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ABSTRACT
Evolutionary Algorithms are problem solvers inspired by na-
ture. The effectiveness of these methods on a specific task
usually depends on a non trivial manual crafting of their
main components and settings. Hyper-Heuristics is a re-
cent area of research that aims to overcome this limitation
by advocating the automation of the optimization algorithm
design task. In this paper, we describe a Grammatical Evo-
lution framework to automatically design evolutionary algo-
rithms to solve the knapsack problem. We focus our atten-
tion on the evaluation of solutions that are iteratively gen-
erated by the Hyper-Heuristic. When learning optimization
strategies, the hyper-method must evaluate promising candi-
dates by executing them. However, running an evolutionary
algorithm is an expensive task and the computational bud-
get assigned to the evaluation of solutions must be limited.
We present a detailed study that analyses the effect of the
learning conditions on the optimization strategies evolved
by the Hyper-Heuristic framework. Results show that the
computational budget allocation impacts the structure and
quality of the learned architectures. We also present exper-
imental results showing that the best learned strategies are
competitive with state-of-the-art hand designed algorithms
in unseen instances of the knapsack problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic Methods

Keywords
Evolutionary Algorithms, Hyper-Heuristics, Automatic Evo-
lution
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1. INTRODUCTION
Evolutionary Algorithms (EAs) are computational prob-

lem solvers loosely inspired by the principles of natural selec-
tion posit by Darwin. Over time, they have been successfully
applied to complex problems, i.e., those that do not have
an analytical solution or are computationally intractable, in
areas like optimization, learning or design. When solving
a particular problem, EAs usually require a carefully ad-
justment of some of its parameters and components. This
might be a difficult task requiring specific skills, and it is
typically performed off-line, by hand, even though there are
EA variants that have a limited self-adaptation capacity.

The automatic adaptation of EAs to a specific problem is
a promising way to replace specialized manual adjustments.
In the last years, several proposals have been made that per-
form the autonomous evolution of bio-inspired approaches,
namely Particle Swarm Optimization [9], Ant Colony Op-
timization [14] and Evolutionary Algorithms [3, 4]. Hyper-
Heuristics (HH) are an emerging framework to accomplish
this task. In general, this term identifies architectures where
problem-solving methods search a set of possible heuristics,
i.e., high level heuristics choose low level heuristics [12].

There are two main groups of HH. One seeks for the
best sequence of low-level heuristics, chosen from a prede-
termined set of methods usually applied to solve the specific
problem under consideration. The second group aims at
generating or constructing new heuristics. In this case, the
HH framework automatically learns the low-level algorithm
needed to solve the problem at hand. Learning feedback is
obtained by executing each solution candidate over one, or
several, simple instances of the problem one aims to solve.
Genetic Programming (GP) is a EA branch that searches
the space of programs for effective algorithmic strategies.
For that reason, it has been increasingly adopted as an HH.
In concrete, the Grammatical Evolution (GE) [6, 7] vari-
ant has been successfully used in recent works [1, 4, 14], as
it allows for a straightforward enforcement of semantic and
syntactic restrictions.

GE based HH incurs on a learning process with a high
computational effort, as the quality of each generated strat-
egy must be estimated by applying it to an optimization sit-
uation. This leads to the appearance of two contradictory
forces that must be balanced. On the one hand, the off-line
learning should not take too long, which implies relying on
small instances and adopting parameters (e.g., population
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size, number of iterations) that minimize the computational
overhead. On the other hand, the adoption of excessively
simple conditions might compromise results, hindering dif-
ferences between competing strategies and potentially lead-
ing to an inaccurate assessment of the quality of evolved
solutions. The experiments described in this paper aim to
contribute to a better understanding of the impact of the
learning conditions in the evolved strategies and to identify
useful guidelines that help to define better HH. With this
goal in mind, we present a GE based HH for evolving com-
plete EAs that are effective in solving different instances of
the 0-1 Knapsack Problem. Additionally, we will investi-
gate the generalization ability of the best evolved EAs by
applying then to unseen instances of the problem.

The paper is structured as follows: Section 2 describes
the framework used. Section 3 introduces the experimental
setup and presents an empirical study on the influence of
the learning conditions on the structure of the evolved EAs.
Section 4 compares the effectiveness of EAs evolved under
different conditions by applying them to unseen instances of
the knapsack problem. Finally, Section 5 gathers the main
conclusions and suggests directions for future work.

