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ABSTRACT
We present a discrete ant colony algorithm to cluster geome-
try optimization. To deal with this continuous problem, the
optimization framework includes functions to map solutions
across the discrete and continuous spaces. Results obtained
with short-ranged Morse clusters show that the proposed ap-
proach is effective, scalable and is competitive with state-of
the-art optimization methods specifically designed to tackle
continuous domains. A detailed analysis is presented to help
to gain insight into the role played by several components of
the ant colony algorithm.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global Opti-
mization; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Heuristic Methods

General Terms
Algorithms

Keywords
Ant colony optimization, Cluster geometry optimization, Hy-
bridization, Morse clusters

1. INTRODUCTION
Ant Colony Optimization (ACO) methods are population-

based metaheuristics regularly applied in combinatorial and
continuous optimization problems [7]. The original algo-
rithm, Ant System (AS), was proposed by Dorigo in the
early 1990’s [5] and it is loosely inspired by the organi-
zation of natural ant societies. When foraging, ants de-
posit pheromone on the ground to guide co-workers towards
promising areas. Then, individuals belonging to the colony
communicate via stigmergy, an indirect way to exchange in-
formation mediated by modifications in the environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

Following AS, many other ACO variants have been pro-
posed in the literature. Relevant examples are the Ant
Colony System (ACS) [6] and the Max-Min Ant System
(MMAS) [19], two approaches that have been thoroughly
tested on combinatorial optimization problems. Even though
earlier ACO research focused on discrete problems, there are
a number of variants for continuous optimization. Bilchev
and Parmee pioneered the extension of an ant algorithm to
explore real-valued search spaces [1] and, since then, several
other approaches have been proposed [13, 18, 21].

In this paper we propose an ACO algorithm to solve the
cluster geometry optimization problem. This is an impor-
tant problem from the chemistry area, where the goal is to
find the optimal structural organization for a set of particles
in a 3D space [8, 23]. Estimating the most relevant prop-
erties of chemical clusters has immediate relevance in many
areas, ranging from protein structure prediction to the study
of the influence of stratospheric clouds in ozone destruction.
Also, a proper understanding of cluster properties is crucial
for the field of nanotechnology. In simple terms, a cluster
is an aggregate of between a few and millions of atoms or
molecules, which may present distinct physical properties
from those of a single particle or bulk matter. The Poten-
tial Energy Function (PES) models the interactions between
particles and it contains all the relevant information about
the chemical system. PES are multidimensional functions
generating highly roughed search landscapes, with a num-
ber of local minima increasing exponentially with the size of
the cluster [22]. The goal of the optimization is to find the
global minimum of the PES, i.e., to determine the relative
position in the 3D space of all the atoms that correspond
to the lowest potential energy. In our study we adopt the
Morse function to describe interactions between atoms, a
model potential that can accurately represent real materials
[3, 9, 16]. Moreover, this is a difficult real-valued optimiza-
tion function that has been regularly used as a benchmark
to determine the performance of global search methods for
cluster geometry optimization [4, 10, 11, 17].

We have developed DACCO (Discrete Ant Colony algo-
rithm to Cluster geometry Optimization), a framework that
follows an unusual approach to apply an ACO algorithm to
seek for the optimal arrangement of atomic clusters. We dis-
cretize the problem and rely on the MMAS variant to find
solutions on the discrete space. Then, a mapping function,
consisting of a gradient-driven local optimization procedure,
pushes the solutions obtained by the ants back to the origi-
nal continuous space. The reasons for relying on this frame-
work are twofold: first, there is a deeper insight into the
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main properties of existing discrete ACO algorithms, when
compared to continuous variants; on the other hand, the
problem consists in placing objects in a 3D space, subject to
a minimal distance constraint. Then, discretizing the space
is a straightforward strategy to ensure a valid arrangement
of the cluster. A previous work from Korb et al. adopts a
similar strategy to solve the protein-ligand docking problem
[12].

