
Using Checkpointing to Enhance Turnaround Time on Institutional Desktop
Grids

Patricio Domingues Artur Andrzejak Luis Moura Silva

School of Technology and Management Zuse-Institute Berlin Dep. Engenharia Informática
Polytechnic Institute of Leiria, Portugal Berlin, Germany Univ. Coimbra, Portugal

patricio@estg.ipleiria.pt andrzejak@zib.de luis@dei.uc.pt

Abstract

In this paper, we present a checkpoint-based scheme to
improve the turnaround time of bag-of-tasks
applications executed on institutional desktop grids.
We propose to share checkpoints among desktop
machines in order to reduce the negative impact of
resource volatility. Several scheduling policies are
evaluated in our study: FCFS, adaptive timeouts,
simple replication, replication with checkpoint on
demand, and prediction-based checkpointing combined
with replication.
We used a set of real traces collected from an
academic desktop grid environment to perform
trace-driven simulations of the proposed scheduling
algorithms. The results show that using a shared
checkpoint approach may considerably reduce the
turnaround time of the applications when compared to
the private checkpoints methodology.

1. Introduction

It is a well-known fact that desktop computers have
large amounts of idle CPU cycles that can be
harnessed. For instance, in their survey comprising
around 330,000 SETI@home’s hosts, Anderson and
Fedak found that an average of 89.9% of CPU cycles
was volunteered to the public-computing project [1].
To exploit these desktop resources, several middleware
frameworks have been developed. Examples include
academic projects like BOINC [2], XtremWeb [3],
Condor [4] and Alchemi.Net [5], and commercial
solutions like Entropia [6], to name just a few.

The success of Internet-based grid computing can
be measured by the numerous existing volunteer
projects, like the popular SETI@home [7] among
many others [8], with the most popular of them
attracting tens of thousands of volunteers.

Usefulness of desktop grids is not limited to public
volunteer projects. It is frequent for institutions like

corporations and academics to own a significant
number of personal computers, primarily devoted to
low demanding computing activities like e-office and
alike. These machines, if properly organized as an
institutional desktop grid, can be used by local users to
execute demanding e-science applications like
simulations. The attractiveness of institutional desktop
grids is reinforced by their fast local or metropolitan
networks, especially, if the institution is concentrated
in a single geographical point as it is often the case.

One of the major problems of desktop grids lies in
the volatility of resources [9]. Choi et al. classify the
failures of desktop grid resources into two broad
classes: volatility failures and interference failures
[10]. The former includes network outages and
machines crashes. Interference failures simply
correspond to the case where the owner of machine
claims it back and any running foreign task may have
to be interrupted.

Checkpointing is a common solution to cope with
the high failure rate of computing nodes. It consists in
periodically saving the application state into stable
storage. When a failure interrupts a running task, the
application can be resumed from the last available
checkpoint. There are two main types of checkpoints:
system-level and application-level [11]. Apart from
Condor [12], which relies on system-level checkpoint,
all major middleware tools, like BOINC and
XtremWeb, make use of application-level
checkpointing. Therefore, in this study, we only
consider application-level checkpointing.

An important issue regarding checkpointing lies in
the physical location where checkpoints are stored. A
limitation of the existing middleware like BOINC is
that checkpoints are private, being stored in the same
machine where the task is running. If that machine
becomes unavailable, the checkpoint file cannot be
used and the task has to be restarted from scratch in
another machine.

In this paper, we explore the benefits of sharing
checkpoints in institutional desktop grid environments

for the purpose of optimizing the turnaround time.
Under our approach, the checkpoints are saved in a
reliable central storage and thus can be used for
restoring, moving or replicating tasks among machines,
independently of the availability of the machine(s) that
saved the checkpoints. Specifically, we evaluate
several scheduling policies focused on delivering fast
turnaround time for typical bag-of-tasks applications
[13] executed over institutional desktop grids.

The rest of this paper is organized as follows.
Section 2 describes the proposed scheduling
methodologies. Section 3 details the simulated
environment, while section 4 presents the main results.
In Section 5 we review related work, and section 6
concludes the paper.