2. THE HYPER-HEURISTIC FRAMEWORK
In this section we present a brief overview of recent re-

search from the HH area that rely on GP approaches to
evolve problem solving strategies. Next we describe the
grammar used in our work.

2.1 Related Work
Several efforts have been reported in the literature to auto-

matically evolve nature-inspired algorithms. In [13], Tavares
et al. adopted GP to evolve a population of mapping func-
tions between the genotype and the phenotype. Experimen-
tal results showed that GP finds mapping functions that can
obtain results as good as the ones that are designed by hand.

In [3], Dioşan et al. adopted a two-level architecture to
evolve full-fledged EAs. At a higher level, an EA with fixed
settings is used, while, at the lower level, a solution is pro-
duced in the form of a sequence of genetic operations and
corresponding parameters. Best solutions evolved are next
used to solve specific optimization problems. The results
presented confirm that it is possible to evolve EAs that per-
form similarly to the ones used for comparison.

In [9], Poli et al. evolved, using GP, the equation that
controls the movement of particles in a Particle Swarm Op-
timization. Experimental results showed that the evolved
strategy could effectively solve some selected problems.

In [8], Pappa et al. proposed a Grammar-Based GP (GBGP)
framework to learn data mining algorithms. The evolved al-
gorithms are competitive with state of art human-designed
methods for data discovery. Recently, Burke et al. [1] pre-
sented a GE approach to evolve heuristics for the bin packing
problem. The experimental analysis of the work focused on
the quality, efficiency and consistency of the evolved heuris-
tics. Best evolved heuristics were able to satisfy all these
features.

In [14], Tavares et al. proposed a GE framework to evolve
Ant Colony Optimization Algorithms to the Traveling Sales-
man Problem. Finally, Lourenço et al. [4] proposed a GE
based HH to evolve full-featured EAs. The results showed
that the proposed architecture is able to evolve effective al-
gorithms for the problem considered in that study.

< expr >::= < expr >< op >< expr > (0)

|(< expr >< op >< expr >) (1)

| < var > (2)

< op >::=+ (0)

|− (1)

< var >::=x (0)

|y (1)

Figure 1: Example grammar

2.2 Grammatical Evolution
GE is a branch of GP and a form of GBGP. In GE, a lin-

ear genome representation is used, typically a binary string,
and there is a clear separation between the genotype and
the phenotype. The mapping genotype-phenotype is done
by a grammar. The grammar can contain domain knowl-
edge and the search engine is independent of the evaluation
mechanism. For these reasons, a GE system is general and
flexible [7]. The grammars used by GE are context-free. A
context-free grammar is defined by a tuple G = (N,T, S, P ),
where N is a non-empty set of non terminal symbols, T is
a non-empty set of terminal symbols, S is an element of N
called axiom, and P is a set of production rules of the form
A ::= α, with A ∈ N and α ∈ (N ∪ T )∗ (see Fig. 1 for an
example). Note that N and T are disjoint. A grammar G
defines a language L(G), that is the set of all sequences of
terminal symbols that can be derived from the axiom, also

called words, that is L(G) = {w : S
∗⇒ w, w ∈ T ∗}.

GE performs the genotype to phenotype mapping in suc-
cessive steps. The initial binary linear sequence (i.e., the
genome) is first transcribed onto a sequence of integers, each
one called a codon. Then, the sequence of codons is used to
decide which production of the grammar is used to construct
a derivation tree from the axiom. Finally, the phenotype,
i.e., an executable program, is extracted from the derivation
tree. As an example, consider that we have the grammar
exemplified in Fig. 1. In the beginning, the genome is tran-
scribed into a string of integers and we start with a syn-
tactical form equal to the axiom < expr >. The objective
is to rewrite the axiom and one must choose which of the
three options is selected. The first integer from the string is
divided by the number of options for < expr >. The remain-
der of that operation will indicate the option to be used. In
the example, if the integer is 153 then 153%3 = 0 and the
axiom will be rewritten as < expr >< op >< expr >. Then
the decoding proceeds by reading the second integer and
apply the same method to the leftmost non-terminal of the
derivation. This process is iterated, until there are no more
non-terminals to rewrite. If the decoding process runs out
of integers, a wrapping mechanism is used, i.e., the process
goes back to the beginning of the string. The existence of
redundancy is also worth noting, for different integers may
correspond to the same alternative due to the nature of the
operation remainder. In the example above, the integers
3, 27, 153, all codify for the same production alternative for
< expr >. GE has been applied with success to different
problems (for details see [6, 7]).
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2.3 Grammar Definition
Our HH framework relies on GE to learn full-fledged EAs.