We test the effectiveness of DACCO by seeking the global
optima of short-ranged Morse clusters between 30 and 80
atoms. Results obtained show that the hybrid architecture
composed by the discrete MMAS variant and the contin-
uous local optimization procedure is competitive with cur-
rent state-of-the-art metaheuristics for cluster geometry op-
timization. Additionally, we investigate how some specific
components of DACCO help to enhance the likelihood of
discovering good quality solutions.

The paper is structured as follows: in section 2 we provide
a general description of ACO algorithms, including the main
variants for continuous optimization. Section 3 comprises a
presentation of DACCO and of the optimization problem to
be addressed. Optimization results and the corresponding
analysis are accomplished in section 4 and, finally, section
5 gathers the main conclusions and suggests directions for
future work.

2. ANT COLONY OPTIMIZATION
The first ACO variants (e.g., AS or ACS) were proposed

for combinatorial optimization, such as the traveling sales-
person or the quadratic assignment problems [5, 6, 7]. The
application of an ant algorithm to a specific problem requires
the specification of a set of solution components. A graph
is then created, where each vertex represents a component
and edges link related vertices. The artificial ants construct
solutions by traversing this graph. They start at a random
vertex and iteratively collect new components. At each ver-
tex of the path they build, ants stochastically select a new
edge. The probability of choosing a specific edge (i.e., the
desirability of adding a particular new component to the so-
lution) depends on static heuristic information and on the
pheromone level of that connection. Higher pheromone con-
centrations signal components that tend to appear in better
solutions. When all artificial ants have completed their so-
lutions, the pheromone levels are updated. To avoid stag-
nation, evaporation first decreases all pheromone values by
a given factor. Then, a subset of ants deposits pheromone
on the edges they crossed when building a solution. The
amount placed by each ant is proportional to the quality
of the solution found. ACO variants differ in the way ants
build solutions and/or on the pheromone update step. For
algorithmic details, consult the aforementioned references.
By iterating these steps until a termination criterion is met,
a solution to the problem will emerge from the cooperation
made by the ants. In algorithm 1 we present the general
structure of an ACO metaheuristic. The Daemon actions
step identifies several optional actions, such as the applica-
tion of local search or pheromone matrix restart.

2.1 ACO for Continuous Optimization
There are several reports in the literature describing ex-

tensions of ACO architectures to continuous optimization.
In 1995, Bilchev and Parmee [1] proposed an algorithm where
the ants start from a given location in the search space (the

Algorithm 1 General ACO Algorithm

Set parameters
Init pheromone trails
while termination condition not met do

Construct solutions
Update pheromones
Daemon actions {optional}

end while

nest) and explore the continuous neighborhood by select-
ing one from a set of vectors. These vectors depart from
the nest and represent a set of possible search directions.
The probability of selecting a vector reflects the likelihood
that this direction leads to promising solutions. Tsutsui
presented an approach based on the concept of aggregate
pheromone density functions [21]. Each ant emits an ag-
gregate pheromone amount, which is proportional to qual-
ity of the solution found. The total aggregate pheromone
density is therefore biased towards promising areas of the
search space and is used by a probability density function
to generate new solutions. ACOR is a recent approach from
Socha and Dorigo to tackle continuous problems [18]. It re-
lies on a set of solutions (the solution archive) to represents
the pheromone model. The archive is used to bias the gen-
eration of new solutions. In this process, each variable is
treated independently and its value is obtained by sampling
a mixture of weighted Gaussian functions. Recently, this
method was enhanced with the addition of a variable size
solution archive and a local search procedure [13]. PLANTS
is an ACO algorithm for protein-ligand docking proposed by
Korb et al [12]. In this problem, the goal is to find the opti-
mal settings for several real valued parameters defining the
degrees of freedom and torsional degrees of freedom for the
ligand and protein, respectively. The approach followed in
PLANTS is similar to the one adopted in our research. The
continuous variables are discretized and the MMAS vari-
ant is applied to solve the problem. PLANTS does not use
heuristic information and relies on a local search algorithm
to map solutions back to the continuous space.

