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Francisco Câmara Pereira





To Ana



Abstract

The main motivating factor behind this book is the appealing, yet often controversial,

goal of computational modelling of creativity. A cross-disciplinary study of creativity

is a mandatory first step and this will help us construct a synthesis from an AI pers-

pective. From this, we focus on a Model of Concept Invention and, more practically,

on a computational system, Divago.

The Model of Concept Invention is built over the expected principles for a creative

system. It is formalized, although in a computationally idealistic manner, i.e. its

implied complexity prevents it from a feasible implementation. Divago is the partial

instantiation of this abstract model and comprises the main technical substance of

the book. This system is centered on an implementation of the cognitive linguistics

framework of Conceptual Blending, as well as on a mapping algorithm based on

Metaphor work.

Divago was subject to experimentation in a range of applications and analyzed

according to methodologies that have been proposed with the area of Creativity and

AI. Other validation procedures are followed, namely in the comparison to other works

and to Conceptual Blending literature.
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Chapter 1

Introduction

It is obvious that invention or discovery, be it in mathematics or anywhere

else, takes place by combining ideas... (Hadamard)

Pour inventer il faut penser à côté (Souriau)

The useful combinations [of ideas] are precisely the most beautiful. (Poincaré)

1.1 Motivations

Right from the start, the main focus in AI research has always been with the issue of

problem solving. Seen from this point of view, intelligence corresponds to the ability

to solve (complex) problems, from the accurate autonomous movement of a robot arm

to the understanding of a natural language sentence. The classical setting is that of a

search in a space of solutions for the problem, where an intelligent agent looks for the

best choices. A commonly used analogy is of this agent travelling in a search space

with mountains (highly valued solutions), valleys (bad solutions), islands (mountains

surrounded by valleys) and plains (areas where quality of solution hardly changes)1.

One of the most common criticisms made of Artificial Intelligence methods of

problem solving is their limited ability to deal with situations not predicted in the

specification. The search space is normally strictly defined, however flexible, complex

and adaptable the system seems to be. When facing a problem with no satisfactory

1Technically, the solution space can be seen simply as the set of solutions to the problem. The
search space corresponds to the ordered set of solutions. This ordering can be given by heuristics,
distance to the initial situation, or any other criterion that can drive the search.
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Chapter 1. Introduction

solution in its search space, an AI system simply returns, at best, the least unsuc-

cessful result that exists in that search space- even when the solution is achievable

via the simplest operation of changing perspective, relaxing a constraint or adding a

new symbol. In other words, such systems are hardly capable of performing what we

normally call creative behavior, a fundamental aspect of intelligence.

However, the recognition that there is a deficit of creativity within AI systems

does not by itself bring new solutions any more than it reasserts that computers,

as we know them, are formal machines that are limited to their closed worlds. The

question therefore arises about what can be done to make them more creative or

even if, with the current computational architectures, that is possible at all. To

some extent, some of the current state-of-the-art paradigms (such as Evolutionary

Computation, Multi-agent Systems or Case Based Reasoning) have been responsible

for many of the developments regarding the first part of the question. Indeed, we have

been developing less rigid systems in previous years and sometimes even producing

striking results. Nevertheless, when any of these systems finds a situation for which

it was a priori not specified to solve, it is definitely not able to cope with it.

The second half of the question concerns primarily what the essential components

of a creativity model could be and whether these can be present in a formal machine.

There is no definitive answer for this, yet we can allow ourselves cross-fertilization

from other areas, such as Psychology, behavior Linguistics, behavior Science and

Philosophy, in the speculation and building of a possible solution.

The relationship between Intelligence and Creativity poses further questions. Are

these two independent properties of cognition or, on the contrary, are they interre-

lated and inseparable? More specifically, if taking a traditional AI perspective: isn’t

creativity about search? Is it a different approach to intelligence?

These questions are present throughout this book, which is an attempt to approach

them according to a perspective that, while centered on Computer Science and AI,

also lifts contributions from other areas.

1.2 Overview

There is general agreement that the ability to find relations between apparently un-

related knowledge is a creative activity. As can be found in many studies from the

area of behavior psychology, the creative faculties of the human mind are hugely de-

pendent on the ability to search through spaces or “viewpoints” that are different

from the ones immediately or more obviously involved. For example, according to

[Marin et al., 1991], our capacities of abstraction, symbolic analysis, of finding less-

obvious relations, among others, are associated to creative production. Indeed, many

3



Chapter 1. Introduction

important discoveries, great music compositions or paintings were reportedly achieved

at times of wandering in domains not directly related to the actual problem (e.g. the

famous dream of Kekulé, the discoverer of the structure of the Benzene molecule,

who was dozing by the fire and dreaming of self-biting snakes when he made his

major discovery [Boden, 1990]). One of these psychology theories [Guilford, 1967]

concentrates on the idea of divergent thinking. Arthur Koestler [Koestler, 1964] also

wrote about a related phenomenon, naming it bisociation. From the computer science

point of view, the modelling of divergent thinking and bisociation seems extremely

difficult mainly because it is far from formally specified and, even if it was, it would

certainly demand behavior capacities that are still not achievable by computers. Yet,

this does not mean that it is impossible to build models, perhaps less ambitious ones,

that are capable of achieving a smaller degree of divergence, in which a computer

is able to reason in a multi-domain knowledge base, eventually solving problems via

transferring knowledge from different domains. Since different domains will contain

different knowledge and possibly different symbols and representations, a model for

reasoning in a multi-domain environment must have translation mechanisms, so that

the transferred knowledge will still have meaning in the new context. There are

well known behavior mechanisms that establish cross-domain relationships, namely

Metaphor and Analogy, which have been studied to some depth within AI, and which

are certainly good candidates for plausible cross-domain transfer.

A perfect cross-domain transfer mechanism will be futile if the new knowledge is

not integrated into its novel context in a meaningful way. This integration demands

processes and principles able to generate knowledge structures that can be considered

as a whole rather than the sum of its parts. In other words, the transfer of new knowl-

edge should not be condemned to result in a pastiche or a concatenation of the parts,

instead an emergence of new structure, function or behavior is to be favoured. Two

research trends from behavior Science aim to solve this problem, namely Conceptual

Combination and Conceptual Blending (also known as Conceptual Integration). The

former traditionally deals with the understanding of linguistic combinations (such as

“pet fish” or “mountain stream”) while the latter is conceived as a process that can

apply across the behavior spectrum in general. Despite their differences, they both

share the intent of understanding the behavior ability of integrating knowledge from

distinct sources. Both have already been subject to computational modelling.

Finally, the unavoidable question of evaluation could justify a research programme

on its own, with worries regarding expertise, intentionality, complexity, aesthetic

judgement, constraint satisfaction and novelty, to name only a few topics. In the

current context, the evaluation should be primarily concerned with whether the just

created knowledge structures are worth considering for further use and treatment

within the domain it was designed for. In other words, if it is both novel and useful

4



Chapter 1. Introduction

within this domain. The computational approach to novelty assessment has been

based on similarity metrics or clustering techniques while determining usefulness is

normally done via application of rules or checking constraint satisfaction. Conceptual

Blending proposes a set of generic Optimality Constraints that aim to govern the

generation of a blend. However, these are not explained formally, raising the challenge

of their computational modelling.

We have just summarized some of the components for a Model of Concept Inven-

tion from cross-domain transfer. By concept invention, we mean the generation and

addition of a new concept (or knowledge structure) to a domain in which this new

concept could not be obtained by any internal means (e.g. deduction) and which can

still be accepted as a valid concept for the domain. For example, before the invention

of the airplane, the domain of “transport means” did not have the entire knowledge

to lead to it. It was necessary to observe physical laws that were not taken into ac-

count for any other previous means of transport (even the balloon) in order to create

different concepts of propulsion and sustaining structure.

1.3 Contributions

The main expected contributions of this book are:

• A reflection, overview and state-of-the-art survey about creativity research, ac-

cording to different perspectives such as Philosophy, Psychology, behavior Sci-

ence and Computer Science;

• A formally specified Model of Concept Invention, based on processes and prin-

ciples that are coherent with the current research on creativity;

• An implemented system, Divago, which partially instantiates the Model of Con-

cept Invention. Divago was applied to different domains and demonstrated to

be capable of generating results that pass the criteria of creativity assessment

used.

• A Computational Model of Conceptual Blending, which will become integrated

within Divago. This is the first computational approach to Conceptual Blending

[Fauconnier and Turner, 1998] that includes all the fundamental aspects of this

framework.

• An assessment of the creativity of the results and of the system. We analyze the

creativity of Divago with the frameworks suggested by Ritchie [Ritchie, 2001],

Wiggins [Wiggins, 2001, Wiggins, 2003] and Colton et al [Colton et al., 2001].

5
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1.4 Structure

The remainder of this book is structured as follows:

• Chapter 2 is about research on creativity. It provides the necessary background

regarding theories of creativity, computational approaches to creativity and

frameworks for creativity assessment. In this chapter, the reader will also find

the generic guidelines that underlie the rest of the book, namely at the level of

the Model of Concept Invention (chapter 4) and of assessment of the results of

Divago (chapter 6).

• Chapter 3 starts by defining what a concept is in the context of our work.

It also defines concept invention and compares it with concept formation, two

kinds of concept building processes. Working with concepts is fundamental

for this book, and specifically the framework of Conceptual Blending, which is

also presented in this chapter. Conceptual Combination, a related area, is also

presented, with particular focus to C3, a system that will later on (in chapter 6)

be compared to Divago. The chapter ends with an overview of computational

approaches to Metaphor and Analogy, which deal with concept networks and

from which we developed a part of Divago (the Mapper). After this chapter,

the reader will have obtained a first insight on the practical aspects involved

in this work (in chapter 5) and a clearer impression of the necessary notions

regarding concepts.

• Chapter 4 is dedicated to the description and formalization of the Model

of Concept Invention. There, the reader will find a theoretical model, in the

sense that it has not been totally implemented or specified up to the detail of

computational implementation. This model provides a set of modules that we

argue should be present in a system that is meant to invent concepts.

• Chapter 5 describes Divago in detail, a system that partially implements the

model presented in chapter 4. This description will take into account the mod-

ules of that model (with redefinition of the formalizations when necessary) and

the framework of Conceptual Blending, which is the basis for the bisociation

mechanism of Divago. After finishing this chapter, the reader will know Divago

in depth, namely its knowledge representation, search mechanism and blending

model.

• Chapter 6 is dedicated to the experiments made with Divago. We show the

five different experiments made: house-boat, for analysis of the search space;

horse-bird, for the study of behavior of Divago with regard to the Optimality

6



Chapter 1. Introduction

Constraints ; noun-noun, for the generation of noun noun combinations and

comparison to C3; creatures generation, for the testing of Divago as an engine for

generating concepts in a game environment; and established blending examples,

for the validation of the Blending model implemented in Divago. The reader

will get an idea of the behavior of the system within these different situations,

namely with attention to the novelty and usefulness of the results. Throughout

this chapter, we will analyze the system according to the frameworks of Ritchie

[Ritchie, 2001] and Colton et al [Colton et al., 2001].

• Chapter 7 is dedicated to the final conclusions and discussion of future di-

rections to take. There, the interested reader will find a multitude of research

directions, some related to the generic aspects of creativity, concept invention

and Blending, some more specifically directed towards the further developments

of Divago.
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Chapter 2

Creativity

In the first half of this chapter, we present approaches to creativity within Psychology,

Philosophy, Cognitive Science and AI. The second half is specifically dedicated to the

area of computational creativity, where we will show the state-of-the-art both at the

level of the theoretical foundations and at the level of implementations.

2.1 Creativity theories

Creativity has been the motivation for many lines of writing throughout human his-

tory, for it is such an appealing and mysterious aspect of our existence. However,

it is also noticeable that its study, from a scientific perspective, has been neglected

until the second half of the twentieth century [Albert and Runco, 1999]. The early

twentieth century scientific schools of psychology, such as structuralism, functional-

ism and behaviorism, devoted practically no resources at all to the study of creativity

[Sternberg and Lubart, 1999]. The oft cited foremost turning point was when Joy

Paul Guilford, in his American Psychological Association presidential address, chal-

lenged psychologists to pay attention to what he found to be a neglected but ex-

tremely important attribute, namely, creativity [Guilford, 1950]. The so called first

golden age of creativity then took place, with many newly founded research institu-

tions. However this revolution did not last for long. In fact, from 1975 to 1994, only

about 0.5% of the articles indexed in Psychological Abstracts concerned creativity

[Sternberg and Lubart, 1999]. Today, it seems that the subject has gained another

burst of output(the second golden age). Indeed, unprecedented resources are being

directed towards creativity research in many areas.

In the following sections, the reader will be introduced to some of the works on

creativity that influenced this book. These works come from the areas of Psychology

8



Chapter 2. Creativity

(section 2.1.1), Philosophy (section 2.1.2) and Cognitive Science (2.1.4). Without

having a direct influence on our own work, the contribution of Csikszentmihalyi is

also presented in section 2.1.3 for three special reasons: it is often cited in works

of Creativity and AI1; it is also a respected and referential work within the area

of Psychology; it reasserts some of the conclusions given by the previous sections,

attesting their current acceptance. In section 2.1.5, we will complete the state-of-the-

art of creativity with an overview of other works. Finally, a synthesis will be made

in section 2.1.6, with particular emphasis on the aspects relevant to this book.

2.1.1 Divergent Production

Until J. P. Guilford introduced the operation of divergent production in his Struc-

ture of Intellect(SOI), creativity was generally considered a phenomenon separated

from intelligence, a state of mind that was common for those considered gifted and

a blessing for those we perceive of as lucky. Until Guilford, the prominent works

could be roughly summarized to three: Catherine Cox ([Cox, 1926]), who argued

that creativity was a complex, multivariate behavior (as opposed to a single ability

or trait)2; Helmholtz [Helmholtz, 1896] and Wallas [Wallas, 1926], the latter two be-

ing the creators of the four steps model3 (preparation, incubation, illumination and

verification) that became the classical stance, within Psychology, of what a creativity

model should involve. This model is not contradicted by Guilford and still concurs

with many current views of the subject. In section 2.1.3, we will take a closer look to

this model. For the moment, we are interested in giving the reader a short overview

of SOI, with particular attention to divergent production, the operation most linked

with creative production.

The major aim of SOI was to give to “the concept of ’intelligence’ a firm, compre-

hensive, and systematic theoretical foundation” [Guilford, 1967]. This very ambitious

goal must be viewed from a historical perspective: during the first part of the twen-

tieth century, many measuring tests of mental ability appeared, often motivated by

the need to quantify “intelligence”. This need was increased by the advents of the

first and second world wars, when fast and effective processes of selection were funda-

mental for recruitment (mainly in areas such as the air force or intelligence services).

The overstated relevance of testing the concept of intelligence justified the sarcastic

sentence of E. G. Boring: “... intelligence as a measurable capacity must at the start

1Particularly in multi-agent systems approaches.
2As cited in [Martindale, 1999]
3As cited in [Albert and Runco, 1999]
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Chapter 2. Creativity

be defined as the capacity to do well in an intelligence test” [Boring, 1923]. Guil-

ford himself, who also made significant contributions to this area of psychometry,

pointed out the lack of a coherent psychological theory behind tests in general, this

becoming the general motivation for the SOI. His more specific intentions were to

provide SOI as a frame of reference for the study of the “intellectual factors”. An

intellectual factor corresponds to an aspect of intelligence represented by a triple

operation/product/content (see figure 2.1).

Products

Contents

Operations

Units
Classes
Relations
Systems
Transformations
Implications

Visual

Symbolic
Semantic
Behavioral

Auditory

Cognition

Divergent Production
Convergent Production
Evaluation

Memory

Figure 2.1: The Structure of Intellect (SOI) (from [Guilford, 1967]).

For each factor, Guilford proposes tests, the majority of them implying correlations

of many factors. For example, for cognition of symbolic classes (CSC), he suggests

tests like:

Which pair of numbers does not belong with the others?

A. 1-5

B. 2-6

C. 5-8

D. 3-7

answer:C (in all other cases the difference is 4)

This test has correlations with CSR (cognition of symbolic relations) and CMS

(cognition of semantic systems). With SOI, there would be no single value to represent

10
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the intelligence of a subject, instead a set of values would represent his/her main

intellectual qualities and defects.

Perhaps the major contribution of SOI to the area of psychology and, more specif-

ically, to the notion of intelligence has to do with the demonstration, supported by

a large variety and quantity of empirical work, that intelligence is not monolithic:

there is a multitude of factors to take into account and one cannot find a unique and

absolute measure (as Catherine Cox had claimed before). However uncontroversial

and obvious this may seem today, the fact is that only during the last decades of

the twentieth century was there general acceptance of the idea that single measures

like the IQ are very fragile indicators for peoples’s behavior and abilities. Another

important contribution, the one that most interests us, has to do with the inclusion of

creativity as a fundamental aspect of intelligence. More specifically, Guilford consid-

ers creative production as a general ability that humans have, and which depends on

many different intellectual factors, but, most of all, on an operation: that of divergent

production (DP). His formal definition of divergent production reads: “generation of

information from given information, where the emphasis is upon variety and quantity

of output from the same source; likely to involve transfer.” [Guilford, 1967]. DP

composes four fundamental abilities:

• fluency - generation of a large number of solutions for a problem

• flexibility - generation of varied solutions

• originality - generation of solutions that are: rare within the population; re-

motely related; clever responses

• elaboration - ability to think of details

As with the rest of SOI, Guilford proposes a series of tests. In DP-tests, subjects

are asked to exhibit evidence of divergent production in several areas, including that

of semantic units (e.g. listing consequences of people no longer needing to sleep), of

figural classes (finding as many classifications of sets of figures as is possible), and of

figural units (taking a simple shape such as a circle and elaborating upon it as much

as possible). For example, the following test should measure divergent production of

semantic classes (DMC):

From the list of words to the left, make some small subclasses of objects:
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1. arrow

2. bee

3. crocodile

4. fish

5. kite

6. sailboat

7. sparrow

alternate classes

1,2,5,7 (found in the air)

3,4,6 (found in the water)

2,3,4,7 (animals)

3,4,5,7 (have tails)

etc.

From these tests and reflections on the whole model, Guilford also proposes an-

other concept as fundamental to creativity, that of transfer recall : “Things are recalled

in connection with cues with which they were not experienced before. Transfer recall

is retrieval of information instigated by cues in connection with which the information

was not committed to memory storage. ”[Guilford, 1967]. In other words, transfer

recall is the operation that allows knowledge in memory, however semantically distant

and apparently unrelated to the problem at hand, to be brought and applied to a

current situation. This is what we call cross-domain transfer throughout this book.

To summarize, the operation of divergent production is the very basis for the set

of phenomena that are commonly associated with creativity in people, although, as

Guilford himself points out,

‘...creative potential is not a single variable, any more than intelligence.

Creative performances in daily life are enormously varied in the demands

that they make on intellectual resources. The performances singled out for

their more obvious signs of creativity - novelty, ingenuity, inventiveness -

probably involve one or more divergent production abilities as key aspects,

or transformation abilities, outside the DP-operation category as well as

within it.’

Although creativity is normally linked more to free-association, unconstrained

reasoning or unexpectedness than to method, constraint satisfaction or inference, it

has been clear from reading many studies (many described or referred to within this

document) that a great deal of mastery of knowledge, expertise within a domain and

focus is fundamental. Thus, although not so much emphasized by Guilford, the con-

verse operation of DP, convergent production (CP), is also fundamental (as pointed

out by Csikszentmihalyi, in section 2.1.3), since it provides deductive reasoning or

compelling inferences. “Convergent production rather than divergent production is

the prevailing function when the input information is sufficient to determine a unique
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answer.” SOI tests for evaluating convergent production essentially measure the abil-

ity to solve puzzles, equations, classification tasks and problems in general that yield

a logically sound unique solution.

Guilford makes a thorough comparison between DP and CP:

‘[In DP], the problem itself may be loose and broad in the requirements

for solutions; or the problem, if properly structured, may call for a unique

solution, but the individual may have an incomplete grasp of it; or he may

comprehend the problem fully, but he is unable to find the unique answer

immediately.(..) In CP, an answer can be rigorously structured and is so

structured and an answer is forthcoming without much hesitation. In the

former, restrictions are few; in the latter they are many; in the former, the

search is broad; in the latter it is narrow. In the former, criteria for success

are vague and somewhat lax and may, indeed, stress variety and quantity;

in the latter, criteria are sharper, more rigorous, and demanding.’

Thus, according to Guilford, CP and DP are two complementary facets of our

productive capacity. This capacity, along with cognition (which he considers a more

specific operation: that of comprehension and understanding), memory and evalua-

tion, make part of a model of problem solving and creative production that the author

proposes as an operational integration of all the aspects of SOI. Although this model

is essentially a speculation, it is interesting to reproduce the original diagram to the

reader (figure 2.2).
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Figure 2.2: Guilford’s model of problem solving and creative production (from
[Guilford, 1967], pp 315).
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It is far outside the scope of this book to present this model in detail. Since

Guilford did not explore it deeply himself, it is an abstract suggestion for how things

should be when solving problems. Two aspects, however, should be retained: Guilford

argued for problem solving and creative production being the same, thus building a

common model for both; he considers a heterogenous memory with many kinds of

representation, perspectives, domains, all cohabiting together, in an organized whole.

This is what we call multi-domain environment throughout this book.

We would like to finish this section with some thoughts about Guilford’s work,

taking into account, obviously, that this is a work that is almost 40 years old. The first

issue is the supremacy of verbal versus non-verbal representation, which sometimes

seems to imply that thought is defined by (verbal) language and not the opposite.

Allowing some speculation from our side, we believe this is due to the dualist tendency

of the time, where mind is detached from matter, as opposed to the current view, of

embodiment, where some cognitive scientists see consciousness and mind as a result

of the interaction of cognition with the whole physical experience. In other words,

today, Guilford’s symbolic and semantic contents would be connected as much with

verbal symbols as with any other kinds of symbols, such as social or behavioral symbol

systems (e.g. politeness rules, traffic lights).

Another criticism relates to the vagueness of some definitions, such as cleverness

or generation of logical possibilities. These being related to divergent production, it is

very important to clarify them. Here too, we must allow ourselves some speculation

bounded by context. By cleverness, or clever solutions to a problem, the author

means solutions that both respond more effectively to a problem (than the usual,

convergent, ones) and are rare to find in a search space. When defining divergent

production (as opposed to convergent) as being with the ability to generate logical

possibilities, Guilford meant the creation of unsound logical facts (or rules) that,

however, are not revealed to be inconsistent with the rest of the knowledge (e.g.

facts that are not deducible, but do not contradict existing knowledge). Here, too,

we would like to add that sometimes inconsistencies do arise and creativity comes

out of the confrontation between the inconsistencies and the theory (e.g. Kepler’s

discoveries about elliptic versus circular orbits4). Guilford would certainly agree with

this opinion.

In conclusion, the Structure of Intellect is now certainly outdated, and its contribu-

tion is now seen from a historical perspective. However, with regard to the psychology

of creativity, Guilford’s legacy about divergent and convergent production is still a

constant reference. For us, it has become a modelling inspiration.

4This example will be further explained in the next section.
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2.1.2 Bisociation

Before going into further detail about Arthur Koestler’s work, we would like to add

that The Act of Creation is a rich philosophical and psychological reference that

encompasses ideas that are still currently accepted and explored, as we can see in

current trends such as embodiment or conceptual blending. In many ways, bisociation

prefigures the blending framework. Indeed, we might even ask in what way is blending

merely “parameterized bisociation”, that is, bisociation with more elaborate principles

and constraints. This will be discussed in due course.

Written during the early sixties, when behaviorism was the dominating trend

within psychology, this book takes the opposite position (which is close to a struc-

turalist view) and aims to explain the act of creativity, tackling this challenge from

several different perspectives. While it certainly misses many aspects and perhaps

fails in depth to favor the breadth, it proposes a set of ideas that we will try to syn-

thesize here and which will be taken by us for the sake of argument of some of our

options.

In The Act of Creation, Arthur Koestler presents a theory that unifies three sides of

human behavior commonly deemed creative: humor, science and the arts. According

to him, the underlying processes are the same, but applied in different contexts, sub-

ject to different intentions and perspectives. In order to support his theory, Koestler

proposes a set of definitions regarding knowledge and problem solving, namely ma-

trices of thought, codes of rules and strategies.

A matrix of thought (or simply, a matrix) is “any ability, habit, or skill, any

pattern of ordered behavior governed by a ’code’ of fixed rules” [Koestler, 1964]. In

his example of chess playing (as an ability), he proposes a matrix as being “the pattern

before you, representing the ensemble of permissible moves. The code which governs

the matrix can be put into simple mechanical equations which contain the essence of

the pattern in a compressed, ‘coded’ form”. A code of rules is then what defines the

matrix, which means that both represent the same entity from different perspectives,

one intensional, the other extensional. A strategy corresponds to the selection of

elements within the matrix in order to achieve a goal or pattern of behavior. In the

case of chess, this would be the choice of the “next move”.

We find several obvious correlations with AI problem solving, namely a matrix

corresponds to the set of all possible solutions for a given problem (the solution

space), defined by the code of rules, a set of constraints that define what a valid

solution must be like. The strategy is then the search procedure, the method used to

choose solutions.
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According to Koestler, the creative process is connected to what he terms bisoci-

ation of matrices, a phenomenon that occurs when two (or more) matrices become

intersected: a reasoning is being followed in one of the matrices and, for some reason

(e.g. external stimulus, need, dream, or trance-like state), a “clash” happens with

another matrix and there is a leap to an alternate reality.

