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Abstract—Monitoring and managing traffic are vital elements
to the operation of a network. Traffic prediction is an essential
tool that captures the underlying behavior of a network and
can be used, for example, to detect anomalies by defining
acceptable data traffic thresholds. In this context, most current
solutions are heavily based on historical time data, which makes
it difficult to employ them in a dynamic environment such as
cloud computing. We propose a traffic prediction approach based
on a statistical model where observations are weighted with a
Poisson distribution inside a sliding window. The evaluation of
the proposed method is performed by assessing the Normalized
Mean Square Error of predicted values over observed values
from a real cloud computing dataset, collected by monitoring
the utilization of Dropbox. Compared with other predictors, our
solution exhibits the strongest correlation level and shows a close
match with real observations.

Keywords—Network traffic analysis, network traffic predic-
tion, sliding window, Poisson process, Dropbox.

I. INTRODUCTION

Cloud computing is at the core of the always connected
paradigm, in which users access their data any time and
anywhere requiring only a device with Internet access. This
has increased the continuing demand for ubiquity and more
powerful resources, making cloud computing a solution that
perfectly matches need with efficiency. A recent study pub-
lished in The New York Times [1] estimates that companies
in the U.S.A. using cloud computing can save $12.3 billion
per year by 2020, in addition to making annual reductions in
carbon emissions equivalent to 200 million barrels of oil.

Cloud computing resorts to different delivery models that
define what kind of services are provided to the end user.
These are usually classified as Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) which respectively provide software, platforms and
infrastructure resources to the consumer. These service models
place different levels of management requirements in the cloud
environment.

Collecting statistics of the network is a useful management
task that enables traffic patterns to be understood and strategies
to be planned in order to prevent future problems. When
these statistics accumulate over time, inferences can be made
with respect to the future behavior of the network traffic
and when an abnormality occurs the administrator will have
enough time to act before the problem worsens. However, in
cloud computing environments this task is complicated. For

instance, the fact that the same infrastructure is shared by
different users makes any attempt to block traffic or blacklist
devices extremely risky since, in this case, a legitimate user
may suffer the same problems caused by a denial-of-service
attack. For these reasons, efficient management and analysis
of data traffic in virtualized environments becomes essential
to decision-making, thereby increasing the reliability of the
services provided [2].

One of the main challenges of monitoring a cloud com-
puting environment is the dynamics of network topologies
with high communication rates between heterogeneous hosts
[3]. This calls for traffic prediction mechanisms that do not
depend on large historical data. In order to address this need,
we propose a statistics-based solution that enables prediction of
network traffic in cloud computing by resorting to observations
of recent traffic only. This proposal is tailored for an IaaS
delivery model, by performing an analysis of traffic at physical
devices in the lower end of the infrastructure. This analysis
is performed independently at each physical device, therefore
reducing the complexity in terms of volume of data to analyze
when compared to centralized solutions.

There are many benefits to the accurate prediction of net-
work traffic. For instance, it can be used as a tool for extracting
the baseline of network traffic to capture the underlying traffic
trend [4] and facilitate techniques such as traffic shaping
for improved Quality of Service [5]. Moreover, it allows the
detection of anomalies by blending network traffic forecasts
with tolerable operational thresholds [6]. The method proposed
in this paper is designed to facilitate security and monitoring
services at the lower end of the infrastructure.

The remainder of the paper is organized as follows. Section
II covers some of the most prominent related work. Sec-
tion III describes the statistical prediction approach and the
methodology used for this paper, whilst Section IV presents
the preliminary evaluation and discusses the results. Section V
concludes with some final remarks and prospective directions
for future research.

II. RELATED WORK

Network traffic prediction has received a great deal of
attention from the scientific community as a means to facilitate
monitoring and management of computer networks. Although
most research efforts are focused on classical methods strongly
based on historical data such as time series and neural net-
works, we also analyze previous works that have a short



dependency on historical data.

Among the several estimation techniques considered, some
are used with the objective of predicting the behavior of
network traffic. We now discuss those publications that have
been found as correlated to our proposal, even when not
concerned specifically with scalability and dynamics of vir-
tualized environments. These works are divided according to
their dependency historical data.