2. Scheduling Policies

Bag-of-tasks applications are usually the most
suitable for desktop grids since they do not require
intra-task communication. While traditional eager
scheduling algorithms like First-Come-First-Served
(FCFS) yield good performance in high throughput-
oriented systems, they are normally inefficient for
delivering fast turnaround times [14].

We propose several variations to the FCFS policy
with the goal of improving the turnaround time. All
those variations include support for shared
checkpoints. This enables checkpoint mobility and fast
recovery of tasks, especially when compared to private
checkpoints. The combination of the shared
checkpointing with FCFS scheduling results in the
following scheduling policies:
• adaptive timeout (FCFS-AT),
• task replication (FCFS-TR),
• task replication with checkpoint on demand

(FCFS-TR-DMD),
• prediction combined with checkpoint on demand

(FCFS-PRDCT-DMD).

2.1. FCFS-AT

FCFS-AT improves the base FCFS strategy by
including an adaptive timeout that defines the
maximum time given to the machine for completing
the execution of the assigned task. If the timeout
occurs before the task has been completed, the
scheduler can reassign the task to another machine
where it will be restarted, hopefully from the last
checkpoint. In the private checkpoint model, the task
needs to be restarted from scratch in a free machine,
unless the original executing machine returns to the
available state.

The timeout takes into account the CPU reference
time to complete the task together with the
performance metric obtained with the Bytemark
benchmark [15]. Both values are used to estimate the
minimum time needed by the candidate machine to
complete the task assuming an ideal execution. A
tolerance is added to the base timeout to cope with
overheads and unpredictability. This tolerance depends
on the expected task length, on the time of the day and
on the day of the week. Table 1 shows the tolerance
factor applied to the estimated ideal completion time to
obtain the total timeout time. We introduce different
factors for the nighttime periods and the weekends to
take advantage of the higher stability of the desktop
grid resources during these periods of low or
non-existence of human presence.

CPU Reference Time (sec) /

Time of day
Timeout

factor
≤ 1800 1.5

]1800,3599] 1.325
≥ 3600 1.25

Nighttime (0.00-8.00 am) 1.10
Weekend (Sat, Sun) 1.05

 Table 1: Timeout tolerance factors for FCFS-AT

2.2. FCFS-TR

FCFS-TR adds task replication on top of the
FCFS-AT scheduling policy. The strategy is to make
use of task replication at the final phase of the
computation, when all uncompleted tasks have already
been assigned and, at least, one machine is free.
Replicating a task augments the probability of a faster
completion of the task, especially if the replica is
scheduled to a faster machine than the current one.
Even if the replica is assigned to a slower or equal
performance machine, it can still be useful acting as a
backup in case the primary machine fails or gets
delayed.

In all replica-based policies, the number of replicas-
per-task (henceforth replica count) is limited by a
predefined threshold. The purpose of the replica count
limitation is to promote fairness in the replica
functionality avoiding that some excessively replicated
tasks clutter the resources. Note that we assume that
institutional desktop grids are reliable and trustable
environments, and thus we do not resort to task
redundancy for validation of results [16].

2.3 FCFS-TR-DMD

FCFS-TR-DMD adds the checkpoint on demand
feature to task replication implemented by FCFS-TR.

In this strategy the scheduler might ask a worker to
perform a checkpoint operation of its current task. This
checkpoint is useful immediately before the creation of
a replica (see FCFS-TR), since it allows the replica to
start with an up-to-date state of the source task.

It is important to note that checkpointing on demand
introduces two requirements to the grid infrastructure:
(i) master-initiated communication to workers (to ask
for a checkpointing operation); (ii) the ability of a task
to be checkpointed at any time, potentially at some
special breakpoints of the application. Master-initiated
communication might be avoided if the desktop grid
systems allows the master to send information and
commands in response to a worker’s periodic
heartbeat. Depending on the granularity of the task and
how the checkpoints are programmed, it is reasonable
to assume that checkpoints can be saved between two
different iterations of a task. In this work, we do not
consider the delays that may be imposed by such
imperfect timing of checkpoints on demand.

