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Abstract 

In this paper, we present a checkpoint-based scheme to 
improve the turnaround time of bag-of-tasks 
applications executed on institutional desktop grids. 
We propose to share checkpoints among desktop 
machines in order to reduce the negative impact of 
resource volatility. Several scheduling policies are 
evaluated in our study: FCFS, adaptive timeouts, 
simple replication, replication with checkpoint on 
demand, and prediction-based checkpointing combined 
with replication. 
We used a set of real traces collected from an 
academic desktop grid environment to perform 
trace-driven simulations of the proposed scheduling 
algorithms. The results show that using a shared 
checkpoint approach may considerably reduce the 
turnaround time of the applications when compared to 
the private checkpoints methodology. 
 
1. Introduction 
 

It is a well-known fact that desktop computers have 
large amounts of idle CPU cycles that can be 
harnessed. For instance, in their survey comprising 
around 330,000 SETI@home’s hosts, Anderson and 
Fedak found that an average of 89.9% of CPU cycles 
was volunteered to the public-computing project [1]. 
To exploit these desktop resources, several middleware 
frameworks have been developed. Examples include 
academic projects like BOINC [2], XtremWeb [3], 
Condor [4] and Alchemi.Net [5], and commercial 
solutions like Entropia [6], to name just a few.  

The success of Internet-based grid computing can 
be measured by the numerous existing volunteer 
projects, like the popular SETI@home [7] among 
many others [8], with the most popular of them 
attracting tens of thousands of volunteers. 

Usefulness of desktop grids is not limited to public 
volunteer projects. It is frequent for institutions like 

corporations and academics to own a significant 
number of personal computers, primarily devoted to 
low demanding computing activities like e-office and 
alike. These machines, if properly organized as an 
institutional desktop grid, can be used by local users to 
execute demanding e-science applications like 
simulations. The attractiveness of institutional desktop 
grids is reinforced by their fast local or metropolitan 
networks, especially, if the institution is concentrated 
in a single geographical point as it is often the case.  

One of the major problems of desktop grids lies in 
the volatility of resources [9]. Choi et al. classify the 
failures of desktop grid resources into two broad 
classes: volatility failures and interference failures 
[10]. The former includes network outages and 
machines crashes. Interference failures simply 
correspond to the case where the owner of machine 
claims it back and any running foreign task may have 
to be interrupted.  

Checkpointing is a common solution to cope with 
the high failure rate of computing nodes. It consists in 
periodically saving the application state into stable 
storage. When a failure interrupts a running task, the 
application can be resumed from the last available 
checkpoint. There are two main types of checkpoints: 
system-level and application-level [11]. Apart from 
Condor [12], which relies on system-level checkpoint, 
all major middleware tools, like BOINC and 
XtremWeb, make use of application-level 
checkpointing. Therefore, in this study, we only 
consider application-level checkpointing.  

An important issue regarding checkpointing lies in 
the physical location where checkpoints are stored. A 
limitation of the existing middleware like BOINC is 
that checkpoints are private, being stored in the same 
machine where the task is running. If that machine 
becomes unavailable, the checkpoint file cannot be 
used and the task has to be restarted from scratch in 
another machine. 

In this paper, we explore the benefits of sharing 
checkpoints in institutional desktop grid environments 



for the purpose of optimizing the turnaround time. 
Under our approach, the checkpoints are saved in a 
reliable central storage and thus can be used for 
restoring, moving or replicating tasks among machines, 
independently of the availability of the machine(s) that 
saved the checkpoints. Specifically, we evaluate 
several scheduling policies focused on delivering fast 
turnaround time for typical bag-of-tasks applications 
[13] executed over institutional desktop grids. 

The rest of this paper is organized as follows. 
Section 2 describes the proposed scheduling 
methodologies. Section 3 details the simulated 
environment, while section 4 presents the main results. 
In Section 5 we review related work, and section 6 
concludes the paper. 

 
2. Scheduling Policies 
 

Bag-of-tasks applications are usually the most 
suitable for desktop grids since they do not require 
intra-task communication. While traditional eager 
scheduling algorithms like First-Come-First-Served 
(FCFS) yield good performance in high throughput-
oriented systems, they are normally inefficient for 
delivering fast turnaround times [14]. 