3. DACCO
In this section we present DACCO, the Discrete Ant Colony

algorithm that will be applied to Cluster geometry Opti-
mization. First, we describe the problem to be addressed
and then detail the main algorithmic components of the op-
timization framework.

3.1 Morse Clusters
A chemical cluster is an aggregate of between a few and

millions of atoms or molecules. Understanding the prop-
erties of clusters is relevant for many areas, from protein
structure prediction to the field of nanotechnology. The
PES is a multidimensional function that contains all the
relevant information about the chemical system [23]. The
goal of cluster geometry optimization is to determine the
optimal structural organization for the particles that com-
pose a given aggregate, i.e., to discover the arrangement in
the 3D space that corresponds to the global minimum of
the PES. The Morse function [16] is a model potential reg-
ularly adopted in cluster geometry optimization, as it pro-
vides accurate approximations of real materials (e.g., alkali-
metal clusters or C60 molecules) [3]. It is a pairwise additive
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Figure 1: Morse Potential for different values of β

potential that considers the distance between every pair of
particles to determine the energy of the cluster. In Morse
clusters, all particles are identical. Then, the total poten-
tial energy of a N-cluster Morse aggregate is given by the
following equation:

VMorse = ε

N−1X
i=1

NX
j=i+1

“
exp−2β(rij−r0)−2 exp−β(rij−r0)

”
(1)

where rij is the Cartesian distance between atoms i and j,
ε is the bond dissociation energy, r0 is the equilibrium bond
and β is the range exponent of the potential. Following [9],
both ε and r0 are set to 1.0, leading to a scaled version of
the Morse function without specific atom interactions.

Hence, the potential has a single adjustable parameter β
that determines the shape of the energy contribution of ev-
ery pair of atoms [23]. The chart from figure 1 illustrates
how this pairwise contribution is modeled as a function of
the distance between atoms (displayed in the xx axis). Two
different β values are exemplified: in both cases, the lowest
potential energy is achieved when the two atoms are sepa-
rated by a distance that is equal to the equilibrium bond.
However,moving from a long ranged potential (β = 6.0) to
a short ranged version (β = 14.0) leads to a narrower curva-
ture, promoting the appearance of very roughed landscapes,
with the number of local minima increasing exponentially
as the number of atoms increases [8, 22]. In our study β is
set to 14.0, as this creates optimization instances that are
particularly challenging.

3.2 Optimization Framework
When solving a Morse cluster instance with N identical

atoms, one must specify the location of each particle. The
search space is defined as a cubic area in the first quadrant
with side N1/3, as this enables the cluster volume to scale
correctly with N [11]. Additionally, small interatomic dis-
tances should not be allowed, because the potential tends to
infinity when two atoms are too close (see figure 1). This
minimum distance constraint creates a favorable environ-
ment for the application of discrete ACO variants. Ants

Figure 2: Discretized Cluster Geometry Optimiza-
tion Space

build a solution by traversing the 3D space and placing
atoms in selected locations. A careful definition of the dis-
crete step length ensures that two atoms never stay too close
to each other.

In concrete, the problem of cluster geometry optimization
is defined in a 3 dimensional space (x, y, z) ∈ R3, where

x, y, z ∈ [0, N1/3]. This cube is divided into cells of side w.
The value selected for this parameter must ensure that it is
possible to place atoms in neighbor locations, but it is not
feasible to have two particles inside the same cell. Given
the value of parameter r0, for all experiments reported in
this work, w is set to 0.6. We did some additional tests
with different values and verified that this setting provides
the best compromise. Figure 2 presents an overview of the
discretized optimization space.

The well-known MMAS discrete variant [19] is adopted
by DACCO to seek for the optimal configuration of different
Morse cluster instances. The automatic rescaling approach
proposed by the Hyper-Cube Framework (HCF) [2] is incor-
porated in the algorithm, in order to increase its robustness.
Algorithm 2 presents a general overview of DACCO, with
an identification of the steps required to move from the con-
tinuous space to the discrete one and vice-versa. In the next
paragraphs we detail the operations involved in the applica-
tion of this algorithm.

