
Towards Runtime V&V for Service Oriented Architectures

Cristiana Areias
1, 2

, Nuno Antunes
2
, João Cunha

1
, Marco Vieira

2

1
CISUC, Polytechnic Institute of Coimbra

Coimbra – Portugal

cris@isec.pt, jcunha@isec.pt

2
CISUC, Department of Informatics Engineering

University of Coimbra, Coimbra – Portugal

nmsa@dei.uc.pt, mvieira@dei.uc.pt

Abstract—The widespread use of SOAs and their specific char-

acteristics raise new challenges for V&V practices. This paper

presents some of these challenges and introduces Runtime

V&V as a possible future solution.

Keywords-services; SOA; validation; verification;

I. INTRODUCTION

Service Oriented Architectures (SOAs) are nowadays
used in a wide range of organizations and scenarios, includ-
ing in business-critical systems. These architectures consist
of several interacting software resources (services) that are
designed to support the information infrastructure of the or-
ganization [1]. These architectures present particular charac-
teristics as complexity, extreme dynamicity, and a very large
scale of composable components/elements and services. The
forthcoming evolution is expected to exacerbate this trend
even more, together with other evident facets, such as the
needs for high mobility, high scalability, and high flexibility.

Complying with nowadays organizations’ requirements
demands for deployment and maintenance of trustworthy
dynamic service-based software systems, which naturally
results in the superposition of the design and runtime phases,
thus imposing the need for a Verification and Validation
(V&V) paradigm shift. V&V is the process of checking if the
system meets the specifications and fulfills the intended pur-
pose [2]. Verification checks the conformance to the specifi-
cation, while Validation is a quality assurance process used
to get the evidences needed to assure that the system fulfills
the intended requirements, including non-functional features
such as security and dependability. Rigorous V&V forms the
fundaments of critical applications and has been applied
throughout the years in several domains such as the railways,
automotive, or space.

Unfortunately this detailed checking of a system prior to
its deployment does not fit a service oriented context where a
multitude of services is being deployed, interconnected and
updated, following software development approaches which
favor rapid deployment and frequent updates of services.
Some challenges of testing SOAs are presented and dis-
cussed in [3]. In [4] the authors present a tool for testing
SOAs supported by a discovery algorithm that is able to
trace the SOA evolution by automatically discovering the
services that compose the architecture and the connections
between them. The approach is then used in the context of a
testing service for SOA validation [5] that is basically a
composite service able to monitor SOA evolution and test
the various services according to specific testing policies.
However, there is no complete solution to address the prob-
lem of V&V in this environment.

The traditional lifecycle in V&V assumes a structured

and highly documented software or system development
process that allows gathering the required quality evidences,
and presumes that the system does not evolve after deploy-
ment (i.e., the structure is stable over time). This represents a
serious problem, as there are no V&V methods, tools and
processes that can cope with the dynamic nature of service
oriented architectures, as well as with many other prominent
features of these systems.

To overcome this problem new V&V approaches are
necessary during runtime, assuring the required quality of the
dynamic and evolving service oriented architectures.
Runtime V&V takes advantage of monitoring services and
infrastructures that will support the runtime assessment of
the system through the collection of measurements for quan-
titative analysis of security and trustworthiness.

II. CHALLENGES IN V&V FOR SOAS

The following paragraphs summarize the main character-
istics of complex, high-demand critical services, which open
the new challenges for V&V and represent key issues that
must be solved in order to assure trustworthy dynamic ser-
vice based software systems.

Incremental software release development style: the
development of open, large-scale, dynamic service oriented
systems, mostly based on a large number of successive soft-
ware releases, creates new problems for V&V approaches, as
repeating the entire V&V process for each release is not
cost nor time effective, and regression forms of V&V are
simply not known yet.

Predominance of agility in the software development
methodologies: large-scale service oriented systems are de-
signed more and more using agile software development
methodologies (as opposed to well structured software de-
velopment processes used in systems where V&V is tradi-
tionally applied), which are characterized by evolving re-
quirements, incremental software releases, less formalization
and less detailed documentation. This makes traditional
V&V useless, as known V&V processes rely on well de-
fined, well structured, and well documented requirements
and software specifications, demanding the development of
new V&V methods that cope with the features of agile
development processes and allow traceability to evolving
requirements.