We propose several variations to the FCFS policy 
with the goal of improving the turnaround time. All 
those variations include support for shared 
checkpoints. This enables checkpoint mobility and fast 
recovery of tasks, especially when compared to private 
checkpoints. The combination of the shared 
checkpointing with FCFS scheduling results in the 
following scheduling policies: 
• adaptive timeout (FCFS-AT), 
• task replication (FCFS-TR), 
• task replication with checkpoint on demand 

(FCFS-TR-DMD), 
• prediction combined with checkpoint on demand 

(FCFS-PRDCT-DMD). 
 

2.1. FCFS-AT 
 

FCFS-AT improves the base FCFS strategy by 
including an adaptive timeout that defines the 
maximum time given to the machine for completing 
the execution of the assigned task. If the timeout 
occurs before the task has been completed, the 
scheduler can reassign the task to another machine 
where it will be restarted, hopefully from the last 
checkpoint. In the private checkpoint model, the task 
needs to be restarted from scratch in a free machine, 
unless the original executing machine returns to the 
available state. 

The timeout takes into account the CPU reference 
time to complete the task together with the 
performance metric obtained with the Bytemark 
benchmark [15]. Both values are used to estimate the 
minimum time needed by the candidate machine to 
complete the task assuming an ideal execution. A 
tolerance is added to the base timeout to cope with 
overheads and unpredictability. This tolerance depends 
on the expected task length, on the time of the day and 
on the day of the week. Table 1 shows the tolerance 
factor applied to the estimated ideal completion time to 
obtain the total timeout time. We introduce different 
factors for the nighttime periods and the weekends to 
take advantage of the higher stability of the desktop 
grid resources during these periods of low or 
non-existence of human presence.  

 
CPU Reference Time (sec) / 

Time of day 
Timeout 

factor 
≤ 1800 1.5 

]1800,3599] 1.325 
≥ 3600 1.25 

Nighttime (0.00-8.00 am) 1.10 
Weekend (Sat, Sun) 1.05 

    Table 1: Timeout tolerance factors for FCFS-AT 
 

2.2. FCFS-TR 
 

FCFS-TR adds task replication on top of the 
FCFS-AT scheduling policy. The strategy is to make 
use of task replication at the final phase of the 
computation, when all uncompleted tasks have already 
been assigned and, at least, one machine is free. 
Replicating a task augments the probability of a faster 
completion of the task, especially if the replica is 
scheduled to a faster machine than the current one. 
Even if the replica is assigned to a slower or equal 
performance machine, it can still be useful acting as a 
backup in case the primary machine fails or gets 
delayed.  

In all replica-based policies, the number of replicas-
per-task (henceforth replica count) is limited by a 
predefined threshold. The purpose of the replica count 
limitation is to promote fairness in the replica 
functionality avoiding that some excessively replicated 
tasks clutter the resources. Note that we assume that 
institutional desktop grids are reliable and trustable 
environments, and thus we do not resort to task 
redundancy for validation of results [16]. 

 
 

2.3 FCFS-TR-DMD 
 

FCFS-TR-DMD adds the checkpoint on demand 
feature to task replication implemented by FCFS-TR. 



In this strategy the scheduler might ask a worker to 
perform a checkpoint operation of its current task. This 
checkpoint is useful immediately before the creation of 
a replica (see FCFS-TR), since it allows the replica to 
start with an up-to-date state of the source task.  

It is important to note that checkpointing on demand 
introduces two requirements to the grid infrastructure: 
(i) master-initiated communication to workers (to ask 
for a checkpointing operation); (ii) the ability of a task 
to be checkpointed at any time, potentially at some 
special breakpoints of the application. Master-initiated 
communication might be avoided if the desktop grid 
systems allows the master to send information and 
commands in response to a worker’s periodic 
heartbeat. Depending on the granularity of the task and 
how the checkpoints are programmed, it is reasonable 
to assume that checkpoints can be saved between two 
different iterations of a task. In this work, we do not 
consider the delays that may be imposed by such 
imperfect timing of checkpoints on demand. 