Humor

In humor, for example, bisociations introduce the sudden association to the unex-

pected, the illogical that triggers laughter, sometimes via double-meaning, phonetics,

caricature, satire, to name but a few. Let us quote a short example:

Two women meet while shopping at the supermarket in the Bronx.

One looks cheerful, the other depressed. The cheerful one inquires:

’What’s eating you?’

’Nothing’s eating me’

’Death in the family?’

’No, God forbid!’

’Worried about money?’

’No...nothing like that.’

’Trouble with the kids?’

’Well, if you must know, it’s my little Jimmy.’

’What’s wrong with him, then?’

’Nothing is wrong. His teacher said he must see a psychiatrist.’

Pause. ’Well, well, what’s wrong with seeing a psychiatrist?’

’Nothing is wrong. The psychiatrist said he’s got an Oedipus complex.’

Pause. ’Well, well, Oedipus or Shmoedipus, I wouldn’t worry so long as

he’s a good boy and loves his mamma.’

Here, we see a clash between the matrices of Freudian psychiatry pathologies and

the logic of common sense: if Jimmy is a good boy and loves his mamma, there can’t

be much wrong. Koestler even arrives to an extreme claim that “any two matrices

can be made to yield a comic effect of sorts, by finding an appropriate link between

them and infusing a drop of adrenalin” [Koestler, 1964].

Science

In his extensive analysis of scientific discovery throughout the history of science,

Koestler points out several observations that converge to the idea that “each basic
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advance was effected by a more or less abrupt and dramatic change; the breaking

down of frontiers between related territories, the amalgamation of previously sepa-

rated frames of reference or experimental techniques (..) All decisive advances in the

history of scientific thought can be described in terms of mental cross-fertilization be-

tween different disciplines” [Koestler, 1964]. In other words, all the major advances

observed resulted from bisociative thinking and these include examples like the dis-

coveries from Archimedes, Copernicus, Kepler, Galileo, Darwin, Poincaré, Kekulé,

Einstein, to name a few. In summary, in each of these situations, the knowledge has

so far proved inapplicable; none of the various ways of exercising a skill, however

flexible and adaptable, has led to the desired goal. The solution came out of a new

synthesis of previously unconnected matrices of thought; a synthesis arrived at by

“thinking aside”. For example, Kepler’s laws of planetary motion represent the first

synthesis of astronomy and physics which, during the preceding two thousand years,

had developed along separate lines. Kepler served his apprenticeship under Tycho de

Brahe, who had improved the astronomy observation instruments and methodology,

thereby allowing hitherto unequalled abundance and precision. Given the new data,

there were clear inconsistencies in the traditional astronomy predictions, mainly be-

cause they were based on very entrenched dogmas such as that “all heavenly motion

must be uniform and in perfect circles”. By retaining much of the metaphysical and

theological basis that Kepler himself believed in, he was able to postulate the exis-

tence of a physical force acting between the sun and the planets, thus leading to a

revolution in astronomy. Planets no longer move in circles, but in elliptic orbits.

Koestler also points out the fundamental aspects of the ripeness of the discoverer,

i.e. he must be prepared, predisposed to the discovery5, and have the ability to find

hidden analogies (i.e. to find relations where no one has found them before) within

different matrices. Another interesting observation is that “verbal thinking plays only

a subordinate part in the decisive phase of the creative act (..) as the creative process

of discovery depends on unconscious resources and presupposes a regression to modes

of ideation which are indifferent to the rules of verbal logic”. The conclusion is that

words are essential, but sometimes become snares, decoys, or strait-jackets.

An interesting quotation comes from the mathematician Henri Poincaré:

Among chosen combinations the most fertile will often be those formed

of elements drawn from domains which are far apart... Most combinations

so formed would be entirely sterile; but certain among them, very rare,

are the most fruitful of all.

5There are countless examples in which the solution appeared but the scientist wasn’t able to
understand it or to see it as such.
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Arts

The third perspective that Koestler analyzes is that of the artist. As with humor, he

starts by focussing on the physical manifestations connected to it, the many sensuous

phenomena we feel in moments of self-transcendence, from goose bumps to weeping,

thereby arriving at the emotive potential of a matrix, with its capacity to generate

and satisfy participatory emotions (e.g. by identification, aggression, tension, relax-

ation). Perceiving a form of art, of deluding oneself without losing track of reality,

means exploring this matrix with higher emotive potential, moving from the trivial

present to a plane remote from self-interest while forgetting current preoccupations

and anxieties: “The capacity to regress, more or less at will, to the games of the

underground, without losing contact with surface, seems to be the essence of the

poetic, and of any other form of creativity”. The author thus proposes the act of

interpretation as being also bisociative, and thus creative from the point of view of

the recipient.

As in scientific discovery, metaphor and imagery also come into existence by a

process of seeing an analogy where no one saw one before, its aesthetic satisfaction

depending on the emotive potential of the matrices involved. According to Koestler,

discoveries of art derive from “the sudden transfer of attention from one matrix to

another with a higher emotive potential”. In other words, as with science, the great-

ness of an artist rests in creating a new idiom - a novel code which deviates from the

conventional rules. The key turning points result from a new departure along a new

line, where we can find bisociations in the grand style - cross-fertilization between dif-

ferent periods, cultures, and provinces of knowledge. Once a new idiom is established,

“a whole host of pupils and imitators can operate it with varying degrees of strategic

skill”. Here, Koestler clearly shows his view on “true creativity - the invention of a

new recipe” as opposed to “the skilled routine of providing variations for it”. This

dichotomy also corresponds to the transformational and exploratory creativity that

Margaret Boden discusses, which will be approached in section 2.1.4.

In conclusion, Koestler argues that bisociation is active in those three aspects

of human creativity. In humour, by the collision of matrices; in science by their

integration; and in arts by their juxtaposition.

Although rarely showing it in a formal or algorithmic fashion, Koestler provides

an insight to one of the most definite phenomena behind the creative process, that

of combining knowledge from different domains. More than describing in detail what

happens in cognition, he identifies the consistent existence of what he calls bisociation

within a very wide range of situations commonly deemed creative, and while it may

be arguable that not every creative act complies with this description, it is certainly
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true that many of them result from the association of apparently semantically dis-

tant sources, which, for some reason, combine in such a way that novel and useful

knowledge emerge so naturally that those sources no longer seem so distant. From

the perspective of Guilford’s theory, the notion of bisociation takes many intersec-

tions with that of transfer recall, although the latter seems reduced to the act of

retrieving unexpected elements from memory, and the former to the actual processes

of combination involved.

2.1.3 The Systems Model

The work of Mihaly Csikszentmihalyi on Creativity [Csikszentmihalyi, 1996] is the

most recent of the ones reviewed in detail here. This does not mean, however, that

it has a radically different perspective as we will see. Indeed one of the purposes

of looking at this widely referred study is to demonstrate the current validity and

acceptance of the works of Koestler and Guilford, as well as to provide some other

comments that we believe are of importance to the present work.

From a study that took several years, in which the author and colleagues in-

terviewed and analyzed ninety one people widely deemed creative, Csikszentmihalyi

proposes a description of how creativity works and how culture evolves as domains

are transformed by the curiosity and dedication of a few individuals. He proposes a

systems model of creativity that takes into account the interaction of three elements:

the domain, the person and the field. The domain consists of a set of “symbolic rules

and procedures. Mathematics is a domain, or at a finer resolution algebra and num-

ber theory can be seen as domains. Domains are in turn nested in what we usually

call culture, or the symbolic knowledge shared by a particular society, or by humanity

as a whole.” [Csikszentmihalyi, 1996] Csikszentmihalyi defines the creative person as

designating individuals who, like Leonardo, Edison, Einstein or Mozart have changed

our culture in some important respect. The field includes all the individuals and in-

stitutions that act as gatekeepers to the domain, the peers that will judge the person

and the ideas. It is the field that selects what new works of art, objects or theories

deserve to be recognized, preserved and remembered. Each of these three elements is

necessary for a creative idea, product, or discovery to take place.

Thus the author proposes a very strong definition of creativity. Let us call it cre-

ativity with a big C : “Creativity is any act, idea, or product that changes an existing

domain, or that transforms an existing domain into a new one (..) A creative person

is someone whose thoughts or actions change a domain, or establish a new domain

(..) So, in a sense, the most momentous creative events are those in which entire new

symbolic systems are created.” [Csikszentmihalyi, 1996]. In order to understand the
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process behind these transformations that shape civilization, Csikszentmihalyi ana-

lyzed and interviewed individuals who were able to create or drastically change one

domain, at least once in their lives. The list included renowned artists, politicians,

economists and scientists, some having been awarded Nobel prizes or other impor-

tant awards in their field. Although presumably not providing statistical validity (e.g.

there is no control group or objective measures in general), the author identified a set

of traits that were common among the individuals [Csikszentmihalyi, 1996]:

1. Creative individuals have a great deal of physical energy, but they also know

how to be quiet and at rest.

2. Creative individuals tend to be smart, yet also naive at the same time.

3. A third paradoxical trait refers to the related combination of playfulness and

discipline, or responsibility and irresponsibility

4. Creative individuals alternate between imagination and fantasy at one end, and

a rooted sense of reality at the other. Both are needed to break away from the

present without losing touch with the past.

5. Creative people seem to harbor opposite tendencies on the continuum between

extroversion and introversion.

6. Creative individuals are also remarkably humble and proud at the same time.

7. In all cultures, men are brought up to be masculine and to disregard and repress

those aspects of their temperament that the culture regards as feminine, whereas

women are expected to do the opposite. Creative individuals to a certain extent

escape this rigid gender role stereotyping.

8. Generally, creative people are thought to be rebellious and independent. Yet it

is impossible to be creative without having first internalized a domain of culture

(...) hence it is difficult to see how a person can be creative without being both

traditional and conservative and at the same time rebellious and iconoclastic.

9. Most creative persons are very passionate about their work, yet they can be

extremely objective about it as well.

10. Finally, the openness and sensitivity of creative individuals often exposes them

to suffering and pain yet also a to great deal of enjoyment.

On his explorations concerning the creative process itself, Csikszentmihalyi follows

the traditional description of five steps (that descends from the four step model of
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Wallas, with Verification split into Evaluation and Elaboration): Preparation, Incu-

bation, Insight, Evaluation and Elaboration. He then frames these steps within the

systems model of domain, person and field.

As confirmed in each of the individuals studied, there is the need for a tremendous

amount of information about the domain and the field, normally achieved after years

of hard work. This preparation depends as much on external factors (e.g. family,

education, socioeconomic factors, political issues within a field) as on internal factors

(e.g. curiosity, persistence, talent). The incubation is generally described as the

process of solving a problem in the underground of cognition, after the creative person

feels that they have been blocked: “Cognitive theorists believe that ideas, when

deprived of conscious direction, follow simple laws of association. They combine

more or less randomly, although seemingly irrelevant associations between ideas may

occur as a result of a prior connection”[Csikszentmihalyi, 1996]. This mysterious

and often controversial step was also confirmed by the individuals studied, who often

reported finding the solution to a problem in unpredictable or consciously unprepared

situations, sometimes after years of working on the problem (or even having left it

alone). As the author points out, this insight, also found recurrently in the literature

of creativity, is only possible when the person (in fact the whole system) is prepared

to identify it. This corresponds to the idea of ripeness, as described by Koestler.

For this to happen, the person must be in the right place at the right time, with a

significant amount of confidence, knowledge and luck, as frequently confirmed by the

interviewed individuals.

Evaluation and elaboration are steps that gradually become more dependent on the

whole system and less on the individual, as the act, idea, or product is confronted with

the domain and the field, although the person also becomes part of this evaluation,

particularly in less objective domains.

Two important aspects which raise from Csikszentmihalyi’s observations are the

duality of divergent/convergent thinking and integration across and within domains,

both of which are consistently reported and analyzed. From the observations, creative

people are able to perform well (and with constant switches) in both the opposite ways

of thinking reported in section 2.1.1: divergent and convergent.

People who bring about an acceptable novelty in a domain seem able to

use well two opposite ways of thinking: the convergent and divergent(..).

Divergent thinking is not much use without the ability to tell a good idea

from a bad one - and this selectivity involves convergent thinking.
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Divergent thinking is extremely important for the phases of Preparation and In-

cubation, since these phases are characterized by curiosity and searching. Convergent

thinking is a determinant for the Elaboration, Evaluation and also Insight, since it

brings about the ability to tell a good idea from a bad one, to follow the established

rules of the domain and confront them with new knowledge. However, the boundaries

must not be so strict. Indeed, the creative process intertwines frequently between di-

vergent and convergent thinking, as well as any of the five steps just described.

In the same way that Guilford’s contribution (divergent and convergent think-

ing) has been accepted and backed up by the work of Csikszentmihalyi, so Koestler’s

bisociation also appears as “the norm rather than the exception”. Although rarely

identifying the phenomenon with the name of bisociation, the author repeatedly pro-

vides examples and reports of situations that involve the cross-domain transfer of

ideas, the bringing together of domains that appear to have nothing in common and

integration or synthesis both across and within domains. As he points out, “creativity

generally involves crossing the boundaries of domains, so that, for instance, a chemist

who adopts quantum mechanics from physics and applies it to molecular bonds can

make a more substantive contribution to chemistry than one who stays exclusively

within the bounds of chemistry.” [Csikszentmihalyi, 1996]

The work just covered suggests many important issues for the modelling of cre-

ativity and of creativity supporting tools. From a system’s perspective, one should

not simply focus on one single element (person, domain or field), for it is from their

interaction that creativity emerges. It also raises many traits and conditions that

need to be present for the creation of novel and useful ideas. However we must point

out that this study lacks many of the scientific bases necessary to assert with much

confidence some of these more abstract conclusions, namely because the individuals

come from a very specific class: successful, recognized, well established people, in gen-

eral happy with their own accomplishments, and normally in an advanced phase of

their lives (over sixty years old, in general). This means that many creative and non-

creative people have been left out, some of whom are unsuccessful so far, struggling

to be recognized, yet still be extremely creative. In other words, the set of individu-

als corresponds to the class of creative persons that the system (person, domain and

field) has brought to the world, but the system is too dynamic not to confront data

with other systems (e.g. a control group) or other states of the system (e.g. different

ages).

Another aspect that Csikszentmihalyi himself has raised is that, according to

these criteria, children can be talented but never really creative, because “creativity

involves changing a way of doing things, or a way of thinking, and that in turn

requires having mastered the old ways of doing or thinking.” He thus leaves space
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for two other classifications: personal creativity, experiencing the world in novel and

original ways; and talent or brilliance, the ability to express unusual thoughts which

are interesting and stimulating. Any of these three classifications associated with the

word “creativity” (true creativity, personal creativity and talent) provides interesting

challenges to computational modelling and also leads us to Boden’s taxonomy (h-

creativity and p-creativity), thus providing similar analyses with regard to AI and

computational creativity.

2.1.4 Boden’s taxonomies

Of the works and authors in this section, there is no doubt that Margaret Boden

[Boden, 1990] is the most read and cited within the field of AI and Creativity. The

simple reason for this is the fact that she pioneered the effort of analyzing some of

the work that had been done (in AI) from a perspective that takes into account those

philosophical and psychological issues which are traditionally deemed as creative. In

so doing, she proposes a set of classifications for analyzing a program (as much as a

human). These classifications themselves have raised much debate, some of which we

will cover here.

The first classification proposed by Boden concerns the fact that there is novelty

in an idea or discovery: Whether it is novel for a single person or for the whole

of human history. In principle, every new and useful idea or discovery is creative

for its producer. This is called psychological creativity (or p-creativity). The other

reference is history. When an idea is novel and useful for the whole of human history,

then we are faced with historical creativity (or h-creativity). This is perhaps the less

controversial classification, although many authors argue that true creativity cannot

exist without an external evaluation (e.g. [Csikszentmihalyi, 1996], [Lubart, 1999]).

Another aspect is that one can never determine h-creativity in absolute terms because

an idea can be h-creative and not be seen as such for years. And the reverse also

happen, when an idea and an author are regarded as h-creative by the society, but

the original idea should actually have been credited to a preceding author. There

are countless examples of these misjudgments in human history. This view does not

remove the validity of h-creativity as presented, but it testifies to how complex the

problem can be. It is also important to mention that p-creativity is the main focus

of Boden’s analysis, as she is mainly concerned with the personal perspective.

The other classification brought by Boden [Boden, 1990] pertains to the process

needed to produce the novel idea or discovery. She thus presents two kinds: com-

binatorial creativity and exploratory-transformational creativity. The combinatorial
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creativity results from “unusual combination of, or association between, familiar ideas.

Poetic imagery, metaphor and analogy fall into this class.” [Boden, 1999]. Alterna-

tively, exploratory-transformational creativity (ET-creativity) is about how a subject

deals with a conceptual space. Her definition of conceptual space is: “an accepted

style of thinking in a particular domain - for instance, in mathematics or biology,

in various kinds of literature, or in the visual or performing arts...” [Boden, 1999].

There is a clear similarity with Koestler’s matrices throughout the many descriptions

that Boden provides for conceptual space, although neither provide a formal defini-

tion. ET-creativity further subdivides into two distinct categories: exploratory(e-)

and transformational (t-). E-creativity deals with the exploration of the conceptual

space without jumping out of its boundaries, without breaking strong constraints,

and it is normally based on the mere “tweaking” of the most superficial dimensions.

Sometimes it is capable of achieving p-creative or even h-creative outcomes, but still

without changing the (well defined) conceptual space. T-creativity involves some

transformation “of one or more of the (relatively fundamental) dimensions defining

the conceptual space concerned” [Boden, 1999]. In other words, it demands changes

in the conceptual space, such as re-representation, change in the evaluation or in-

tegration of new concepts. Boden also sees this kind of creativity as impossibilist,

“in that ideas may be generated which - with respect to the particular conceptual

space concerned - could not have been generated before (they are made possible by

some transformation of the space).” [Boden, 1990]:519-520. Thus, there is a clear

opposition between e- and t- creativity, although for some authors, it is about the

level of abstraction. Indeed this taxonomy has raised many points of debate.

The first point is that transformational creativity is also exploratory at a meta-

level [Wiggins, 2001, Colton, 2001, Ram et al., 1995]. In other words, given the na-

ture of t-creativity, the only possible way to transform a conceptual space is to change

its own defining rules. This would involve being aware of its own defining rules, in

other words, being able to do meta-level reasoning. Following this argument, it leads

us to the conclusion that this change of meta-level rules would necessarily be (at some

point, even if at a meta-meta-level, and so on) exploratory. This argument has been

formalized in [Wiggins, 2001].

Another criticism concerns the vagueness of the definition of conceptual space

([Wiggins, 2001], [Ritchie, 2001]). Although she provides many examples, such as

from within the broad areas of expertise like music, writing or physics, it is never suf-

ficiently clear from a computational modelling perspective what it actually comprises.

More specifically, should it correspond to a solution set, i.e. the set of solutions to a

problem? Is there any ordering, so it becomes then a search space? This issue may

become important when considering the computational modelling (and analysis) of
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t- and e-creativity. For example, changing the ordering of concepts would correspond

to a transformation of the search space, but not of the solution set. Since in the

latter case there is no introduction of new concepts, one cannot say it could not have

been generated before (therefore it should be e-creativity). On the other hand, many

discoveries and art revolutions (i.e. h-creative events) may have been based more on

this kind of restructuring the space than on the generation of impossible concepts,

which would mean that t-creativity is not necessarily a superior kind of creativity.

We think that these issues could be better clarified with a more precise definition of

conceptual space.

The final point to present here regards the distinction between combinatorial cre-

ativity and ET-creativity [Ritchie, 2001]. Although not having raised as much debate

as the previous issues, essentially because Boden herself dropped this differentiation,

this one has particular interest for our work. If one sees the problem of combinatorial

creativity as the generation of a new concept from the association of previous ones (as

the definition says), one can also accept a conceptual space containing all the possible

combinations. By doing so, there is no difference between the act of exploring the

conceptual space of possible combinations, and the act of generating a combination

(which would exist in that conceptual space). Similarly, if, with the novel associa-

tion, a novel concept emerges that could not have been generated before, then we

could have achieved t-creativity. In other words, although combinatorial creativity

may be regarded as a particular kind of creativity (which is also the one approached

in this book), it should also be included in and not distinguished from the set of

ET-creativity phenomena. This is, as far as we know, a common and uncontroversial

perspective towards ET- and combinatorial creativity.

It is without doubt that Margaret Boden produced a comprehensive analysis of

creativity and AI that has been used and applied in many works. We too will use

some of the ideas described. Above all, she contributed successfully to the provocative

question about whether computers can be creative. Indeed they can be, although

perhaps at a very limited level in comparison to human creativity, at the least at a level

that does not demand self-awareness. This may be a very mechanistic, unromantic,

level, but it is nonetheless clearly able to surprise humans with outcomes that we

ourselves would normally have no problem in considering as the result of creative

behavior. In section 2.2, we will give an overview of some of these systems.

2.1.5 Others

Given the recent increase in creativity research, it is not a simple task to provide a

meticulous overview without leaving out any fundamental works. There is a great
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variety of approaches and therefore we will provide a summary of the most cited

works from those approaches that are most prominent and field-covering: cognitive

psychology (Finke, Ward and Smith); confluence theories6 (Sternberg and Lubart);

neuroscience (Martindale and Greenough); motivation and intention (Amabile) and

biographical case studies (Weisberg).

Finke and his colleagues have proposed what they call the Geneplore model, ac-

cording to which there are two main phases in creative thought: generative and

exploratory [Finke et al., 1992]. Many potential ideas or solutions are created, fol-

lowed by their extensive exploration. From laboratory experiments, these researchers

concluded that subjects generate a set of “preinventive structures, in the sense that

they are not complete plans for some new product, tested solutions to vexing prob-

lems, or accurate answers to difficult puzzles” [Ward et al., 1999]. From these partial

structures, a phase of exploration and interpretation takes place that attempts to

construct a feasible solution to a problem, by focusing and expanding these struc-

tures. Constraints can be imposed at any time during the generative or exploratory

phase. This model “acknowledges that a range of factors other than cognitive pro-

cesses contribute to the likelihood of any individual generating a tangible product that

would be judged to be ‘creative’ ” [Ward et al., 1999]. From a broad perspective, the

Geneplore model falls into the class of divergent-convergent models, as proposed by

Guilford and agreed by Csikszentmihalyi.

The investment theory of Sternberg and Lubart falls into the category of conflu-

ence theories (theories that offer the possibility of accounting for diverse aspects of

creativity). It suggests that “creative people are ones who are willing and able to ’buy

low and sell high’ in the realm of ideas. Buying low means pursuing ideas that are un-

known or out of favor but that have growth potential. (..) The person persists in the

face of this resistance and eventually sells high”[Sternberg and Lubart, 1996]. From

extensive experimentation, Sternberg and Lubart developed a model that presup-

poses the interaction of six distinct but interrelated resources: intellectual abilities,

knowledge, styles of thinking, personality, motivation, and environment.

At a different level of research, Martindale and Greenough studied the variability

of level of arousal and attention in the performance of creativity tests (e.g. Remote

Associations Test, Similarities Test of divergent thinking), by observing galvanic skin

response fluctuations, heart rate variability, cortical activation, as well as other bio-

metrical measures [Martindale and Greenough, 1974], [Martindale, 1999]. One inter-

esting conclusion was that creative individuals have a highly variable level of arousal,

rather than a basal (i.e. stable in this context) level of arousal, which means that

6Csikszentmihalyi’s systems model also falls into this category
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“creative inspiration occurs in a mental state where attention is defocused, thought

is associative, and a large number of mental representations are simultaneously ac-

tivated” [Martindale, 1999]. Moreover, the authors also associate their work with

the primary-secondary process thesis [Kris, 1952], which says that creative individ-

uals have a greater ability to switch between two modes of thought (primary and

secondary) than less creative individuals. Primary process thought is found in states

such as dreaming and reverie (as well as in psychosis and hypnosis), it is autistic,

free-associative, analogical. Secondary process is the abstract, logical, reality-oriented

thought. Martindale found supportive evidence confirming Kris’s proposal, meaning

that creativity is not just based on primary process thought, but on its systematic

intertwining with the secondary process. Again, we find a clear similarity to the ideas

of divergent thinking (the primary process) and convergent thinking (the secondary

process), as discussed before.

The work of Teresa Amabile on motivation and intention is also often cited in

literature. She proposes a two-pronged hypothesis about how motivation affects cre-

ativity: “The intrinsically motivated state is conducive to creativity, whereas the

extrinsically motivated state is detrimental”[Amabile, 1983]. Intrinsic motivation is

associated with the enjoyment of the work in itself, while extrinsic relates to engaging

in an activity in order to meet some goals external to the work. She also proposes

a confluence model with intrinsic motivations, domain-relevant knowledge and abil-

ities, and creativity-relevant skills. These include: “ a) cognitive style that involves

coping with complexities and breaking one’s mental set during problem solving; b)

knowledge of heuristics for generating novel ideas, such as trying a counterintuitive

approach, and c) a work style characterized by concentrated effort, an ability to set

aside problems, and high energy (..)”.

The issue of re-representation is emphasized by some researchers (e.g.

[Karmiloff-Smith, 1993], [Oxman, 1997]), who propose that a process of represen-

tational re-description precedes creative domain exploration, in which previously im-

plicit knowledge is more clearly perceived. New patterns thus emerge and novel

inter-domain connections may be made.