We must then define a grammar whose words are EAs, i.e.,
the grammar must allow the generation of a complete algo-
rithm, defining both its main components and its settings.
In the present work, we rely on the grammar presented
in Fig. 2, where < start > plays the role of the axiom.
The grammar enforces a sequential construction of compo-
nents, thereby modeling the overall structure of the evolved
algorithms. The grammar implicitly describes algorithmic
components, such as selection, variation operators and re-
placement strategy; likewise, it also specifies parameters in-
cluding the number of individuals in the initial population,
the number of offspring created at each generation and the
probability of applying variation operators. An inspection
of the right hand side of the first production clarifies how
we constrain the general structure of the evolved solutions:
first, parameters mu and lambda are specified, correspond-
ing to the number of individuals in the initial population and
number of offspring created at each generation, respectively.
Both values are defined in proportion to the maximum pop-
ulation size granted to the algorithm. Afterwards, a cycle
iterates over a predetermined sequence of typical EA opera-
tions: evaluation, selection, variation and replacement. The
grammar defines alternatives for each component, thus al-
lowing the GE to learn the most suitable combination for
a given situation. It is worth noting that the grammar al-
lows the generation of solutions without some components
(option ε denotes the empty string). In addition, several
recombination and mutation operators can simultaneously
appear in the same EA.

3. LEARNING EVOLUTIONARY
ALGORITHMS

Experiments described in this section aim to gain insight
on how the learning conditions determine the overall struc-
ture of the evolved strategies. The settings of the GE adopted
for all the tests are presented in Table 1 [7].

The quality of the strategies generated by the GE is di-
rectly related to their optimization ability. In our frame-
work, we apply each learned algorithm to a predetermined
problem instance and consider that its fitness corresponds
to the quality of the best solution found. Evaluating a GE
population is then a computationally intensive task. To pre-
vent the learning process from taking an excessive amount
of time, we rely on the following conditions to estimate the
quality of evolved strategies: i) one single instance of moder-
ate size is used to assign fitness; ii) only one run is performed;
iii) the number of evaluations is kept low. To investigate
how these design options impact the quality and structure
of the solutions learned by the GE, we present learning re-
sults obtained with different conditions. In concrete, this
paper focuses on the length of the run used to assign fitness
and also on how the number of evaluations is split between
generations and population size. We consider 4 settings,
detailed in Table 2.

3.1 The 0-1 Knapsack Problem
The combinatorial optimization 0-1 Knapsack Problem

(KP) was selected as the testbed for our experiments. It
can be described as follows: given a set of n items, each of
which with some profit p and some weight w, how should a

〈start〉 ::= mu = 〈proportion〉
lambda = 〈proportion〉
while(not termination condition) do
evaluate
〈selection〉
〈variation〉
〈replacement〉
end while

〈proportion〉 ::= 0.25
| 0.5
| 0.75
| 1.0

〈selection〉 ::= RouleteWheel()
| SUS()
| Rank()
| Tournament(〈t-size〉)
| ε

〈t-size〉 ::= 〈integer-const〉

〈integer-const〉 ::= randominteger()

〈variation〉 ::= 〈operator〉
| 〈operator〉 〈variation〉

〈operator〉 ::= 〈recombination〉
| 〈mutation〉

〈recombination〉 ::= SinglePointXover(〈prob-recombination〉)
| NPointXover(〈prob-recombination〉,〈integer-const〉)
| UniformXover(〈prob-recombination〉)
| ε

〈mutation〉 ::= PointMutation(〈prob-mutation〉)
| BinarySwapMutation(〈prob-mutation〉)
| ε

〈prob-recombination〉 ::= 0.5
| 0.7
| 0.9
| 1.0
| 〈random-per〉

〈prob-mutation〉 ::= 1.0 / n
| 2.0 / n
| 5.0 / n
| 10.0 / n
| 〈random-per〉

〈random-per〉 ::= random01()

〈replacement〉 ::= Generational()
| RankReplacement()
| RankReplacementNoDup()
| Elitist(〈random-per〉)
| ε