 
2.4. FCFS-PRDCT-DMD 
 

The FCFS-PRDCT-DMD scheduling policy resorts 
to short-term prediction of machines’ availability on 
top of FCFS-TR-DMD. When a prediction result 
indicates that a particular machine might be 
unavailable in the next scheduling interval, the 
scheduler requests a checkpoint on that running task. It 
then initiates the creation of a replica if the conditions 
of the FCFS-TR strategy are met, that is, at least a free 
machine exists and the replica count for the considered 
task has not yet been reached. The rationale behind this 
policy is to anticipate the unavailability of machines, 
taking the proper measures to reduce the effects of 
unavailability in the execution of the application. In 
this work, the prediction method used was the 
sequential minimal optimization (SMO) algorithm 
which yielded the best prediction results for machine 
availability in a previous study [17]. 

 
3. Evaluation Setup 
 

We now present the computing environment that 
was simulated to assess the scheduling methodologies, 
and then we describe the traces employed to drive the 
simulations.  

 
3.1 Machines 
 

We used two machine sets, henceforth identified as 
M01 and M04, as two reference environments. The 
M01 set holds 32 identical fast machines of type D (see 
Table 2), while the M04 set is a mix holding 8 

machines of each type, that is, 8 machines of type A, 8 
of type B, 8 of type C and 8 of type D. The M01 group 
is worth 54.14 reference machines, against 36.66 for 
M04, meaning that M01 is 1.48 times faster than M04. 

The four types of simulated machines are 
summarized in Table 2. The column CPU describes the 
machine’s CPU type and clock speed, while the next 
column indicates the performance index of the 
corresponding machine group. This index corresponds 
to the arithmetic mean of the Bytemark benchmark 
indexes INT and FP [15]. The fourth column 
corresponds to the performance ratio of machines 
relatively to the reference machine. This machine, 
shown in the last row of Table 2, is used as a reference 
for calibrating execution of tasks. For instance, a task 
requiring 1800 seconds of CPU on the reference 
machine, would take nearly 3475 seconds on a type A 
machine, and slightly more than 1063 seconds on a 
type D machine. 

 
Type CPU Perf. index Ratio to reference  

A PIII@650 MHz 12.952 0.518 
B PIII@1.1 GHz 21.533 0.861 
C P4@2.4 GHz 37.791 1.511 
D P4@3.0 GHz 42.320 1.692 

Avg. -- 28.649 1.146 
Reference P4@1.6 GHz 25.008 1.00 

Table 2: Groups of simulated nodes and their 
performance 

 
3.2 Trace 
 

All simulations were driven by a trace collected 
from two academic classrooms of 16 machines each, 
with all machines running the Windows 2000 
operating system. The trace is comprised of 473,556 
samples collected over 39 consecutive days every two 
minutes at the machines, for a total of 27,193 sample 
periods.  

Each sample aggregates several metrics, like 
machine uptime and CPU idleness, to name just the 
relevant metrics for this work. The machines are used 
for classes and by students to implement their practical 
assignments, and to access email and the web. An 
important issue regarding the machines is that no 
shutdown policy exists, that is, when leaving a 
machine, a user is advised but not obliged to shut it 
down. Therefore, machines may remain powered on 
for several days.  

The weekly distribution of the number of available 
machines is depicted in Figure 1. The plot displays 
both the average (top line) and the standard-deviation 
(bottom line) of the number of available machines. 
Analyzing the plot, it is possible to clearly identify the 
weekend period and, in a lesser degree, the nighttime 
periods by their flat lines. For the whole trace, the 



mean count of accessible machines was 17.42 
(represented by a flat line in the plot), yielding an 
availability of 54.44%. 

To quantify the volatility of the trace, we computed 
the variation count for every machine. A variation is 
defined as a change of state in a machine’s availability, 
either from available to unavailable, or vice-versa. The 
variation count of a trace is then a set which holds, for 
every machine of the trace, the machines’ variation 
count. To ease comparisons, the variation ratio of a 
machine is defined as the ratio between its actual 
variation count and the maximum number of variations 
(which corresponds to the number of samples minus 
one). We assume the broad definition of availability, 
upon which a machine is considered available as long 
it is powered on, independently of the existence of an 
interactive user. This definition follows what can be 
configured for some desktop grid workers like BOINC 
or even Condor (by default, Condor does not permit 
the coexistence of interactive usage and volunteer 
computation, but this can easily be changed). 
 