Finally, in a totally different direction (essentially based on biographical case stud-

ies), Robert Weisberg challenges many of the works just described above by arguing

against what he calls the tension view of the relationship between creativity and

knowledge [Weisberg, 1999], which says that: since knowledge about a problem is

not complete, and in face of a blockage, the person is left to its abilities to discover

new solutions via free-association, divergent thinking, etc. This discontinuous view of

knowledge evolution is a “dominant one in modern theory” [Weisberg, 1999]. Weis-

berg proposes a continuous view, by arguing that new discoveries and revolutionary
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artworks are the result of a state of maturity and knowledge richness. This founda-

tion view thus concludes that creativity and knowledge are positively related: “The

reason that one person produced some innovation, while another person did not, may

be due to nothing more than the fact that the former knew something that the latter

did not.”[Weisberg, 1999]

As pointed out at the beginning, there are certainly important works that have

been left out. Yet, for the present book it is more important to provide the reader

with its fundamental bases and their synthesis than with giving exhaustive knowledge

about lateral issues. The idea here was two-fold: to suggest that, from a computa-

tional modelling perspective, many different approaches can be taken; but, nonethe-

less, there are common aspects across almost all of the approaches. We will attempt

to include these aspects in the next section.

2.1.6 Synthesis

Amongst the works mentioned heree, there is an undisputed agreement that creativ-

ity involves the creation of a novel and useful product. We may find different words

for creation (generation, production), novelty (originality), usefulness (value, appro-

priateness, utility, significance, adaptability) and product (idea, concept, solution to

a problem), but there is no doubt that these are either synonymous or different per-

spectives on the same subject. Even though not as uncontroversial, the majority

of the works also agree that the cognitive processes that bring about a novel and

useful product consist of a pair of opposite styles of thinking: divergent and conver-

gent. The former is characterized by allowing ideas that defy logical reasoning (e.g.

unsound conclusions, contradictory associations, inconsistent sets of facts) or that

correspond to unprecedented associations7. In opposition, convergent thinking cor-

responds to logical reasoning, which follows well-defined constraints and is normally

associated to methodic, purposeful thought8. We have already presented these two

concepts in section 2.1.1, but, as often equalled, they have been associated, when not

synonymous, to primary/secondary-process [Kris, 1952] and generative/exploratory

7Here we emphasize the originality aspect of divergent thinking, as it was defined by Guilford,
giving flexibility, fluency and elaboration a secondary role. In our opinion, flexibility would solely
depend on originality, for we can only get varied solutions if each one is sufficiently different from
the others, i.e. original. On the other hand, we see fluency as a characteristic of the thinker, not
of the thought itself (a thought can be original, but never fluent). Finally, analyzing past work,
elaboration has been considered belonging to the convergent side.

8This definition of logical reasoning comes from a psychology perspective, therefore it may be
incomplete from an AI logician point of view. However, we cannot describe these concepts more
formally than allowed by the literature itself.
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[Finke et al., 1992] (also, to a lesser degree, to bisociation [Koestler, 1964], transfor-

mational/exploratory [Boden, 1990] and incubation/elaboration [Wallas, 1926]), and

therefore needed to be put in a more actual context. The other motivation for this

redefinition is to claim that, if a creative product must be novel and useful and its

creation involves the process of divergence and convergence, then one cannot build a

creative system without modelling both divergent and convergent processes. More-

over, divergence would be primarily responsible for granting novelty, and convergence

for usefulness. We will come back to these issues later.

It has also been repeatedly emphasized that knowledge is of central importance in

creativity. Virtually every author in this study argued that no important discovery or

major artwork is likely to transpire without its creator having acquired deep knowl-

edge about the domain in question. Furthermore, some also claim that having broad

knowledge is also fundamental, in order to potentiate transfer across domains and

awareness of the environment. Here we have described two perspectives: in-depth

and in-breadth. Again, we are tempted to associate these two categories with con-

vergence and divergence, respectively. This means that knowledge from the domain

in question would in turn benefit the convergence towards useful solutions, helping

to discern the good from the bad, while knowledge from a variety of domains would

promote divergence in problem solving.

The existence of different levels of creativity has also been claimed by many au-

thors. Some arguing for a continuum (e.g. [Koestler, 1964]), some for a clear dis-

tinction (e.g. [Boden, 1990]): On one extreme, we have the creativity with a big C,

transformational creativity or true creativity. On the other side, we have the per-

sonal, exploratory, or mundane creativity. We do not intend to say that these are

synonymous concepts, but to emphasize the bipolarity of the analyses made.

A final and more controversial issue pertains to the role of society in creativity.

Some authors (e.g. [Csikszentmihalyi, 1996]) argue that there can be no true cre-

ativity9 without the society, i.e., something does not exist as creative unless it is

externally judged as so. It is a dynamic ascription that depends on the interaction

of several entities (in the case of Csikszentmihalyi, the person, the domain and the

field). Others (e.g. [Finke et al., 1992]) argue for the existence of creativity for its

own sake, i.e. an individual can generate a creative idea, without having feedback

from the society. These two points of view correspond to what Boden called h- and

p-creativity, respectively, and thus reflect more a difference of perspective than of the

essence of creativity.

9We remind that Csikszentmihalyi allows a kind of personal creativity, which is though secondary
for the system and for what he calls true creativity.
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2.2 Computational Creativity

In this section, we introduce the area of computational creativity, which aims to build

computational systems that are able to exhibit creative behavior. Since this is not

a universally accepted definition (how can we know, after all, when the behavior is

creative?), some works carry on to the field of Artificial Intelligence the debate that we

have presented in the previous section. One of the immediate effects of this is the need

for formal accounts for creativity, while the other is the experimental implementation

of such systems.

2.2.1 Two accounts for characterizing creativity

The legacy left by Boden’s descriptive hierarchy sparked off the attention towards ana-

lyzing AI systems from a creativity perspective (e.g. [Ram et al., 1995], [Bentley, 1999]).

Notwithstanding the many fragilities, some of which have already been named, the

point was made of the need of such analyses or, at the least, for the consideration

of Creativity within AI. However, the lack of formal approaches and of stable episte-

mological and methodological settlements condemns this research to endlessly recycle

unsolvable problems. While it seems currently impossible to say that a system is

creative, or even intelligent, without any controversy, it may be possible to classify it

according to criteria that are based both on formal computational accounts and on

theories such as Boden’s.

We now present the two approaches towards characterizing the creativity of AI

systems. The first one derives from an assumed attempt of formalizing Boden’s theory

and is centered on the process, while the second one deals with evaluation and focusses

on the product. We will apply these works when analyzing our system in chapters 4

and 6. In order to keep this section comprehensible for a general audience, we tried

to reduce the formal expositions to the minimum necessary. On some parts, these

become indispensible to clarify concepts for those interested in technical detail, but

they are still accompanied with an informal description.

Characterizing Creativity in AI

Wiggins [Wiggins, 2001, Wiggins, 2003] views exploratory creativity as a search for

concepts in the space of all possible concepts of a domain (e.g. in the music domain,

it would be the set of all possible sequences of sounds). This search is a priori

constrained by a set of rules that define “acceptable” elements (Boden’s conceptual

space), R. This set could consist, for example, of rules of style. This could comprise
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both creative and non-creative elements, but all correct according to those rules of

style. This set of elements is also known (in [Wiggins, 2001, Wiggins, 2003]) as the

set C.
Another set of rules that Wiggins proposes would be the set of “valued” elements,

those that, regardless of being “correct” or “according to style”, become successful

in solving the problem or achieve the goal that is being sought (e.g. pieces of music

that, although breaking stylistic rules, become for some reason a good choice). This

set, E , is much harder to define either formally or informally, for often it is dependent

on dynamic aspects (e.g. aesthetic change, specific goals, specific context, personal

mood, etc.).

Finally, the third set of rules proposed is the one that defines the strategy followed

when exploring the conceptual space, T . This represents the choices, be they inten-

tional or unconscious, that the creative agent (human or not) makes to travel in the

space of possible elements. For example, some people prefer to work “top-down”, i.e.

to define the whole structure, then proceed reifying the ideas, others “bottom-up”.

Others rely on ad-hoc methodologies, even randomness. It is not guaranteed, though,

that all elements found are acceptable (belong to C). In other words, the application

of T may produce non-acceptable outcomes. This aspect is extremely important in

terms of creativity, as it opens a door to re-thinking the whole system.

According to Wiggins [Wiggins, 2001], it is thus from the interaction of these three

sets, R, E and T that exploration of the universe of concepts can be analyzed in the

light of exploratory creativity. Each of these sets can change with time, in the same

way that science and arts evolve by changing their rules, goals or methodologies. It

is this constant change that drove Wiggins (and others [Wiggins, 2001, Colton, 2001,

Ram et al., 1995]) to a conclusion that the process of exploratory creativity (the three

sets) is also exploratory in and of itself. In other words, using the same formalization

as the one referred to above, Wiggins proposes the demonstration that transforma-

tional creativity is equivalent to exploration at the meta-level [Wiggins, 2001]. The

idea is that transformational creativity can only happen with changes in (at least)

one of the three sets and, if we jump one level up and consider an exploration in

the space of possible rule sets (e.g. the space of style rule sets, space of “value judg-

ments”, space of strategies), then the same analysis can be made. Of course, the

question arises: when to stop this recursion?; or even, is this conclusive about the

act of creativity? Aren’t those transformations driven bottom up or emergent (e.g.

serendipity, empirical observation, sensorial evolution), rather than a meta-level ac-

tivity? Of course, Wiggins setting is more a proposal for the analysis and discussion

of creativity within AI than an actual statement of how things work cognitively and,

in that sense, it has been an interesting base to apply.
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Creativity Assessment

While Wiggins centered his formalization on several aspects of the process (the con-

straints, the strategy, the conceptual space), giving less attention to the product,

Ritchie proposes a set of features10 for assessing creativity on the basis of the results

of the system (i.e. the product), its initial data and the items that gave rise to its

construction (the inspiring set) [Ritchie, 2001].

Prior to describing the features, we have to give a set of definitions. The first one

regards the notion of basic item, an entity that a program produces. “This is not a

definition of what would count as successful or valid output for the program, merely

a statement of the data type it produces”. Ritchie proposes two rating schemes to

analyze the produced items: typicality ratings (typ) and value ratings (val). There is

also the notion of inspiring set, I, the set of basic items that, explicitly or implicitly,

lay behind a generative system. For example, for a rule-based system, the elements

implicitly defined by those rules would be in the inspiring set; for a case-based system,

the initially stored cases would also be part of the inspiring set; for an example-

based, learning system, the examples given in the training phase would belong to

the inspiring set. The definition of the inspiring set is fundamental to measure how

successful a system is in obtaining novel ideas, but it is often hard to find, since

the designer of the system is rarely conscious of all the influences beneath their own

choice. For example, a system for composing a certain style of music may have been

designed via analysis of a set of pieces (which would be part of its inspiring set), while

if it were made from musicology theories, defining that set would be a harder task.

Finally, we need to define four notation conventions. We assume that X and Y

are two sets of items, and that F can be a function such as typ or val:

10Although Ritchie has named them “criteria”, in practice they do not behave as such: none is
an explicit condition for (or even against) creativity. In order to avoid these criteria to be seen as
desired characteristics of creative artifacts, we simply name them as features. The assumption is
that they are simply measurable features that can help characterize the creativity of a system.
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Tα,β(X)
def
= {x ∈ X | α ≤ typ(x) ≤ β} : The subset of X falling in a given

range of normality.

Vα,β(X)
def
= {x ∈ X | α ≤ val(x) ≤ β} : The subset of X falling in a given

range of quality.

AV (F, X)
def
= (

∑
x∈X F (x)/ | X |) : The average value of a function F across

finite set X.

ratio(X, Y )
def
= | X | / | Y |: The relative sizes of two finite sets X, Y.

Ritchie proposes fourteen features to assess the creativity of a system’s output, R.

Although it is assumed that R corresponds to the result(s) of a single run, it is also

suggested the generalization of these features to a set of runs, in order to cover the

general behavior of the system. Thus, in this case, we invite the reader to consider

R as the set of results that a system has been able to produce until a given point in

time. The features are intended to measure the behavior of the system in terms of

average quality of results, their typicality and of their ratios with regard to R and to

the set of typical and valued items. In general, isolated features will not say anything

regarding creativity. Each one contributes with its own part to the overall picture of

the analysis of the output. Some of them (the later ones), however, are combinations

of the others and allow us to conjecture about creativity potential.

feature 1 AV (typ,R) > θ, for suitable θ.

The first feature compares the average of typicality of items with a value, θ. The

following feature studies to what extent typical items form a significant proportion of

the results:

feature 2 ratio(Tα,1(R), R) > θ, for suitable α, θ.

feature 3 AV (val, R) > θ, for suitable θ.

feature 4 ratio(Vγ,1(R), R) > θ, for suitable γθ.

Features 3 and 4 follow the same reasoning as the first two, but applied to value

(val). Alternatively, the fifth feature classifies the success of a system as its ability to

obtain a high proportion of highly valued items, within the set of the typical ones:

feature 5 ratio(Vγ,1(R) ∩ Tα,1(R), Tα,1(R)) > θ, for suitable α, γ, θ

The following three features compare the set of highly valued, yet untypical results,

to the output, to the whole set of untypical results and to the set of typical highly

valued outcomes.
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feature 6 ratio(Vγ,1(R) ∩ T0,β(R), R) > θ, for suitable β, γ, θ.

feature 7 ratio(Vγ,1(R) ∩ T0,β(R), T0,β(R)) > θ, for suitable β, γ, θ.

feature 8 ratio(Vγ,1(R) ∩ T0,β(R), Vγ,1(R) ∩ Tα,1(R)) > θ, for suitable β, γ, θ.

A program might be replicating its entire inspiring set, in which case it might be

said it is not creative since (at least some of) the outputs are not novel:

feature 9 ratio(I∩R,I) > θ, for suitable θ.

Thus, a high value in this feature is something we don’t want if looking for creativ-

ity in a system. Conversely, the system may produce outcomes that do not belong to

the inspiring set. Thus, in feature 10, we calculate the ratio of all the items generated

with respect to the ones (from that set of generated ones) that also belong to the

inspiring set:

feature 10 ratio(R,I∩R) > θ, for suitable θ.

Features 11 and 12 propose some possible perspectives on the generated items

not belonging to the inspiring set: proportion of those that are typical (feature 11);

proportion of those that are valuable (feature 12). The former stresses the capability

of the system to produce results that are not replications, yet still fitting the “norms”

(i.e. still being typical). The latter estimates how well the system is able to produce

valued items that are not replications.

feaure 11 AV (typ, (R−I)) > θ, for suitable θ.

feature 12 AV (val, (R−I)) > θ, for suitable θ.

Finally, features 13 and 14 give an estimate about the proportion of highly typical

and valued novel results. The latter justly fits the view of creativity as the generation

of “novel and valued” products.

feature 13 ratio(Tα,1(R−I), R) > θ, for suitable α, θ.

feature 14 ratio(Vγ,1(R−I), R) > θ, for suitable γ, θ.

These features pose two obvious problems for their application. The first one

has to do with the rating schemes val and typ, namely the former would demand

a compromise that is rarely explicitly made in everyday observation of creativity,

of what a valuable outcome is composed of exactly. The second problem regards

the variables involved (α, β, γ and θ). Finding acceptable values will depend on

experimentation in different contexts. Yet, until now, there has been no application

of these. Furthermore, their scales will differ among features (e.g. features 4 till 9

yield values in the interval [0, 1], feature 8 can give any positive real number, feature

10 always results in values higher than 1). In this work, we assume α, β and γ to be
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0.5.

Another issue is that Ritchie considers typicality and value, rather than novelty

and usefulness. While usefulness and value are often meant as synonymous (in the

sense that something is valued when it accomplishes a purpose), typicality runs op-

posite to novelty. Assuming the risk of oversimplifying these notions, we consider,

in this work, that typicality is converse to novelty (i.e. novelty(x) = 1−typ(x)) and

value equals usefulness. This is important for the analyses made in chapter 6.

In terms of direct application to computational systems, there has been almost

no examples, and therefore empirical values and considerations for the features are

not available. There may be three reasons for this happening: the frameworks

are still immature and therefore demand further work; there has been no practi-

cal need for systems to measure their creative potential and to compare with their

peers, a fact that contrasts with the claim that some make of being creative sys-

tems; they may be considered wrong or useless for analyzing computational cre-

ativity. Regarding this latter possibility, it is clear that these are the only ac-

counts so far for the formal analysis of the creativity of a computational system

(except for even less developed formalizations, such as the serendipity equations of

Figueiredo and Campos [Figueiredo and Campos, 2001] or work on measuring sur-

prise [Macedo and Cardoso, 2001]). Since it is imperative to determine, even if not

in an absolute fashion, the creativity of the model we propose, we will apply these

ideas to analyze our system.

It is also patent that these two approaches have a lot in common. For example,

Wiggins R and E may correspond to Ritchie’s typ and val respectively. There is

however a fundamental difference: while Ritchie looks inside the system’s results and

their evaluative schemes and is dependent on them to define every feature, henceforth

considering only exploratory creativity11, Wiggins’ formalism confronts the system

with the universe (U) of possible items, thus allowing for meta-level analysis and

therefore transformational creativity. In figure 2.3, we summarize a classification of

concepts within the framework of Wiggins, also taking into account the inspiring set,

the notions of typicality and value and features presented. This diagram is based on

the interaction between three sets: ¿ R, T , E À, the set of concepts that can be

obtained by the strategy T ; JRK, the set of items defined by the rules R; JEK, the

set of valued items, acording to the rules E . Transformational creativity would thus

have the effect of changing the set of reachable concepts. The set ”reachable creative

concepts”has been named after the description of the features 5, 10, 11, 12, 13 and

11He proposes t-creativity as the situation described by feature 6 (high val, low typ), but for which
there is a (yet to be defined) rating scheme typ′ that highly classifies the items.
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14, but it can be argued that the label ”creative”should be given to the set of ”valued

untypical concepts”, since the latter favours novelty and value.

Figure 2.3: The classification of concepts within the universe U according to the sets
¿ R, T , E À, JRK and JEK. Remember that C = JRK. Inside parenthesis are the
features associated with each set.

2.2.2 Creative systems

What is a creative system?

Before proceeding, we must define the necessary (but not sufficient) conditions for a

computational system to be included in the list we study here as being creative:

• It should aim to produce solutions that are not replications of previous solutions

(known to it).

• It should aim to produce solutions that are acceptable for the task it proposes.

Of course, these correspond to the classical definition of novelty and usefulness,

from a perspective of p-creativity, in Boden’s terms. Thus, we are allowing for the

classical extremes: a random process that can find good items; a system that explores

the whole search space with a brute-force blind method; a system that generates

different outcomes every time, but which all look very similar to humans. All these
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are creative systems, according to this classification, but we intend primarily to rule

out the (much larger) set of AI systems that focus solely on the second condition: to

accomplish a well defined goal. As with intelligence, there is a continuum of creativity

degree in such systems, from the utterly non-creative to the undoubtedly creative, and

some dimensions can be inspected in order to sort out further classifications:

• The complexity it is able to treat, without breaking the conditions above - cre-

ative abilities are often more salient (or vital) in problems with high complexity.

A program able to satisfy our criteria in highly complex settings is definitely on

the (highly) creative side of the continuum.

• Its ability to reason at different levels of abstraction - A system that can deal

with different levels of abstraction for the same problem would certainly be

closer to the goal of meta-level reasoning (and t-creativity) than a system with-

out such ability.

• Its ability to process different sorts of representation - It has been often referred

in Creativity literature (e.g. [Karmiloff-Smith, 1993]) that re-representation

potentiates creative outcomes.

• Its ability to work in more than one domain - Creativity cannot be regarded

in isolation. A system that is able to deal with more than one domain without

structural changes should be considered more creative than one that needs re-

programming to work with different domains. The former should be closer to

the ability of cross-domain transfer.

• Its ability to evaluate its own productions - Self-assessment or self-criticism has

also been mentioned as central to creative production. A system that can evalu-

ate its own productions would tend to be on the creative side of the continuum.

Some systems and models

Of all the surveys presented in this book, the overview of the field of creative systems

is the most difficult to make for two particular reasons: there has been a surpris-

ingly high proliferation of such systems during the past five years, spreading across

a variety of areas and approaches; only a few identify themselves as “creative sys-

tems”, preferring different classifications such as “cyber art”, “generative systems” or

“creative design”. Moreover, from these, only a few consciously follow an underlying

“computational model of creativity”. Thus, in order to analyze the models that have

been used so far, it is necessary to abstract them from the existent implementations.
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The list of systems chosen for the overview obeys three conditions. Each system

should have its implementation description available somewhere (ruling out many

commercial implementations), it should also have been published recently12 (except

for some classical examples), and it must satisfy, even if only assumed informally, the

definition above for creative systems.

The approaches presented range all over the traditional AI paradigm classifica-

tion spectrum of Symbolic, Sub-symbolic and Hybrid systems. This division could

therefore be a starting point to structure this overview. Nevertheless, we prefer to

organize it according to issues that have been discussed so far regarding the theme of

creativity.

The first issue regards the opposition of perspectives cognition/society, which were

also observed in section 2.1. Some works follow the systems perspective of Csikszent-

mihalyi, via multi-agent environments in which creativity emerges as a result of mul-

tiple interaction. Examples of this approach are the Hybrid Society [Cardalda, 1999],

The Digital Clockwork Muse (TDCM) [Saunders and Gero, 2001], Design Situations

(DS) [Sosa and Gero, 2003] and SC-EUNE [Macedo and Cardoso, 2001]. On the

other side, there are the systems that follow approaches based on a cognitive perspec-

tive (i.e. the machine is one single agent) by applying domain-dependent rules (e.g.

Lothe’s Mozart Minuets [Lothe, 2000], Aaron [Cohen, 1981]), statistical models (e.g.

Craft and Cross’s fugal exposition generation [Craft and Cross, 2003], the Postmod-

ernist generator [Bulhak, 2000]), reusing past experience (e.g. the Case-Based Rea-

soning approaches of ReBuilder [Gomes et al., 2002] and ASPERA [Gervás, 2000a]),

evolutionary computation (e.g. NevAr [Machado and Cardoso, 2002] and Poevolve

[Levy, 2001]), modelling specific cognitive phenomena like Metaphor (e.g. Sapper

[Veale, 1995, Veale and Keane, 1997, Veale and O’Donoghue, 2000]), Analogy (e.g.

Copycat, [Hofstadter and Mitchell, 1988]) or Conceptual Combination (e.g. C3

[Costello, 1997]). Of course, individual agents in multi-agent systems need to have

individual processes, and therefore these two perspectives are not totally incompati-

ble.

A second issue regards evaluation: is the system performing self-evaluation by

any means in order to obtain the final product, or is there the participation of a

user, the generation of the product being a result of the interaction (in this case, the

general system - human plus machine - could be seen as a two agent system)? In

general, multi-agent systems presuppose a built-in evaluation strategy, normally be-

coming part of the interaction between agents (agents reward other agents for positive

evaluation, as happens in TDCM), the Hybrid Society being an exception (humans

12We conventionalize “recently” to comprehend the past four years, for it is since 2000 that events
exclusively dedicated to the subject have been held yearly.
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can be part of the egalitarian multi-agent system and produce and/or evaluate). In

single-agent architectures, some kind of self-assessment is also built-in, either via

probability, rules, or pre-trained mechanisms (like a Neural Network). These self-

assessments rely more on the appropriateness of the product according to a style or

goal than on aesthetic judgment. Yet, one should not read this too strictly since we

can find a variety of self-evaluation methods that consider aesthetics (e.g. NevAr

allows the application of aesthetic principles based on perception; HR contains inter-

estingness heuristics). Some systems rely on the active participation of the user in

the generation process. A typical example is the interactive genetic algorithm (IGA),

where the algorithm generates items that are evaluated by the user (e.g. NevAr

and [Sims, 1991]13), and this evaluation is used to produce the subsequent items.

Max [Campos and Figueiredo, 2001] is an agent that searches the Web for interest-

ing pages (according to a user profile) in order to trigger serendipitous insights for

the user, who has to give Max appropriate feedback to continue the cycle. Muza-

CazUza and ReBuilder are two Case-based reasoning systems on music and software

reuse (respectively), which rely on the user for the adaptation of cases (in the case of

ReBuilder, it also provides an analogy mapping method of adaptation).

A third issue has to do with the use of memory. Does the system keep track of

past runs, and therefore is it able to profit from past experience? This can be seen as

an instantiation of the preparation phase discussed earlier. A few systems have this

property, namely SC-EUNE, NevAr, ReBuilder, Max, Metacat and Sapper.

Being able to do meta-level reasoning, i.e. to reason about the method of reason-

ing, could only be found in three systems: HR, Metacat and Sapper. The former

[Colton et al., 1999], named after Hardy and Ramanujam, was designed by Simon

Colton to carry out discovery in pure mathematics. It performs a complete cycle of

mathematics, including building its own mathematical concepts, making conjectures

about the concepts, attempting to prove the true conjectures and finding counterex-

amples for the false ones. It builds new concepts according to seven heuristics and

nine production rules. All these are considered the most generic possibilities across

the field of mathematics. It has a meta-level reasoning version [Colton, 2001], in

which it builds a high-level theory that contains concepts and conjectures about the

concepts and conjectures of the lower-level theory. For example, it is able to form

the high-level concept of “function” (there is a unique second object for each first

object found in the pairs which make up the examples for these concepts). Examples

of low-level functions are definitions for prime numbers, perfect numbers, pairs and

so on. The HR project has also a multi-agent version with four HR-based agents

with different strategies running in parallel [Colton et al., 2000], which cooperate by

13These two cases are more specifically interactive genetic programming (IGP) systems
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exchanging new concepts and conjectures.