Algorithm 2 General Overview of DACCO

Construct Discrete Search Space
Initialize Pheromone Matrix
while termination condition not met do

Construct Solutions in the Discrete Space
Convert Solutions to the Continuous Space
Evaluate Solutions in the Continuous Space
Convert Solutions to the Discrete Space
Apply Discrete Local Improvement
Update Pheromone Values

end while
return best individual in the population

Initialize pheromones: In cluster geometry optimization,
what is important is the relative position of the atoms in
space, and not the order in which they are placed. Then,
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the structure of the pheromone matrix is identical to that of
the discretized cube and it stores the desirability of placing
an atom in a given cell. In the beginning of the optimization,
all the cells from the pheromone matrix are initialized with
the same value. Following the recommendations from [2],
we set this value to 0.5.

Algorithm 3 Solution Construction

Given an ant do:
current location = select random cell()
place atom()
placed atoms = 1
while placed atoms < N do
neighbors = find feasible neighborhood(ant)
current location = find next cell(neighbors, pher matrix)
place atom()
placed atoms = placed atoms+ 1

end while

Construction of Solutions: Algorithm 3 details the actions
performed by an ant to build a solution. When seeking for
a good geometry of a Morse instance with N atoms, an ant
starts in a randomly selected cell and must visit another
N-1 locations to place one atom in each one of them. Ants
consider both heuristic information and pheromone values to
select the next cell to visit. The first component favors cells
in the neighborhood of already occupied locations to place
the next atom. Optimal configurations of clusters tend to
correspond to compact structures, so heuristic information
bias the formation of solutions where atoms are located in
adjacent cells (the discretization of the space prevents atoms
from being too close). We consider two alternatives for the
definition of the heuristic neighborhood:

Current Moore Neighborhood It consists of all unoc-
cupied cells that surround the current location of the
ant. Different neighborhood ranges R can be consid-
ered, impacting the size of the cube around the cur-
rent cell. In panel a) of figure 3 we illustrate a Current
Moore Neighborhood with R=2. For simplicity, the
example is presented in a 2D grid.

Full Moore Neighborhood It consists of all unoccupied
cells surrounding atoms already placed in the grid.
Just like in the previous alternative, different neigh-
borhood ranges may be considered. Panel b) of figure
3 displays a Full Moore Neighborhood with R=1.

After determining the feasible neighborhood, an ant se-
lects the next cell to place an atom by applying the MMAS
selection rule. In this stage, only the pheromone values are
considered (MMAS selection does not take into account any
heuristic information). This process is repeated until all the
atoms are placed in the grid.

Mapping Solutions to the Continuous Space and Evalu-
ation: Mapping of a discrete solution into the continuous
space consists in two steps: first, each atom is positioned in
the geometric center of the cell in which it was placed during
the construction of the solution. Afterwards, the position-
ing of atoms inside the cluster is refined by the application
of a local optimization procedure. Most effective unbiased
techniques for cluster geometry optimization are hybrid ap-
proaches combining a global optimization algorithm with
a local search procedure [10, 11, 17]. In accordance, we

Occupied Cells

Neighborhood

a) Current Moore Neighborhood b) Full Moore Neighborhood

Current Cell

Figure 3: Examples of heuristic neighborhoods in a
2D grid: a) Current Moore neighborhood with R=2;
b) Full Moore Neighborhood with R=1.

rely on the Broyden-Fletcher-Goldfarb-Shannon (L-BFGS)
method [14], a conjugate gradient algorithm that efficiently
guides the solution created by the ants into the nearest local
minimum. Finally, the resulting solution is evaluated with
equation 1.