A. Long-range Dependency

In [7], Li and Lim identify a noticeable behavior of traffic,
which is called “burstiness” or “packet trains”, defined by
peak-to-average transmission rate. This behavior is character-
ized by a long repetition of intervals of time in which firstly
no packets are transmitted, and afterwards a wave of packets
is sent. In this work, the network traffic is studied from the
perspective of fractal time series. Using this approach, it is
possible to project time series predicting the future behavior of
the network. This approach is used to study specific parameters
(such as the Hurst parameter) and relies on playback of offline
traffic, taking into consideration traffic properties such as
long-range dependency and heavy-tailed distribution. These
properties relate to large historical data, therefore making this
approach unsuitable for real-time traffic monitoring in dynamic
environments.

A. Dainotti et al. [8] resort to a statistical-based approach
to perform network traffic classification by associating network
traffic with different categories of network applications. Traffic
prediction is performed by taking into account characteristics
such as inter-packet times and payload size, as well as their
temporal correlation. The proposed solution is focused on
packet-level traffic classification based on a Hidden Markov
Model. The goal of this work is to use the obtained clas-
sification to offer different levels of QoS depending on the
class of traffic. It also facilitates enforcing security policies
to different applications and identification of malicious traffic
flows. All evaluations are performed by analyzing offline traffic
from different network topologies.

B. Short-range Dependency

Another study [9] analyzes the flow trend of two types
of packet flows: inflow and outflow of data packets. This
work highlights some problems that could occur, namely the
volatility clustering problems and its effect on deteriorating
the accuracy of short-term predictions. The proposed model
is enhanced by Adaptive Support Vector Regression to form
a linear combination of two models (Adaptive Neuro-Fuzzy
Inference System and Nonlinear Generalized Autoregressive

Conditional Heteroscedasticity) in order to not only simplify
the complexity of the system, but also improve the prediction
accuracy by solving the overshoot and volatility clustering
problems. This scheme can act as a core component of network
traffic analysis in order to help a network manager in providing
network traffic control. Due to the several algorithms and
statistical calculations employed, this approach is deemed
heavy and requires high processing overhead, therefore not
being suitable for real-time monitoring in a cloud computing
environment.

In the field of forecast but specifically in the fresh food
sales area, Wan-I Lee et al. [10] do a comparative study
among prediction models. Their work characterizes the Simple
Moving Average (SMA) as a time series analysis forecasting
method. It emphasizes some advantages of SMA, such as
its simplicity, low complexity and ease of application. It
also gives a basic and efficient tendency index. Based on its
simplicity, this method is commonly used to make forecasts
from historical data.

Aiping Li et al. [11] study anomaly detection methods
for high-speed network traffic. The purpose in this work is to
come up with a sensible mechanism for detecting significant
changes in massive data streams with a large number of
flows. Through a model based on a Weighted Moving Average
(WMA), the algorithm estimates the value of the next interval,
being able to detect distributed denial-of-service (DDoS) and
scan attacks. For that, all traffic that does not match the
reference model is considered an anomaly.

Our solution provides a systematic approach for estimating
network traffic resorting to a statistical method based on a
sliding window with a weighted Poisson process. This work
differs from previous works by taking into account the char-
acteristics of the cloud computing environment, as shown in
Table I. In particular, it provides high accuracy with low levels
of historical dependency and operates in a distributed manner
by having each device perform traffic prediction independently.
This provides a low complexity traffic prediction solution
by reducing the amount of data necessary to process when
compared to a centralized system.

III. STATISTICAL PREDICTION APPROACH

It is known that there are differences between the normal
behavior of network traffic and an anomaly. However, the
transition between these two extremes is obscure, i.e., we
do not know at which point the network traffic ceases to
represent legitimate use and should be considered an anomaly,
as illustrated by Figure 1. Studies have shown that the task
of identifying anomalous behavior in network traffic is not a

TABLE I: Summarized Related Work

Desirable features
Model

Ming Li, 2008 B. Chang, 2009 A. Dainotti, 2012 Wan-I Lee, 2012 Aiping Li, 2012

Low complexity × × √ √ √
Anomaly detection × √ × × √
Low historical dependency × √ × √ √
High accuracy

√ √ √ √ ×



trivial matter [12]. This challenge is even greater in cloud com-
puting due to the scalability and dynamics of this environment.
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Fig. 1: Network traffic behavior

A. Preliminaries

The characteristics of network traffic have been studied
in works such as [7], which indicate that parameters such
as the number of packets transmitted present heavy-tailed
probability distributions, i.e., their decay is slower than the
normal distribution.