Metacat [Marshall, 2002] is the latest evolution of Copycat

[Hofstadter and Mitchell, 1988], which is a system for solving puzzle analogies

(such as “abc→abd::xyz→?”) that applies a bottom-up parallel strategy to find

mappings between the source and the target, as well as explanatory relations within

them, and to associate these mappings and relations with concepts in a Slipnet. This

Slipnet is a semantic network with variable distance between concepts (examples of

concepts are the letters of the alphabet, relations like opposite or predecessor, and

attributes like rightmost or first letter of the alphabet) where a spreading activation

algorithm is used to determine the plausible mappings (e.g. “c” corresponds to “z” -

both are rightmost - and “c” is predecessor of “d” - in the alphabet). When a set of

concepts is activated, a candidate solution is projected. If it fails, Copycat will slip to

concepts that have short distance to the activated ones (e.g. rightmost to leftmost)

and try other activation patterns. Metacat is a sibling of Copycat and it adds a

set of meta-level features. It keeps traces of the run and creates abstract themes,

which consist of pairs of Slipnet concepts. For example, a theme for representing the

idea of alphabetic-position symmetry between “a” and “z” would have the Slipnet

concepts alphabetic-position and opposite. It keeps this new information in an

episodic memory that it uses to compare analogies between different runs (it outputs

texts like “this reminds me of the problem X...”). It is also able to justify the reason

behind a puzzle solution by the analysis of its trace. However, it uses this meta-level

knowledge (traces and themes) superficially in the sense that, unlike HR, it only uses

it for communicative purposes (with a user) and does not improve or change its own

internal knowledge, or even use previous solutions to solve present problems.

Sapper (which will be presented in detail in section 3.4.2) is also said to be capa-

ble of meta-level modification, by altering the “construction space” that guides the

mapping process ([Veale and O’Donoghue, 2000]). With this capability, the system

should be able to propose different metaphor interpretations for the same input data.

In spite of recurrently being asserted throughout the creativity theories in section

2.1, the ability to do cross-domain transfer of ideas is absent in the majority of the

systems. Even worse, the majority is tailored to work with its own single domain.

In this matter, again and surprisingly, HR presents itself as the only one able to do

cross-domain transfer [Steel, 1999] and work with different domains. However, these

two capabilities rarely come together. The cross-domain version of HR was built

with special attention to concepts from mathematical fields14, while its application to

domains separate from mathematics (e.g. animal classification [Colton et al., 2000])

14For example, the use of triangular number (from number theory) to predict the order of the
duplicated node (in graph theory).
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has been made in an isolated manner. Two other systems are capable of cross-domain

transfer, normally at an abstract level. Sapper is a metaphor interpretation system

that will be thoroughly presented in section 3.4.2, since it is important for our work,

while Drama will be briefly described in section 3.4.3. Both find cross-space mappings

between semantic networks, which can be used to transfer knowledge, i.e. problem

solving by analogy.

From this analysis, we may now abstract a taxonomy for computational models

of creativity:

• Systems model (SM). Creativity results from the interaction of a society of

agents. Each agent may have a similar or different role, and be implemented

according to the methods below, but its interaction with others is essential to

find creative items.

• Evolutionary model (EM). Creativity emerges as a result of evolution of the

artifact. This evolution is made in parallel with concurrent streams of candi-

date artifacts that eventually converge to a maximum. The judgments (fitness

functions) are either given by a user (IGA’s) or via algorithmic methods such

as neural networks or heuristic rules.

• Domain-centered model. Creativity results from expertise on a specific domain.

Different domains invite different specific methods or knowledge structures (even

if the general approach remains the same). This model can be divided into three

sub-types:

– Expert Systems model (ESM). Items are generated by following well estab-

lished constraints and methodological rules of the domain of application.

Creativity is stimulated by allowing randomness in well-bounded decision

making points.

– Case-Based Reasoning model (CBRM). Creativity is the result of reuse

and adaptation of past experience with attention to the present context.

According to [Ram et al., 1995], this is achieved in five steps: problem in-

terpretation, problem reformulation, case and model retrieval, elaboration

and adaptation and evaluation.

– Statistics model (STM). Creative items are generated from non-deterministic

automata that result from analysis on selected data15. When it is well-

trained, issues like evaluation or memory are embedded in the automaton,

15It should be said that these systems are many times built with an analytical intention (e.g. for
prediction or classification) rather than for generative purposes, although becoming able to be used
as both.
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which rarely produce wrong outcomes or outcomes that differ considerably

from the initial data.

• Cognition-centered model (CCM). Creativity results from mental processes that

can be computationally modelled. It is domain-independent and therefore items

are represented at a conceptual level that needs to be reified at application

level. This reification may be made externally, but it must be consistent with

the concept description.

In tables 2.1 and 2.2, we give a summary of the characteristics of the systems

analyzed. Some systems are not described in detail here because their description

would not add pertinent facts for this book. Many more systems were left out (never

mind the commercial ones), so this is a very small sample of the state-of-the-art which

hopes to cover the wide breadth of the approaches.

Perhaps due to the youth of the area of creative systems or to the different purposes

of each system, few provide formal analysis of the creativity involved. The formalisms

of Wiggins, Ritchie and the others have scarcely been applied, which is understandable

given the problems which arise when determining the inspiring set or the value for

the many variables involved. Only WASP [Gervás, 2002] and Dupond [Mendes, 2004]

have been analyzed so far with those formalisms, and it is still complicated to compare

them with other systems (as emphasized in [Pereira et al., 2005]). In this book, we

give another contribution to this fundamental aspect of evaluation of creative systems.

We would like to conclude this section by noting that, in spite of the current

proliferation of creative systems, the large majority is exploratory. One can say

that transformational creativity has so far been achieved by systems such as HR

and Metacat, although only at an elementary level. These systems deal with meta-

knowledge but are still far from actually transforming their conceptual space, strategy,

knowledge representation or evaluation function.
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Chapter 3

Working with Concepts

Since in this book we propose a model of concept invention, it is therefore imperative

to define what exactly is meant by a concept and by concept invention. Furthermore,

we have to present and explain in detail the cognitive and computational basis applied

at the level of working with those concepts. Thus, in this chapter, we define Concept

and Concept Invention (and oppose it to concept formation). We also introduce

Conceptual Combination, Conceptual Blending, Metaphor and Analogy, which occur

in different parts of this book. All these work at the level of concepts or networks of

concepts.

3.1 What is a Concept?

Perhaps the most specific definition we can give is that a concept is an abstraction

that refers to ideas, objects or actions. Concepts can be dynamic entities, i.e. they can

change with time (e.g. the concept of “phone” has evolved along with its technology),

person (e.g. for some people a “crocodile” is a “pet”, while for others it is not) or

context (e.g. the concept of “giant” will differ radically when comparing an “elephant”

with a “human” and with a “dinosaur”). In some domains, normally scientific, they

can also be formal and static (e.g. the concept of “prime number” is not supposed to

change). More than about the definition, much debate has been about how concepts

are represented in cognition. There are three main views:

• Prototype view [Rosch, 1975]. Concepts are represented in the mind by proto-

types, rather than by explicit definitions, which can be used to differentiate when

an instance is or is not an example of the concept. Concepts are represented by

an “idealized” prototype, which has the “average” characteristics of the concept

(e.g. the prototype of “bird” would have “has wings”, “has feathers”, etc.) or
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Chapter 3. Working with Concepts

by a “paradigmatic” prototype (e.g. a coffee cup for a cup or wooden spoon

for large spoon). Of course, this view raises problems because concepts are not

necessarily static entities, definable with a fixed set of properties.

• Exemplar view [Medin and Schaffer, 1978]. Concepts are represented by their

most common exemplars. Therefore, classifying an instance consists in deter-

mining which remembered exemplars are the most similar. This view implies

that we organize experience in an episodic memory. If considered in isolation,

the exemplar view fails in many aspects. Although it is agreed that knowledge

is dependent on individual experiences, the ability to do abstraction, to gener-

alize from experience, is fundamental, otherwise memory would be insufficient

for reasoning.

• Theory view [Murphy and Medin, 1985]. The representation of concepts is

based on micro-theories. A micro-theory describes the concept with facts about

the concept (or related concepts) and causal connections between them. For

example, the concept “bird” would have the facts that “it flies”, “it has wings“,

etc., but also rules that explain causality (e.g. Why do birds fly? Why do

they nest in trees?). Thus, a micro-theory can be seen as comprising a concept

network (with causal links) and rules about the concept. This view also poses

some problems such as these two: what should the limits of a micro-theory be

(e.g. should we explain flight by physical rules, or with common sense and to

which level of detail)? Since concepts can be dynamic, representing them with

a theory would raise all sorts of problems of non-monotonic reasoning (how to

represent change? how to maintain consistency and tractability?).

In AI, these three views have been applied. To name a few examples: the prototype

view is common in systems that represent concepts as attribute value sets, such as in

some machine learning systems (e.g. version space learning [Mitchell, 1978], decision

trees); the exemplar view is typical in Case-Based Reasoning systems, where episodic

memory is used to compare old to new problems; the Theory view is common in Logics

(for example in Inductive Logic Programming) and in systems that use semantic

networks, such as Sapper and Copycat (presented in sections 3.4.2 and 2.2.2).

Throughout this book, whenever we refer to concepts, we assume the Theory

view, both in relation to our work and to the work of others, except when explicitly

stating an alternative. It is also important to state the relationship between concept

and category. In our work, a category is itself also a concept, but viewed from the

perspective of membership (e.g. the concepts dog and wolf belong to the canine

category, while the concepts canine and feline belong to the mammal category).
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Chapter 3. Working with Concepts

3.2 Building concepts

Throughout the literature, there seems to be some confusion with the notions of

concept discovery, formation, invention, generation, design and creation. Sometimes

they are synonymous to each other, sometimes they are considered different. We

propose a distinction between two ways of building concepts: concept formation and

concept invention. We provide a consensual definition for concept formation, from

Psychology, which coincides (also consensually) with concept discovery. The definition

for concept invention (or generation or creation) may be less agreed upon since it is

based on less formal principles.

3.2.1 Concept Formation

In Psychology, Concept Formation (also known as concept learning or concept discov-

ery) is associated with the development of the ability to respond to common features

of categories of objects or events. In forming a concept, the subject must focus on

the relevant features and ignore those that are irrelevant. In AI, this task is normally

taken by machine learning, in which patterns are abstracted from analysis of data. In

fact, the goal of machine learning systems is to form concepts. In this sense, if these

systems happen to favor deliberately the formation of novel concepts (as opposed

to systems built for well-defined goals, such as a pattern detection Artificial Neural

Network, or a decision tree for classification), they can be classified as creative sys-

tems. A good example of this is the scientific discovery field. Again, we refer to HR

[Colton et al., 1999] since we give for it is the most recent one of a series of systems

centered on mathematics concept formation (e.g. AM and EURISKO [Lenat, 1984])

that use machine learning.

We can see from these definitions that concept formation is more concerned with

analysis than with synthesis. In other words, works about concept formation deal

more with abstraction of data regularities than with the invention of novel concepts1.

There is a fundamental difference between these two processes: the former is based

on finding sound explanations for data regularities, while the latter on producing

concepts without concerns of soundness. However, this does not necessarily mean

that concept formation is not creative. Quite the opposite, the capacity to perceive

1Thus the name “conceptual invention”, given in some contexts (e.g. the Learning Cycle
of Lawson-Abraham [Lawson et al., 1989] contains a step in which “the students and/or teacher
derive the concept from the data, usually a classroom discussion (the CONCEPTUAL INVEN-
TION phase)”) seems now unfortunate. Words such as “discovery” or “formation” are clearly less
ambiguous.
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Chapter 3. Working with Concepts

regularities and associations that no one has found before is definitely behind many

of the major achievements of humanity.

3.2.2 Concept Invention

A concept has been invented (as opposed to formed) when it cannot be deduced from

its generative process and when it did not exist before, intensionally or extensionally.

In other words, the process of concept invention is unsound (e.g. abduction2). This

definition covers a very broad range of possibilities, from randomness to heuristics-

based search.

In concept invention, evaluation becomes a fundamental issue. Since there is no

a priori notion of validity, criteria must be met for the assessment of the generated

concepts. These criteria can coincide with those discussed for creativity (i.e. nov-

elty and usefulness) or to problem solving (i.e. satisfying a goal). Since these are,

again, difficult criteria, concept invention is normally applied as a generative phase

to feed other sound procedures, which can guarantee validity. For example, in sci-

entific discovery systems (e.g. HR, AM, EURISKO), conjectures are generated from

the application of heuristics; in conceptual design the process of concept invention

(or generation) commences by establishing structural relationships and searching for

regularities and combining them into concept variants [Reffat, 2002]. In AI systems

in general, concept invention has been implemented based on heuristics (e.g. in HR),

parallel processes (e.g. in Copycat), evolutionary techniques (e.g. in NevAr), to name

a few. The main argument here is that in neither case is the novel concept the logical

conclusion from data analysis, but merely a bounded guess to be explored later.

To conclude, we must stress that, in practice, there is not such a strict separation

between formation and invention (rather, there is a continuum). Every discovery

involves conjecturing (i.e. inventing - or speculating about - new concepts yet to

be proven), a process that has a great deal of its power in unsound processes, like

aesthetics, intuition and free-association. In the systems referred to above (HR, AM

and EURISKO), the conjecture generation step is fundamental and it is achieved

with the application of production rules and heuristics to evaluate how interesting

yet-to-be-proven concepts are.

The distinction between formation and invention could be reduced to a problem of

constraint satisfaction: formation has stronger constraints to satisfy than invention,

2Abduction can be roughly described as the assertion of premises, given the truth of the conclu-
sion. For example, with the rule A∧B → C and facts B and C, one can abduce (or assert the truth
of the fact) A, which is not necessarily true.
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Chapter 3. Working with Concepts

which is ill-defined. However, a clearer distinction is needed since these correspond

to two distinct, yet inter-dependent, steps of creativity: rationality and imagination.

Once again, convergence and divergence. While rationality is more constrained, thus

more limited but computationally implementable, imagination allows a world of pos-

sibilities that for a formal machine are hardly feasible, or even possible at all. Indeed

it can be argued that for all AI modelling may become more undetermined and ran-

domised, it is ultimately formal and deterministic, so a paradox arises here: shouldn’t

concept formation be everything when dealing with machines? We propose that, at

least philosophically, we should consider these two forms of working with concepts.

And, even if at the end we are doomed to determinism and formalism, we must not

ignore imagination when attempting to model computational creativity.

3.3 Mixing concepts

3.3.1 Conceptual Combination

Conceptual combination is the process of combining two or more concepts together,

often resulting in a novel concept with an emergent structure of its own. Although re-

garded as a universal cognitive process, the main motif of study in the conceptual com-

bination community is language compositionality, more specifically interpretation of

noun noun (e.g. “pet fish”) and adjective noun (e.g. “blue cup”) combinations. In this

context, the first word (“pet”, “blue”) is called modifier, while the second is the head

(“fish”, “cup”). Four types of combination are proposed (see e.g. [Hampton, 1997],

[Keane and Costello, 2001]): relational, property mapping, conjunctive and known-

concept. Relational combinations establish some relationship between the modifier

and the head (e.g. in “bed pencil”, “a pencil that you put beside your bed for writing

some messages” [Keane and Costello, 2001]); property mapping involves a property

of one concept being asserted to the other (e.g. in “bed pencil”, “a pencil shaped like

a bed” [Keane and Costello, 2001]); conjunctive combinations conjoin both concepts

in some way, the interpretation being both the modifier-concept and the head-concept

(e.g. in “bed pencil”, “a big, flat pencil that is a bed for a doll”); known-concepts or

lexicalized compounds are those that are commonly used and established in commu-

nication (e.g. “pencil case”), sometimes effectively forming a single lexical unit (e.g.

“railway” or “lipstick”).

There are four main theories for conceptual combination: Abstract relations

[Gagné and Shoben, 1997]; Dual-Process [Wisniewski, 1997]; Composite Prototype

[Hampton, 1987]; and Constraints [Costello, 1997]. The abstract relations theory

says that only a limited number of predicates can relate the modifier with the head
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Chapter 3. Working with Concepts

noun: CAUSE, HAS, MAKES, MADE OF, FOR, IS, USES, LOCATED, DERIVED

FROM, ABOUT, DURING, and BY. The dual-process theory proposes two kinds

of processes for conceptual combination, structural alignment and scenario construc-

tion. Structural alignment explains property and conjunctive interpretations (there

is an alignment of attributes of both concepts), while scenario construction explains

relational interpretations (e.g., “a night flight is a flight taken at night”).

The other two theories are important for our work, so we will pay them more

attention. The composite prototype model of James Hampton focusses on conjunc-

tive combinations (e.g. “pet bird”) and proposes that, when forming a concept such

as “pets” that are also “birds”, people take their prototype representations of “pet”

and “bird” and combine the prototypes into a composite to represent the conjunc-

tion. This new concept then inherits its own attribute values from one or the other

constituent parent according to certain principles. For example, the location slot

for “pet” has the value in the home, while the same slot for “bird” has the value

in the wild. “Pet bird” inherits the value from “pet” rather than from “bird”. On

other attributes, the opposite might happen (e.g. the slot covering: feathered - is

inherited from “bird” rather than from “pet”, where its most common value is furry)

[Hampton, 1997]. Two influences on attribute inheritance are: the centrality of the

attribute (e.g. the location of “pet”, as staying at home, is central, while color

is not); its possibility in the composite (e.g. the value migrates could not be pos-

sible in a “pet bird”). Another important aspect of the composite prototype model

is emergence: attributes which are considered true of the conjunction, but not true

of either constituent. It appears that a major source of emergent properties is sim-

ply knowledge of the world - or “extensional feedback” [Hampton, 1987]. Although

the author argues that “we can not expect any model of conceptual combination to

account directly for such effects” [Hampton, 1997], he presents two specific sources

of emergence: exemplar-based, in which typicality of items in conjunctive categories

can vary as a function of the kinds of exemplar found in those categories (e.g. a

“small spoon” is typically made of metal, while a “large spoon” is not); theory-based,

a background theory is applied to infer emergent attributes (e.g. a “beach bicycle”

must have particularly wide tyres). All these ideas from James Hampton are also

explored in Conceptual Blending, presented in section 3.3.2.

The Constraints theory of Fintan Costello and Mark Keane [Costello, 1997] de-

scribes conceptual combination as a process which constructs representations that

satisfy the three constraints of diagnosticity, plausibility and informativeness. Di-

agnosticity requires the presence of diagnostic properties from each of the concepts

being combined. The diagnostic properties of a concept are those which occur of-

ten in instances of that concept and rarely in instances of other concepts (similar
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Chapter 3. Working with Concepts

to salience [Milosavljevic and Dale, 1996]). The plausibility constraint requires the

preference to semantic elements which are already known to co-occur on the basis of

past experience. This constraint would predict that the interpretation “an angel pig

is a pig with wings on its torso” would be preferable to “an angel pig is a pig with

wings on its tail”. Informativeness requires an interpretation to convey a requisite

amount of new information. Informativeness excludes feasible interpretations that do

not communicate anything new relative to either constituent concept; for example,

“a pencil bed is a bed made of wood” [Keane and Costello, 2001].

Costello and Keane implemented a computational model of their theory. The

system is named Constraints on Conceptual Combination (or C3) and will be subject

to a comparison with Divago in chapter 5.

As could be seen, conceptual combination is viewed as a cognitive process, al-

though its analysis is usually constrained to a particular language, primarily to En-

glish. There are, however, aspects which are specific to some language or family of

languages. Indeed, while Dutch and German also allow the same kinds of combina-

tions, other languages such as Portuguese or French don’t. In Portuguese, the use

of prepositions (e.g. de, para, etc.) in combinations guarantees non-ambiguity. In

principle, two consecutive nouns in Portuguese correspond to a conjunctive interpre-

tation (and, rarely, to a property interpretation). Of the four theories presented, only

the composite prototype model seems to be totally language independent, perhaps

because it is directed to conjunctive combinations. This does not mean that the other

theories are less valid or unrelated to cognition or creativity, rather we say that they

favor problems at the level of language rather than at the level of concepts. In this

sense, they are models of interpretation and natural language understanding, without

paying attention to other domains like visual arts, music or scientific discovery. In

these domains too, conceptual combination is constantly present, and is often shared

across different fields and media (e.g. in the Baroque style, abstract concepts such

as ornamentation or luxury, travel across the several fields). Thus, we conclude that

these models are a priori limited as models of creativity (except for Hampton’s model,

since it focusses on generic concepts and considers emergence).

3.3.2 Conceptual Blending

The framework of Conceptual Blending (CB), also known as Conceptual Integration,

was developed by Gilles Fauconnier and Mark Turner, and was initially motivated to-

wards specific cognitive phenomena such as Metaphor, Metonymy and Counterfactual

Reasoning (Fauconnier and Turner, 98). Blending is generally described as involving
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Chapter 3. Working with Concepts

Figure 3.1: The standard, four-space model, of Conceptual Blending.

two input knowledge structures (the mental spaces) that, according to a given map-

ping, will generate a third one, called Blend. This new domain will maintain partial

structure from the inputs and add an emergent structure of its own.

More recently Fauconnier and Turner propose CB as an explanation for various

cognitive phenomena. This claim has been taken even further in the book “The way

we think”[Fauconnier and Turner, 2002], in which the authors suggest their frame-

work for explaining “the nature and origin of cognitively modern human beings”.

These bold claims incurred the voice of the critics, which we will summarise once we

have explained CB in some detail. As the reader will see, we agree with these critics

but we think that some of the essential components of Conceptual Blending should

be given merit. Most of all, we think that CB as a framework, and in the way it is

presented (mainly before [Fauconnier and Turner, 2002]), allows it to be considered

by AI, and more specifically by Computational Creativity. The question now arises

of whether it could be considered per se a model of creativity. According to our views

given above (in chapter 2), we can hardly say that CB, alone, is a model of creativity:

indeed, there is nothing deliberately dedicated to novelty in the framework; there

is no proposed method for distinguishing whether a blend is or is not creative (e.g.

“red pencil” is considered to have complex structure - does this make “red pencil”

fcreative?); there is no clue for how or why a pair of inputs should be chosen to poten-

tiate creativity. On the other hand, it proposes a many-step method for bisociation

(that indeed follows a conceptual combination philosophy, such as proposed by James

Hampton, briefly described above [Hampton, 1987]), which we consider as vital for

the Creativity Model presented in this book. And, although formally undefined in so

many issues, it is more detailed and explained than the other models (of combination)
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Chapter 3. Working with Concepts

studied. Thus, it is the combination of CB with an AI search method, combined with

novelty and usefulness heuristics, that we will propose as a creative system.

As just shown, Conceptual Blending is not formally or algorithmically described

in its fundamental details by Fauconnier and Turner. As far as we know, there

are only a few formal accounts of this subject, apart from our own [Goguen, 1999,

Veale and O’Donoghue, 2000, Lee and Barnden, 2001] and its formalization is clearly

not given priority within the mainstream CB community (see discussion about com-

putational modelling in [Fauconnier and Turner, 2002, p. 110]).

The computational realization of this model is definitely a big challenge since

Conceptual Blending has many particularities that vary according to the situation,

complex components like intuition, social behavior, expectation or common sense.

In other words, there are several issues that are clearly hard to model. Yet, the

intersection of AI and CB may bring, if not the computational model of the framework,

at least methods or algorithms that may bring important contributions for the field

of Computational Creativity, as we hope to demonstrate.

The framework

A blend is a concept or web of concepts whose existence and identity, although at-

tached to the pieces of knowledge that participated in its generation (the inputs),

acquires gradual independence through use. We often find a blend as being a con-

cept that has the structure of other concepts, yet also having its own (emergent)

structure. We find examples of blends in many sorts of situations. People have been

making blends from at least the times of Greek mythology (e.g. Pegasus) till today

(e.g. the Pokemon creatures). They are present throughout our daily communication

(e.g. “John digested the book”), technological evolution (e.g. “Computer virus”,

“Computer desktop”), arts (e.g. Mussorgsky’s “Pictures at an exhibition”; Kandyn-

sky’s “Improvisations”), advertising (e.g. Swatch is a blend of “swiss” and “watch”).

The works of [Mandelblit, 1997], [Sweetser and Dancygier, 1999], [Coulson, 2000] and

[Veale and O’Donoghue, 2000] are examples of how CB can contribute to Linguistics,

Creative Cognition, Analogy and Metaphor.

The first fundamental element of Conceptual Blending is the mental space. A

mental space is “a partial and temporary representational structure which speakers

construct when thinking or talking about a perceived, imagined, past, present or

future situation” [Grady et al., 1999]. “Mental spaces are small conceptual packets

constructed as we think and talk, for purposes of local understanding and action.

(..) [they] are very partial. They contain elements and are typically structured by

frames. They are interconnected, and can be modified as thought and discourse
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Figure 3.2: Two simple mental spaces for computer program and for virus.

unfold. Mental spaces can be used generally to model dynamic mappings in thought

and language” [Fauconnier and Turner, 2002, 40]. From a symbolic AI perspective,

a mental space could be represented as a semantic network, a graph in which we

have nodes identifying concepts3 (corresponding to the elements of a mental space)

interconnected by relations. The definitions of mental space still allow many other

representations (e.g. cases in Case-Based Reasoning, memes in Memetics or even

the activation pattern of a Neural Network in a given moment) but these would

certainly demand more complex computational treatment, especially with regard to

the mapping. In figure 3.2, we show two possible mental space representations for

“computer” and “virus”.

In order to generate a blend, we must find mappings between the two mental

spaces. We call these cross-space (or cross-domain) mappings. They connect elements

of one mental space to others, in another mental space. A mapping may be achieved

through different processes (e.g. identity, structure alignment, slot-filling, analogy)

and doesn’t have to be 1-to-1, i.e., an element may have more than one counterpart

or it can have no counterparts at all. A possible mapping for the “computer virus”

blend is shown in figure 3.3.