Mapping Solutions to the Discrete Space After evaluation,
clusters are mapped back to the discrete space. To accom-
plish this, atoms are simply moved to the geometric center
of the cell where they were positioned by L-BFGS. Given
the selected w value, it is highly unlikely that local opti-
mization places two atoms in the same cell. Anyway, if this
happens, then one of the particles is moved to the near-
est unoccupied cell. There are two reasons to discretize the
solutions after evaluation. The first is to apply a discrete
local improvement method, that seeks for better configura-
tions by iteratively perturbing existing solutions. The im-
provement strategy is straightforward: it seeks for the worst
atom of the cluster (i.e., the one that has the highest con-
tribution to the total potential energy) and moves it to an
unoccupied cell randomly selected. The modified solution is
locally optimized with L-BFGS and evaluated. If the result-
ing cluster has lower energy than the original one, then it
is kept. The process is repeated for a predetermined num-
ber of iterations. The second reason to move the solutions
back to the discrete space is to perform the update of the
pheromone matrix. First, evaporation slightly decreases all
values. Then, the rule described in [2] for MMAS is used
to reinforce the pheromone of promising cells. Pheromone
reinforcement adopts a diffusion model. If a cell is going to
be reinforced with a given amount A, then it only receives
(A − p) and the quantity that is left over is distributed in
equal parts among all adjacent cells. This procedure aims to
smooth the transition between the discrete and continuous
spaces and it was also adopted by [12].

4. EXPERIMENTS
In this section we present the results obtained by DACCO
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in the optimization of short-ranged Morse clusters between
30 and 80 atoms. With these experiments we aim to de-
termine the absolute optimization performance of the pro-
posed approach and to gain insight into the role played by
the different algorithmic components. The settings of the al-
gorithm are the following: Number of runs: 30; Number of
ants: equal to the number of atoms of the instance; Evalua-
tions: 5,000,000; α: 4; Pheromone diffusion p: 0.5; Current
Moore neighborhood with R=3; Discrete local improvement
iterations: 10; L-BFGS accuracy: 1.0E − 8. Each iteration
performed by the L-BFGS method counts as one evaluation.

Analysis of results focus on the ability of DACCO to find
the putative global optimum (within a pre-specified compu-
tational effort), as this is the criterion regularly adopted in
cluster geometry optimization studies. Therefore, for each
instance we present the success rate (SR) of DACCO, i.e.,
the number of runs (out of 30) that discovered the best
known solution. For completeness, we also provide the mean
best fitness (MBF) of all reported experiments.

4.1 Optimization Results
Table 1 contains an overview of the optimization results.

There is a line for each one of the instances selected. Col-
umn Opt displays the potential energy of the putative global
optimum1, whereas columns 3 and 4 present the SR and the
MBF, respectively. The last column Deviation measures how
the MBF deviates, in percentage, from the best-known solu-
tion. Results confirm that DACCO can effectively find good
quality solutions. With just two exceptions, N = {47, 79}, it
always discovers the putative global optima of short ranged
Morse instances between 30 and 80 atoms. The effectiveness
of DACCO is particularly relevant, since the global optima
of different Morse instances correspond to distinct structural
shapes (e.g. poly-tetrahedral, icosahedral or decahedral) [9].
The outcomes displayed in table 1 suggest that DACCO is
not biased towards generating solutions with a particular
geometry.

There is a trend for a decrease in the success rate achieved
by DACCO as the clusters grow in size. This effect can be
partially justified by the fixed number of evaluations granted
to all experiments reported in this paper. Instances with
more atoms define larger search spaces and, therefore, it is
expected that the success rate of DACCO might be lower.
Additionally, the optimal geometry for some specific Morse
instances is particularly hard to discover, which helps to
explain the variation in the success rate. Examples of magic
numbers (i.e., particularly hard Morse instances) are 38, 47,
61, 68 or 79 atoms [9, 10].

The MBF achieved by DACCO in all instances is always
close to the value of the putative optima. The deviation
rarely exceeeds 1% and, in most cases, is well below this
threshold. This result shows that the proposed algorithm
is robust, since, even when it does not discover the global
optimum, it converges to good quality local optima.