Long-range Dependency (LRD) in network traffic is nor-
mally a result of adding several processes following a long-
tail distribution, meaning that the auto-correlation function
of current and past observations decays slowly. There are
many connections among long-tails and Poisson processes
[13]. For instance, this kind of processes offers a very simple
explanation of long-range dependency being caused by long-
tailed file sizes. Say many users are connected to a single server
that processes work at constant rate r. At a Poisson time point,
some user begins transmitting work to the server at constant
rate which, for specificity, we take to be rate 1. The length
of the transmission is random with long-tailed distribution.
This example attests that modeling of long-tail traffic may
generate accurate results over time, however, as we will see
in the Section IV, good results do not depend necessarily of
LRD, therefore reducing the needless overhead and amount of
data that must be analyzed.

Algorithm 1 Poisson procedure

Input : Lambda parameter
Output: Poisson slices vector
1: Start
2: procedure POISSON(lambda)
3: vector vPoisson
4: var poissonSlice
5: for (i = (lambda); i > 0; i−−) do
6: poissonSlice← e

−λ(λ)i

i!
7: vPoisson.add(poissonSlice)
8: end for
9: return vPoisson
10: end procedure
11: End

Unlike LRD, in Short-range Dependency (SRD) processes,
the coupling between values at different times decreases
quickly as the time increases. Either the auto-covariance drops
to zero after a certain time interval, or it eventually has an
exponential decay. This proposal aims at exploring SRD as a
process to reduce the amount of traffic that must be analyzed

for traffic prediction, therefore being more suitable to dynamic
environments such as cloud computing.

The Poisson distribution is a natural choice for describing
the probability of the number of occurrences in a field or
continuous interval (usually time or space), such as number
of defects per square meter, number of accidents per day or
number of network packets per minute. We note that in our
study the unit of measure (time) is continuous, but the random
variable (number of packets) is discrete. In other words, a
Poisson process is used to determine the probable minimum
and maximum number of transactions that can occur within a
given time period, from a series of discrete values.

Let k be a discrete variable taking the values 0, 1, 2, 3,
... ,∞. If k represents a time interval following the Poisson
process with parameter λ > 0, then:

P [N(t) = k] =
e−λt(λt)k

k!
(1)

where the Poisson parameter lambda (λ) represents the total
number of events (z) divided by the number of units (n) of
data (λ = z/n). The unit forms the basis or denominator for
calculation of the average. A Poisson process is described in
Algorithm 1.
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Fig. 2: The operation of sliding window

B. Poisson-based statistical prediction

In order to reduce the complexity of predicting network
traffic, we consider time-bounded past information by means
of a sliding window of size λ. This window is applied by
weighting past observations according to a Poisson distribution
with λ sampled values. The example illustrated in Figure 2
shows a sliding window with size three (i.e. λ = 3). Each
value of the data flow is weighted with a portion of the Poisson
process, and the most recent value of the data flow receives
the highest Poisson slice/weight. Thus, at time t, the sliding
window has a set of three values {0, 0, 3}. In the next turn, at
time t + 1 the next value to enter inside the window will be
1, and when this occurs the oldest value (0) leaves the sliding
window. This process will be repeated as long as there is a
data flow from the network.



The Poisson distribution is represented by a discrete func-
tion observed over time t, the distribution starts at t = 0 and,
when t = λ the function has its maximum. For a time interval
of size t = λ, let a truncated Poisson distribution of size n be
represented by values p1, p2, . . . , pn. To determine a prediction
of the expected value of network traffic at time t, ỹt, our
solution uses a Poisson distribution truncated from t = 0 to t =
λ. Then, we weight previous values according to the Poisson
distribution as follows,

ỹt = p1 × yt−1 + p2 × yt−2 + . . .+ pλ × yt−λ (2)

where the ỹt represents the result of the prediction process,
namely, the next expected value of the network traffic at time
t.