Another important notion is that of frames. When “elements and relations are

organized as a package that we already know about, we say that the mental space is

framed and we call that organization a frame” [Fauconnier and Turner, 2002, 102].

A frame is therefore a kind of abstract prototype of entities, actions or reasonings.

For example, the mental space of “bus” could be organized according to the frame

“transport means”, while the mental space of “Mary’s wedding” could be organized

by the “marriage” frame. Of course, this reminds us of the frames and scripts from

3In this context, a concept is identified by a node, but its definition comes from its relationships
with the other concepts, which is consistent with the Theory view given at the beginning of this
chapter.
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Figure 3.3: Cross-space mapping between the mental spaces of computer and virus.
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Figure 3.4: The organizing frames of the mental spaces of computer and virus.

early AI research but, in this case, these frames may be dynamic (they can change

with time, individual and context, as with concepts in general) as well as composi-

tional (there are many layers of abstraction for frames). We call the principal frame

underlying a mental space organizing (e.g. “transport means” is the organizing frame

of “bus”, while “container” is not). In figure 3.4, we present two organizing frames

of the “computer” and “virus” mental spaces (the program frame and the virus

frame).

The frames preserve order in the blend, in the sense that they guide the process

of blend construction to recognizable wholes. This does not mean, however, that the

blend will integrate one single frame. Sometimes, as in the example of “computer

virus” (in figure 3.5), the blend will inherit structure from both frames. As we can

see in this example, some elements may not be projected. In this case, the “input”

and “output” elements of computer viruses are normally a lot more subtle (or hidden)

than in the usual programs.

In CB, the generation of a blend takes three (not necessarily sequential) steps:
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Figure 3.5: The computer virus blend.

• Composition.

“Projection of content from each of the inputs into the blended space. Some-

times this process involves the ’fusion’ of elements from the inputs (...)”

[Grady et al., 1999]. Taken together, the projections from the inputs make

available new relations that did not exist in the separate inputs. The paired

elements are projected onto the blend as well as other surrounding elements and

relations. This is a selective projection, i.e., some elements get projected to the

blend, some don’t.

• Completion. “The filling out of a pattern in the blend, evoked when structure

projected from the input spaces matches information in long-term memory. In

this way, the completion process is often a source of emergent content in the

blend” [Grady et al., 1999]. Knowledge of background frames, cognitive and

cultural models, allows the composite structure projected into the blend from

the inputs to be viewed as part of a larger self-contained structure in the blend.

The pattern in the blend triggered by the inherited structure is “completed”

into the larger, emergent structure.
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• Elaboration. “The simulated mental performance of the event in the blend,

which we may continue indefinitely” [Grady et al., 1999]. The structure in the

blend can then be elaborated. This is called “running the blend”. It consists

of cognitive work performed within the blend, according to its own emergent

logic.

We illustrate the process of blending construction with another classic example,

the “Riddle of the Buddhist Monk”, which comes from Arthur Koestler’s The Act of

Creation:

A Buddhist Monk begins at dawn one day walking up a mountain, reaches

the top at sunset, meditates at the top for several days until one dawn

when he begins to walk back to the foot of the mountain, which he reaches

at sunset. Make no assumptions about his starting or stopping or about

his pace during the trips. Riddle: Is there a place on the path that the

monk occupies at the same hour of the day on the two separate journeys?

Following Koestler’s solution to the riddle, Fauconnier and Turner suggest that

it involves blending two different input spaces, one concerning the upward trip (day

’d1’) and another one concerning the downward trip (day ’d2’). A generic space holds

the commonalities between the two input spaces (a moving individual, his position,

a path linking foot and summit of the mountain, a day of travel, and motion in

an unspecified direction) [Fauconnier and Turner, 2002, p. 45]. The reasoning thus

goes: first, composition of elements from the inputs makes relations available in the

blend that do not exist in separate inputs. Only in the blend we have two individuals

instead of one. Second, completion brings additional structure to the blend (e.g. the

frame of “two people starting a journey at the same time from opposite ends of a

path”). At this point, the blend is integrated: it is an instantiation of a familiar

frame (“two people starting a journey...”). By virtue of this frame, we can now run

the blend, i.e., elaborate it. In this case, it coincides to applying intuitive movement

laws in opposite directions, which will make the two imagined monks, a1 and a2,

eventually meet each other at some point, thus answering the riddle. This is what

Fauconnier and Turner call emergent behavior. This reasoning is schematized in

figure 3.6 [Fauconnier and Turner, 2002, p. 43]. This example also leads us back to

the discussion of Conceptual Blending and Creativity above. CB does not actually

tells us to blend the input spaces so that the monk performs both journeys on the

same day. This is a crucial step to distiguish a creative from a non-creative solution

(or a non-solution) to the puzzle. Rather, once we make this decision, CB allows

us to perform the blend and determine the results (i.e., that a point does exist). In
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Figure 3.6: Blended spaces for the Riddle of the Buddhist Monk

fact, there is an initial step of high complexity (which inputs to choose to solve a

problem?) that is so far not accounted by the CB framework.

In general, the projection of data to the blend is not exhaustive or predetermined in

any way. Each element may be projected “untouched” to the blend, it may be “fused”

with other concepts, it may be projected to another element (usually the projection

of its counterpart) and it may not even be projected. This selective projection brings

considerable complexity to the blending process because it raises the number of pos-

sible combinations to an extremely large number. This space of potential blends will

certainly not be completely traversed for a new blend construction. In a quite different

manner, projections are selected through a constraint-guided process of accommoda-

tion towards satisfying a set of Optimality Principles [Fauconnier and Turner, 2002]:

• Integration - The blend must constitute a tightly integrated scene that can be

manipulated as a unit.

• Pattern Completion - Other things being equal, complete elements in the blend

by using existing integrated patterns as additional inputs.

• Topology - Other things being equal, for any input space and any element in

that space projected into the blend, it should be optimal for the relations of the

element in the blend to match the relations of its counterparts.
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• Maximization of Vital Relations - Other things being equal, maximize the vi-

tal relations in the network. Turner and Fauconnier identify 15 different vital

relations: change, identity, time, space, cause-effect, part-whole, representa-

tion, role, analogy, disanalogy, property, similarity, category, intentionality and

uniqueness.

• Intensification of Vital Relations - Other things being equal, intensify vital

relations.

• Web - Manipulating the blend as a unit must maintain the web of appropriate

connections to the input spaces easily and without additional surveillance or

computation.

• Unpacking - The blend alone must enable the perceiver to unpack the blend

to reconstruct the inputs, the cross-space mapping, the generic space, and the

network of connections between all these spaces

• Relevance - Other things being equal, an element in the blend should have rele-

vance, including relevance for establishing links to other spaces and for running

the blend. I.e. it should have a good reason to exist.

These constraints work as competing pressures and their individual influence in

the process should vary according to the situation; when the value of one grows, others

may decrease. As far as we know, there is no work yet towards an objective study of

the optimality pressures, measuring examples of blends or formally specifying these

principles. This, we believe, inhibits considerably the appreciation and application

of Conceptual Blending in scientific research, thus a lateral motivation for the work

presented here becomes that of testing and specifying a formal proposal of these

optimality pressures.

Among the many possible classifications of blending networks, Fauconnier and

Turner particularly stress three kinds: mirror networks, single-scope and double-

scope networks. A mirror network is one in which both input spaces share the same

organizing frame, and so does the blend. In single- and double-scope networks, input

spaces have different organizing frames. In a single-scope network, the blend has the

organizing frame of only one of the input spaces, while, in a double-scope network,

the organizing frame of the blend results from a combination of the inputs. The

latter, as argued by [Fauconnier and Turner, 2002], is fundamental for human modern

cognition and is deemed more creative. In the examples above, “computer virus” can

be considered a double-scope blend, since its structure comes from a combination of

the input’s structures, while the “Buddhist monk” is a mirror network because both
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input spaces share the exact same structure (both have a path, a monk, a direction,

a mountain, etc.), the only difference being the direction.

CB is a promising contribution to modelling creativity since it consists of the gen-

eration of new concepts from integration of previous knowledge, with its own emergent

structure (the whole is bigger than the sum of its parts); it has a domain indepen-

dent evaluative methodology (e.g. the optimality constraints); it is consistent with

processes often associated with creativity such as Metaphor and Conceptual Combi-

nation [Fauconnier and Turner, 1998, Veale and O’Donoghue, 2000, Coulson, 2000];

and, finally, it is not, by itself, a deterministic process, rather it is a context-sensitive

process that considers “in parallel” a set of constraints that may interact and yield

a (potentially large) varied space of equally valid solutions. In other words, with the

same starting conditions, we may get many different results, all with the same overall

value.

Since, in this book, we propose a computational model of Conceptual Blending,

we will also apply some established examples. We call these established because they

have often been cited in various articles or represent classic situations approached in

Blending literature. They were taken from the main literature references (namely from

[Fauconnier and Turner, 2002] and [Coulson, 2000]). In section 6, we will apply them

for purposes of validation of our blending module. All the examples are described in

Appendix B.

So far, there is little work on computational Conceptual Blending. We

can only name three examples: Joseph Goguen’s Algebraic Semiotics’ approach

[Goguen, 1999]; Veale and O’Donoghue’s extension of Sapper to account for Blend-

ing [Veale and O’Donoghue, 2000]; and Barnden and Lee’s approach to Conceptual

Blending with counterfactuals [Lee and Barnden, 2001]. Joseph Goguen proposes to

describe blending using the algebraic semiotics formalism. Algebraic semiotics is a

formal theory of complex signs addressing interface issues, in a general sense of “in-

terface” that includes user interface design, natural language and art. In the context

of Semiotics, there are two views of what a sign is, from Saussure [Saussure, 1983]

and Peirce [Peirce, 1958]. Goguen follows mainly Peirce’s definition4:

A sign (..) [in the form of a representamen] is something which stands

to somebody in some respect or capacity. It addresses somebody, that is,

creates in the mind of that person an equivalent sign, or perhaps a more

developed sign. That sign which it creates I call the interpretant of the

first sign. The sign stands for something, its object. It stands for that

4As cited in [Chandler, 2002]
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object, not in all respects, but in reference to a sort of idea, which I have

sometimes called the ground of the representamen. [Peirce, 1958, p. 2228]

According to this model of sign, the traffic sign for “stop” would consist of: the

red light facing traffic (the representamen); vehicles halting (the object) and the idea

that a red light indicates that vehicles must stop (the interpretant). In the work of

Goguen, a complex sign (or a sign system) is a sign that may have several levels of

subsigns with an internal structure. He thus developed Algebraic Semiotics as being

a computational treatment of sign systems. “Building on an insight from computer

science, that discrete structures can be described by algebraic theories, sign systems

are defined to be algebraic theories with extra structure, and semiotic morphisms

are defined to be mappings of algebraic theories that (to some extent) preserve the

extra structure” [Goguen, 1999]. Describing blends as being semiotic morphisms of

sign systems (the input spaces), Goguen thus applies Algebraic Semiotics as a way

of formalizing Conceptual Blending. More specifically, he argues that two category

theory constructions, 3
2
pushouts and 3

2
colimits, give blends that are “best possible”

in a sense that involves ordering semiotic morphisms by quality. Some examples of

how this quality can be measured are:

• The most important subsigns of a sign should map to correspondingly impor-

tant subsigns of its representation (more technically, this calls for preserving

important sorts and constructors).

• It is better to preserve form (i.e., structure) than content, if something is to be

sacrificed.

• The most important axioms about signs should also be satisfied by their repre-

sentations.

We presented Goguens’ work rather briefly and informally for much more space

would be needed and the reader would have to become acquainted with algebraic

semiotics and their application to Blending and we think that this is an unnecessary

effort with regard to understanding our work. However, when presenting our model of

blending, we will return to Goguen’s formalization whenever there are similarities and

discrepancies. There, we hope, the reader will also gain a better insight into Goguen’s

approach. As a final remark, we have to say that although this formalization should

be credited as the first attempt to clarify some of CB’s aspects with as much accuracy

as possible, it leaves out some important issues, such as the optimality constraints,

the actual processes of construction (composition, completion and elaboration) or

selective projection. Some of these are theoretically accounted for (or indirectly im-

plied by the formalization, such as the quality constraints example above, which can
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be seen as optimality constraints), but they are not realized in any specific way (e.g.

with specific processes for generating mappings and doing selective projection), which

would certainly unravel many more problems. Finally it is noticeable that, in spite

of efforts in this direction, the formal notation for blending given by Goguen has not

been applied by the cognitive linguistics community, perhaps because it is too com-

plex, or, more probably, because the community still finds it ineffective in studying

blends.

Veale and O’Donoghue [Veale and O’Donoghue, 2000] present a computational

model which relies on the metaphor interpretation system, Sapper (presented in the

next section), to establish a dynamic blend between two domains. This blend, rather

than being an independent new domain, corresponds to a unifying set of correspon-

dences of concepts from both domains, built according to a constructor space. There-

fore, although the authors argue to the contrary, this work misses the actual creation

of the fourth space, the blend, which should have the same sort of structures as the

inputs. It ends up being the set of awakened dormant bridges that are raised during

the process (this will be thoroughly explained in section 3.4.2) which correspond to

a mapping rather than being an independent new domain. The assignment of pairs

of mapped elements doesn’t necessarily imply a specific blend, as some elements may

get projected, others get fused or be absent in the blend (selective projection). In our

opinion, Sapper generates what we later will call a blendoid. As for emergent struc-

ture, it relies on “candidate inference” (transfer of structure from source to target),

which is sufficient for laying the basis for novelty, but not for exploring it (i.e. there

is no “running of the blend”). The authors also address the optimality pressures

[Veale and O’Donoghue, 2000] as being by-products of the pressure to find a good

isomorphism, but we think these are a set of varied perspectives, hardly reducible

to a single measure5. Perhaps the weakness of their approach to blending is that

the authors did not elaborate this idea more than in [Veale and O’Donoghue, 2000],

nor give any practical results or detailed demonstrations, for then we would be able

to contrast our proposals to theirs. As we will see, Sapper, more specifically its

cross-space mapping mechanism, will also be useful for the work presented here.

Lee and Barnden [Lee and Barnden, 2001] focus the problem of reasoning with

counterfactuals from the point of view of their ATT-Meta system [Barnden, 1998]

(which will be briefly described in section 3.4.3), further analysing it from a per-

spective of Conceptual Blending. A counterfactual is the reasoning associated to

expressions of the form “If S1 then S2” (e.g. “If John had sold his shares then he

would have made a profit.”) and it implies a priori contradictions when making

5As the reader will see in the conclusions, we also consider the reduction of the number of
principles to three: Relevance, Topology and Integration.
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straight truth assertions of the constituents S1 and S2 (it must be true that “John

did not sell his shares”, otherwise the “if” condition would not be necessary). Thus, to

check the truth value of a counterfactual, one has to reason by hypotheses (for which

ATT-Meta is well suited). Starting by a simple example, such as the one just given,

and explaining how it could be processed via ATT-Meta’s mechanisms, the authors

then proceed to more complex situations that would imply a conceptual blending,

such as “If Julius Ceasar was in charge of the Korean War then he’d have used the

atom bomb”. This would imply the blending of “Roman Empire” and “Korean War”

domain knowledge into the same space prior to analysing the counterfactual in the

same fashion as the simpler examples. The authors do not explore in depth any of

the mechanisms of Conceptual Blending described here, as it is not the focus of their

work. Conversely, we will not focus on counterfactual reasoning throughout this book

since it would imply a deviation from its main objectives. However, there is no reason

to believe that its results should not be extended towards this type of reasoning.

Some criticisms

We will now give special attention to the weaknesses and problems of the Conceptual

Blending framework. It is noticeable that the Conceptual Blending framework is still

ongoing research, possibly in its early versions. Naturally, it has been subject to

some criticisms and its evolution to the next stages of the cycle of research certainly

depends on searching for valid answers to these concerns .

The first and most obvious weakness of Conceptual Blending is its vagueness and

lack of formality across its many aspects. Starting from the notion of mental space,

it is unclear what it is exactly, to which extent it is cognitively plausible (it should

be plausible, given the claims of CB as fundamental to cognition). Indeed, the reader

might have felt some discomfort with the definition we gave, and which we tried

to clarify with AI examples. This problem of definition of mental spaces becomes

clear when discussing domains and frames. In some examples, we see the blending

of domains, in some others (as happens in Seana Coulson’s book [Coulson, 2000]) of

frames, without understanding why these are not just named as “mental spaces”. If

there were a more clear notion of mental spaces, perhaps the Optimality Principles

would become less vague (see, for example the explanation for “Intensification of

Vital Relations”6 above). This obscurity is carried over to the whole methodology

that the authors use to deconstruct blends. There seems to be no specific set of rules

for analyzing a blend other than intuition. A clear sign of this can be observed in

6Of course, in [Fauconnier and Turner, 2002], this constraint is more explained, but from the
beginning to the end we keep confused with the lack of clear difference to Maximization of Vital
Relations.
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the generic space shown in our examples (see Appendix B), which sometimes is a set

of generalizations, sometimes it represents specific knowledge, and other times it is

just absent. Each new example may yield different analysis from different people,

which compromises the predictability of this framework. This, of course, shows more

in complex blends, which we tried to reduce to a minimum in the examples given

(in fact, being subjective as little as possible was one of the main restrictions for

selecting examples for experiments). In simpler blends, when it is clear that we are

indeed faced with a blend (e.g. “computer virus”, “Riddle of the Buddhist Monk”,

Pegasus, Dracula), the framework does not seem to be so controversial. Nevertheless,

it is still not clear how to distinguish a simple from a complex blend and, even worse,

it is not clear how to distinguish a blend from a non-blend. Ultimately, it seems

that everything that has a symbolic meaning is a blend (e.g. sign language, money,

machine dials, etc.), which of course leads to very extreme claims. This reasoning

falls into the same category as the claim that “every language is metaphoric”, also

a relativist perspective that, although maybe philosophically interesting, only risks

to sterilize its development unless a valid paradigm shift is made (i.e. “since every

language is metaphoric, let us develop a different theory of language, and demonstrate

its validity”).

All these problems lead to the issue of falsifiability. Since the Conceptual Blending

framework does not predict the more complex blends and the distinction between

what is and what is not a blend is obscured, it is in principle not falsifiable, and

therefore not a theory, in a modern science sense7. Assuming the different perspective

of research programs from Lakatos8, the framework of Conceptual Blending could be

considered a research program, although its belt of auxiliary hypotheses needs to be

more formally defined. In other words, these auxiliary hypotheses still need to be

falsifiable.

These criticisms are intended to encourage work that, from our point of view, is

fundamental and also motivates us. We do not promise to give any perfect blending

machine or even to demonstrate that ours is the formalization of the whole Conceptual

Blending framework. To do so, it would be necessary to solve the problems described

above (what is a mental space, a frame or a projection; what should the optimality

7A fact or a theory being falsifiable means that it can, in principle, be proven false. According
to Karl Popper [Popper, 1959], a theory that explains a phenomenon must be falsifiable through an
experimental result that is implied by the theory. One can justify a theory rationally if it is not
(yet) falsified.

8A research program consists of a theoretical core which is protected by a belt of auxiliary hypothe-
ses. When the theory is falsified, an auxiliary hypothesis should be reconsidered, not the theoretical
hard core. A revolution is explained as a change in the theoretical hard core [Lakatos, 1978]. Lakatos
elucidated the activity of science not as the project of trying to refute one theory but as investigating
empirical phenomena within the theoretical frame of a research program (in [van den Bosch, 2001]).
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principles and the selective projections be about) prior to dedicating an entire thesis

to it. Here, we will propose a computational level answer to some of them.

In spite of all these criticisms, it has been claimed that Conceptual Combination

theories (such as presented earlier in section 3.3.1) cannot predict more than Concep-

tual Blending does, i.e., the same level of predictions with noun noun combinations

can be done with CB (see [Coulson, 2000]). Indeed, as said by James Hampton,

only a small set of emergent features can be predicted by theories, which limits pre-

dictability to the more constrained and closed world situations (i.e. in an ideal, yet

unrealistic, scenario, we have two concepts defined with a universally accepted and

stable representation). As an analytical model, it can become productive, as the

examples of [Mandelblit, 1997], [Sweetser and Dancygier, 1999], [Coulson, 2000] and

[Veale and O’Donoghue, 2000] show how CB can contribute to Linguistics, Creative

Cognition, Analogy and Metaphor.

To conclude, Conceptual Blending is as an elaboration of other works related to

creativity, namely Bisociation (in section 2.1.2), Metaphor (in the following section)

and Conceptual Combination9. As such, it attracts the attention of computational

creativity modelers and, regardless of how Fauconnier and Turner describe its pro-

cesses and principles, it is unquestionable that there is some kind of blending hap-

pening in the creative mind.

3.4 Metaphor and Analogy

Metaphor and analogy are two cognitive mechanisms that have been recognized as

underlying the reasoning across different domains10. Because of this, they play an

indomitable role in creativity and must be discussed here. Although no consensus has

been reached in the current literature regarding a clear distinction between metaphor

and analogy, it is clear that their mechanics share many commonalities. It is widely

accepted in analogy research that many of the problems of metaphor interpretation

can be handled using established analogical models, such as the structure mapping

approach [Gentner, 1983]. Thus, we present a set of works that involve mapping across

distinct domains, namely SME (section 3.4.1) and Sapper (section 3.4.2). Although

only the latter has been of direct influence to our work, SME deserves particular

9Another common criticism is that the authors of Conceptual Blending have not given fair credit
to preceding works, such as James Hampton’s Composite Prototype Model [Hampton, 1987], which,
as can now be understood, stated the same general lines followed ten years later by Conceptual
Blending, although it is also fair to acknowledge that Fauconnier and Turner have made much
deeper explorations into the same issues.

10This claim is nowadays widely agreed, as metaphor is seen as a cognitive rather than a linguistic
device. For an extensive figurative versus literalist analysis, we redirect the reader to [Veale, 1995]
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attention for it has been the main reference in Analogy in the past few years and was

the starting point and the benchmark for other systems, which will also be covered

in an overview (section 3.4.3).

3.4.1 Structure Mapping Engine

The Structure Mapping Engine (SME) of Dedre Gentner, Kenneth Forbus and

Brian Falkenhainer [Falkenhainer et al., 1989] was initially built as a computa-

tional implementation of the Structure Mapping Theory (SMT) of Dedre Gentner

[Gentner, 1983]11. In this theory (as generally accepted in the field), analogy consists

of a mapping of knowledge from one domain (the base) into another (the target) and

may be used to guide reasoning, to generate conjectures about an unfamiliar domain,

or to generalize several experiences into an abstract schema. Moreover, SMT is based

on the intuition that analogies are supported on relations: “No matter what kind of

knowledge (causal models, plans, stories, etc.), it is the structural properties (i.e., the

interrelationships between the facts) that determine the content of an analogy”. Thus,

analogical processing is decomposed into three stages [Falkenhainer et al., 1989]:

1. Access: given a current target situation, retrieve from long-term memory an-

other description, the base, which is analogous or similar to the target.

2. Mapping and Inference: construct a mapping consisting of correspondences

between the base and target.

3. Evaluation and Use: estimate the ’quality’ of the match. Three kinds of crite-

ria are involved: the structural criteria include the number of similarities and

differences; the second criteria concerns the validity of the match; the third

criteria is relevance, i.e., whether or not the analogy is useful to the reasoner’s

current purposes.

SME deals only with the Mapping and Inference stage (although also providing

a domain-independent structural evaluation). In terms of knowledge representation,

it differentiates between entities, predicates and dgroups. Entities correspond to the

lower level objects or constants; predicates are higher-level primitives of three sorts

(functions, attributes and relations); and dgroups correspond to a collection of entities

and predicates about them. Below, we give an example of a dgroup named simple-

heat-flow.

11It is important to give reference here to the works of P. Winston[Winston, 1980] and T. Evans
[Evans, 1968] which laid the foundations for the study of Analogy in AI, particulary the Structure
Mapping approaches.
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(defDescription simple-heat-flow

entities (coffee ice-cube bar heat)

expressions (((flow coffee ice-cube heat bar) :name hflow)

((temperature coffee) :name temp-coffee)

((temperature ice-cube) :name temp-ice-cube)

((greater temp-coffee temp-ice-cube) :name >temperature)

(flat-top coffee)

(liquid coffee)))

To clarify, we give an example of each kind of representation: coffee is an entity,

flow is a relation, temperature is a function and liquid is an attribute. It is clear that

an attribute can be represented as a relation (e.g. (property coffee liquid) is the same

as (liquid coffee)).

SME establishes potential cross-domain linkages via match hypothesis construc-

tion rules (MHC). These rules are programmable externally and specify the condi-

tions that must be met in order to create a cross-domain linkage (known as match

hypothesis(MH)).

SME constructs the cross-domain mapping by calculating the largest, maximal

collection of MH’s. “A collection is maximal if adding any additional match hypoth-

esis would render the collection structurally inconsistent”[Falkenhainer et al., 1989].

Being structurally consistent means that (i) the MH’s do not assign the same base

concept to multiple target concepts; (ii) if a match hypothesis MH is in the collec-

tion, then so are MH’s which pair up all of the arguments of MH’s base and target

concepts12. Collections are called gmaps, each containing, apart from a set of MH’s,

a set of candidate inferences (new relations that will be projected to the target, if the

gmap is chosen) and an evaluation score.