Dynamic runtime composition of services: the highly
dynamic nature of complex services that require constant
adaptation to changes in the environment and demand online
reconfiguration through runtime deployment and composi-
tion of services makes traditional V&V ineffective, as actual-
ly the system structure is changing all the time and has no
fixed boundaries. This is a tremendous research challenge
that demands new concepts of V&V for dynamic and

evolving systems, requiring an infrastructure for service
and/or system monitoring and measurement, and allowing
the collection of the information that is required for the con-
tinuous verification and validation (without impacting the
normal operation of the system).

III. RUNTIME V&V FOR SOAS

Our goal is to develop a Runtime V&V approach that
will continuously monitor and assess the services of the sys-
tem. This way it is possible to evaluate if the behavior devi-
ates from its specification and, in the case this happens if it
represents a threat to the system. Applying V&V techniques
in a service-oriented environment can be a hard and critical
task because services are running and any changes can cause
a general failure, not only in our own services but also in
third-party services which we do not have control. Fig. 1
portrays our approach, interacting with a SOA. This ap-
proach consists of the following modules:

Specification: services are typically described by speci-
fications that contain functional and non-functional aspects.
The Input specifications are the starting point of the Archi-
tecture, which will be updated by the Monitoring module.
Also, in agile software development methodologies, where
specifications can evolve, additional Input may be provided.
Whenever it is possible, past V&V information must be add-
ed to the architecture in order to be reused in future V&V
plans, improving the efficiency of the process.

Monitoring: the Gatherer Agent monitors the target
system getting information (represented by) not only from
individual services but also from the execution environment
Meanwhile, if the Updates Checker detects changes in the
system, the V&V module is notified in order to perform
Runtime V&V. Other usages for the information gathered
are out of scope of this work.

V&V: this module starts by evaluating which techniques
to apply in the changed components through a set of metrics
producing a Plan. Several factors must be considered: 1) cost
involved; 2) complexity; 3) types of access to the service:
under control, partially under control or within-reach; 4) the
type of features, functional or not, etc. Previous information
is necessary to improve the efficiency of the process by reus-
ing past V&V activities and to apply regression testing.
Many times, some of the traditional V&V techniques as code
inspection, formal methods and testing cannot be applied.
Finally, the Executor performs the planned activities and,
depending on the dynamicity of the environment, decides if
the plan must be done with or without user intervention.

Techniques as virtualization or stubs are available to avoid
system damage during this phase. V&V activities executed
must be added in the architecture for future use.

Results: the execution produces a set of results that will
be stored and analyzed. If a faulty component is detected, an
intervention to the system must be executed. A component
may also be considered suspect (although not faulty) and in
this case, alerts are raised. This may require manual inter-
vention or can be done automatically, if the SOA is suffi-
ciently well prepared for self-reconfiguration of the systems.
These results allow the stakeholders to determine the level of
confidence in the system over the time.

IV. CONCLUSION

Runtime V&V for SOAs should follow new paradigms to
cope with the challenges created by SOAs. Instead of follow-
ing the traditional life cycle in V&V, assuming a structured
and highly documented development process, it applies
V&V in a dynamic fashion, taking advantage of iterative
monitoring services and infrastructures that will support the
runtime assessment.

ACKNOWLEDGMENT

This work has been partially supported by the project
“CErtification of CRItical Systems” (http://www.cecris-
project.eu/, CECRIS), Marie Curie Industry-Academia Part-
nerships and Pathways (IAPP) number 324334, within the
context of the EU Seventh Framework Programme (FP7).

REFERENCES

[1] A. Singhal, T. Winograd, and K. Scarfone, “Guide to Secure
Web Services: Recommendations of the NIST,” Report,
NIST, US Department of Commerce, pp. 800–95, 2007.

[2] A. Abran, P. Bourque, R. Dupuis, J. Moore, and L. Tripp,
Guide to the Software Engineering Body of Knowledge -
SWEBOK. IEEE Press, 2004.

[3] G. Canfora and M. Di Penta, “Service-oriented architectures
testing: A survey,” Software Engineering, pp. 78–105, 2009.

[4] A. Ceccarelli, M. Vieira, and A. Bondavalli, “A Service Dis-
covery Approach for Testing Dynamic SOAs,” in 2011 14th
IEEE International Symposium on Ob-
ject/Component/Service-Oriented Real-Time Distributed
Computing Workshops (ISORCW), 2011, pp. 133 –142.

[5] A. Ceccarelli, M. Vieira, and A. Bondavalli, “A Testing Ser-
vice for Lifelong Validation of Dynamic SOA,” in 2011
IEEE 13th International Symposium on High-Assurance Sys-
tems Engineering (HASE), 2011, pp. 1 –8.

Figure 1. Runtime V&V interacting with a simple Service Oriented Architecture.