2.4. FCFS-PRDCT-DMD

The FCFS-PRDCT-DMD scheduling policy resorts
to short-term prediction of machines’ availability on
top of FCFS-TR-DMD. When a prediction result
indicates that a particular machine might be
unavailable in the next scheduling interval, the
scheduler requests a checkpoint on that running task. It
then initiates the creation of a replica if the conditions
of the FCFS-TR strategy are met, that is, at least a free
machine exists and the replica count for the considered
task has not yet been reached. The rationale behind this
policy is to anticipate the unavailability of machines,
taking the proper measures to reduce the effects of
unavailability in the execution of the application. In
this work, the prediction method used was the
sequential minimal optimization (SMO) algorithm
which yielded the best prediction results for machine
availability in a previous study [17].

3. Evaluation Setup

We now present the computing environment that
was simulated to assess the scheduling methodologies,
and then we describe the traces employed to drive the
simulations.

3.1 Machines

We used two machine sets, henceforth identified as
M01 and M04, as two reference environments. The
M01 set holds 32 identical fast machines of type D (see
Table 2), while the M04 set is a mix holding 8

machines of each type, that is, 8 machines of type A, 8
of type B, 8 of type C and 8 of type D. The M01 group
is worth 54.14 reference machines, against 36.66 for
M04, meaning that M01 is 1.48 times faster than M04.

The four types of simulated machines are
summarized in Table 2. The column CPU describes the
machine’s CPU type and clock speed, while the next
column indicates the performance index of the
corresponding machine group. This index corresponds
to the arithmetic mean of the Bytemark benchmark
indexes INT and FP [15]. The fourth column
corresponds to the performance ratio of machines
relatively to the reference machine. This machine,
shown in the last row of Table 2, is used as a reference
for calibrating execution of tasks. For instance, a task
requiring 1800 seconds of CPU on the reference
machine, would take nearly 3475 seconds on a type A
machine, and slightly more than 1063 seconds on a
type D machine.

Type CPU Perf. index Ratio to reference

A PIII@650 MHz 12.952 0.518
B PIII@1.1 GHz 21.533 0.861
C P4@2.4 GHz 37.791 1.511
D P4@3.0 GHz 42.320 1.692

Avg. -- 28.649 1.146
Reference P4@1.6 GHz 25.008 1.00

Table 2: Groups of simulated nodes and their
performance

3.2 Trace

All simulations were driven by a trace collected
from two academic classrooms of 16 machines each,
with all machines running the Windows 2000
operating system. The trace is comprised of 473,556
samples collected over 39 consecutive days every two
minutes at the machines, for a total of 27,193 sample
periods.

Each sample aggregates several metrics, like
machine uptime and CPU idleness, to name just the
relevant metrics for this work. The machines are used
for classes and by students to implement their practical
assignments, and to access email and the web. An
important issue regarding the machines is that no
shutdown policy exists, that is, when leaving a
machine, a user is advised but not obliged to shut it
down. Therefore, machines may remain powered on
for several days.

The weekly distribution of the number of available
machines is depicted in Figure 1. The plot displays
both the average (top line) and the standard-deviation
(bottom line) of the number of available machines.
Analyzing the plot, it is possible to clearly identify the
weekend period and, in a lesser degree, the nighttime
periods by their flat lines. For the whole trace, the

mean count of accessible machines was 17.42
(represented by a flat line in the plot), yielding an
availability of 54.44%.

To quantify the volatility of the trace, we computed
the variation count for every machine. A variation is
defined as a change of state in a machine’s availability,
either from available to unavailable, or vice-versa. The
variation count of a trace is then a set which holds, for
every machine of the trace, the machines’ variation
count. To ease comparisons, the variation ratio of a
machine is defined as the ratio between its actual
variation count and the maximum number of variations
(which corresponds to the number of samples minus
one). We assume the broad definition of availability,
upon which a machine is considered available as long
it is powered on, independently of the existence of an
interactive user. This definition follows what can be
configured for some desktop grid workers like BOINC
or even Condor (by default, Condor does not permit
the coexistence of interactive usage and volunteer
computation, but this can easily be changed).

Figure 1: Weekly distribution of accessible machines

For the considered trace, the mean variation count is

91.25 per machine (standard deviation is 22.68), with
the variation ratio ranging from 0.17 to 0.60. The
average variation ratio is 0.35 (standard deviation is
0.10), a very low value, indicator of the low volatility
of the machines. Indeed, although the low average
variation ratio can in part be explained by the usage of
our broad definition of availability, it is essentially
caused by the stability of the studied academic
resources. This is due to the lack of a mandatory power
off policy, which permits that the machines maintain
their availability state for long periods.