SME was able to solve many classic analogy problems, such as the Solar-System

- Rutherford Atom analogy or the Heat-Water flow analogy. In figure 3.7, we show

its interpretation for the Heat-Water flow analogy. It can be seen that Gmap#1

produced the correct inference that temperature causes heat flow.

The major problem with SME is its intractability with unstructured representa-

tions as pointed out in [Veale and Keane, 1997]. As the authors of SME acknowledge,

“worst-case performance occurs when the description language is flat (i.e., no higher-

order structure) and the same predicate occurs many times in both the base and the

target” [Falkenhainer et al., 1989]. There are two major reasons for this last problem:

12I.e. if we have MH(A,B) and a relation r, with (r A C) and (r B D) then the collection must
also contain MH(C,D)
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1. Run MHC rules to construct match hypotheses.
2. Calculate the Conflicting set for each match hypothesis.
3. Calculate the EMaps (collections of entity matches) and NoGood

sets (collections of conflicting entity matches) for each match
hypothesis by upward propagation from entity mappings.

4. Merge match hypotheses into gmaps.
(a) Interconnected and consistent.
(b) Consistent members of same base structure.
(c) Any further consistent combinations.

5. Calculate the candidate inferences for each gmap.
6. Score the matches

(a) Local match scores.
(b) Global structural evaluation scores.

Table 3.1: Overview of the SME algorithm

the knowledge representation is predicate centered and therefore, when predicates are

not hierarchically structured, it becomes flat, even when entities are themselves struc-

tured (e.g. a description of a multi-part object); SME makes an exhaustive search to

obtain the largest mapping. In an attempt to overcome these problems, Forbus and

Oblinger proposed a sub-optimal Greedy version of SME [Forbus and Oblinger, 1990],

which applies their greedy merge algorithm. Roughly speaking, this algorithm itera-

tively cuts the search tree whenever it finds high quality local maxima. This quality

is given by the pmap’s “structural evaluation score”. The authors considerably opti-

mized SME’s algorithm, sacrificing its optimal results. However, again, in comparison

with Sapper [Veale and Keane, 1998], the algorithm efficiency remains far from being

computationally feasible.

3.4.2 Conceptual Scaffolding and Sapper

Tony Veale developed a model of metaphor interpretation centered on the contempo-

rary theory [Lakoff and Johnson, 1980], which proposes to explain metaphors via a

process of structuring one concept (the tenor) with knowledge from another concept

(the vehicle), with the purpose of (i) emphasizing certain associations of the tenor over

others (“my dentist is a barbarian‘”); (ii) enriching the conceptual structure of the

tenor by analogy with another domain (“the CPU is the brain of the computer”); (iii)

conveying some aspect of the tenor which defies conventional lexicalization (“the leg

of the chair”, “the neck of the bottle”)[Veale, 1995]. The most revolutionary assump-

tion from the contemporary metaphor theory is that metaphors belong to conceptual

classes that are deeply entrenched in our world experience. Examples of metaphorical

concepts include ’ARGUMENT is WAR’ (“I will defend myself against his claims”),
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Rule File: literal-similarity.rules Number of Match Hypotheses: 14

Match Hypotheses:

(0.6500 0.0000) (>PRESSURE >TEMP)

(0.7120 0.0000) (PRESS-BEAKER TEMP-COFFEE)

(0.7120 0.0000) (PRESS-VIAL TEMP-ICE-CUBE)

(0.9318 0.0000) (BEAKER-6 COFFEE-1)

(0.6320 0.0000) (PIPE-8 BAR-3)

o o o

o o o

GlobalMappings:

Gmap#1: (>PRESSURE >TEMPERATURE) (PRESSURE-BEAKER TEMP-COFFEE)

(PRESSURE-VIAL TEMP-ICE-CUBE) (WFLOW HFLOW)

Emaps: (beaker coffee) (vial ice-cube) (water heat) (pipe bar)

Weight: 5.99

Candidate Inferences: (CAUSE >TEMPERATURE HFLOW)

Gmap #2: (>DIAMETER >TEMPERATURE) (DIAMETER-1 TEMP-COFFEE)

(DIAMETER-2 TEMP-ICE-CUBE)

Emaps: (beaker coffee) (vial ice-cube)

Weight: 3.94

Candidate Inferences:

Gmap #3: (LIQUID-3 LIQUID-5) (FLAT-TOP-4 FLAT-TOP-6)

Emaps: (water coffee)

Weight: 2.44

Candidate Inferences:

Figure 3.7: Complete SME interpretation of Heat-Water flow analogy(from
[Falkenhainer et al., 1989])

’TIME is MONEY’ (“She wasted hours in solving it”), or ’SAD is DOWN’ (“Don’t let

yourself down”). Moreover, most non-trivial metaphors can be reduced to complexes

of simpler core metaphors, grounded in our spatial understanding of the world (e.g.

’ABSTRACT STATES as LOCATIONS’: “Bill went mad”, “Suzie went to sleep”;

’TIME as a LOCATION’: “at 5 o’clock”, “in March”).

In his model, Veale proposes two different, subsequent, steps for metaphor in-

terpretation: extraction of a conceptual scaffolding between the ideas evoked by a

metaphoric utterance, by identification of underlying core metaphors; establishment

of relations between those ideas for extensive explanation of the metaphor, involving

cross-domain transference (Sapper). The former works top-down, while the latter,

bottom-up.

The essential role of conceptual scaffolding is to build a skeleton that will be

the basis for Sapper in the search for plausible relations using domain knowledge.

Therefore, the relations built during scaffolding are not intended to capture all the

subtleties and nuances of meaning in a metaphor, rather, they are generic guide-

lines for constraining the interpretation. The scaffolding model takes two distinct
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Figure 3.8: Example of the scaffolding construction with four primitives (Actual and
Attempted Causality, Connect and Disconnect)

Figure 3.9: Example of the scaffolding elaboration

phases: scaffolding construction followed by scaffolding elaboration. Scaffolding con-

struction is spatial in nature, interrelating the elements of the utterance through the

use of primitive building blocks (see figure 3.8). The composition of this structure is

obtained from the verbs involved, but other elements, such as adjectives (e.g., Big ver-

sus Small, Lightweight versus Heavy), and explicit conceptual relations (e.g., Father,

Partner and Manufacturer) also contribute to the scaffolding.

Scaffolding elaboration labels the associations just described with particular inter-

concept relation, such as Colour for connect(Porsche, Black) and Manufacturer for

connect(Macintosh, Apple-inc). These relationships are derived from the interaction

of the concepts governed by the scaffolding structure (see figure 3.9). The appropriate

relationship or case is thus dependant upon the nature of the concepts involved.

Thus, conceptual scaffolding builds a network of relations and concepts that cor-

respond to the skeletal interpretation of an utterance. The metaphor interpretation is

only completed after the creation of cross-domain links between the concepts, which
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will allow the transfer of knowledge and finally, the explication of the metaphor. This

is done by Sapper.

Sapper works with a semantic network that contains the information brought

from the conceptual scaffolding, also enriched with background domain knowledge.

It applies a spreading activation based process in order to determine novel cross-

domain relations, thus reproducing much of the connectionist philosophy in a symbolic

framework. These are normally called localist networks, since a distinct unit, or fixed

cluster of units, is assigned to each concept, and an activation-carrying inter-unit

linkage is assigned to each inter-concept relation (of the appropriate conductivity to

capture the salience of the relation). There are two generic aspects regarding Sapper

memory that are the most important for our purposes:

• The representation of all knowledge is equal. If not given a specific context,

all concepts and relations are equally relevant (or irrelevant), i.e. there is no

built-in hierarchy or ordering to organize the memory.

• Activation flow is entirely opportunistic. The most activated concepts will be

those that happen to be in the spots where the activation waves are higher and

in larger number, independently of what the concept actually is or means. In

other words, again, there is no a priori preference for concepts or relations.

Since concepts are intrinsically dynamic, their representation should also be dy-

namic and impartial. In other words, one concept can play a central role and have

a particular meaning in one context and be lateral and have a different meaning in

another context, thus it is the situation that shapes it, not its representation. This

is a well-known problem in AI, and it is clear that Sapper does not solve it except at

the very specific level of cross-space mappings, as we will see below.

Sapper has two modes of processing, which interchange constantly as the cross-

domain bridges are established:

• Structural inference is performed in a symbolic mode of processing,

• Opportunistic activation flow occurs in the connectionist mode of processing,

in which particular relations (the dormant bridges, as laid down in the symbolic

mode) are recognized to represent domain crossover points between the tenor

and vehicle schemata, and are thus awakened.

The structural inference is based on two rules13: triangulation and squaring. The

triangulation rule states that: “whenever two concepts share an association with a

13There is also the incremental rule, which is only applied in successive runs of Sapper, taking
advantage of previous traces, but this is only a lateral subject here.
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Figure 3.10: Example of the triangulation rule. Dashed arrow represents a dormant
bridge (from [Veale, 1995])

third concept (the associations may be of different strengths), this association provides

evidence for a plausible (i.e. dormant) bridge between both schemata”[Veale, 1995].

In figure 3.10, we see a double application of this rule: cleaver and scalpel share an

association with both blood and sharp, leading to the establishment of a dormant

bridge.

The squaring rule states that, when two concepts A and B linked by a cross-

domain bridge (i.e. a dormant bridge which has already been awakened) share the

same association with two different concepts C and D (resp.), then this association

provides evidence for a plausible (i.e., dormant) bridge between C and D. This rule

depends on the bridges having already been awakened (under the connectionist mode),

thus it is considered second order. In figure 3.11, a dormant bridge is created between

general and brain surgeon by the application of the squaring rule, since there is a

cross-domain bridge between command centre and brain.

In the Sapper model, activation travels in waves, each wave-form having an am-

plitude (encoding the activation energy, or zorch) and a unique signature frequency.

Each localist concept node is considered to possess a unique prime resonant frequency,

which is used to modulate any activation waves that pass through this node (see fig.

3.12).

This propagation strategy therefore allows activation waves to be deconstructed

via prime factorization. This deconstruction reveals not only the original source node

of the wave (representing either the tenor or vehicle of the metaphor), but also the

path through conceptual space travelled by the wave. When two activation waves

cross over at the same inter-concept bridge, Sapper is thus in a position to determine

whether the waves originate at different source nodes in the network. If this is indeed

the case, Sapper awakens this bridge as possibly constituting a valid domain crossover
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Figure 3.11: Example of the squaring rule. The bidirectional arrow with ’M’ label
represents a cross-domain bridge (from [Veale, 1995])

Figure 3.12: Activation Waves in Sapper possess both amplitude (or Zorch) and
frequency. This signature frequency of an activation wave is the product of the
resonant frequencies of those nodes encountered by the wave in the conceptual space.
(from [Veale, 1995])
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Figure 3.13: A conceptual linkage is deemed to provide a plausible match hypothesis
when it becomes a cross-over path for competing activation waves from the tenor and
vehicle concept nodes. (from [Veale, 1995])

0.98 If General is like Surgeon
0.76 Then 18th-Century-General is like Saw-Bones-Doctor
0.95 and Soldier is like Patient
0.81 and Casualty is like Corpse
0.91 and Bombing-Raid is like Surgery
0.93 and Atomic-Bomb is like Radiation-Therapy
0.75 and Nerve-Gas is like Disinfectant
0.88 and Enemy-Army is like Cancer
0.78 and Enemy-Soldier is like Cancer-Cell
0.5 and On-Target is like Precise
0.7 and Snub-Fighter is like Scalpel
0.5 and Military-School is like Medical-School
0.17 and Battlefield is like Operating-Theatre
0.17 and Military-Uniform is like White-Smock

Table 3.2: Output from Sapper for ’GENERALS are SURGEONS’

point (see fig. 3.13). [Veale, 1995, Veale and O’Donoghue, 2000]

There is one final point to add to this description of the Sapper algorithm. Inter-

concept linkages also exhibit a certain resistance (the inverse of conductivity) to

the flow of activation energy. This provides an attenuation effect in the amplitude

of the waves at each node they encounter. When this amplitude drops below a

predetermined threshold, it ceases to propagate. Dormant bridges have the highest

(infinite) resistance, until they are awakened and attributed a resistance consistent

with the structural evidence brought by the wave.

Finally, we give an example of the interpretation of “My surgeon is a butcher”

generated by Sapper (figure 3.14) and the returned output for “The General is a

Surgeon” (in table 3.2, figures on the left represent the conductivity of the cross-

domain linkages).

To conclude, while Conceptual Scaffolding is knowledge dependent and needs

detailed specification and coding of the core metaphors it analyzes, Sapper is an

algorithm that finds a 1-to-1 mapping between two domains which, although not
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Figure 3.14: Interpretation for ’SURGEONS are BUTCHERS’ (from [Veale, 1995])
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guaranteeing the optimal solution (whatever the criteria chosen), is computationally

tractable and does not demand big compromises regarding knowledge representation

or configuration.

Veale and Keane [Veale and Keane, 1997] presented a very interesting comparison

of Sapper with SME (Greedy and non-greedy versions) and ACME [Holyoak and Thagard, 1989]

(described later). This analysis vividly reports how well Sapper behaves in compari-

son with its peers, namely concerning tractability issues. Apart from this paper, the

interested reader should also inspect Ferguson et al’s reply [Ferguson et al., 1997].

3.4.3 Others

As with other surveys (e.g. [French, 2002]), we classify systems on metaphor and anal-

ogy into three types: symbolic (ATT-Meta, SME and MIDAS), connectionist (LISA)

and hybrid (Drama, Copycat and Sapper). Once again, this overview undoubtedly

leaves out many systems. Our purpose is to provide a broad picture of the field, and

eventually lead to a synthesis of the features and problems that characterize it.

ATT-Meta [Barnden, 1998] is a rule-based system for metaphorical reasoning ini-

tially projected to process mental states in discourse. It therefore focuses on specific

types of metaphor schemata, such as ’MIND PARTS as PERSONS’, and applies

built-in commonsense models in order to interpret sentences like “One part of John

was insisting that Sally was right”. ATT-Meta then triggers rules that propose pos-

sible interpretations for the metaphor, according to different pretences14. It isolates

pretences (thus avoiding logical inconsistencies) within cocoons, enabling the simulta-

neous consideration of several different, possibly conflicting, hypotheses. This system

allows representation of uncertainty in its knowledge, which will then serve to eval-

uate the truth probability of a pretence (and propagating this probability to other,

dependent, pretence cocoons) and propose a plausible interpretation. ATT-Meta

does not itself deal with natural language input directly. Therefore, a user supplies

hand coded logic formulae that are intended to express the literal meaning of small

discourse chunks (two or three sentences)[Barnden, 1999].

Another work on metaphor reasoning is MIDAS [Martin, 1990]. As with Concep-

tual Scaffolding, MIDAS approaches interpretation with the assumption that there

is a set of core metaphors. These are stored in a knowledge base that is contin-

ually augmented with extended metaphors, which derive from the core metaphors.

Each metaphor is represented by a structure called metaphor-sense, which contains

14The system pretends that a given interpretation, however ridiculous (e.g. John having literally
one person in each part of the mind), can be real. In doing so, the system is said to be “semantically
agnostic”.
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a source, a target, and a set of associations. An association is represented by a

metaphor-map, which links a source concept to a target concept. MIDAS interprets a

metaphoric utterance by retrieving the most similar metaphor and adapting it to the

current situation. In this sense, it works as a Case-Based Reasoning system, whose

learning ability relies on the storing of newly adapted cases.

John Hummel and Keith Holyoak proposed an artificial neural-network model

of relational reasoning, LISA (Learning and Inference with Schemas and Analogies)

[Hummel and Holyoak, 1997], which uses synchrony of firing to bind distributed rep-

resentations of relational roles (e.g., the roles of opposite-of(X, Y)) to distributed

representations of their fillers (e.g., black and white). Thus, a proposition corre-

sponds to a pattern of activation. LISA has a Working Memory (WM) containing

the target (and the source, after retrieval) being investigated; and a Long Term Mem-

ory (LTM), which holds the candidate sources. When a target is specified in WM,

its pattern of activation triggers the retrieval of the appropriate source proposition

from LTM, which is the one that is better synchronized with the pattern of activation

of that target. These two memories have distinct representations. WM comprises

a distributed representation (as is traditional on pure connectionist system), while

the LTM is localist (as with Sapper). For example, if the WM contains the target

proposition “Beth sells her futon to Peter”, then it may retrieve an analogous source

proposition (e.g. “Bill sells his car to Mary (and so Mary owns the car)”). When

two analogous propositions are met in LISA’s WM, their co-mapped constituents are

co-activated in synchrony (Bill to Beth, car to futon, etc.) and it is possible to trans-

fer inference from the source to the target (i.e. “Peter owns the futon”), following

the same activation procedure (“Peter” is co-activated with “Mary”, who “owns” a

“car”, which is co-activated with “futon”). LISA’s main limitations concern the WM

memory sizes and LTM representation issues. Indeed, the WM can only store one

proposition at a time, which forbids solving complex analogies. Moreover, the built-in

representation of LTM makes LISA an uncreative system with low flexibility, since it

demands the explicit coding of each proposition.

Drama is a system that aims to integrate semantic and structural information

in analogy making [Eliasmith and Thagard, 2001]. It has a set of particularities that

make it unique among its peers. The foremost is its application of holographic reduced

representations (HRRs) [Plate, 1994] memories, which allow the distributed, vector-

based, representation of concepts and relations in Drama. The storage operation

of a vector in a HRR is called convolution, while the retrieval operation is called

correlation. HRRs allow the convolution of large amounts of information in the same

memory space, but the more they store, the lower reliability they will provide in

correlation. It is then necessary an error-cleaning mechanism. It is claimed that
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HRRs are cognitively plausible models of memory [Eliasmith and Thagard, 2001].

Other systems also apply distributed representations such as neural networks (e.g.

LISA), so a thorough comparison should be made to understand which one is better

in analogy contexts. In Drama, each ground concept is attributed a random vector

that is then stored in a HRR, along with its semantic information (properties and

ISA relations, each defined as an independent vector). Domain structure (relations

between different concepts) is also stored in the HRR in the form of vectors. Given

the source and a target proposition vectors, Drama starts the analogy-mapping by

obtaining their similarity (via vector dot product). When they are sufficiently similar

(higher than a threshold), it then proceeds to the constituents. For each pair of

similar constituents, Drama builds a node in a network (the mapping network), and

establishes links between nodes that participate in the same relation. This latter

process is the same as ACME’s [Holyoak and Thagard, 1989] algorithm for analogy

mapping: in ACME, the algorithm starts by establishing a network of mapping pairs,

each node containing a pair, each pair linked to other pairs. Using the LISA example

above, ACME (or Drama) would initially build nodes for “sells” with “sells” then for

“Beth” with “Bill”, “car” with “futon”, etc. each of these nodes being co-activated.

It could also generate competing mapping nodes in the network (e.g. “Beth” with

“Mary” - both are women) which would have little co-activation with the former

nodes. Then, with a spreading activation process (as in Sapper), it would select the

mapping sets that best satisfy the constraints of similarity, structure and purpose,

as defined in [Eliasmith and Thagard, 2001] and [Holyoak and Thagard, 1989]. In

theory, Drama can integrate both structure and meaning, which would be a major

breakthrough in analogy research, but, since the ground concepts are given random

vectors, the meaning is entirely dependent on the property and ISA relations, which

end up as being structural knowledge as any other relation. Indeed, although the

authors treat these relations differently, they do not correspond to the notion of

meaning that they advocate. More specifically, the problem lies in the randomness

of encoding the ground concepts and their resulting similarity (e.g. in one run, “dog”

and “cat” can be more similar than “dog” and “freedom”; while in the following one,

the opposite can happen without any particular reason). The authors claim that this

is coherent with the psychological differences between people, but randomness does

not seem to be a good model for it. A proper solution would be to learn the meanings,

as also suggested in [Eliasmith and Thagard, 2001]. However, this learning algorithm

is by itself a challenge.

Also unique in many aspects, Copycat [Hofstadter and Mitchell, 1988] is a system

for solving puzzle analogies (such as “abc→abd::xyz→?”) as already presented in

section 2.2.2. This system has many nuances and has been deemed an example of
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computational creativity, as well as its related family: Tabletop, Letter-Spirit and

Metacat [Hofstadter, 1995]. Nevertheless, it has been criticized as only being able to

work on a very specific, exhaustively defined domain. In fact, while an omnicompetent

Slipnet is theoretically plausible, in practice, serious resources are necessary even for

simple domains.

The issue of knowledge representation has been evoked constantly as a central

problem in any of these systems. Some approach it by focusing on specific domains

(ATT-Meta, Copycat), some try to cover generic knowledge (Sapper, SME, MIDAS,

LISA, Drama). Some rely on structure mapping (SME, Sapper), some on axiomatic

inference (ATT-Meta, MIDAS), some try integrating both (Drama, Copycat). Nev-

ertheless, it is clear that each one is ultimately dependent on built-in domain repre-

sentations (the exception being Drama, which solved the problem with randomness).

The path now taken in the area seems to lead to hybrid approaches, both in terms

of paradigm (symbolic and connectionist) and in terms of inference mechanism (ax-

iomatic and structure mapping).

The majority of the works (with the exception of Copycat) allow only 1-to-1

structure alignment between domains, but it has been pointed out that many-to-one

mappings may be useful, both in metaphor and in analogy [Falkenhainer et al., 1989].

Even more, structural alignment easily falls prey of the representation of domains.

For example, having a source with “isa(dog, pet)” and “isa(pet, animal)”, and a

target with “isa(cat, animal)” and “isa(animal, entity)”, it would not yield the anal-

ogy of “dog” with “cat”, rather “cat” would be mapped to “pet”, and a possible

analogical inference could be “isa(dog, cat)”. This once again raises the problem of

representation. As we will see in chapters 5 and 6, the same questions can be raised

for this work.

To conclude, there is general agreement that metaphor and analogy are cognitive

mechanisms that can uncover aspects unforeseen, by bringing knowledge from one

source to a target and thus making predictions, solving a problem or even by ex-

pressing concepts that have yet no conventional meaning. So far, the computational

approaches to these mechanisms have essentially relied on cross-domain mappings

and structure alignment, which is not to say that other approaches aren’t worth of

attention.
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Chapter 4

A Model of Concept Invention

A Top-Down approach

In this chapter, we will take a top-down approach, presenting and discussing the

requirements for an abstract creativity model, and then progressing towards a formal

model of concept invention that will be the subject of an implementation presented in

the next chapter. The reader should understand that, on the way to, and particularly

when arriving at the actual implementations, many choices have to be made, both in

terms of what aspects to focus on (e.g. bisociation vs re-representation) and in terms

of practical decisions (e.g. implementing algorithms, choosing representations). We

will try to justify each decision whenever any of these choice points arise.

4.1 A Creative General Problem Solver

In chapter 2, questions regarding creativity were raised. By doing so, we intended to

provide the reader with the set of principles followed in the construction of the model

for computational creativity proposed here:

• Knowledge. It has been emphasized that there is rarely creativity without

knowledge and that both quantity and quality should be treated as equally

important. A model for creativity should consider a heterogenous knowledge

base, in the sense that it should not include solely the typical knowledge for

solving a specific problem, but instead many different domains and perspectives

towards more than one problem [Weisberg, 1999].

• Re-representation. It is also important to be able to understand the existing

range of knowledge according to different points of view. A model for creativity
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should be able to change the representation of a concept without losing its

meaning [Karmiloff-Smith, 1993].

• Bisociation. The notion of bisociation is connected with cross-domain transfer,

to the ability to find unprecedented associations. A model for creativity should

be able to find and explore associations between distinct knowledge structures,

namely structures that seem apparently distant and unrelated [Koestler, 1964].

• Meta-level reasoning. The ability to reason about reasoning is also a trace

of creativity. This aspect is perhaps the most difficult to specify, but should

also be taken into account. As well as being able to process the knowledge, a

model of creativity should be able to process its own processes of processing

knowledge, preferably without having to employ different techniques for each

level of abstraction [Colton, 2001, Wiggins, 2001].

• Evaluation. An indisputable part of the creative process has to do with evalua-

tion, both in terms of the self and of the society. A model for creativity should be

able to do self-assessment and react to external evaluation [Csikszentmihalyi, 1996,

Boden, 1990].

• Interaction with the environment. No model of creativity should be designed

without taking into account the environment. Indeed, some researchers have

emphasized that creativity can only be perceived against a context, which in-

cludes the individual (as a producer and recipient), the society, the History, the

motivations, in other words a set of aspects that lie outside the scope of the

new concept or idea being considered [Csikszentmihalyi, 1996].

• Purpose. There is always a purpose in any creation, even though it may be

sometimes extremely subtle. We do not agree with the argument that a creative

system does not have to be goal-oriented. Creativity happens as a necessity

rather than as a purposeless activity, whether for satisfying some fuzzy aesthetic

preferences or for solving a practical problem [Amabile, 1983].

• Divergence/convergence. One of the main conclusions taken from chapter 2 is

the existence of two modes of thinking, the divergent and the convergent, both

important to creativity in different aspects. Thus, a model of creativity should

consider both divergent thinking, which is when free-association is sought, a

less controlled search is allowed, constraints can be broken and inconsistencies

may be generated; and convergent thinking, which is methodic and driven by

rationality [Guilford, 1967].
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Figure 4.1: The Creative General Problem Solver

• Ordinary processes. A final aspect to raise is that there is no reason to believe

that, underneath a creativity model, there need be processes that are special or

fundamentally different from the ones applied in non-creative reasoning. Fur-

thermore, there is no reason to argue that bisociation and divergent thinking are

not grounded in the same cognitive processes as any other cognitive phenomenon

or mode of thought. In other words, all these are manifestations of intelligence,

with divergent thinking and bisociation being the ones that are more commonly

identified with creativity [Guilford, 1967, Csikszentmihalyi, 1996, Koestler, 1964,

Boden, 1990, Finke et al., 1992].