Figure 2: Grammar used to evolve EAs
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Table 1: Parameters of the GE Framework

Parameter Value
One Point Crossover Probability 0.9

Bit Flip Mutation 0.01
Codon Duplication Probability 0.01

Codon Pruning Probability 0.01
Population Size 100

Selection Tournament with size equal 3
Replacement Steady State
Codon Size 8

Number of Wraps 3
Codons in the initial population 10-16

Generations 50
Runs 30

subset of items be selected to maximize the profit while keep-
ing the sum of the weights bounded to a maximum capacity
C? In all instances adopted in our study, the knapsack ca-
pacity was set to half of the sum of the weights of all items.
A standard binary representation is adopted and evaluation
considers a linear penalty function to punish invalid solu-
tions [5].

3.2 Learning Results

Table 2: Evaluation Learning Settings

Setting Population size Number of Generations Evaluations
1 20 100 2000
2 20 250 5000
3 50 100 5000
4 50 250 12500

Table 3: GE Learning Results

Setting Mean Best Fitness (MBF) Best Hits
1 38961.94 (±73.73) 0 / 30
2 39084.77 (±12.23) 29 / 30
3 39087.00 (±00.00) 30 / 30
4 39087.00 (±00.00) 30 / 30

The KP instance selected to evaluate learned EAs is com-
posed by n = 100 items, in which the profit of the optimal
solution is 39087. Table 3 summarizes the results of the
off-line learning step. For each setting, column MBF dis-
plays the mean of the best strategies found in the 30 runs
performed by the GE and the corresponding standard de-
viation (in brackets). Last column (Best Hits) presents the
number of runs where the GE evolved strategies that were
able to discover the optimal solution of the selected instance.
The chart from Fig. 3 displays the evolution of MBF, for
all settings, along the 50 GE generations. These results
show that the framework gradually learns better optimiza-
tion strategies. Moreover, the outcomes in the Table 3 reveal
that evolved EAs are able to discover the optimum or near-
optimum solutions. Results obtained with setting 1 are an
exception to this general rule. The low number of evalua-
tions granted to each EA to solve the KP instance (between
16% and 40% of the computational budget granted by the
other settings) prevents the discovery of the highest quality
solutions. Note that this does not necessarily imply that
the GE with setting 1 is unable to find good optimization
strategies. Learning is also occurring with setting 1 (see the

corresponding line in Fig. 3) and the optimization ability of
the best strategies evolved in this scenario will be accessed
in the next section.

A detailed inspection reveals that different learning con-
ditions (as defined by the 4 settings previously described)
impact the structure of the evolved algorithms. For all set-
tings, we selected the best EA learned in each run and cre-
ated charts that measure the frequency of appearance of the
main components (the numerical settings are not considered
in this analysis). Fig. 4 contains 3 panels that group the
components by type: panels a), b) and c) display selection
options, replacement options and variation operators, re-
spectively. Unlike selection and replacement, components in
panel c) are not exclusive. Virtually all best learned strate-
gies rely on RankReplacementNoDup, a replacement mech-
anism based on the rank of the solutions with elimination
of duplicates. This is true for all settings and is in accor-
dance with the literature that states that this mechanism
outperforms all other considered replacement components
[10]. In what concerns selection, there is not a clear winner,
although roulette wheel and rank mechanisms are slightly
prevalent.

Interesting patterns arise in the selection of variation op-
erators. For all settings, uniform crossover and binary swap
mutation achieve the highest percentage, suggesting a clear
advantage over the other alternatives when exploring the
search space of the KP instance selected for learning. How-
ever, a close inspection of panel c) reveals a remarkable dif-
ference between settings 2 and 3. In spite of both having the
same computational budget (5000 evaluations to estimate
the quality of each EA), the mutation operator is frequently
disregarded in the best strategies learned with setting 3.
This may be explained by examining how the computational
budget is allocated. In setting 2, a low population size (20
individuals) is iterated for a considerably high number of
generations (250), which might lead to premature conver-
gence. In these conditions the mutation operator plays a
crucial role in diversity maintenance, thus avoiding conver-
gence. On the contrary, setting 3 has a higher population
size (50 individuals) coupled with a lower number of gener-
ations (100). Convergence is hardly a problem and, given
the moderate size of the KP instance, the EA can probably
rely just on uniform crossover to perform an appropriate
sampling of the search space. Therefore, it is not surprising
that many EAs learned with setting 3 prefer to not include
mutation.