To evaluate the proposed scheduling policies under
a more stringent environment, namely with a higher
level of volatility, a threshold condition regarding the
minimum level of idle CPU was defined. Specifically,
under the CPU Idle Threshold condition (CIT), a
machine is defined as candidate to scavenging at a
given time t, only if it its CPU idleness is greater than
CIT. In practical terms, the CIT condition is equivalent

to a resource owner defining that the machine should
only be considered for opportunistic computing when
CPU idleness is above a predefined threshold. In this
paper, besides the 0% CIT, which corresponds to the
original trace, simulations were carried out with a 90%
CIT condition. This corresponds to a scenario, where
less than 10% CPU is consumed by the resource
owner. As expected, variability of resources for a 90%
CIT is much more pronounced than the 0% CIT. The
mean variation count is 707.78 (with a 447.7 standard
deviation), and the average variation ratio is 2.69
(standard deviation is 1.62). Thus, relatively to the 0%
CIT, resources measured under the 90% CIT are nearly
8 times more volatile.

4. Results

Simulations were carried out with applications
comprised of either 25 or 75 tasks, with individual
tasks requiring either 1800 or 7200 seconds of CPU
time when run on the reference machine. The impact of
checkpointing policies on the execution turnaround
time was measured by varying the number of saved
checkpoints per task execution. Specifically,
simulations were carried out with no checkpoints, one
checkpoint and nine checkpoints per task. In
single-checkpointed executions, the checkpoint is
saved when the task reached half of its execution,
while for the nine-checkpoint executions, a
checkpointing operation is performed every 5% of the
execution.

The size of individual checkpoint was set to 1 MB
in each case. In fact, simulations with bigger
checkpoint sizes (up to 10 MB) did not yield
significant differences, mostly due to the fast
communication links of LAN environments (the
network speed was set to 100 Mbps).

To assess the effects of the weekday/weekend
variations of the trace over the workloads, separated
simulations were carried out for these periods.
Additionally, to prevent bias caused by particular
specificities and localities of the trace, all simulations
were executed multiple times from different starting
points, with reported turnaround times corresponding
to the mean average of the multiple executions.
Finally, the replication count threshold was set to 3 for
all replica-based scheduling policies, since this proved
to be a balanced value.

4.1 Ideal Execution Time

The turnaround times are reported relatively to the
Ideal Execution Time (IET). Specifically, unless
otherwise stated, results correspond to the slowdown

ratio, that is, the ratio of the application turnaround
time relatively to the IET for the given task
characteristics (the number of tasks and the reference
CPU time requirement). The IET measures the
theoretical turnaround time that would be required for
the execution of the application under ideal conditions,
that is, with absolutely no overhead. Table 3 lists the
IETs (in minutes) for the studied scenarios.

Turnaround
(minutes) Number of

tasks
Task

(seconds)
M01 M04

25 1800 17.73 35.46
25 7200 70.91 141.83
75 1800 53.19 70.91
75 7200 212.74 283.66

Table 3: Ideal Execution Time for M01 and M04

4.2 Results for Shared Checkpointing

To assess the effect of sharing checkpoints on
turnaround time, we simulated both private and shared
checkpoint techniques. On the plots, the shared version
of a scheduling policy is identified with an S suffix,
while the private version is labeled with a P suffix.

The checkpoint sharing approach yields a faster
turnaround time than the private checkpoint technique
as shown in Figure 2. Figure 2 displays the turnaround
time for the possible combinations of the number of
tasks (25 and 75) with the length of individual tasks
(1800 and 7200 seconds), considering the
single-checkpoint FCFS policy run over the M04 set of
machines, and the CIT respectively sets to 0% (left
plot) and to 90% (right plot). In all cases, the benefit of
using a central checkpoint server clearly pays-off the
overhead of checkpointing and allows the scheduler to
get faster turnaround times. As expected, turnaround
times for the 90% CIT cases are comprehensively
longer than the equivalent ones when a 0% CIT is
considered. This is due to the fewer usable cycles that
follows from a 90% CIT.