From these eight principles, we propose a Creative General Problem Solver (after

an analogy to the General Problem Solver of Ernst and Newell [Ernst and Newell, 1969]).

In doing this purely philosophical exercise, we have two intentions: to provide a model

that summarizes all aspects and to focus on the relationship between Creativity and

AI.

In figure 4.1, we show a model that considers the many aspects referred to above.

The reasoning mechanism, perhaps the least obvious in terms of its internal work-

ings, should be responsible for controlling the whole system and for doing the search

according to the goal, preferences and evaluation given by the pragmatics and envi-

ronment modules. The working mode of the system (either divergent or convergent)

should depend on the use that the reasoning mechanism makes of the bisociative

mechanism and re-representation modules. A purely convergent mode would not use

any of these modules while a purely divergent mode would apply them for every step
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in the search. The re-representation module provides different alternatives of repre-

sentation of the knowledge in the multi-domain knowledge base, while the bisociative

mechanism is expected to find and propose associations between any two distinct

structures in that knowledge base. A particular aspect of the knowledge base (not

explicit in the diagram) is that it should also contain the specification of every other

module; in other words, the whole model is itself part of the knowledge base. This

is definitely the most complex aspect and relates to meta-level reasoning. Indeed, if

the system is to reason about its reasoning, its knowledge base must also consider,

directly or indirectly, the representation of all its processes. The question is how this

can be implemented and where this recursion ends.

Now, analyzing this model from an AI perspective, the basic question arises:

Why do we call it creative? Is it not yet another AI model? Is it not just search over

a complex space, which contains the solutions given by the plain knowledge base,

added with its several different re-representations, the associations that result from

the bisociation method, and the description of the processes themselves? From the

(behaviorist) perspective of the product, one can call it creative when, from this search

over a complex space, novel and useful ideas tend to emerge. From the (cognitive)

perspective of the process, we can argue that, if the set of principles listed above are

indeed connected to creativity, then such a model should produce more novel and

useful solutions to a problem than if the same problem was given to a classical AI

model (which would essentially have no bisociative mechanism, meta-level reasoning

or re-representation module, and would have a much more focussed knowledge base).

These proofs seem impossible to demonstrate formally, so we are left to explain exactly

what such a model brings new to the area. Its possible contribution to AI is that

it explicitly incorporates for the first time all those aspects mentioned, and, most of

all, the assertion that creativity should be considered as one side of problem solving

and, therefore, of intelligence. To clarify some more, such a model could solve a

problem in a convergent manner, i.e. recurring to the knowledge specifically directed

towards the problem (let us call it problem-specific knowledge), independently of how

many times the same problem and solution had been brought up. It could also try to

find a different solution, also with problem-specific knowledge, possibly seeming more

creative. Solving in a divergent manner would imply the search for other associations

and/or representing knowledge differently or even changing its own processes. In

this case, when finding previously unseen solutions, the result may have a higher

probability of being deemed creative by an observer. In any of these cases, we deal

with a classical view of intelligence as problem solving, in some cases resulting in

creative solutions.
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The model just presented is very abstract and consists essentially of a set of

guidelines to be explored further either by us (some are covered in more detail later

in this book) or by others in future work.

In the next section, we descend one level more in our top-down approach to de-

velop a creativity model. More specifically, we focus on a set of features already

considered, namely bisociation, an heterogenous knowledge base, meta-level reason-

ing, convergent/divergent modes of thinking and purpose. These are the foundations

for our model about concept invention.

4.2 Description of the Model

We now present our model of concept invention. It is focussed essentially on bisocia-

tion, an heterogenous knowledge base, meta-level reasoning, convergence/divergence

and purpose. Therefore, we pay little attention to the aspects of interaction and eval-

uation and leave out re-representation. Interaction will be reduced to goal statement

and configuration, and evaluation will be based on self-assessment. These choices

result from a priority given to subject versus society, and therefore focussing on its

inner processes. Because the issue of re-representation deserves an entire thesis to

itself, we decided not to consider it further. Nevertheless, we will return to it when

we think it relevant in this text.

Before giving details, we would like the reader to imagine an ideal scenario where

a system has been given a goal to reach. This goal could be something like “the

specification of a flying transportation object”. The system has not enough knowledge

of airplanes, or physics, or something that could lead by sound processes to reach

directly this goal. Or it has indeed the necessary knowledge, but the complexity of

the search space is too big to reach the goal in a reasonable amount of time. It

could then enter a mode of divergence, in which combinations between concepts in

memory would be made, always checking if something similar to the goal is achieved.

After reaching the most promising idea (say, after spending a while in divergence, it

had found “a bird with a box connected”), and if still not achieving the goal (e.g.

“the box is too heavy”), this system would then return to a convergent mode, in

order to elaborate the idea to reach a satisfactory solution. If, in the end, a good

solution had still not been found, the system could also try to invent new ways of

combining concepts, of elaborating, and of searching i.e. it would try to improve its

own processes. Our model of concept invention is concerned with the divergent part
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of this scenario. In figure 4.2, we show its diagram. It has six modules:

• Multi-domain knowledge base. The knowledge base follows the exact same

principles as described for the Creative General Problem Solver.

• Bisociative mechanism. The bisociative mechanism starts by finding mappings

between concepts and creates a new concept. Then, from these mappings, it

transfers knowledge from each of the co-mapped concepts to the new, bisocia-

tive, concept. The mappings do not have to rely on similarity: they can repre-

sent conflicts that are striking, surprising or even incongruous (as suggested by

Koestler [Koestler, 1964]).

• Reasoning mechanism. The reasoning mechanism applies two strategies. The

divergent strategy makes use of the bisociative mechanism to generate new con-

cepts and picks the ones that get a better evaluation. The convergent strategy

makes use of the elaboration mechanism to generate better concepts from the

ones resulting from the divergent strategy

• Evaluation. The Evaluation module returns the measure in which, according to

a goal, a given concept satisfies the I of novelty and usefulness.

• Elaboration. Elaborating or adapting means reworking a concept to comply

with context and domain-dependent constraints. In other words, the Elabo-

ration module is concerned with eliminating inconsistencies and completing a

concept with valid knowledge.

• Goal. The Goal should be given externally, it defines the purpose of the concept

being sought.

This model was first sketched and presented, with slight but irrelevant differ-

ences, in two papers: “Modelling Divergent Production: a multi domain approach”,

presented at ECAI’98 [Pereira, 1998], and “Wondering in a Multi-Domain Environ-

ment with Dr. Divago”, presented at CSNLP’99 [Pereira and Cardoso, 1999]. At

neither time was it formalized in detail. This will be done in the following pages.

For those readers unaware or not interested in this formal specification, we will

also describe each idea informally. In order to perceive the underlying ideas, it should

not be necessary to understand every technical detail.

In this formalization, we will borrow some definitions from Geraint Wiggins [Wiggins, 2001]

(see section 2.2.1), namely the universe, U , of concepts, the language L and the traver-

sal strategy, T .
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Figure 4.2: A Model of Concept Invention

Thus, let the alphabet A contain all possible atomic symbols (constants and vari-

ables) conceivable. Let us also define a process, p, by which we can compose elements

of A in order to get higher order knowledge structures, the language L, which may

comprise predicates and functions (a predicate P would take the form P (x1, x2, ...xn),

with P, x1, x2, ...xn being symbols of the alphabet A). To simplify, we assume that

these higher order knowledge structures have the form of facts and rules (as in a

logic program, e.g. [Leite, 2003]) and that the process p is a generative grammar

that allows the generation of all possible concepts (i.e. logic programs) of language

L. Therefore, this will be our universe U , of concepts, which will contain, as well as

other concepts, all the rule sets T , E and R, and their associated sets, ¿R, T , E À,

JRK and JEK. Remember that, according to section 3.1, each concept is defined as a

micro-theory (formally, a logic program). Informally, let us imagine the universe U
of all possible concepts representable by a language L.

Following the principles in section 4.1, our model must consider a knowledge-

base with many different domains and, in order to allow meta-level reasoning, the

description of its own controlling processes. To sum up, the knowledge base in our

Model of Concept Invention should contain concepts from the domain for which we

intend to invent concepts, from other domains, and the description of the model itself.

The logic program (micro-theory) that describes a concept specifies its relationship

with other concepts as well as its inner characteristics. The set of concepts contained

(intensionally or extensionally) in a knowledge base KB is defined as UKB, with

UKB ⊆ U . A knowledge base corresponds to a set of concepts that cohabit the

same physical or virtual memory space. It should be a model of an individual’s own

complete knowledge. A knowledge base is multi-domain if it contains concepts from
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more than one domain.

Let a domain D correspond to a set of concepts from KB (so D ⊆ UKB) such that

all of them relate to a unique, underlying concept. Of course, this invites the extremes

that the KB itself is a domain (“everything is member of KB”); and that each concept

is a domain (“Each piece of knowledge that describes the concept is related to that

concept”). The notion we intend to bring is that a domain incorporates knowledge

relating to the same subject. For example, a set of musical pieces, along with style

rules corresponds to a domain of music, while a set of recipes with data describing

available ingredients is a domain of cookery. As with our own knowledge, domains can

encode different levels of expertise, detail, and so on. This notion of domain is rather

imprecise and it is not conclusive for the model we are presenting. We introduced

it mainly to assert that the knowledge base comprises potentially disparate kinds of

data that are commonly associated to knowledge about different subjects.

According to Koestler, Guilford, Fauconnier and Turner, and many other theorists

already referred to in this document, the associativity between concepts is fundamen-

tal in creativity. This takes us to the next definition, the mapping function:

φ : U × U −→ {0, 1}

This definition implies that any element from U can be mapped to an undetermined

number of other elements (more specifically, whenver φ(x, y) is 1, this implies that x

can be mapped to y). φ should obey the following axioms:

1. φ(x, y) = φ(y, x) : x, y ∈ U , i.e. φ is symmetric.

2. φ(x, Ø) = 0 : x, Ø ∈ U , where Ø is the empty concept.

The empty concept has no content (e.g. a logic program with no facts or rules)

and can be represented by a constant (in Divago, this will be the atom nill).

We will call the function that maps elements from two domains a cross-domain

mapping function:

φD1,D2 : D1 ×D2 −→ {0, 1}, where D1 and D2 are distinct domains.

The act of bisociation is not completed until a novel concept emerges. In the

many examples given (of bisociation, blending, conceptual combination), knowledge

is transferred from each co-mapped element to the novel concept. This is where, in

Koestler’s model, the act of creation happens, and where, in Conceptual Blending

and Conceptual Combination, emergence starts to happen:

ω : U × U −→ U
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ω, the transfer operation, can be defined as:

ω(x, y) =





Ø : φ(x, y) = 0,

k otherwise, with some k ∈ U .

Informally, the transfer operation is an operation over two concepts (x and y) such

that, if there is a mapping between them, a concept k (from U) is created. There is no

way to specify this operation in more detail, since there are many different accounts for

how concepts are combined together. In the next chapters, we will propose a possible

version whose results will also be demonstrated. ω is not necessarily deterministic,

i.e. k may correspond to a set of probabilistic choices. Two other axioms for ω also

follow:

1. ω is not symmetric. I.e., ω(x, y) = ω(y, x) is not necessarily true.

2. ω(x, Ø) = Ø

The set Ω contains all possible bisociations within U . We call it the bisociation

set :

Ω = {k : k = ω(x, y), x, y ∈ U}
When ω is applied to two entire domains, we obtain the set ΩD1,D2 . We call it a

domain bisociation:

ΩD1,D2 = {k : k = ω(x, y), x ∈ D1, y ∈ D2}

The bisociation set thus contains all possible bisociations for a knowledge base KB.

In our model, this set contains the structures that result from what Guilford called

divergent production, also to which [Finke et al., 1992] called the pre-inventive struc-

tures, in the Geneplore model.

The choice or ordering of the bisociation set can only be made if there is a goal

to be reached. The agent should be looking for something, otherwise there would be

no particular reason for picking one element from the bisociation set, i.e. to explore

pre-inventive structures or to converge on something interesting. Thus we define the

set Ug of all possible expressed goals, based on Lg, such that Lg ⊆ L. A goal can

range from very specific requirements for a problem (e.g. a set of design requirements)

to abstract (e.g. achieve balance in a picture) and vague requirements (e.g. need for

joy). Associated evaluation functions, which test whether a concept does or does not

fulfil the I, and verify its novelty, must underpin any of these goals. Thus, we have

two functions, novelty and usefulness:

nov : U × Ug −→ [0, 1]
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The function nov returns the novelty of a concept w.r.t. a goal g. In the typ function

of [Ritchie, 2001], which should be the inverse of novelty, the goal was implicitly

considered, but we think goals should not be singular or encoded in functions, they

should also be seen as concepts and be members of U . This means, in the notion of

concept followed here, that goals should also be expressed as micro-theories. Another

implication is that goals themselves can be bisociated. The usefulness is given by the

other function:

use : U × Ug −→ [0, 1]

Again, the accomplishment of a goal is as fundamental as the concept itself in order to

assess its usefulness. Something is only useful (or appropriate) if it is seen in context.

Now examining the bisociation set, its size may vastly increase and the novelty

and usefulness of its members may vary extensively. In other words, the search space

for getting good concepts can become extremely complex. Following [Wiggins, 2001],

we also propose the traversal set, T , which embeds the strategy used by an agent to

traverse a search space. We assume that T ⊆ U , i.e. the strategy is also defined as a

set of concepts from the universe U , also implying that the same operations could be

applied to the strategy itself. We propose no practical realization for this meta-level

reasoning in this work, but we want to stress that it is a fundamental aspect if we

want to reach the limits of computational creativity.

The bisociation set is traversed by a strategy Td. In the traversal of these pre-

inventive structures, definitive values for novelty and usefulness are sometimes hard

to assess, so priority to other measures of interest (not necessarily driven by the goal)

may also be applied, such as diversity, simplicity, re-representation potential, etc. In

other words, although we are only considering the functions of novelty and usefulness

here, other factors may be of importance in the selection of elements from the biso-

ciation set. Td should thus be understood as the divergence strategy, which should

cognitively correspond to the act of wandering for possible solutions, or inspirations,

to a problem.

Also following Wiggins approach, we suggest the function operator, ¿ ., ., . À,

which selects elements of U from existing ones. Wiggins proposed an application

of this operator as ¿ R, T , E À, under the assumption that a search strategy T
would traverse a space (partially) ordered by the rule sets R and E . In our case, we

propose the traversal of the bisociation set, Ω, partially ordered by the functions of

novelty and usefulness. The implied correspondences (use↔R and nov ↔ E) are no

coincidence, rather we can assume they are instantiations: from JRK, we select those

that are useful for a goal; from JEK, we prefer those that are novel1. In so doing we

1The reader may have noticed that we have a clash here: in section 2.2, we associated R to
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avoid some of the vagueness implied by the definitions of R and E and redefine the

step of the space traversal to be:

xi+1 =¿ use, Td, novÀ [xi]

Informally, what we mean exactly here is that we expect our divergent search

procedure to consider both novelty and usefulness in the traversal of the concept

spaces. Moreover, this traversal is cumulative in the sense that it counts with the

concepts already inspected (in the same way that a composer will not invent the

same exact idea twice, since in the second time he will have the previous concepts

in memory). The application of this operation repeatedly to achieve all possible

concepts would lead us to the generation of the complete divergent strategy set.

Formally (again following Wiggins notation), this set corresponds to:

¿ use, Td, novÀ¦ [Ω]

Notice that we apply the function directly to the set Ω, instead of giving the “starting

symbol”, the empty concept ⊥. The intent is to explicitly assert that this search is

made within the set Ω, instead of the whole universe U . Also notice that the resulting

set will be a subset of the set Ω itself. Informally, after defining the set of all possible

bisociations (certainly a very large set), one needs to choose good ones. This can only

be done via I such as novelty and usefulness in conjunction with a search strategy.

We have reached the point where a (set of) concept(s) is found, still in its “pre-

inventive” state. In other words, it would be expected that further exploration is

needed in order to arrive at a proper answer to the goal(s). This corresponds to the

convergent phase, also previously referred. Let us now have the function θ, called

elaboration function:

θ : U × U −→ U

This first argument of this function is the concept to be elaborated, while the

second corresponds to the method used. Below, there are three kinds of elaboration:

• θR : C×R −→ C ′, where R ∈ R is a rule. This is called rule-based elaboration,

which happens when a rule or a set of rules (external to the concept) is applied

for elaboration. These rules can be heuristics, causal rules, whatever kind of

production rules available.

Ritchie’s typ and E to val. This would imply the correspondences use↔typ and nov↔val. An
alternative would be to map R to nov and E to use. This is incoherent and demonstrates the
ambiguity in the meaning of R and E . The problem seems to be that E should not be independent
of R, as much as it shouldn’t be independent of purpose (or usefulness).
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• θC : C × C −→ C ′, where C is a concept. This internal-logic elaboration con-

sists of applying reasoning methods exclusively taking into account the concept’s

micro-theory. Examples of these reasoning methods are deduction, induction

and abduction within the micro-theory of C.

• θCC : C × C1 −→ C ′, C 6= C1 such that C,C1 are concepts. This is the cross-

concept based elaboration, where the first concept is elaborated by associa-

tion/comparison to other concepts in the knowledge base. Sometimes, new

knowledge or structure is added or removed to a concept by comparison to

other concepts. A special case of this is the cross-domain based elaboration,

when C is elaborated by concept(s) from a domain that differs from that in

which C is integrated. This kind of elaboration is often used in analogy, when

knowledge from one domain gets projected onto the other.

We also add an axiom for θ:

1. θ is not symmetric. I.e. θ(D,K) = θ(K, D) does not necessarily hold.

We can now define the set Θ of elaborated concepts :

Θ = {θ(C,K) : C ∈¿ use, Td, novÀ¦ [Ω] ∧K ∈ U}

As with the bisociation set, the set of elaborated concepts can be ordered by the

functions of novelty and usefulness, yielding the search space that is to be traversed

by Tc ⊆ U , the convergent strategy. The final result, the ordered set of concept

inventions, is given by:

¿ use, Tc, novÀ¦ [Θ]

4.3 Discussion

This model implies the interaction of three concept sets, all belonging to the universe

U : the set UKB, consisting of all the concepts implicitly or explicitly defined in the

available knowledge base; the set Ω, which contains all the bisociations generated;

the set Θ, comprising all the possible elaborations of the elements from Ω. Two more

sets should be considered, regarding the definition of the search strategies, UT and

the goals, Ug. In figure 4.3, we depict all these sets as well as the directions taken

by the search strategies. We should remember that, since this is a purely theoretical

analysis, one should not read too much into the exact position and size of the sets.

Our intention here is to relate our model to each of the sets and their intersections.
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Figure 4.3: An analysis of the model presented

We defined two sorts of strategies, the “simple” strategies (Tc and Td) and the

“ideal” strategies (Tc
′ and Td

′). They should represent a continuum of possibili-

ties. The “simple” (or rather computationally “realistic”) strategies consider a clearly

bounded concept space. The path depicted show what would be expected of a plain

application of the model just described. It starts from the universe of known con-

cepts, UKB, then applies bisociation, thus inspecting the set Ω with the divergent

strategy. The convergent strategy will then take the search within the set Θ. The

“ideal” strategies should be able to diverge more, considering the sets UT and Ug, as

well as having the freedom to jump off the bisociation space as it was defined (e.g.

due to a change in its own goal and strategy). Again, this is more a dissertation than

a practical proposal. Indeed, this leads us to consider the “simple” strategies as a re-

alizable step towards that ideal. The intuition behind the two sides of this continuum

is the range between day-by-day creativity and the revolutionary creativity, or the

big “C”. We suggest that divergence as well as convergence are constantly present in

daily problem solving, although only in special situations does it become necessary

to diverge considerably, i.e. to apply a Td
′ kind of strategy.

A somewhat different analysis can be made regarding the expected weight of

novelty and usefulness in the application of the strategies (figure 4.4). Here, we have

a closer match with the diagram proposed for Wiggins’ formalization, in section 2.2.

We have placed the universe of concepts defined by the knowledge base, UKB, in
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Figure 4.4: An analysis of the model presented by applying the framework of Wiggins,
modified by instantiating R with use and E with nov.

the center of¿ use, T , novÀ. In fact, as well as being totally available for the search

method, UKB should contain a variety of concepts, ranging from the useful to the

non-useful, from the novel to the typical2. We also assume that Tc would be directed

towards usefulness and Td towards novelty, although there is no formal indication for

that on the Model. We are intuitively led to this suggestion, and empirical results (in

chapter 6) will indeed confirm this reasoning.

In the imagined scenario given in section 4.2, we arrived at a point where, when

the system did not have the sufficient knowledge or the search space was too big

to reach a goal in a reasonable amount of time, it would enter a divergence mode.

However, it is clear that the complexity of this mode could (and possibly would) be

higher than the convergent one. In other words, in the case of our model, if there was

a mapping between each pair of the n concepts from KB, we would have n× (n− 1)

bisociations, if the transfer operation, ω, only produced one new concept for each

pair. Since we are assuming a large and varied knowledge base, this value would

be extremely big, even with an optimistic perspective. Indeed, if we also consider

the possibility of changing T and G, then we soon reach the conclusion that it is

2We could consider UKB as the inspiring set, since it is given a priori. However, applying an
element from the inspiring set (i.e. a known concept) in an untypical way (e.g. using an apple as a
weapon, instead of food) would thus be a reinvention by some features of Ritchie. Moreover, it is
common to have elements in the inspiring set that are not part of UKB , as well as conversely.
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unrealistic to search but only a little portion of this (new) search space. Thus, the

purpose of presenting and discussing this model is not to implement it entirely, but to

state our position on what modelling concept invention with bisociation is about and

to lay the foundations for practical implementations such as the one we will describe

in the next chapter. A question thus arises: Why is this concept invention?

As we can observe, even if an outcome given by this model is logically deducible

from KB, its generation is not based on soundness3, in the same way that someone

solves a problem without having followed a conscious sequence of steps. This does

not mean that this is the way unconsciousness works, or even how humans invent

concepts, rather it is a model for how it can be computationally simulated. Thus, we

call it a model of concept invention because it produces new (and potentially useful)

concepts from an unsound process, which agrees with the definition we gave in section

3.2.2.

Again, we would like to raise the question about search. After all, isn’t this just

search in a (complex) space? What more do we have to offer than any other AI

model? The answer is simply yes, it is search. And this is an AI model which,

as many other AI models, aims to simulate a specific kind of human behavior that

has been rarely approached before. In this case, creativity, more specifically concept

invention. Would this mean that creativity is part of (or is a kind of) intelligence?

The answer we give is that they are definitely related and, in order to invent a concept,

rationality (an indisputable component of intelligence) is necessary.

Apart from raising philosophical questions, what else is this model for? In other

words, what could be its applications and what is the degree of implementability of

its components? Such a model could be applied in situations where the generation

of new concepts is important, such as in design, architecture or games, to name

a few. Ideally, it could be applied as a meta-level reasoning engine to help with

situations where a lower-level system, dedicated to a specific domain, could not find

a solution, as suggested in the imagined scenario described earlier. To some extent any

of its modules can be implemented, however the capability of meta-level reasoning is,

perhaps, the hardest to construct, since it demands self organization and assessment,

two capacities that machines can hardly achieve. For this reason, meta-level reasoning

has not been implemented in our system, Divago, which will be described next. In

this system, we will provide some suggestions for how other aspects of this model can

be implemented, namely cross-space mapping, bisociation, the knowledge base, the

reasoning engine, the evaluation and the elaboration.

3Of course, this depends on the mapping functions and transfer operations used, but we are
considering any kind of functions or operations, even randomness, which would be likely to produce
many inconsistencies.
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Divago

We will now present our system. It is called Divago, after the Portuguese expression

“(Eu) divago”, which means “I wander”. In the previous chapter, we explained our

Model of Concept Invention, which comprehends the main theoretical substance of

this book. In this chapter, we seek to provide a practical instantiation of its modules.

The construction of Divago demanded many compromises between the overall goal

of instantiating the model of concept invention and the specificities that appeared

during the development and reflection upon each of the modules. For this reason,

there are some points of conflict between them, namely in the implementation of the

search strategies and in the choice of constraints. Where the reading becomes harder

to follow (due to formalization or algorithms), we will try to synthesize the message

in a manner as fluent as possible.

5.1 Overview of the Architecture

In figure 5.1, we show the architecture of Divago. Before entering into details, we

prefer to give a superficial overview of how it works, with attention to the role that

each module takes and to the data flow (represented by arrows in the diagram).

The knowledge base contains a set of concepts, each one defined according to

several different kinds of representations (concept maps, rules, frames, integrity con-

straints, instances). The concept maps, rules, frames and integrity constraints follow

the Micro-theory view, while the instances agree with the Exemplar view.

The first step for the invention of a new concept is the choice of the input knowl-

edge, in this case a pair of concepts. Since, in Divago, we are focusing on the mecha-

nisms of divergence and bisociation, we provide no specific algorithm for this selection.

This choice is either given by a user or randomly generated. After being given a pair
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Figure 5.1: The architecture of Divago

of concepts, the Mapper builds a structural alignment between (the definitions of)

them. It then passes the resulting mapping to the Blender, which then produces a

set of projections that implicitly define the set of all possible blends. This will be the

search space for the reasoning mechanism, the Factory.

The Factory is based on a parallel search engine, a genetic algorithm (GA), which

searches for the blend that best complies with the evaluation given by the Constraints

module. Prior to sending each blend to this module, the Factory sends it to the Elab-

oration module, where it is subject to the application of domain or context-dependent

knowledge. The GA thus interacts both with the Constraints and Elaboration mod-

ules during search.

