
Avoiding lock-in: timely reconfiguration of a virtual cloud platform on top of
multiple PaaS and IaaS providers

Paulo Rupino da Cunha
CISUC, Department of Informatics
Engineering, University of Coimbra

Coimbra, Portugal
rupino@dei.uc.pt

Paulo Melo
INESC Coimbra and University of

Coimbra
Coimbra, Portugal

pmelo@fe.uc.pt

Catarina Ferreira da Silva
CISUC, University of Coimbra and

CNRS Lyon Research Center for
Images and Intelligent Information

Systems
Claude Bernard Lyon 1 University

Villeurbanne, France
catarina.ferreira-da-silva@liris.cnrs.fr

Abstract—�We describe our work with a major telecom company
in creating a broker that enables them to retain independence
from the various PaaS and IaaS providers that they use to
support their own SaaS offer on the cloud. To achieve this goal,
the broker starts by setting up the required operating
environment across the desired mix of PaaS and IaaS providers,
and then installs and configures the telco’s software on top of
that virtual platform. The automation and articulation of these
procedures confers the company a considerable flexibility. By
updating the list of preferred PaaS providers maintained by our
system and forcing a redeploy of the whole environment, it can
move services from one supplier to the next, or even to virtual
machines running in-house, in a matter of minutes. The most
favorable combination of outsourcing and insourcing can be
constantly pursued, by pondering factors such as cost, SLAs, and
other factors on a provider-by-provider basis.

Keywords: Cloud; SaaS; PaaS; IaaS; lock-in;
reconfiguration

I. INTRODUCTION
Several companies are considering the use of the cloud as

a way to reduce their operational expenditures (OPEX) and
capital expenditures (CAPEX). However, the concern of
becoming locked-in to the service provider is also quite
common. This was also the case of our partner company.
Besides offering telecommunications services, they also
develop and sell the underlying Operations Support Systems
(OSS) – the software solutions in charge of provisioning and
running the telecommunications services (e.g. voice,
Internet, TV). These systems are expensive and their
installation and configuration is complex and time-
consuming, making them inaccessible to smaller operators. It
makes sense, thus, to offer them in the form of Software-as-
a-Service (SaaS), by taking advantage of the economies of
scale already achieved by third party Platform-as-a-Service
(PaaS) and Infrastructure-as-a-Service (IaaS) providers for
required components (such as processing power, or a specific
database for storage, for instance). Nevertheless, it is
important to retain the flexibility to timely change those
providers according to business concerns (such as cost,
reliability or performance) or even to keep in-house some of
the components that are not available for renting.

Others have acknowledged this issue [1], [2] and first
steps have been taken to address it, notably TOSCA [3]
which, however, is still under development and will require
the providers to offer specific support.

II. MODELING AND APPROACH
To address the above concerns we designed a Hybrid

Provisioning Architecture, implemented in the form of a
broker, that enables the company to maintain the most
favorable mix of external providers and internal support at
any given time. By knowing all the dependencies of the OSS
software (e.g. databases, application servers), the broker sets
up a virtual platform (supported on the distributed preferred
providers) on top of which it deploys the telco’s software.

A. Conceptual architecture
Existing OSS applications make use of several services,

usually on local servers, frequently sporting strong coupling.
To allow the use of external providers for those services, the
coupling must both be made explicit and made generalizable.
Our approach describes the coupling requirements and
service internal configuration requirements using a service
manifesto (an XML document) stating, for each application,
which services it requires and eventual dependencies among
those services. The manifesto may also contain configuration
instructions for each service to fit it to the particular
application requirements.

A broker was created to interpret the manifesto, in order
to create the required service instances and configure them
so that they can be usable by the application (see Figure 1).
The manifesto may explicitly describe the service provider to
use or this information can be collected from an external
system handling company policies (e.g. a business rules
engine). The current implementation of the instantiation and
configuration is supported by both, provider-specific and
provider-and-service-specific drivers, which encapsulate the
domain specific knowledge required to support those
interactions.

