

A View on the Past and Future of Fault Injection

Nuno Silva, Ricardo Barbosa
Critical Software SA

Coimbra, Portugal
{nsilva, rbarbosa}@criticalsoftware.com

João Carlos Cunha
Polytechnic Institute of Coimbra/CISUC

Coimbra, Portugal
jcunha@isec.pt

Marco Vieira
CISUC-University of Coimbra

Coimbra, Portugal
mvieira@dei.uc.pt

Abstract—Fault injection is a well-known technology that enables
assessing dependability attributes of computer systems. Many
works on fault injection have been developed in the past, and fault
injection has been used in different application domains. This fast
abstract briefly revises previous applications of fault injection,
especially for embedded systems, and puts forward ideas on its
future use, both in terms of application areas and business markets.

Keywords-Fault Injection, Dependability, Fault Models

I. INTRODUCTION
In the past decades, research on fault injection (FI) has

specially targeted the emulation of hardware faults, where a
large number of works has shown that it is possible to emu-
late these faults in a quite realist way. More recently the
interest on the injection of software faults has increased,
giving raise to several works. In terms of application areas
and business markets, fault injection has been mainly used in
the context of validation of safety critical embedded systems.
The aerospace market is an unavoidable example, where
fault injection for embedded systems has been largely ap-
plied. The problem is that injection tools are quite dependent
on the computer technology being used, thus they have to
evolve according to the evolution of the application domains,
systems complexity, criticality and new technology trends.

This paper briefly discusses the past of fault injection,
namely in what concerns basic concepts, typical fault mod-
els, and well-known tools. Based on this analysis we then put
forward ideas on new application areas, fault models, needs
and markets. With this we want to contribute towards start-
ing the discussion on what should be the future of fault injec-
tion research and technology development.

II. FAULT INJECTION BASICS
Critical systems are designed to include fault and error

handling mechanisms, able to tolerate development, physical
or interaction faults [1]. A classical application of fault injec-
tion is to study the effectiveness of such fault tolerant mech-
anisms during system development. Fault injection tools
provide means for measuring fault coverage, error detection
latency, or the impact of fault tolerance in the system.

Other successful application of fault injection is on the
robustness testing of embedded systems. By deliberately
corrupting parameters provided to operating system calls, the
systems under test are evaluated by their resilience in terms
of avoiding crashes. In distributed environments, the injec-
tion of faults in messages has been useful for designers,
system integrators and users to test protocol implementations
or even system security.

A. Typical Fault Models
A fault model describes the scope of the faults considered

for the injection experiments. These models are a representa-
tion of real faults, and are usually limited by the capacity of
the tool to reproduce them, or to emulate their closest effects.

When considering hardware faults, the most common
models consider the corruption of bits, in the form of bit-flip
or stuck-at, representing the effects of radiation or power
disturbances at memory or connection elements. Other mod-
els may consider bridging, emulating the effects of short
circuits, or open, representing broken lines. These models are
complemented by defining the location of the faults, persis-
tence, activation time, dimension, and duration. On the other
hand, software fault models describe real mistakes by soft-
ware developers. These models may describe common de-
fects or the manifestation of such defects at the program state.

B. Fault Injection Tools
Several fault injection tools have been developed in the

past, for both hardware faults and software faults. The first
include hardware-implemented fault injection, software-
implemented fault injection, and radiation-based fault injec-
tion. The later include the mutation of source code and of
machine-code. An overview of tools can be found at [2].

Among the many hardware fault injection tools devel-
oped, csXception is the unique commercial fault injector
available today (www.xception.org) for embedded systems.
It uses the debugging and monitoring capabilities of the
modern processors. This tool provides a set of spatial, tem-
poral, and data manipulation fault triggers like FERRARI or
FTAPE, but with a minimal intrusion on the target system,
besides being able to target also system space.

For the injection of software faults FINE and DEFINE
were among the first tools implementing mutations. An ad-
vanced technique, called Generic Software Fault Injection
Technique (G-SWFIT), for emulation of software faults by
mutations at the machine-code level is presented in [3].
However, existing tools are limited to prototypes and no
commercial tool has been developed so far (although csX-
ception implements some operators).

Other tools do exist but are more oriented towards specif-
ic utilization and not really applicable for the safety critical
embedded systems. For example the Holodeck tool uses fault
injection to simulate real-world application and system errors
for Windows applications and services. Moreover, several of
the commercial automated testing tools (e.g. LDRA and
VectorCast) are starting to consider and name some of the
tests they allow as fault injection tests, providing facilities to
exercise boundary values and unit tests, for example.

III. FAULT INJECTION TOWARDS THE FUTURE
The fault injection technologies have evolved according

to the evolution of the application domains, systems com-
plexity, criticality and new technology trends. Nowadays,
different types of fault injection are required to keep up with
the technology and domains evolution, especially since the
solutions and the certification requirements have changed.
On one side, we experience more and more complex, ubiqui-
tous and critical systems, with more powerful architectures
(e.g. multicore architectures, FPGAs, virtualization, etc.), on
the other side we get more stringent requirements for sys-
tems that must go under certification (e.g. some standards
already suggest the use of fault injection, such as ISO26262).