4.2 Comparison with Other Approaches
It is essential to compare the results obtained by DACCO

with those achieved by state-of-the-art methods for cluster
geometry optimization. We selected two global optimiza-
tion algorithms recently described in the literature: a hybrid

1Consult the Cambridge Cluster Database for an
up to date list of Putative Optima: http://www-
wales.ch.cam.ac.uk/CCD.html

N Opt SR MBF Deviation
30 -106.835790 28 / 30 -106.831095 0.004
31 -111.760670 30 / 30 -111.760670 0.000
32 -115.767561 30 / 30 -115.767561 0.000
33 -120.741345 30 / 30 -120.741345 0.000
34 -124.748271 30 / 30 -124.748271 0.000
35 -129.737360 30 / 30 -129.737360 0.000
36 -133.744666 30 / 30 -133.744666 0.000
37 -138.708582 28 / 30 -138.682731 0.019
38 -144.321054 25 / 30 -144.053535 0.185
39 -148.327400 26 / 30 -148.243303 0.057
40 -152.333745 25 / 30 -152.228797 0.069
41 -156.633479 11 / 30 -156.483040 0.096
42 -160.641020 5 / 30 -160.449243 0.119
43 -165.634973 6 / 30 -165.361457 0.165
44 -169.642441 3 / 30 -169.383463 0.153
45 -174.511632 3 / 30 -174.295931 0.124
46 -178.519320 2 / 30 -178.371855 0.083
47 -183.508227 0 / 30 -183.095976 0.225
48 -188.888965 19 / 30 -188.402414 0.258
49 -192.898412 15 / 30 -192.675230 0.116
50 -198.455632 12 / 30 -197.853115 0.304
51 -202.468274 13 / 30 -201.992636 0.235
52 -207.480764 18 / 30 -207.294088 0.090
53 -211.493405 14 / 30 -211.225486 0.127
54 -216.636864 5 / 30 -216.171684 0.215
55 -220.646208 10 / 30 -220.422433 0.101
56 -225.655136 11 / 30 -224.935830 0.319
57 -230.663986 15 / 30 -229.976103 0.298
58 -234.809078 9 / 30 -234.394252 0.177
59 -240.572493 6 / 30 -239.338941 0.513
60 -244.579066 5 / 30 -244.090244 0.200
61 -249.587740 3 / 30 -248.668557 0.368
62 -253.612942 11 / 30 -253.277141 0.132
63 -258.620607 7 / 30 -258.032594 0.227
64 -264.587042 6 / 30 -262.706618 0.711
65 -268.594702 11 / 30 -267.406606 0.442
66 -273.602343 6 / 30 -272.023822 0.577
67 -278.400953 2 / 30 -276.976700 0.512
68 -282.683003 2 / 30 -281.715729 0.342
69 -287.462110 8 / 30 -286.366826 0.381
70 -292.462856 10 / 30 -291.443945 0.348
71 -298.405353 3 / 30 -295.263173 1.053
72 -302.413229 5 / 30 -299.983942 0.803
73 -307.421094 5 / 30 -304.684859 0.890
74 -312.441302 4 / 30 -309.237024 1.026
75 -318.407330 6 / 30 -315.446093 0.930
76 -322.414257 4 / 30 -319.405598 0.933
77 -327.371999 4 / 30 -324.342238 0.925
78 -331.379143 2 / 30 -328.915871 0.743
79 -336.798725 0 / 30 -333.181307 1.074
80 -340.811371 2 / 30 -338.162647 0.777

Table 1: Results obtained by DACCO in the opti-
mization of Morse clusters between 30 and 80 atoms.
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Figure 4: Comparison of the SR obtained by
DACCO and the hybrid EA from [17] in the opti-
mization of Morse clusters between 30 and 80 atoms.
Darker columns highlight instances where significant
differences were found.

evolutionary algorithm (EA) [17] and a Particle Swarm Op-
timization (PSO) method [15]. The hybrid EA was the first
completely unbiased algorithm to discover all putative global
optima for short-ranged Morse clusters until 80 atoms. As
for the PSO, it is the most effective swarm intelligence algo-
rithm for this problem. Both algorithms incorporate a local
procedure based on the L-BFGS method, similar to the one
described for DACCO, and were granted the same number
of evaluations to optimize the Morse instances selected for
the comparison. For algorithmic details concerning both
methods, consult the aforementioned references.