 
Figure 1: Weekly distribution of accessible machines 
 
For the considered trace, the mean variation count is 

91.25 per machine (standard deviation is 22.68), with 
the variation ratio ranging from 0.17 to 0.60. The 
average variation ratio is 0.35 (standard deviation is 
0.10), a very low value, indicator of the low volatility 
of the machines. Indeed, although the low average 
variation ratio can in part be explained by the usage of 
our broad definition of availability, it is essentially 
caused by the stability of the studied academic 
resources. This is due to the lack of a mandatory power 
off policy, which permits that the machines maintain 
their availability state for long periods.  

To evaluate the proposed scheduling policies under 
a more stringent environment, namely with a higher 
level of volatility, a threshold condition regarding the 
minimum level of idle CPU was defined. Specifically, 
under the CPU Idle Threshold condition (CIT), a 
machine is defined as candidate to scavenging at a 
given time t, only if it its CPU idleness is greater than 
CIT. In practical terms, the CIT condition is equivalent 

to a resource owner defining that the machine should 
only be considered for opportunistic computing when 
CPU idleness is above a predefined threshold. In this 
paper, besides the 0% CIT, which corresponds to the 
original trace, simulations were carried out with a 90% 
CIT condition. This corresponds to a scenario, where 
less than 10% CPU is consumed by the resource 
owner. As expected, variability of resources for a 90% 
CIT is much more pronounced than the 0% CIT. The 
mean variation count is 707.78 (with a 447.7 standard 
deviation), and the average variation ratio is 2.69 
(standard deviation is 1.62). Thus, relatively to the 0% 
CIT, resources measured under the 90% CIT are nearly 
8 times more volatile. 
 
4. Results 
 

Simulations were carried out with applications 
comprised of either 25 or 75 tasks, with individual 
tasks requiring either 1800 or 7200 seconds of CPU 
time when run on the reference machine. The impact of 
checkpointing policies on the execution turnaround 
time was measured by varying the number of saved 
checkpoints per task execution. Specifically, 
simulations were carried out with no checkpoints, one 
checkpoint and nine checkpoints per task. In 
single-checkpointed executions, the checkpoint is 
saved when the task reached half of its execution, 
while for the nine-checkpoint executions, a 
checkpointing operation is performed every 5% of the 
execution. 

The size of individual checkpoint was set to 1 MB 
in each case. In fact, simulations with bigger 
checkpoint sizes (up to 10 MB) did not yield 
significant differences, mostly due to the fast 
communication links of LAN environments (the 
network speed was set to 100 Mbps).  

To assess the effects of the weekday/weekend 
variations of the trace over the workloads, separated 
simulations were carried out for these periods. 
Additionally, to prevent bias caused by particular 
specificities and localities of the trace, all simulations 
were executed multiple times from different starting 
points, with reported turnaround times corresponding 
to the mean average of the multiple executions. 
Finally, the replication count threshold was set to 3 for 
all replica-based scheduling policies, since this proved 
to be a balanced value. 
 
4.1 Ideal Execution Time 
 

The turnaround times are reported relatively to the 
Ideal Execution Time (IET). Specifically, unless 
otherwise stated, results correspond to the slowdown 



ratio, that is, the ratio of the application turnaround 
time relatively to the IET for the given task 
characteristics (the number of tasks and the reference 
CPU time requirement). The IET measures the 
theoretical turnaround time that would be required for 
the execution of the application under ideal conditions, 
that is, with absolutely no overhead. Table 3 lists the 
IETs (in minutes) for the studied scenarios. 
 

Turnaround 
(minutes) Number of 

tasks 
Task 

(seconds) 
M01 M04 

25 1800 17.73 35.46 
25 7200 70.91 141.83 
75 1800 53.19 70.91 
75 7200 212.74 283.66 

Table 3: Ideal Execution Time for M01 and M04 
 
4.2 Results for Shared Checkpointing 
 

To assess the effect of sharing checkpoints on 
turnaround time, we simulated both private and shared 
checkpoint techniques. On the plots, the shared version 
of a scheduling policy is identified with an S suffix, 
while the private version is labeled with a P suffix.  

The checkpoint sharing approach yields a faster 
turnaround time than the private checkpoint technique 
as shown in Figure 2. Figure 2 displays the turnaround 
time for the possible combinations of the number of 
tasks (25 and 75) with the length of individual tasks 
(1800 and 7200 seconds), considering the 
single-checkpoint FCFS policy run over the M04 set of 
machines, and the CIT respectively sets to 0% (left 
plot) and to 90% (right plot). In all cases, the benefit of 
using a central checkpoint server clearly pays-off the 
overhead of checkpointing and allows the scheduler to 
get faster turnaround times. As expected, turnaround 
times for the 90% CIT cases are comprehensively 
longer than the equivalent ones when a 0% CIT is 
considered. This is due to the fewer usable cycles that 
follows from a 90% CIT. 
 