Algorithm 2 Pseudocode for predicting network traffic

Input : Trace from Dropbox
Output: Prediction of network traffic
1: Start
2: read dbTrace
3: read lambda
4: vector vPoisson
5: vector vPrediction
6: vPoisson← poisson(lambda)
7: for (i = 0; i < dbTrace.size(); i++) do
8: var nextV alue← 0
9: for (j = 0; j <= lambda; j ++) do
10: if (i− j >= 0) then
11: var tmp← (vPoisson[j]∗dbTrace[i−j])
12: end if
13: nextV alue← (nextV alue+ tmp)
14: end for
15: vPrediction.add(nextV alue)
16: end for
17: End

Algorithm 2 shows the procedure for predicting traffic.
The input (i.e. the data flow in Figure 2) corresponds to the
Dropbox trace (dbTrace). It is important to remember that
the input data could be any other set of cloud data, without
necessarily being derived from the monitoring of the Dropbox.
Furthermore, we also have to set up the lambda size as
illustrated at line 3 of Algorithm 2. This parameter defines the
number of Poisson slices to be considered. This is equivalent
to the number of samples of data used for the calculation of
the prediction. Once we have the vector with the Poisson slices
properly shaped, based on the Poisson Process of Algorithm 1,
the algorithm estimates the next value for the network traffic
for each new value from dataset (line 13, nextValue). As output,
we have the vector containing the network traffic prediction,
represented by vPrediction.

IV. EVALUATION AND DISCUSSION

In this section we perform an evaluation of our proposal
applied to a real trace of Dropbox data from [14].

A. Setup and Metrics

All the measurements and data presented in this paper
were collected from March 24, 2012 to May 5, 2012. The
evaluated dataset is focused on Dropbox utilization, which is
the most widely-used cloud storage system nowadays [14]. The
Dropbox dataset encompasses more than 100 metrics about the
network traffic. However, for this study we only consider the
total number of packets observed from the client (server) to
the server (client).

The work described in [14] presents four datasets: Campus
1, Campus 2, Home 1 and Home 2. During the data analysis
we observed that the Campus 1, Home 1 and Home 2 datasets
exhibit, at most times, a low number of network packets.
Campus 2 instead, shows a larger traffic volume compared with
the others datasets, therefore being our choice for evaluation.

For the evaluation of our solution, we consider the traffic
collected from two university campuses and two points of pres-
ence, namely the Campus 2 dataset (see [14]). The dataset was
divided in intervals of five minutes each, and the evaluation
was performed by applying a sliding window weighted with a
Poisson distribution over the raw data.

As previously discussed, the Poisson parameter λ repre-
sents the mean of events of the Poisson process. The Poisson
process has the interesting property that the expected value
(mean of the distribution) is close to the variance of the
distribution [15]. For this reason, we have performed the
evaluation focused in two sliding window sizes: the mean and
the variance of the dataset. In addition, we also have assessed
the prediction algorithm with λ parameter equal to standard
deviation (i.e. the nearest integer value found in the statistics
of Dropbox dataset). In order to make a fair comparison, the
tests with other predictors assessed in this work have also used
a window with the same size.

The effectiveness of the prediction mechanisms is mea-
sured through the Normalized Mean Square Error (NMSE)
[16],

NMSE =
1

σ2

1

N

N
∑

t=1

(

Xt − X̂t

)2

(3)

where σ2 is the variance of the time series over the prediction
duration, Xt is the observed value of the time series at time
t, X̂t is the predicted value expected from Xt, and N is the
total number of predicted values. This metric is widely utilized
to assess prediction accuracy. Its results are compared with a
trivial predictor, which statistically predicts the mean of the
actual time series, in which case NMSE = 1. If NMSE = 0,
this means that it is a perfect predictor, whereas NMSE > 1
means that the predictor performance is worse than that of a
trivial predictor.