In figure 4 we display the SR difference between DACCO
and the hybrid EA, across all instances. A positive (neg-
ative) variation corresponds to an instance where DACCO
achieved a higher (lower) SR than the EA. In the same man-
ner, figure 5 presents the comparison between DACCO and
the PSO. Here, we only display results between 30 and 50
atoms, since the PSO was not applied to larger instances.
A general overview of figure 4 reveals that the performance
of DACCO and the EA is comparable. DACCO achieved a
higher success rate on 27 instances, whereas EA was better
on 21 instances (on the 3 remaining cases, both algorithms
obtained the same SR). To strengthen the analysis, we ap-
plied a pairwise test to compare proportions, described in
[20], to the results obtained by these two methods. Darker
columns in the figure highlight instances where significant
differences were found (significance level of 1%). The sta-
tistical analysis confirms the global equivalence of the two
algorithms, as only in 9 instances a significant difference is
identified (in 6 of them DACCO is better, whereas the EA
achieves a higher SR in the remaining 3).

The chart from figure 5 clearly confirms that DACCO is
more effective than the PSO when seeking for low energy
Morse clusters. In 18 out of 21 instances the success rate
achieved by DACCO is higher and, in most of them (15 in-
stances), the difference if statistically significant. This is a
relevant result, as it reveals that an adapted discrete ACO
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Figure 5: Comparison of the SR obtained by
DACCO and the PSO from [15] in the optimization
of Morse clusters between 30 and 50 atoms. Darker
columns highlight instances where significant differ-
ences were found.

algorithm can outperform a PSO method in a hard contin-
uous optimization problem.

As a final note, it is important to refer that both the
EA and the PSO require the explicit application of a struc-
tural distance measure to help maintain the diversity in the
population of solutions. Without this mechanism, both al-
gorithms are likely to suffer from premature convergence.
Results presented in this section show that DACCO is able
to obtain results comparable to the hybrid EA without re-
lying on an explicit and problem specific way to maintain
diversity. Also, it does not require the computational over-
head needed to calculate this measure.

4.3 DACCO Detailed Analysis
This last section aims to establish the impact of specific

DACCO components on the performance of the algorithm.
We focus our analysis on the definition of the heuristic neigh-
borhood, on the pheromone diffusion model and on the ap-
plication of the discrete local improvement method. Due to
space constraints we present results obtained with a subset
of instances N = {30, 50, 70, 79}, which help to gain insight
into the relevance of specific design options. We did, how-
ever, additional tests with clusters with different sizes and
verified that the results follow the same trend. Unless ex-
plicitly stated, experiments described in this section adopt
the settings previously defined.

The heuristic is a greedy component that can play an
important role in the behavior of an ACO algorithm. In
what concerns DACCO, it bias the placement of atoms in
the vicinity of already occupied positions. Recalling sec-
tion 3, there are several options to define the neighbor cells
that can be considered as viable options to place the next
particle. Table 2 displays the optimization results obtained
by several configurations in the selected instances. In con-
crete, we display the SR and the MBF of experiments done
with the Current and Full Moore neighborhood and with
R = {1, 2, 3, 4}. An overview of table 2 reveals that there
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Moore Full Moore
1 2 3 4 1 2 3 4

SR MBF SR MBF SR MBF SR MBF SR MBF SR MBF SR MBF SR MBF
30 25 / 30 -106.824 26 / 30 -106.826 28 / 30 -106.831 27 / 30 -106.828 25 / 30 -106.824 27 / 30 -106.828 27 / 30 -106.828 25 / 30 -106.824
50 0 / 30 -196.301 4 / 30 -196.958 12 / 30 -197.853 7 / 30 -197.898 2 / 30 -196.923 8 / 30 -197.620 7 / 30 -197.608 10 / 30 -197.819
70 0 / 30 -287.568 2 / 30 -289.673 10 / 30 -291.443 9 / 30 -291.483 0 / 30 -288.645 2 / 30 -290.621 8 / 30 -291.543 6 / 30 -291.487
79 0 / 30 -327.855 1 / 30 -332.482 0 / 30 -333.181 0 / 30 -333.618 0 / 30 -329.417 0 / 30 -332.539 1 / 30 -333.754 2 / 30 -334.085

Table 2: Optimization results obtained by different DACCO heuristic neighborhoods in selected Morse in-
stances.