Figure 2: Turnaround times for the shared and private
FCFS, with the M04 set, one checkpoint per execution and
CIT=0% (left) and CIT=90% (right)

4.3 Results for the Scheduling Policies

In this section, we first present the turnaround times
yielded with a 0% CIT, and then analyze the policies
under a 90% CIT. We split results between weekdays
and weekends. Furthermore, instead of reporting the
absolute turnaround times, we present slowdown ratios
relative to IET, with lower values meaning faster, and
thus better, turnaround times. Every plot aggregates the
slowdown ratios for the following scheduling policies:
adaptive timeout (AT), first-come first-served (FCFS),
simple replication (TR), replication with checkpoint
on-demand (TR-DMD), replication with prediction and
checkpoint on-demand (TR-PRDCT-DMD).

4.3.1. Weekdays with 0% CIT. Figure 3 aggregates
the slowdown ratio plots of the machine sets M01 (top)
and M04 (bottom) for the execution of 25 tasks of
1800-second CPU time on weekdays under a 0% CIT.

For the M01 set, all scheduling methodologies
perform equally, apart from the prediction-based policy
and the private-FCFS, which yield the worse
slowdown ratios. As expected in a homogeneous set of
machines, replication yields no advantage.

For the M04 machine set, the replication-based
policies delivered the best turnaround times, with the
checkpoint on-demand mechanism yielding benefits
relatively to the simple replication policy. The positive
performance of the replication-based scheduling can be
explained by the heterogeneity of the M04 set, which
creates opportunities for replication, namely when a
task is replicated to a faster machine, something that
could not occur with the homogeneous M01 machine
set.

The 75/1800 case (not shown due to space
consideration) yielded results similar to the 25/1800
one, indicating that, for the turnaround times, the
number of tasks is not as relevant as the task duration.
This is further confirmed by the 25/7200 case (also not
shown) which behaves similarly to the 75/7200 one.

Figure 4 presents the results for the slowdown ratios
considering the 75/7200 case. These results confirm
our thoughts regarding the appropriateness of the
prediction-based policy to longer tasks in
heterogeneous environments. For the homogeneous
machine set M01, both basic tasks replication (TR) and
replication with checkpoint on-demand (TR-DMD)
deliver the fastest turnaround time.

Figure 3: Slowdown ratios for 25/1800 tasks on M01 (top)
and M04 (bottom) for a 0% CIT

Figure 4: Slowdown ratios for 75/7200 tasks on M01 (top)
and M04 (bottom) for a 0% CIT

4.3.2. Weekends with 0% CIT. For weekends
executions, only the 75/7200 case is shown (Figure 5)
since the results for all the other cases follow a similar
pattern.

With the homogeneous set of machines M01, the
simple replication (TR) scheduling outperforms all
other policies. This means that the TR policy is suited
to stable and homogeneous environments like the one
found on weekend periods.

An interesting observation is that, contrary to what
occurs on the weekday period, the shared-checkpoint
versions present no real advantage over the
private-checkpoint ones, especially with the
homogeneous machine set (M01). This is due to the
higher stability of resources on weekends.

Figure 5: Slowdown ratios for weekend execution of
75/7200 tasks on M01 (top) and M04 (bottom)

4.3.3. Weekdays with 90% CIT. Results regarding
90% CIT display similar shapes that the one observed
for a 0% CIT. This is noticeable on the comparison of
Figure 6, which presents the slowdown ratio for the
75/7200 case with a 90% CIT, and Figure 4, which
depicts the same case for a 0% CIT.

Figure 6: Slowdown ratios for 75/7200 tasks on M01 (top)
and M04 (bottom) for a 90% CIT

As expected, yielded turnaround times are lengthier
for the 90% CIT. Another consequence of the higher
CIT is seen in the effectiveness of checkpointing, with
9-checkpoint executions performing much better than
the versions with no checkpoint. For all shown cases,
the TR-DMD methodology consistently yields the
fastest executions. Once again, task replication only
brings benefits in heterogeneous machine sets.

