
| 01

(probd) == 0.01
| 0.05
| 0.1
| 0.5
| 0.9
| 1.0
| <random_per>

(elitism) ::= Elitism(<e_size>)
[A

(random_per) ::= random_0_1

Figure 3: Grammar used to evolve EAs

55

‘ Binary String |

|

‘ Integer String l

l

T

Program/
Function

Executed Program

Figure 4: GE: from a binary string to a program
(adapted from [14])

10 -

. .
0 5 10 15 20 25 30

[t -e Initial Population x— Middle Population

m-a Final Population]

Figure 5: Evolution Analysis of 30 best individuals
selected from the inital, middle and final populations

fitness obtained by the 30 best algorithms (one from each
run) in the training phase was 7.099356 (£ 0.530). To ana-
lyze if there was any evolution ocurring in the framework we
took the 30 best individuals of the initial population, 30 best
individuals of the middle population, and 30 best individu-
als of the last population and applied them to the instance
2 of Table 2. Fig. 5 presents the results of this analysis.
The results show that evolution is occurring: looking at the
fitness values of the individuals of the initial population we
see that they are clearly the worst ones. The individuals
in the middle population start to exhibit good capacities on
the discovering of good solutions, whilst the ones on last
population have the capacity of discovering better solutions
than the other ones.

We also wanted to analyze if the GE engine was able
to evolve innovative EA structures. Clearly, the defined
grammar imposes syntactic limitations in the organization
of evolved algorithms, thereby hindering the emergence of
unusual structures. Moreover, it is well-known that stan-

dard EAs are effective in the optimization of RR functions.
The combination of these two facts suggests the existence of
a good direction for GE to evolve standard EAs.

An inspection of the 30 best evolved algorithms (i.e, the
best evolved strategy in each GE run) confirms that the com-
putational framework tends to converge to solutions similar
to those regularly used to solve the RR functions. Most
of the differences appear in the selection and replacement
methods. In table 4 we present the frequency of appear-
ance of the components in these best solutions (values are
in percentage). The operators components are not exclu-
sive, and they can appear together in the EA. In what con-
cerns selection, there is not a clear winner, although roulette
wheel is the least adopted method. As for replacement, the
one based on rank clearly outperformed the generational ap-
proach. That is a more conservative strategy, maintaining
in the population solutions that are not outperformed by
descendants (in terms of fitness). Results show that keeping
good solutions in the loop helps to enhance the effectiveness
of algorithms when seeking for good RR solutions.

Table 4: Frequency of components appearance on
the EAs evolution phase

Components
Replacement Generational 16.7%
RankReplacement 80.0%
RouleteWheel 13.3%
Selection Rank 30.0%
Stochastic Universal | 26.7%
Tournament 26.7%
SinglePointCrossover | 36.7%
Operators NPointCrossover 16.7%
UniformCrossover 30.0%
PointMutation 36.7%
5.2 Test

The results of the previous section allowed us to assess
the capacity of our GE framework to evolve EAs. However
it is important to analyze how the evolved algorithms be-
have in instances that are different from the one used in
training. This would help us to verify if the evolved EAs
are competitive with the standard algorithm in RR opti-
mization. In these set of experiments we selected the seven
best evolved algorithms and a typical EA used to optimize
the RR: roulette wheel selection, single point crossover with
0.9 probability, point mutation with 0.01 probability and
generational replacement without elitism; applied them to
instance 2 of Table 2. Now, each algorithm is allowed to
perform 256000 function evaluations [10]. Optimization re-
sults are presented in Fig. 6.