B. Technical implementation
To demonstrate the architecture, the broker was created

and drivers for a few services were developed. Some for

2013 IEEE Sixth International Conference on Cloud Computing

978-0-7695-5028-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CLOUD.2013.36

970

normal PaaS usage (e.g. to access an Oracle database in the
Amazon EC2 cloud, or a Mongo database offered by
MongoHQ); others for simulated PaaS providers supported
in IaaS providers (e.g. a Zookeeper cluster or a Mongo
database instantiated as either fully pre-configured or just
bootstrapped virtual machine (VM) images).

Figure 1 - Conceptual Architecture

A few components of the broker were implemented in a

simplified manner. For instance, provider selection resorts to
human decisions stored in a database table, but care was
taken to support optionally calling external systems capable
of suggesting the most suitable choices according to required
service functional and non-functional characteristics.

C. Validation with OSS application migration to the cloud
In order to validate the applicability of this approach, we

applied the concept to an existing telecommunications OSS
application, which, until then, was run on-premises, using in-
house supporting software (databases, networking proxies,
etc.). We developed each one of the required drivers to
support each service on at least one PaaS provider (when
available) and on at least one virtual machine supported on
an IaaS provider. To support bootstrapping virtual machines
rather than fully configured virtual machines, we made use
of a systems configuration platform, and therefore were
required to instantiate/configure also the platform manager.

D. Findings and limitations
The concept of using a broker to create an on-demand

virtual PaaS platform proved successful, in that the existing
OSS application could be made to run, without
modifications, atop a mix of external PaaS and IaaS
providers, and systems running on the internal company
servers.

However, some limitations were patent in the approach:
the automated provisioning of services can lead to delays
that can make the instantiation and configuration of all the
providers referenced in section B require 30 minutes from
beginning to a fully functional system. This is in spite of the
broker parallelizing all possible instantiations, thanks to
knowledge in the XML manifesto about the service
dependencies. We also noticed that, in the current state of the
market, many PaaS providers still expect a manual or at least
web-based provisioning, rather than a fully automated REST
based interaction with their platforms. This makes it harder
to recover from running services the information required to
use them on other services. Finally, some providers we used
weren’t well suited to large numbers of concurrent service
instantiations, which required our broker to interleave its
requests to the various PaaS and IaaS to reduce the
simultaneous load on each. In fact the scalability that cloud
services promise is not fully delivered on automatic
instantiation of those services.

III. CONCLUSION AND FUTURE WORK
We designed a Hybrid Provisioning Architecture and

implemented it in the form of a broker that is capable of
setting up a virtual PaaS platform made up of the most
suitable mix of public cloud and in-house service providers.
The same broker handles the deployment and configuration
of existing applications on that environment without need for
modifications.

Major contributions of this work are 1) the proposition of
an architecture that ensures independency from PaaS and
IaaS providers; and 2) the automation of the deployment
process, enabling existing applications to transparently rely
on a virtual PaaS platform.

As part of our ongoing work, we are working on rollback
functionalities which are needed when the process of
instantiation and configuration of services fails for whatever
reason and the already instantiated resources have to be
freed.

REFERENCES
[1] F. J. Meng, J. Wang, C. Sun, D. X. Duan, and Y.-M. Chee,

“Facilitating Business-Oriented Cloud Transformation Decision with
Cloud Transformation Advisor,” in 2012 IEEE Fifth International
Conference on Cloud Computing, 2012, pp. 949–950.

[2] C. Ward, N. Aravamudan, K. Bhattacharya, K. Cheng, R. Filepp, R.
Kearney, B. Peterson, L. Shwartz, and C. C. Young, “Workload
Migration into Clouds - Challenges, Experiences, Opportunities,” in
2010 IEEE 3rd International Conference on Cloud Computing, 2010,
pp. 164–171.

[3] OASIS, “TOSCA Topology and Orchestration Specification for Cloud
Applications Version 1.0,” OASIS Committee Specification Draft 06 /
Public Review Draft 01, 2012. [Online]. Available: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/csprd01/TOSCA-v1.0-csprd01.html.

971