No Pheromone Diffusion With Pheromone Diffusion
SR MBF SR MBF

30 26 / 30 -106.826 28 / 30 -106.831
50 7 / 30 -197.709 12 / 30 -197.853
70 10 / 30 -291.563 10 / 30 -291.443
79 0 / 30 -333.372 0 / 30 -333.181

Table 3: Impact of the pheromone diffusion model
in the optimization results obtained by DACCO in
selected Morse instances.

are no noteworthy differences in the outcomes of the differ-
ent heuristic neighborhoods (Current vs. Full). As for the
range value, experiments done with R = 3 and R = 4 tend
to obtain better results, suggesting that it is advantageous
to define a neighborhood that is not too narrow. Overall,
these tests show that DACCO is robust to small variations
in the definition of the heuristic neighborhood.

Table 3 displays the optimization results obtained in the
selected instances by two DACCO configurations: the stan-
dard algorithm with pheromone diffusion and a variant with-
out this mechanism. An inspection immediately reveals that
both variants obtained comparable results, suggesting that,
with the framework proposed in this paper, it is not manda-
tory to adopt a diffusion model to smooth the transition
between the discrete and continuous spaces. However, it is
important to emphasize that this result was obtained with
a specific experimental condition: Current Moore neighbor-
hood with R = 3 and cell size w = 0.6. In future research
we will verify if the similarity between results is maintained
for other settings.

Table 4 shows the results obtained by DACCO with and
without the discrete local improvement step. The number
of evaluations is kept fixed in both configurations, so when
DACCO is running alone it performs a higher number of
iterations. A brief perusal of the table reveals the relevance
of discrete local improvement. The version of DACCO that
does not incorporate this component fails to discover the
putative global optimum in nearly all runs of every selected
instance. Also, the MBF values are clearly worse than those
achieved by the full DACCO framework. These results show
that DACCO clearly benefits from the addition of a discrete
greedy perturbation of the solutions built by the ants. This
performance improvement is in agreement with existing lit-
erature, as there are many reports describing the advantage
of incorporating a local improvement step in the processing
of an ACO algorithm [7].

5. CONCLUSIONS
We presented DACCO, a discrete ant colony algorithm

for cluster geometry optimization. In this framework, the
continuous 3D space where the cluster must be located is

No Local Improvement With Local Improvement
SR MBF SR MBF

30 2 / 30 -106.378 28 / 30 -106.831
50 0 / 30 -194.405 12 / 30 -197.853
70 0 / 30 -281.598 10 / 30 -291.443
79 0 / 30 -324.128 0 / 30 -333.181

Table 4: Impact of the discrete local improvement
step in the optimization results obtained by DACCO
in selected Morse instances.

discretized and ants build a solution by iteratively travers-
ing a 3D grid and placing atoms at selected cells. DACCO
includes functions to map clusters between the discrete and
continuous spaces and incorporates a discrete greedy local
improvement step to further enhance solutions created by
the ACO algorithm.

Results obtained with short-ranged Morse instances show
that DACCO is competitive with state-of-the-art methods
for cluster geometry optimization. It clearly outperforms
a PSO approach recently proposed and its performance is
comparable to the most effective hybrid EA for this prob-
lem. This outcome confirms that the application of discrete
ACO variants to (discretized) hard continuous problems is
a viable option and it allows the development of successful
optimization methods.

There are several possible directions to follow in what con-
cerns future work. On the one hand, our research efforts
will be directed towards modifications that can further en-
hance the robustness and scalability of DACCO framework.
This might allow its application to molecular aggregates (e.g,
H2O clusters), a particularly hard class of cluster geome-
try optimization problems. Also, we aim to investigate the
generalization ability of DACCO, by applying it to other
continuous optimization problems.
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