Looking at the results we can see that the evolved algo-
rithms have a similar behavior when compared to the stan-
dard one (algorithm number 8). To see if there was any sta-
tistical difference between the evolved algorithms and the
standard one we applied a statistical test to assess if the
mean best fitness of the evolved algorithms was equal to
the mean best fitness of the standard one. The Friedman’s
ANOVA revelead statistical differences in the means. Then,
and using the standard EA as control group (algorithm num-
ber 8 of Fig. 6), we applied Wilcoxon Signed Rank test at a
significance level a = 0.05 with Bonferroni correction. Table

56

|
‘ml
T
T
o

)
Algorithms

Figure 6: Validation results

5 shows the results of the statistical analysis. A + represents
a statistical significant difference in the means, and that the
evolved algorithm has an higher rank; — represents a dif-
ference in the means, and that the evolved algorithm has a
lower rank; and ~ represents that there was no difference in
the means.

Table 5: Results of the Wilcoxon Signed Rank test
at a significance level a = 0.05

Pair Result
Algl - StandardEA ~
Alg2 - StandardEA +
Alg3 - StandardEA ~
Alg4 - StandardEA —
Algh - StandardEA ~
Algb6 - StandardEA —
Alg7 - StandardEA ~

The statistical results of Table 5 reveal that most of the
evolved algorithms are equivalent to the standard EA. How-
ever two of the algorithms are worst than the standard and
one is better. An analysis of the components of the worst
algorithms reveals that Alg6 relies on Uniform Crossover
as the main variation operator, which is probably too dis-
ruptive to RR optimization. Alg4 is composed by the two
typical variation operators, point mutation and single point
crossover. However the crossover has low probability rate,
delaying the combination of blocks.

The structure of Alg2 is different from the usual and is
presented in Alg. 4. It has 2 types of crossover (NPoint
crossover with 16 cut-points and single point point crossover,
both with a high probability rate), separated by the appli-
cation of point mutation with a low probability rate. Since
the algorithm is different from the usual architectures we
applied it to three additional instances of the RR (instances
3, 4, 5 of Table 2). Table presents the results of the sta-
tistical comparison between Alg4 and the standard EA, us-
ing the Wilcoxon Signed Rank test at a significance level
a = 0.05. Looking at the presented results we can see that

Algorithm 4 Evolved algorithm Alg4
Rank Selection
NPointCrossover(1.0, 16)
PointMutation(0.01)
SinglePointCrossover(1.0)

Rank Replacement

the standard EA performs better in the two harder instances
(m* = 2), and that the Alg4 perform better in the other.
These results seems to indicate that Algd promotes the ap-
pearance of more 1s in the blocks than the the standard EA
which is not good when we have a small m*, since many
1s lead to higher penalizations. On the contrary, Alg. 4
effectively optimizes the instance with a higher m™, as this
defines a situation where more 1s do not lead to an excessive
penalization.

Table 6: Statistical Results of the comparison Alg4-
Standard EA

Instance | Result
Instance 3 —
Instance 4 —
Instance 5 +

6. CONCLUSIONS

In this paper, a GE framework to evolve EAs was pro-
posed. The grammar presented is composed by a full set of
existing components. The flexibility of the grammar is lim-
ited, hindering the appearance of unusual architectures, still
it allows some variations on number and order of operators
that can appear. To assess the capacity of the GE frame-
work to evolve EAs we used RR functions as the benchmark
problem, to which we knew one good algorithmic solution.
The results of the experiments revealed that the framework
is able to evolve well known algorithm architectures. More-
over it was able to evolve an architecture that is different
from the traditional ones. Additional experiments were con-
ducted to assess the effectiveness of this new architecture.

The work presented in this paper is preliminary, but it
suggests that the automatic evolution of EA is possible.
Furthermore, it raises several important research questions
such as: 1) How can we assess the quality of an EA, and
retain the important information, while reducing the com-
putational effort? 2) How to select the instances of a certain
problem to the algorithm training phase? 8) Which informa-
tion should we take from the evaluation of the evolved algo-
rithms? Lastly, and pointing towards future work, applying
this approach to solve other problems would be important
in order to achieve a framework that is able to evolve EAs.