5. Related work

Scheduling methodologies for reducing turnaround
times of task-parallel applications in desktop grids
were thoroughly studied by Kondo et al. [14]. The
authors analyzed several strategies such as resource
exclusion, resource prioritization, and task duplication.
The study also resorted to trace-based simulations,
using traces collected from the Entropia desktop grid
environment [18]. However, the study targeted only
small sized-tasks, with the length of tasks being 5, 15
and 35 minutes of CPU time. Moreover, the work did
not consider migration nor checkpointing, assuming
that interrupted tasks would be restarted from scratch.
Although acceptable for small tasks, this assumption is
not appropriate for long-running tasks, especially in
volatile environments.

The OurGrid project implements the workqueue-
with-replication scheduling policy (WQR) [13]. Under
this scheme, tasks are assigned in a FCFS-like manner,
regardless of the metrics related with performance of
machines. When all tasks have been distributed to
workers, and if there are enough free resources, the
system creates replicas from randomly chosen tasks.
WQR acts as a best-effort scheduler, not guaranteeing
the execution of all tasks. This differs from our work,
which is based on the premise that an application must
be completely executed, thus requiring that the
scheduler enforces the execution of all the tasks. The
authors conclude that task replication significantly
augments the probability of an application being
terminated.

Anglano and Canonico [19] propose WQR-FT
which extends the basic WQR methodology with
replication and checkpointing. They recommend
checkpointing usage for environments with unknown
availability, since it yields significant improvements
when volatility of resources is high. Likewise WQR,
WQR-FT is also limited by its best-effort approach,
with no guarantee that all tasks comprising a given
application are effectively executed.

Weng and Lu [20] study the scheduling of
bag-of-tasks with associated input data over grid
environments (LAN and WAN) of heterogeneous
machines. They propose the Qsufferage algorithm
which considers the influence of input data
repositories’ location on scheduling. The study
confirms that the size of the input data of tasks has an
impact in the performance of the heuristic-based
algorithms.

Zhou and Lo [21] propose the Wave scheduler for
running tasks in volunteer peer-to-peer systems. Wave
scheduler uses time zones to organize peers, so that
tasks are preferentially run during workers’ nighttime

periods. At the end of the nighttime period, unfinished
tasks are migrated to a new nighttime zone. In this
way, tasks ride a wave of idle cycles around the world,
which reduces the turnaround time. However, the
exploitation of moving night zones is only feasible in a
wide-scale system.

Taufer et al. [22] define a scheduling methodology
based on availability and reliability of workers.
Specifically, workers are classified based on their
availability and reliability. The scheduler deploys the
tasks based on this classification, assigning tasks to
workers accordingly to the priority of tasks and the
reliability and availability of workers. The proposed
scheduling policy targets BOINC-based projects,
taking advantage of the fact that this middleware
already collects enough information to classify
individual workers.

6. Conclusions

This paper presented a set of checkpoint-based
scheduling strategies which were devised for reducing
the turnaround time of bag-of-task applications in
institutional desktop grids.

The shared-checkpoint versions obtained much
faster turnaround times than the private-checkpoint
versions and thus its usage should be promoted for
users with soft real time deadlines, at least, in
controlled institutional environments. The results also
point out that replication-based policy merged with
checkpoint on demand can be effective, especially in
heterogeneous clusters. Regarding prediction-based
techniques, although they seem inappropriate for short
tasks, they yield substantial benefits with long-running
tasks.

Finally, as demonstrated by our traces, the day of
the week and time strongly influence the availability of
resources. This suggests that for better efficiency and
faster turnaround time, schedulers for institutional
desktop grids should adapt their scheduling policies
and associated parameters (checkpoint frequency, etc.)
to the day of the week and hour of the day.

Acknowledgments
This research work was carried out in part under the
FP6 Network of Excellence CoreGRID funded by the
European Commission (Contract IST-2002-004265).

References

[1] D. Anderson and G. Fedak, "The Computational

and Storage Potential of Volunteer Computing,"
presented at 6th International Symposium on
Cluster Computing and the Grid (CCGRID06),
Singapore, 2006.

[2] D. Anderson, "BOINC: A System for Public-
Resource Computing and Storage," presented at 5th
IEEE/ACM International Workshop on Grid
Computing, Pittsburgh, USA., 2004.