To confirm this hypothesis, we ran an additional set of
experiments, with a slightly modified grammar, that only
allows the appearance of a single variation operator in each
evolved structure. This way, the hyper-heuristic has to se-
lect the most suitable operator (either crossover or muta-
tion) to include in the optimization strategy, given specific
learning conditions. We repeated the experiments for all
four settings presented in Table 2. Fig. 5 displays the fre-
quency of appearance of the variation operators using the
modified grammar. An overview of the chart confirms our
claims. Strategies evaluated with low population size (set-
tings 1 and 2) need to incorporate mutation operators to
prevent premature convergence. When the population size
is high and the number of generations is low (setting 3), all
the EA needs is crossover. Finally, setting 4 grants the EA a
considerable computational budget to run. This allows the
appearance of strategies that can either rely on crossover or
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mutation. It is worth notice that, in the experiments per-
formed with the modified grammar, binary swap mutation
is completely absent from the best learned solutions. This
is probably related to the fact that this operator alone can-
not modify the number of items in the knapsack, thereby
preventing a full exploration of the search space.

Results presented in Figs. 4 and 5 reveal that different EA
architectures emerge when different learning conditions are
adopted. A complete understanding of the whole process is
still in progress (e.g., the size or hardness of the instance
selected to evaluate learned strategies might also play a rel-
evant role), but it is, nevertheless, a relevant contribution to
a better understanding of the impact of learning conditions
adopted by a hyper-heuristics framework. To complete this
section, in Algorithms T1, T2, T3 and T4 we present the
best evolved algorithm for each one the settings, labelled
according to the scenario where they were discovered. In
agreement with the previous analysis, they share the same
replacement method and tend to rely on different selection
strategies. In what concerns the variation operators, T1, T2
and T4 include both crossover and mutation, whereas T3
relies solely on crossover.
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Figure 3: Evolution of GE MBF in the 4 Learning Settings

4. VALIDATION OF THE LEARNED
EVOLUTIONARY ALGORITHMS

We present now a set of experiments to analyze how the
4 best evolved algorithms (T1, T2, T3, T4) behave in KP
instances that are different from the one used in learning.
Such study will help to gain insight into the optimization
performance differences that may eventually arise between
strategies learned in different conditions. Also, we will verify
if the evolved EAs generalize well to unseen instances and are
competitive with hand design approaches regularly applied
to the KP. Three hand-designed algorithms (HEA1, HEA2,
HEA3), based on proposals that appeared in the literature
[2, 5, 11], were considered in this study. All hand-designed
methods adopt the RankReplacementNoDup replacement
mechanism and tournament selection with tourney size 3.

R
o
u
le

te
W

h
e
e
l

S
U

S

R
a
n
k

T
o
u
rn

a
m

e
n
t

Selection

a)

P
e
rc

e
n
ta

g
e
(%

)

0
2
0

4
0

6
0

8
0

1
0
0

Setting 1
Setting 2
Setting 3
Setting 4

G
e
n
e
ra

ti
o
n
a
l

R
a
n
k
R

e
p
la

c
e
m

e
n
t

E
lit

is
t

R
a
n
k
R

e
p
la

c
e
m

e
n
tN

o
D

u
p

Replacement

b)

P
e
rc

e
n
ta

g
e
(%

)

0
2
0

4
0

6
0

8
0

1
0
0

S
in

g
le

P
o
in

tC
ro

s
s
o
ve

r

N
P

o
in

tC
ro

s
s
o
ve

r

U
n
ifo

rm
C

ro
s
s
o
ve

r

P
o
in

tM
u
ta

ti
o
n

B
in

a
ry

S
w

a
p
M

u
ta

ti
o
n

Variation Operators

P
e
rc

e
n
ta

g
e
(%

)

0
2
0

6
0

1
0
0

c)

Figure 4: Frequency of components in the best evolved
solutions: panels a), b) and c) display selection, replacement
and variation operators, respectively.
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Figure 5: Frequency of components in the best evolved
solutions with just one variation operator.

They differ in the variation operators and/or corresponding
rate of application, as detailed in Table 4. The EAs were
applied to different KP instances, with a number of items
ranging between 500 and 1000. Due to space limitations we
present results obtained with just two instances (details in
Table 5), although the same optimization trend is visible
for other situations. To mimic the training conditions, we
created four different validation scenarios in which we varied
the population size and number of generations. The settings
are detailed in Table 6. All EAs were applied to the two KP
instances with each one of these settings. In every optimiza-
tion scenario, 30 runs were performed and the best solution
found was recorded.