These new trends are bringing to the market systems that
must be more powerful, necessarily more complex and heav-
ily integrated, and that become naturally critical for safety or
the business. Thus, one needs to understand the characteris-
tics of such markets and the implications in terms of the
required fault injection technology. However, this needs to
be done in a broad manner, with the participation of industry
and academia. The goal of this fast abstract is precisely to
contribute to sparkling such discussion.

A. Fault Models as a Challenge
Testing systems or components for all possible failures is

not feasible, thus a restricted and suitable fault model must
be selected. The fault model must be based on deep
knowledge of the domain, the systems and the way the sys-
tem interacts with the environment. Appropriate fault models
can be based on known failures, identified hazards and
feared events, as well as specific requirements (e.g. non-
functional requirements, safety and reliability requirements)
and possible physical defects or operational errors.

It is then very important to select and compose the fault
models and these must trigger real problems that are recog-
nized as such. Fault models must also be adapted to the
available interfaces, and monitoring and control capabilities.
The problem is that nowadays, with more critical and more
complex systems, as well as with the efficiency of automated
testing tools, the fault injection techniques have to overcome
new challenges. Having a realistic fault model is one of the
biggest challenges, and these fault models need to constantly
be updated and adapted to the technology evolutions (both
hardware and software). Due to this constant evolution and
need to have updated tools one can actually question the
advantages of fault injection: are they effectively and effi-
ciently solving real problems? Another big question here is
in which areas/domains should research on fault models be
focused and what problems is it solving?

B. Needs and Markets
Most of the industrial domains accept fault injection

when it becomes easy and cheap to use, or when it becomes
mandatory. Recent standards, such as ISO26262 for the
automotive market, strongly suggest the usage of fault injec-
tion tests, but there is no real imposition as such in any mar-
ket. The proof is that there are virtually no public works
describing the usage of fault injection as support to the com-
pliance of the standards, even if one can think of FI as an

excellent tool to help achieving MC/DC coverage for Do-
178B, for example. Some safety or mission critical markets
have been traditional markets for fault injection, these in-
clude space and aeronautics, since their systems operate in
particularly harsh environments and the safety concerns are
quite valued. Other markets, where we can include transpor-
tation and nuclear power plants, can also benefit from testing
their systems with these non-functional techniques, and the
standards and the industry itself is also acknowledging this
today – mostly because some recent failures cannot occur
again (e.g. [4][5]). There is very limited information about
the usage of fault injection in these areas, although recently,
due to the recommendation of the ISO26262 standard, fault
injection has been more broadly applied to the automotive
industry. On the academic side, although many fault injec-
tion tools exist, none is really a ready to use tool, thus a
common framework would be a major breakthrough.

The real needs are sometimes associated with specific re-
quirements of the systems/architecture or with the environ-
ment where the system interacts, as well as the maturity of
the technologies involved. Fault injection is commonly used
to: complement regular/functional testing activities; identify
dependability bottlenecks and problematic areas; analyze the
system behavior in the presence of faults or abnormal situa-
tions; prove the coverage of error detection, isolation and
recovery mechanisms; test the fault tolerance mechanisms;
study the availability and performance losses. The key ques-
tion is to understand new trends in terms of fault injection
applicability by learning from the field problems that can
be solved by fault injection.

IV. CONCLUSION
The goal of this paper is to foster the discussion on the

direction of fault injection research, technology development
and industrial fit. Although many research groups work and
use fault injection, a common view on methodologies and
tools is not available. Also, it is not clear what should be the
direction to follow and the real problems that can be solved
in a very efficient way with these technologies. Markets such
as automotive and nuclear, seem quite promising, but it is not
clear if fault injection technology would be really used in
such scenarios. This is the type of questions we believe
should be jointly discussed between academia and industry.

ACKNOWLEDGMENT
This work has been partially supported by the project “CECRIS - CErtifica-
tion of CRItical Systems”, FP7 - Marie Curie (IAPP) number 324334.

REFERENCES
[1] A. Avizienis et al., "Basic Concepts and Taxonomy of Dependable

and Secure Computing," IEEE TDSC, 2004.
[2] R. Barbosa et al., “Fault Injection”, Resilience Assessment and

Evaluation of Computing Systems, ISBN: 978-3-642-29031-2, 2012.
[3] J. Durães, H. Madeira, “Emulation of Software Faults: A Field Data

Study and a Practical Approach”, IEEE TSE, 2006.
[4] M. Holt et al., “Nuclear Disaster Summary”, Report, Jan. 18, 2012

http://www.fas.org/sgp/crs/nuke/R41694.pdf, visited 12-04-2013.
[5] C. Bubinas, “GM recalls nearly 27,000 vehicles over software

problem”, April 10, 2013, http://www.klocwork.com/blog/coding-
standards/gm-recalls-nearly-27000-vehicles-over-software-problem/,
visited 12-04-2013.