We also consider the Pearson correlation, a measure of
correlation that represents the linear dependence between two
variables (e.g. X and Y ), giving a value between [−1; 1].
This is widely used as a measure of the strength of linear
dependence between two variables. A value of 1 implies that
a linear equation perfectly describes the relationship between



TABLE II: Descriptive Statistics

Dataset
Mean

Std. Deviation Variance NMSEArithmetic Square Error Std. Error

1 Dropbox 19.379 0.000 0.273 30.445 926.901 0.000

2 Trivial 19.379 926.902 0.000 0.000 0.000 1.000

Approach Sliding window size arithmetic mean

3 Poisson 19.376 41.168 0.267 29.726 883.662 0.044

4 WMA 19.380 82.523 0.263 29.326 860.046 0.089

5 SMA 19.379 117.072 0.262 29.233 854.596 0.126

Approach Sliding window size standard deviation

6 Poisson 19.375 49.590 0.266 29.630 877.966 0.054

7 WMA 19.381 127.845 0.259 28.853 832.490 0.137

8 SMA 19.380 196.316 0.257 28.638 820.143 0.211

Approach Sliding window size variance

9 Poisson 19.383 103.639 0.260 29.017 842.027 0.112

10 WMA 19.384 588.133 0.205 22.901 524.457 0.635

11 SMA 19.369 935.342 0.188 20.923 437.777 1.009

X and Y , with all data points lying on a line for which Y
increases as X increases. A value of −1 means that all data
points lie on a line for which Y decreases as X increases. A
value of 0 implies that there is no linear correlation between
the variables.

B. Results and Discussion

In Table II, we present statistics about the dataset used and
results for several prediction methods. The first line shows
statistics of the Dropbox dataset that was used as input for
the predictors, while the second line exhibits results achieved
for a trivial predictor that always predicts the next value as
the arithmetic mean of data. The following lines show results
for our prediction mechanism (Poisson) as well as two others
(SMA and WMA) described in Section II. For each set of
predictors, results are provided for three different values of λ:
mean, standard deviation and variance.

While for most metrics the results of the remaining predic-
tors are not far from those obtained by our Poisson approach,
we highlight the results achieved by our approach in terms
of NMSE, where our approach excels when compared to the
others. This means that the difference between the estimated
values and the real values is the lowest in the evaluation’s
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Fig. 3: Poisson sample of prediction

result. Table III attests that the Poisson predictor has the
strongest correlation among the predictors assessed in this
work.

The assessment was compiled from 42 consecutive days of
monitoring. However, a small demonstration of the behavior
of different predictions performed with the traffic dataset con-
taining information from Dropbox is illustrated in Figures 3, 4,
5 and 6 (all these figures have the average as sliding window
size). Due limited space and better viewing of the results, we
only provide predictions for a limited time period. However,
the observable match between real values and predictions held
for remaining time periods.

TABLE III: Pearson Correlation

Dropbox Poisson WMA SMA Trivial

Dropbox 1,00 0,924 0,903 0,729 -

It is worth mentioning that the best results were obtained
for lower values of λ. This happens because the average of
all elements of the dataset is around 19.38, which is aligned
with the property of the Poisson process of the expected value
being close to the mean of the distribution [15]. In particular,
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Fig. 4: SMA sample of prediction
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Fig. 5: WMA sample of prediction

the prediction improves as λ approaches the average. With a
smaller sliding window, oldest values also have fewer influence
on the predicted network traffic. This indicates that a predictor
that prioritizes recent history is better suited to the dynamics
of cloud computing environments, by resorting to short-range
dependency. These results have shown that our solution is able
to provide accurate predictions with relatively low levels of
historical data dependency.

V. CONCLUSIONS

In this paper we have proposed a statistical approach for
predicting network traffic in cloud computing environments.
Taking advantage of well-know network traffic features such
as short-range dependency, our model resorts to a Poisson
distribution within a sliding window for weighting past ob-
servations. Our results have shown compliance with real
data traces obtained for Dropbox. In addition, our approach
resulted in accurate prediction with low levels of historical
data dependency and compares favorably with other predictors.
In particular, we were able to achieve the lowest values
of Normalized Mean Square Error as well as the strongest
Pearson correlation between the real values and predictions.
Prospective directions for future work include considering an
approach based on a dynamic sliding window, and using this
methodology to perform anomaly detection of network traffic
in virtual environments.
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