The last two columns of Table 7 contain the optimiza-
tion results, obtained in each one of the validation instances.
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Algorithm T1

mu = 1.0
lambda = 1.0
while not termination condition do

evaluate
Tournament(11)
UniformCrossover(1.0)
BinarySwapMutation(1.0 / n)
RankReplacementNoDup()

end while

Algorithm T2

1: mu = 0.5
2: lambda = 1.0
3: while not termination condition do
4: evaluate
5: RouleteWheel()
6: UniformCrossover(0.9)
7: BinarySwapMutation(2.0 / n)
8: RankReplacementNoDup()
9: end while

Algorithm T3

1: mu = 1.0
2: lambda = 1.0
3: while not termination condition do
4: evaluate
5: Rank()
6: UniformCrossover(1.0)
7: RankReplacementNoDup()
8: end while

Algorithm T4

1: mu = 1.0
2: lambda = 1.0
3: while not termination condition do
4: evaluate
5: RouleteWheel()
6: BinarySwapMutation(1.0 / n)
7: UniformCrossover(0.9)
8: RankReplacementNoDup()
9: end while

Table 4: Hand-designed EAs: Variation operators and rate
of application.

ID Variation Operator Rate
HEA1 SinglePointCrossover 0.9

PointMutation 1 / n
HEA2 UniformCrossover 0.9

PointMutation 1 / n
HEA3 UniformCrossover 0.9

BinarySwapMutation 1 / n

Values represent the MBF deviation from the optimum (in
percentage). A brief perusal of the Table reveals that, in
general, the learned EAs perform well across the different
scenarios (as determined by the combination of a given in-
stance and setting), suggesting that they are able to general-
ize, beyond the specific situation used for learning. Results
also show that the effectiveness of the learned EAs is compa-
rable to the hand-designed approaches, confirming that the
GE framework was able to learn meaningful combinations
of components and settings.

Despite the good general behavior of the evolved strate-
gies, there are some differences in performance that require
a detailed analysis. For the remainder of this section we con-
centrate on results obtained with validation instance 2 (the
one with the higher number of items) and will investigate
how a specific learning setting influences the generalization
ability of evolved optimization strategies. The analysis is
supported by a Friedman’s ANOVA test that checks for sta-
tistical differences in the means obtained by the EAs con-
sidered in this study. When differences are detected, the
post-hoc Wilcoxon Signed Rank Test, with Bonferroni cor-
rection, is applied to perform the pairwise comparisons. In
both tests we used a significance level α = 0.05.

Fig. 6 presents the MBF box plot distribution of the 7 EAs
(both evolved and hand-designed). Four panels, correspond-
ing to each one of the validation scenarios, are displayed.

Table 5: KP instances used for validation.

Parameters
Instance Items (n) Best Solution

1 500 169350
2 1000 333460

Table 6: Validation settings.

Setting Population size Number of Generations Evaluations
1 50 100 5000
2 50 400 20000
3 100 200 20000
4 100 5000 500000

Clearly, the performance of evolved algorithms depends on
the settings adopted for the optimization. Even though dif-
ferences are not always statistically significant, T1 achieves
the highest MBF in setting 1, T2 is the best method in set-
ting 2, T3 outperforms all other approaches in setting 3,
and T4 is the best in setting 4. This confirms that evolved
strategies contain specific features that allow them to excel
in situations similar to those found during learning.

Results from Table 8 help to further clarify the relative
performance of learned strategies. Considering the MBFs
attained, we performed a full set of pairwise comparisons
between evolved methods and present a graphical overview:
A +++ sign indicates that the algorithm in the row is sta-
tistically better than the one in the column, and that the
effect size is large (r ≥ 0.5). As an example, T1 clearly out-
performs T3 in setting 2. A ++ sign indicates that there
are statistical differences, and that the effect size is medium
(0.3 ≤ r < 0.5), whereas a + identifies a significant differ-
ence with a small effect size (0.1 ≤ r < 0.3). A - signals
scenarios where the algorithm in the row is worst than the
one in the column. Finally, a ∼ indicates that no statistical
differences between the algorithms were found.