  
Figure 2: Turnaround times for the shared and private 
FCFS, with the M04 set, one checkpoint per execution and 
CIT=0% (left) and CIT=90% (right) 
 
4.3 Results for the Scheduling Policies 
 

In this section, we first present the turnaround times 
yielded with a 0% CIT, and then analyze the policies 
under a 90% CIT. We split results between weekdays 
and weekends. Furthermore, instead of reporting the 
absolute turnaround times, we present slowdown ratios 
relative to IET, with lower values meaning faster, and 
thus better, turnaround times. Every plot aggregates the 
slowdown ratios for the following scheduling policies: 
adaptive timeout (AT), first-come first-served (FCFS), 
simple replication (TR), replication with checkpoint 
on-demand (TR-DMD), replication with prediction and 
checkpoint on-demand (TR-PRDCT-DMD). 

 
4.3.1. Weekdays with 0% CIT. Figure 3 aggregates 
the slowdown ratio plots of the machine sets M01 (top) 
and M04 (bottom) for the execution of 25 tasks of 
1800-second CPU time on weekdays under a 0% CIT.  

For the M01 set, all scheduling methodologies 
perform equally, apart from the prediction-based policy 
and the private-FCFS, which yield the worse 
slowdown ratios. As expected in a homogeneous set of 
machines, replication yields no advantage.  

For the M04 machine set, the replication-based 
policies delivered the best turnaround times, with the 
checkpoint on-demand mechanism yielding benefits 
relatively to the simple replication policy. The positive 
performance of the replication-based scheduling can be 
explained by the heterogeneity of the M04 set, which 
creates opportunities for replication, namely when a 
task is replicated to a faster machine, something that 
could not occur with the homogeneous M01 machine 
set. 

The 75/1800 case (not shown due to space 
consideration) yielded results similar to the 25/1800 
one, indicating that, for the turnaround times, the 
number of tasks is not as relevant as the task duration. 
This is further confirmed by the 25/7200 case (also not 
shown) which behaves similarly to the 75/7200 one.  

Figure 4 presents the results for the slowdown ratios 
considering the 75/7200 case. These results confirm 
our thoughts regarding the appropriateness of the 
prediction-based policy to longer tasks in 
heterogeneous environments. For the homogeneous 
machine set M01, both basic tasks replication (TR) and 
replication with checkpoint on-demand (TR-DMD) 
deliver the fastest turnaround time. 

 

 



 
Figure 3: Slowdown ratios for 25/1800 tasks on M01 (top) 
and M04 (bottom) for a 0% CIT 

 

 

 
Figure 4: Slowdown ratios for 75/7200 tasks on M01 (top) 
and M04 (bottom) for a 0% CIT 

 
4.3.2. Weekends with 0% CIT. For weekends 
executions, only the 75/7200 case is shown (Figure 5) 
since the results for all the other cases follow a similar 
pattern.  

With the homogeneous set of machines M01, the 
simple replication (TR) scheduling outperforms all 
other policies. This means that the TR policy is suited 
to stable and homogeneous environments like the one 
found on weekend periods.  

An interesting observation is that, contrary to what 
occurs on the weekday period, the shared-checkpoint 
versions present no real advantage over the 
private-checkpoint ones, especially with the 
homogeneous machine set (M01). This is due to the 
higher stability of resources on weekends.  
 

 

 
Figure 5: Slowdown ratios for weekend execution of 
75/7200 tasks on M01 (top) and M04 (bottom) 
 
4.3.3. Weekdays with 90% CIT. Results regarding 
90% CIT display similar shapes that the one observed 
for a 0% CIT. This is noticeable on the comparison of 
Figure 6, which presents the slowdown ratio for the 
75/7200 case with a 90% CIT, and Figure 4, which 
depicts the same case for a 0% CIT.  