[3] G. Fedak, C. Germain, V. Neri, and F. Cappello,
"XtremWeb: A Generic Global Computing
System," presented at 1st Int'l Symposium on
Cluster Computing and the Grid (CCGRID'01),
Brisbane, 2001.

[4] M. Litzkow, M. Livny, and M. Mutka, "Condor - A
Hunter of Idle Workstations," presented at 8th
International Conference on Distributed
Computing Systems (ICDCS), Washington, DC,
1988.

[5] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal,
"Alchemi: A.NET-Based Enterprise Grid
Computing System," presented at 6th International
Conference on Internet Computing (ICOMP'05),
Las Vegas, USA, 2005.

[6] A. Chien, B. Calder, S. Elbert, and K. Bhatia,
"Entropia: architecture and performance of an
entreprise desktop grid system," Journal of
Parallel and Distributed Computing, vol. 63, pp.
597-610, 2003.

[7] SETI, "SETI@Home Project
(http://setiathome.berkeley.edu/)," 2005.

[8] D. Computing, "Distributed Computing Info
(http://distributedcomputing.info/)," 2005.

[9] A. Gupta, B. Lin, and P. A. Dinda, "Measuring and
understanding user comfort with resource
borrowing," presented at High performance
Distributed Computing, 2004. Proceedings. 13th
IEEE International Symposium on, 2004.

[10] S. Choi, M. Baik, C. Hwang, J. Gil, and H. Yu,
"Volunteer availability based fault tolerant
scheduling mechanism in DG computing
environment," presented at 3rd IEEE International
Symposium on Network Computing and
Applications (NCA'04), 2004.

[11] L. M. Silva and J. G. Silva, "System-level versus
user-defined checkpointing," presented at IEEE
Symposium on Seventeenth Reliable Distributed
Systems, West Lafayette, Indiana, USA, 1998.

[12] M. Litzkow, T. Tannenbaum, J. Basney, and M.
Livny, "Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing
System," University of Wisconsin, Madison,
Computer Sciences. Technical Report 1346, 1997.

[13] W. Cirne, F. Brasileiro, N. Andrade, R. Santos, A.
Andrade, R. Novaes, and M. Mowbray, "Labs of
the World, Unite!" Universidade Federal de
Campina Grande, Departamento de Sistemas e

Computação, UFCG/DSC Technical Report
07/2005, 2005.

[14] D. Kondo, A. Chien, and H. Casanova, "Resource
management for rapid application turnaround on
entreprise desktop grids," presented at 2004
ACM/IEEE conference on Supercomputing, 2004.

[15] BYTE, "BYTEmark project page
(http://www.byte.com/bmark/)," Byte, 1996.

[16] L. Sarmenta, "Volunteer Computing (PhD)," in
Dept. of Electrical Engineering and Computer
Science: MIT, 2001.

[17] A. Andrzejak, P. Domingues, and L. Silva,
"Predicting Machine Availabilities in Desktop
Pools," presented at 2006 IEEE/IFIP Network
Operations & Management Symposium (NOMS
2006), Vancouver, Canada, 2006.

[18] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and
A. Chien, "Characterizing and evaluating desktop
grids: an empirical study," presented at 18th
International Parallel and Distributed Processing
Symposium (IPDPS'04), 2004.

[19] C. Anglano and M. Canonico, "Fault-Tolerant
Scheduling for Bag-of-Tasks Grid Applications,"
Proc. of the 2005 European Grid Conference
(EuroGrid 2005). Lecture Notes in Computer
Science, vol. 3470, pp. 630, 2005.

[20] C. Weng and X. Lu, "Heuristic scheduling for bag-
of-tasks applications in combination with QoS in
the computational grid," vol. 21, pp. 271, 2005.

[21] D. Zhou and V. Lo, "Wave Scheduler: Scheduling
for Faster Turnaround Time in Peer-based Desktop
Grid Systems," presented at 11th Workshop on Job
Scheduling Strategies for Parallel Processing (ICS
2005), Cambridge, MA, 2005.

[22] M. Taufer, P. Teller, D. Anderson, and I. C. L.
Brooks, "Metrics for Effective Resource
Management in Global Computing Environments,"
presented at 1st IEEE International Conference on
e-Science and Grid Technologies (eScience 2005),
Melbourne, Australia, 2005.