If we count the number of comparisons where a given EA
outperforms another learning strategy, we can see that this
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Figure 6: Box plot distribution of the MBF obtained by different EAs in the validation instance 2. Each panel corresponds
to a given scenario as described in Table 6.

happens in 3 occasions for T1 and T3, 6 times for T4 and 7
times for T2. Moreover, the optimization advantage exhib-
ited by T1 and T3 tends to be concentrated in settings that
are similar to those they found during off-line learning. On
the contrary, T2 and T4 maintain a reasonable effectiveness
in unseen conditions. It seems then that these last two EAs
have an increased robustness, which allows them to adapt
to different optimization scenarios. On the contrary, T1 and
T3 are brittle and tend to have a poor performance when
the optimization conditions differ from those found during
learning (see the position of some of the T1 and T3 box plots
in Fig. 6). These outcomes allow us to conclude that the
number of generations used to assign fitness in the off-line
learning step is more important than the population size.
The evolved strategies must be executed for a reasonable
number of generations, in order to obtain an accurate esti-
mate of their optimization ability. Finally it is worth noting
that learning settings 2 and 4 were able to evolve algorithms
with comparable effectiveness and robustness, even though
setting 2 only needs 40% of the computational budget to
evaluate candidates (when compared to setting 4).

5. CONCLUSIONS
GE is being increasingly adopted as the meta search method

inside a HH framework. In this paper we analyzed a set of
experiments to gain insight into the influence that learning
conditions play in the effectiveness and robustness of evolved
strategies. The 0-1 KP was selected as the target problem.
Different off-line learning settings were defined, in what con-

cerns the population size and the number of generations used
to estimate the fitness of solutions evolved by the GE. The
HH framework was executed in the different learning scenar-
ios and the best evolved strategies were subsequently applied
to unseen and larger KP instances. In the validation step,
alternative optimization scenarios, with similar features to
those adopted in the learning step, were considered. As
a rule, evolved strategies obtained extremely good results
in scenarios similar to those that they found during learn-
ing, showing that they contain features that are particularly
suited for a specific environment. However, learning settings
that allow the execution of a higher number of generations
to estimate the fitness of solutions generated by the GE,
allow the discovery of strategies with enhanced robustness.
This is a relevant guideline for designing GE based HH, as
it helps to distribute the existing computational budget for
evaluating solutions.

The study presented here raises important research ques-
tions. In the near future we will investigate other learning
design options, such as the adoption of a single or several
training instances with different properties, to analyze how
this impacts the quality and robustness of the evolved strate-
gies. Also, the analysis must be expanded to other problems,
in order to understand if the guidelines suggested in this pa-
per can also be generalized to other optimization situations.
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Table 7: Optimization results of the best learned EAs and
hand-designed algorithms. The values depicted represent
the MBF deviation from the optimum (in percentage).

Instance
Setting Algorithm 1 2

1 T1 5.6 8.2
T2 5.4 8.4
T3 5.6 8.3
T4 5.5 8.2

HEA1 7.8 11.4
HEA2 6.2 9.8
HEA3 5.8 9.3

2 T1 1.8 3.8
T2 1.4 3.0
T3 2.9 5.0
T4 1.7 3.7

HEA1 2.3 4.7
HEA2 1.7 3.9
HEA3 1.4 3.2

3 T1 2.0 4.2
T2 1.6 3.4
T3 1.7 3.3
T4 1.8 3.6

HEA1 3.0 5.9
HEA2 1.7 3.9
HEA3 1.8 3.7

4 T1 0.0 0.1
T2 0.0 0.1
T3 0.8 1.6
T4 0.0 0.1

HEA1 0.1 0.1
HEA2 0.0 0.1
HEA3 0.0 0.1

Table 8: Statistical analysis between the learned architec-
tures using the Wilcoxon Signed Rank Test (α = 0.05).

Settings Alg. T1 Alg. T2 Alg. T3 Alg. T4
Alg. T1 1 +++ ∼ ∼

2 - +++ ∼
3 - - -
4 - +++ -

Alg. T2 1 - ∼ -
2 +++ +++ +++
3 +++ - ++
4 +++ +++ -

Alg. T3 1 ∼ ∼ ∼
2 - - -
3 +++ ++ +++
4 - - -

Alg. T4 1 ∼ + ∼
2 ∼ - +++
3 +++ - -
4 +++ +++ +++
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