7. ACKNOWLEDGMENTS

This work was supported by Fundacao para a Ciéncia e

Tecnologia (FCT), Portugal, under the grant SFRH/BD/79649/2OH6]

8. REFERENCES

[1] P. J. Angeline. Adaptive and self-adaptive
evolutionary computations. In Computational
Intelligence: A Dynamic Systems Perspective, pages
152-163. IEEE Press, 1995.

57

[2] P. J. Angeline. Two self-adaptive crossover operators
for genetic programming. In P. J. Angeline and K. E.
Kinnear, Jr., editors, Advances in genetic
programming, pages 89-109. MIT Press, 1996.

[3] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and
S. Schulenburg. Hyper-Heuristics: An Emerging
Direction in Modern Search Technology. In Handbook
of Metaheuristics, International Series in Operations
Research & Management Science, chapter 16, pages
457-474. Springer, 2003.

[4] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,

E. Ozcan, and J. R. Woodward. A classification of
hyper-heuristics approaches. In M. Gendreau and
J.-Y. Potvin, editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations
Research € Management Science, chapter 15, pages
449-468. Springer, 2nd edition, 2010.

[5] L. Diogan and M. Oltean. Evolutionary design of
Evolutionary Algorithms. Genetic Programming and
Evolvable Machines, 10(3):263-306, 2009.

[6] B. Edmonds. Meta-genetic programming: Co-evolving
the operators of variation. CPM Report 98-32, Centre
for Policy Modelling, Manchester Metropolitan
University, UK, 1998.

[7] A. E. Eiben and J. E. Smith. Introduction to
FEvolutionary Computing. Springer Verlag, 2003.

[8] J. H. Holland. Adaptation in natural and artificial
systems. MIT Press, Cambridge, MA, USA, 1992.

[9] T. Jones. A description of holland’s royal road

function. Evolutionary Computation, 2(4):409-415,

1994.

M. Mitchell, S. Forrest, and J. H. Holland. The royal

road for genetic algorithms: Fitness landscapes and ga

performance. In Proceedings of the First European

Conference on Artificial Life, pages 245-254. MIT

Press, 1991.

M. Oltean. Evolving evolutionary algorithms using

linear genetic programming. Evolutionary

Computation, 13(3):387-410, 2005.

M. Oltean and C. Grosan. Evolving evolutionary

algorithms using multi expression programming. In

Proceedings of The 7 th European Conference on

Artificial Life, pages 651-658. Springer-Verlag, 2003.

M. O’Neill. Grammatical evolution. IEEE

Transactions on Evolutionary Computation, 5(4),

2001.

M. O’Neill and C. Ryan. Grammatical Evolution:

Evolutionary Automatic Programming in a Arbitrary

Language, volume 4 of Genetic programming. Kluwer

Academic Publishers, 2003.

R. Poli, C. Di Chio, and W. B. Langdon. Exploring

extended particle swarms: a genetic programming

approach. In Proceedings of the 2005 conference on

Genetic and evolutionary computation, GECCO ’05,

pages 169-176, New York, NY, USA, 2005. ACM.

P. Ross. Hyper-heuristics. In E. K. Burke and

G. Kendall, editors, Search Methodologies, pages

529-556. Springer US, 2005.

C. Ryan, J. Collins, and M. ONeill. Grammatical

evolution: Evolving programs for an arbitrary

language. In Lecture Notes in Computer Science 1391,

Proceedings of the First European Workshop on

(10]

(11]

(12]

(13]

(14]

(15]

(17]

Genetic Programming, pages 83-95. Springer-Verlag, of Lecture Notes in Computer Science, pages 389-398.

1998. Springer Berlin / Heidelberg, 2004.

[18] J. Tavares, P. Machado, A. Cardoso, F. Pereira, and [19] J. Tavares and F. B. Pereira. Automatic design of ant
E. Costa. On the evolution of evolutionary algorithms. algorithms with grammatical evolution. In Proceedings
In M. Keijzer, U.-M. OReilly, S. Lucas, E. Costa, and of the 15th European conference on Genetic
T. Soule, editors, Genetic Programming, volume 3003 programming, 2012.

58