 

 

 
Figure 6: Slowdown ratios for 75/7200 tasks on M01 (top) 
and M04 (bottom) for a 90% CIT 
 

As expected, yielded turnaround times are lengthier 
for the 90% CIT. Another consequence of the higher 
CIT is seen in the effectiveness of checkpointing, with 
9-checkpoint executions performing much better than 
the versions with no checkpoint. For all shown cases, 
the TR-DMD methodology consistently yields the 
fastest executions. Once again, task replication only 
brings benefits in heterogeneous machine sets. 

 



5. Related work  
 

Scheduling methodologies for reducing turnaround 
times of task-parallel applications in desktop grids 
were thoroughly studied by Kondo et al. [14]. The 
authors analyzed several strategies such as resource 
exclusion, resource prioritization, and task duplication. 
The study also resorted to trace-based simulations, 
using traces collected from the Entropia desktop grid 
environment [18]. However, the study targeted only 
small sized-tasks, with the length of tasks being 5, 15 
and 35 minutes of CPU time. Moreover, the work did 
not consider migration nor checkpointing, assuming 
that interrupted tasks would be restarted from scratch. 
Although acceptable for small tasks, this assumption is 
not appropriate for long-running tasks, especially in 
volatile environments. 

The OurGrid project implements the workqueue-
with-replication scheduling policy (WQR) [13]. Under 
this scheme, tasks are assigned in a FCFS-like manner, 
regardless of the metrics related with performance of 
machines. When all tasks have been distributed to 
workers, and if there are enough free resources, the 
system creates replicas from randomly chosen tasks. 
WQR acts as a best-effort scheduler, not guaranteeing 
the execution of all tasks. This differs from our work, 
which is based on the premise that an application must 
be completely executed, thus requiring that the 
scheduler enforces the execution of all the tasks. The 
authors conclude that task replication significantly 
augments the probability of an application being 
terminated.  

Anglano and Canonico [19] propose WQR-FT 
which extends the basic WQR methodology with 
replication and checkpointing. They recommend 
checkpointing usage for environments with unknown 
availability, since it yields significant improvements 
when volatility of resources is high. Likewise WQR, 
WQR-FT is also limited by its best-effort approach, 
with no guarantee that all tasks comprising a given 
application are effectively executed.  

Weng and Lu [20] study the scheduling of 
bag-of-tasks with associated input data over grid 
environments (LAN and WAN) of heterogeneous 
machines. They propose the Qsufferage algorithm 
which considers the influence of input data 
repositories’ location on scheduling. The study 
confirms that the size of the input data of tasks has an 
impact in the performance of the heuristic-based 
algorithms.  

Zhou and Lo [21] propose the Wave scheduler for 
running tasks in volunteer peer-to-peer systems. Wave 
scheduler uses time zones to organize peers, so that 
tasks are preferentially run during workers’ nighttime 

periods. At the end of the nighttime period, unfinished 
tasks are migrated to a new nighttime zone. In this 
way, tasks ride a wave of idle cycles around the world, 
which reduces the turnaround time. However, the 
exploitation of moving night zones is only feasible in a 
wide-scale system. 

Taufer et al. [22] define a scheduling methodology 
based on availability and reliability of workers. 
Specifically, workers are classified based on their 
availability and reliability. The scheduler deploys the 
tasks based on this classification, assigning tasks to 
workers accordingly to the priority of tasks and the 
reliability and availability of workers. The proposed 
scheduling policy targets BOINC-based projects, 
taking advantage of the fact that this middleware 
already collects enough information to classify 
individual workers. 

 
6. Conclusions 
 

This paper presented a set of checkpoint-based 
scheduling strategies which were devised for reducing 
the turnaround time of bag-of-task applications in 
institutional desktop grids. 

The shared-checkpoint versions obtained much 
faster turnaround times than the private-checkpoint 
versions and thus its usage should be promoted for 
users with soft real time deadlines, at least, in 
controlled institutional environments. The results also 
point out that replication-based policy merged with 
checkpoint on demand can be effective, especially in 
heterogeneous clusters. Regarding prediction-based 
techniques, although they seem inappropriate for short 
tasks, they yield substantial benefits with long-running 
tasks.  

Finally, as demonstrated by our traces, the day of 
the week and time strongly influence the availability of 
resources. This suggests that for better efficiency and 
faster turnaround time, schedulers for institutional 
desktop grids should adapt their scheduling policies 
and associated parameters (checkpoint frequency, etc.) 
to the day of the week and hour of the day. 
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