The evaluation of a blend given by the Constraints module is based on an imple-

mentation of the Optimality Principles (in section 3.3.2). Apart from the blend itself,

our implementation of these principles also takes into account knowledge that comes

from the Knowledge Base (namely integrity constraints and frames), as well as the

accomplishment of a goal that comes in the form of a query. Any of these issues will

be described shortly. The Elaboration module essentially applies internal-logic elab-

oration and rule-based elaboration. The rules involved are also part of the knowledge

base.

After reaching a satisfactory solution or a specified number of iterations, the

Factory stops the GA and returns its best solution. In some cases, this result is

also the input of an Interpretation module, which produces an interpretation of the

new concept. In collaboration with other researchers, we developed Interpretation

modules that generate 2D images (in the house-boat experiment), textual descriptions
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(horse-bird experiments) and 3D images (creatures experiment).

Both the Mapper and the Elaboration modules are optional, for different reasons.

The mappings provided by the Mapper are essentially based on the Analogy and

Metaphor works presented in section 3.4. However, in some situations, these mappings

are very restrictive. Thus, without having implemented alternative procedures, we

allow an externally defined mapping (which, in some experiments, is user-defined).

The Elaboration can also be bypassed for experimentation reasons. When analyzing

results, the elaboration can hide the real results, i.e. it can fix problems by itself that

we may need to watch in order to assess the functioning of the system.

In comparison with the model presented in the previous chapter, a difference

immediately arises that the mechanisms of divergent and convergent search (Td and

Tc, respectively) are not separated in Divago. On the contrary, they work intertwined:

the method for divergence (the GA) uses the method of convergence (which applies

the Elaboration) once for every blend found.

Another difference is that Divago is not processing its own internal specifications.

In other words, we leave meta-level reasoning, which might support transformational

creativity, for future developments. As discussed before, this is an extremely complex

task per se.

We will now describe in greater detail each of the six modules: the Knowledge

Base, the Mapper, the Blender, the Factory, the Constraints and the Elaboration.

5.2 Knowledge Base

All representation in the Knowledge base follows a symbolic approach (as opposed

to sub-symbolic ones, such as neural networks). Nevertheless, we see no reason to

doubt that the same mechanisms could also be applicable with other representation

paradigms. There are many different kinds of structures in the knowledge base of

Divago, namely the concept maps, the rules, the frames, the integrity constraints and

the instances. The syntax used in the knowledge base (and in the whole system) is

the same as in the Prolog language.

We call concept maps to the semantic networks that are used in Divago to describe

a concept or a domain. A Concept Map is a graph in which nodes represent concepts

and arcs represent relations. A concept is thus defined in association to other concepts,

which will therefore also intervene within the concept’s definition. For this reason,

some confusion may arise so we ought to clarify now the notions of domain, concept
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and element1. Whenever we have a concept map in which there is no central concept,

rather many different concepts participate with the same degree of importance, we

call it a domain. Examples of domains could be “biology”, “computers”, “music”.

In any of these, we focus on many concepts rather than only one (e.g. in “music”,

we have “harmony”, “melody”, “rhythm”, etc.). When the concept map focusses on

a single concept x, we say it is the concept map of the concept x. For example, the

concept map of the concept “horse” will have associations to “nose”, “legs”, “mane”,

etc. in order to define what a horse is. Of course, each of these are also concepts, but

as they get farther away from the main concept (the one about which the concept

map is built - in the example, “horse”), they get less specified (e.g. the concept

“human”, from the concept map of “horse” has no associations to “intelligence”,

“face”, “society”, etc. and therefore it is only superficially identified, possibly with

relations such as “owner-of” or “rider”). In order to avoid confusion, we adopt the

convention that each of these nodes of a concept map will be named element2, instead

of concept. Thus, a Concept will be made up of the concept maps, rules, frames, etc.

as proposed in the previous chapters, and following essentially the micro-theory view.

The difference between a domain and a concept is subjective and depends on the

level of granularity. Every domain is by itself a concept and every concept can be

seen also as a domain (even if it is a micro-domain). Throughout this book, unless

explicitly stated to the contrary, we assume that a concept map is defining a single

concept, rather than a domain. To sum up, Divago follows the micro-theory view

of concepts (presented in section 3.1), in which a concept is defined by facts and

rules. We will see that Divago also allows the use of instances, which agrees with the

exemplar view.

The choice of symbols for elements and relations in our concept maps is arbitrary,

yet, mainly after the horse-bird experiment, we followed two normalization princi-

ples. The first one is that relations must belong to (or descend from) the Generalized

Upper Model hierarchy (GUM) [Bateman et al., 1995], a general task and domain in-

dependent linguistically motivated ontology that intends to significantly simplify the

interface between domain-specific knowledge and general linguistic resources. GUM

occupies a level of abstraction midway between surface linguistic realizations and con-

ceptual or contextual representations. Being split into two hierarchies, one containing

all the concepts and the other all the roles, GUM gives us a large set of primitive

1This classification is being used for this book, as the use of the names “domain”, “concept”
and “concept map” has raised some ambiguity in preceding publications. We will follow the present
definition throughout this document and future publications. It is also important to inform that the
notions and underlying rationales maintain the same.

2The name element is also used by Fauconnier and Turner to refer to the same entities inside
mental spaces.
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relations to standardize our choices in the concept map. It is important to notice

that, in our maps, the members of the concept hierarchy of GUM (e.g. “color”, “abil-

ity”, etc.) are used as relations (e.g. “color(mane, black)”, “ability(horse, run)”). In

Appendix C, we reproduce a copy of the whole GUM hierarchy used.

The second principle that we follow in the construction of the concept maps is

that elements in our knowledge base may only be represented as nouns, adjectives,

preferably in the singular form, or numerals (in the particular case of numbers) in

English language. As we said, these are only normalization principles for the con-

struction of the concept maps, so, in theory, the model itself doesn’t take into account

the lexical categories of the words used, following only the principle that “the same

word corresponds to the same element”.

Given the importance that the concept maps have for Divago, we developed an-

other system, Clouds (which was the subject of an MSc. thesis), with the goal of help-

ing a user build her own concept maps and avoiding bias as much as possible. The sys-

tem led the user towards different areas of the concept map and, as it gets expanded,

she can no longer keep track of the whole, leaving to Clouds the task of leading the con-

struction via questioning the user. Clouds was used to generate the maps for some of

the experiments presented here. It is far from the theme of this book, so we direct the

interested reader to [Pereira et al., 2000, Pereira and Cardoso, 2000, Pereira, 2000]).

Let us now define formally a concept map. We will use the same definitions and

symbols given in the previous chapter.

Let AE ⊆ A be a set of symbols, which we will call the elements and let AR ⊆ A
be another set of symbols, which we will call the relations. A Concept Map CM is a

set of binary predicates with the form:

X(Y, Z), X ∈ AR, Y, Z ∈ AE

We also define the exhaustive closure CM+ as the concept map with all elements

AE and relations AR between them, i.e.

CM+ = {X(Y, Z) : X ∈ AR, Y, Z ∈ AE}

Therefore, CM ⊆ CM+.

In tables 5.1 and 5.2, we show examples of concept maps for “horse” and “bird”(made

with Clouds). These maps are necessarily arbitrary in the sense that each person

would draw her own maps, a result of the different conceptualization and individual

points of view one can take. Some relations such as “pw”(part-whole), “member of”

(category inclusion relation), “isa”, “sound” are either shorter words for the same

relations of GUM or extensions made to this hierarchy.
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isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(hoof, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(nose, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)
pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(hoof, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, nose) quantity(eye, 2) member of(horse, ruminant)
pw(ear, nose) quantity(ear, 2) ride(human, horse)
pw(mouth,nose) purpose(eye, see) motion process(horse,walk)
isa(farm, human setting)

Table 5.1: The concept map of horse

isa(bird, aves) existence(bird, house) isa(aves,oviparous)
lay(oviparous, egg) existence(bird,wilderness) purpose(bird, pet)
purpose(bird, food) purpose(eye, see) smaller than(bird, human)
pw(lung, bird) motion process(bird, fly) purpose(beak, chirp)
purpose(lung, breathe) quantity(eye, 2) quantity(wing, 2)
isa(owl, bird) isa(paradise bird, bird) quantity(claw, 2)
ability(bird, fly) pw(wing, bird) conditional(wing, fly)
pw(feathers, bird) pw(beak, bird) purpose(wing, fly)
purpose(beak, eat) purpose(claw, catch) sound(bird, chirp)
isa(parrot, bird) ability(parrot, speak) pw(straw, nest)
pw(eye, bird) pw(leg, bird) purpose(leg, stand)
pw(claw, leg) role playing(bird, freedom) quantity(leg, 2)
isa(nest, container) isa(house, human setting)

Table 5.2: The concept map of bird

We often represent concept maps graphically, in which the relations are arcs and

elements are nodes. Figure 5.2 shows an excerpt of the concept map for “horse”.

The concept map corresponds to the factual part of the micro-theory of the con-

cept. The inferential part comprises rules that explain the inherent causality, frames

that have the role of providing a language for abstract or composite concepts and

integrity constraints, particular rules that serve to assess the consistency of the con-

cept.

Rules have the form:

A0 ∧ A1 ∧ ... ∧ Ai ←− B0 ∧B1 ∧ ... ∧Bj, Ai ∈ K

with K = CM+ ∪ {not R : R ∈ CM+}
This allows for the use of negation as well as a conjunctive set of atoms (Ai) in the
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Figure 5.2: Concept map of horse (an excerpt).

head, although with specific constraints: Ai ∈ K and Bj can be any atom or logical

expression (e.g. a comparison). For example, a rule for inferring that something is at

the gaseous state (and not at the solid or liquid state) could be:

state(X, gaseous) ∧ not state(X, solid) ∧ ←− ebulition point(X, N)∧
not state(X, liquid) temperature(X, T ) ∧ T > N

The syntax followed by Divago for rules is defined by a predicate rule/6:

rule(Domain, Name, PosConds,NegConds, AddList, DelList).

where Domain corresponds to the domain or concept with which the rule is related,

PosConds and NegConds correspond to the (positive and negative, resp.) sets of con-

ditions of the rule and AddList and DelList correspond to the (positive and negative,

resp.) sets of conclusions of the rule.

The frames have the role of describing abstract concepts, situations or idiosyn-

cracies. A frame consists of a set of conditions that the concept map must satisfy.

When a concept c satisfies all the conditions of a frame f , we say that c integrates

f . Frames are formally very similar to rules but they are applied differently in the

process:

frame(Name) : A0 ∧ A1 ∧ ... ∧ Ai ←− B0 ∧B1 ∧ ... ∧Bj

where Name is an identifier of the frame. A frame should be a meta-level concept

that is tightly integrated according to a situation, structure, cause-effect or any other
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relation that ties a set of elements onto one, abstract or broad, concept. For example,

the frame of “transport means” (below) corresponds to a set of elements and rela-

tions that, when connected together, represent something that has a container and a

subpart (e.g. an engine) that serves for locomotion.

frame(transport means(X)) :

carrier(X, people) ←− have(X, container) ∧ have(X, Y )∧
purpose(Y, locomotion) ∧ drive( , X)

When a concept map integrates the “transport means” frame, then we can either

say that it is itself a “transport means” or one of its constituents is a “transport

means”. For example, the concept map of school bus would integrate this frame,

while the concept map of classroom wouldn’t.

The syntax for representing a frame is the following:

frame(Domain, Name, PosConds, NegConds, AddList, DelList).

An extremely important aspect to remember about frames is that they allow the

inclusion of Prolog scripts inside any of the sets PosConds, NegConds, AddList and

DelList. This offers great power to frames since these scripts will be run whenever the

frame is inspected and integrated. In other words, in order to check whether a concept

map integrates a frame, it will execute the scripts included in the sets PosConds and

NegConds and, during the elaboration phase, the frames that are integrated will have

their sets AddList and DelList also executed. We will clarify each of these mecha-

nisms during this chapter. The frames can thus become externally defined scripts or

programs, executed whenever their conditions apply 3. We propose to consider several

types of frames according to their degree of abstraction and functional aspects. A

very specific frame comprehends a well defined set of relations and elements, such as

in “transport means”. A highly abstract frame is one that considers many different

types of elements and relations. For example, when a concept map satisfies a “noun-

noun combination” frame, it means that it consists of the concept that results from

a combination of two nouns - each one an independent concept in itself (e.g. “pet

fish”, “gun wound”).

In terms of their function, frames can be classified as organizing, pattern identifying

or transforming. An organizing frame is a frame that determines the general structure

of a concept map. For example, in the concept map for school bus, “transport means”

3Rules can also contain Prolog scripts. While in frames, we use complex scripts (e.g. for specifying
what kind of projections to apply in a blend), for rules, we normally use simpler ones (e.g. for
calculating the meeting point of two moving objects, as needed in the Buddhist monk example.).
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could be an organizing frame. A frame is pattern identifying when it matches a

pattern within a larger concept map. For example, in a school trip concept map (which

could be a large concept map with details about many concepts such as bus, teacher,

driver, study material, theme, route, etc.), one could find a “transport means” frame

(focussing on the school bus part), this time becoming pattern identifying. Normally,

organizing frames are a lot more abstract than the pattern identifying ones, although

sometimes the same frame can take both functions. Transforming frames may only

make sense within a bisociation context (and thus will get clearer as we progress

through this book). A transforming frame identifies a transformation that occurs

during the blending of two input concepts. For example, if the new concept map

integrates a “new ability” frame, it means that there were new “ability” elements

and relations transferred from one of the input concepts to the context of the other

(e.g. in Pegasus, wings are transferred from bird to horse, giving it the ability to fly).

The specification for “new ability” could be something like:

frame(new ability(d1)) :

new ability(X, A) ←− ability(X, A) ∧ not rel(d1, ability(X, A))∧
purpose(P,A) ∧ pw(P, X)∧
projection(blend, d1, X,X)∧
projection(blend, d2, A, A)

Reading this informally, it says that if some element X has, in the concept map of

the blend (that is to say, the new concept map), the ability A, which was not present

in X’s input space, d1, then we are in face of a “new ability” given to X. It also

says that this “new ability” should have a minimal justification, i.e. there must be

a subpart P of X whose purpose is to provide ability A (e.g. if something flies, it

should have wings). Furthermore, we can also require that X and A be projected

from different inputs (d1 and d2, resp.) to the blend.

Thus, a frame will serve, in the process of concept invention, as a tool for pattern

identification, for providing directives for the construction of concepts, and for elabo-

ration. As we will see, frames are essential to control the system. In Appendix D, we

provide a thorough description of these knowledge structures, their specific keywords

and some examples.

Although rules and frames are formally very similar, we should now clear out their

distinction and underlying rationales. Rules take an important role in the definition

of a micro-theory of a concept, however in the blend construction, they end up having

a passive part (they can be applied to the input domains before the process, or to

the blend, after it is generated). Frames, on the other hand, can take an active part
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on the blend construction: they can be specified as goals by a user and they help

structuring the blend, often becoming the scaffolding around which new blends are

constructed. In fact, as the experiments will show, they are fundamental to help

Divago achive meaningful results.

As the reader may have noticed, our notion of frame departed from modelling

Fauconnier and Turner’s “tightly integrated structures” to operational scripts which

actually govern transformations during blend construction. In cognitive linguistics

terms, we believe this partially falls into the image schema realm (although the defi-

nition itself of image schemas in CL has not reached a consensus, e.g. [Johnson, 1987,

Neisser, 1976, Thomas, 1999]) in the sense that our frames can be patterns that re-

currently provide structured understanding of various concepts. Taking an example

from Lakoff [Lakoff, 1987] of a part-whole schema (in Prolog form):

frame(generic, pwSchema, [findall(X, pw(X,Y ), L), op(exists(L))], [], [], []).

This frame covers every part-whole relation in a concept map (the larger it be-

comes, the more “part-whole” based is the concept - the more the schema becomes

meaningful for the concept). It can be said that these frames are too strict for the

“metaphorical” potential of image schemas - the part-wholeness of the schema should

not have to be processed literally (in the same way that an individual is part of

the society, as opposed to a wheel being literally part of an engine), but it is also

true that the set of concepts it can match depends on the abstractness of the frame.

For example, the relation “pw” above could be replaced by a more general one (e.g.

“belonging”) or it could be defined via an algorithm.

The same reasoning could be taken for any other image schema (once we find the

relationships and their arguments), but it becomes difficult to argue that frames are

images schemata, because we didn’t explore the relationships any further, namely

regarding the cognitive basis, the role of perception, learning or any other aspect

regarding the mentality of image schemata. What we are trying to say is that, with

our frames, some of the properties of the image schemata can be simulated, namely

being a generic structure, applicable to different concepts, thus attributing to these

concepts a particular association (to the image schema - e.g. “part-wholeness”),

and triggering associated inferences. Frames could be seen as a strictly symbolic -

computational - version of image schemata. Again, we redirect the interested reader

to Appendix D, which can clarify further the scope of these structures.

The integrity constraints serve to specify logical impossibilities. Each integrity

constraint consists of a set of propositions that should not be simultaneously true.
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Let Ai be any atom or logical expression, an integrity constraint ic is defined as:

false← A1 ∧ A2 ∧ ...not An−1 ∧ not An ∧ ...

Two examples of integrity constraints could be for specifying that something can-

not be dead and alive at the same time and for avoiding part-whole recursion, i.e.

something cannot have a part-whole relation (pw) with itself:

false← state(X, dead) ∧ state(X, alive)

false← pw(X, X)

In the Prolog syntax that we use, an integrity constraint is represented by the predi-

cate integrity/3:

integrity(Domain, Pos, Neg)

where Domain is the concept or Domain to which the integrity constraint belongs

and Pos and Negs are the positive and negated conditions of the constraint.

Finally, we can define a Concept Micro-Theory (or a Domain theory), CT , as

being a tuple (CM, R, F, IC), where CM is a Concept Map, R is a set of rules, F a

set of frames and IC a set of integrity constraints.

The micro-theories may be compared to Joseph Goguen’s sign systems

[Goguen, 1999]. In a sign system, we have sign and data sorts, partial orderings

on each of these, relations and functions, constructors to build upper level signs, pri-

orities on these, and axioms. In our micro-theories, we have no formal distinction

between sign and data sort. In principle, every element is equal, thus its classification

and partial ordering can only make sense in a concept map (e.g. an isa ontology with

animal classification would correspond to a sign sort ordering, while another one with

colors or numbers would be a data sort ordering), which also contains the relations

and functions. Frames are our constructors, but there is no ordering or priority over

them. Only goal frames, used in the Constraints module, have priority over the other

frames. Finally, rules and integrity constraints can be seen as Goguen’s axioms.

Another level of representation allowed in Divago is that of the instances. Along

with the micro-theory, one can also add instances to the concept definition (this

corresponds to the Exemplar view, as in section 3.1). Instances are represented as

structures of knowledge that apply (some of) the elements present in the micro-theory.

Let AA ⊆ A be a set of symbols (the arguments) and let AF ⊆ A be a set of

relations (the functors). Let LC be a set of compositions such that:

c ∈ LC : c =





x ∈ AA
I(y1, y2, ..., yn), yi ∈ LC, I ∈ AF
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Figure 5.3: An instance of a house

Thus an Instance can be represented in the form I(x1, x2, ..., xn), where I ∈ LF ,

and xi ∈ LC. xi is compositional, i.e. it can be used as an argument to another

xj. An example of an instance of the concept “house”, as used in the “house-boat”

experiment, could be:

case(1,0, house, [sons=2, size=small, type=simple, son name=roof, son name=body]).
case(1,0:0, roof, [shape=triangle(30)]).
case(1,0:1, body, [sons=3, in=[left/90,off/25, right/90],son name=structure,
son name=window, son name=door]).
case(1,0:1:0, structure, [shape=square]).
case(1,0:1:1, window, [shape=square(5), in=[off/20, right/90, off/15, left/90]]).
case(1,0:1:2, door, [shape=rectangle(4, 10), in=[off/3]]).

Using the functors ’case’, ’:’, ’=’ and ’/’, this instance describes the several parts

of a house, starting from its top-level element (“house”) to the smallest constituents

(“door”). It associates each of the elements (that are also part of the theory) to a 2D

drawing language (Logo). Its interpretation generates the image in figure 5.3.

Since the details of these instances and their syntax are not central for this book,

we redirect the description of the language used to the Appendix E.

Instances are useful for interpreting a new concept in the sense that they can

attach a semantics to a concept and its constituents. For example, with a visual

instance of a house, one sees an example of what a door can look like. This will be

observed in the house-boat and creatures experiments.

Finally, in Divago, a concept is defined by the pair (CT , I), where CT is the

theory and I is a set of instances. The Knowledge Base can simultaneously have

many different concepts, from different domains. However, during concept invention,

Divago only considers a pair of concepts (or domains) and a special domain, the

generic domain.

The generic domain contains all knowledge that is applicable to all concepts and to

the process of concept invention. It has encoded the hierarchy of GUM in a predicate

arc/5, which can be used to generalize/specialize the relations found in a concept

map. This facility is used by some frames. The generic domain also contains an

isa ontology, which is used mostly by the Mapper (shown in next section) to build
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correspondences between elements of different concepts. The majority of the frames

used by Divago also belong to the generic domain. In table 5.3, we show some of the

frames from the generic domain that were used in the experiments.

Frame name Conditions
aframe The blend contains identical structure from input 1
aprojection The blend contains the same elements of input 1
bframe The blend contains identical structure from input 2
bprojection The blend contains the same elements of input 2
new ability An element has an ability relation not existent in any of the

inputs
function transfer An element in the blend has a function that was not present in its

input.
analogy transfer Transfer all neighbor elements and relations of an element of one input

to the projection of its mapping counterpart from the other input.

Table 5.3: Some frames of the generic space

In the generic domain, we find also integrity constraints and rules. An entire copy

of the generic domain is given in Appendix F. In fact, the generic domain holds

most of the knowledge for Divago, while each specific concept has only encoded the

essential, usually consisting solely of the concept map.

To summarize, Divago employs a large variety of knowledge structures, each one

with its own role: concept maps for structural relationships within a concept (or do-

main); rules for defining procedures specific to a concept; frames as abstract concepts

that allow the system to identify patterns in concepts and to infer further knowledge

(running the blend); integrity constraints to establish limits for reasoning; and in-

stances, as examples of the concept (or domain). As we have said, these do not all

have to cohabit simultaneously in the system. Indeed, with concept maps, frames and

integrity constraints, the system is able to give results as shown in chapter 6. The

need of each representation type will depend on the problem at hand: if working with

concepts that need reasoning that depends on “hidden” inferences (e.g. temporal

reasoning - story plot blending; spatial reasoning - scenario blending), we will need

rules; if we intend to design specific objects (e.g. 3D objects), then instances may be

necessary to provide a real output; if making experiments at the conceptual level (e.g.

testing examples of Conceptual Blending), then maybe frames and concept maps will

be enough. The integrity constraints are present in almost every application, as they

become essential to advise Divago not to follow wrong paths4.

4They are not mandatory, their role is to identify logically incongruous or inconsistent situations.
But if there is a good reason for their maintenance, they will prevail (as happens in some creativity
situations, as mentioned in section 2.1.2).
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5.3 Mapper

The Mapper defines the mapping function φ of the model presented in this book. In

the definition we gave, this function is oversimplified, since it only provides a binary

association between pairs of concepts. In Divago, a concept is itself a structure with

many different sub-structures, thus the mapping becomes somewhat more complex.

This justifies a revised version of the mapping operation, φ:

φ : U × U −→M

where M is the powerset (set of all sets) of all possible pairs of sub-structures from

concepts of U . In this module, we propose to use exclusively the concept maps. To

state this more clearly, for any pair, CM1 and CM2, of concept maps, the Mapper

will find a set of mappings between their elements, each pair having one element from

CM1 and one from CM2.

In his formalization of Conceptual Blending, Goguen introduces the semiotic mor-

phisms. A semiotic morphism is a structure preserving mapping, as it should map

sorts to sorts, subsorts to subsorts, data sorts to data sorts, constructors to construc-

tors, etc. [Goguen, 1999]. However it is assumed that these should only be partial

maps. As far as we are aware, Goguen does not suggest any specific algorithm for

building semiotic morphisms. We believe that an algorithm such as the one imple-

mented for the Mapper could be a viable solution.

The Mapper uses a spreading activation algorithm to look for the largest isomor-

phic pair of subgraphs (contained in the concept maps). In this context, two graphs

are considered isomorphic when they have the same relational (arcs) structure, in-

dependently of the elements (nodes). There is potentially more than one structure

matching between any pair of concept maps and this complexity grows worse than

exponential with the number of elements (nodes) 5 However, since it only allows align-

ment when it finds equal relations in both graphs, the number of possible solutions

can be drastically reduced, while still demanding that Mapper makes the search in

a huge space. Furthermore, the algorithm starts with a randomly selected pair of

elements, so the “perfect choice” (or even the same choice) is not guaranteed every

time we run it.

The Mapper uses an algorithm of structure matching inspired by Tony Veale’s

Sapper framework [Veale, 1995]. We have already presented Sapper and therefore

5Assuming n as the number of elements of the largest (in number of elements) of the two concept
maps, we will have a search space of at most n! possible mappings. So, with an exponential kn,
as n approaches infinity, kn

n! will approach 0, meaning that the search space will expand more than
exponentially as the number of elements grows. In little-o notation, we have that kn is o(n!).
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the differences will now be further enhanced. While Sapper needs two cycles to

obtain the mapping (one for laying down dormant bridges with the triangulation

rule and one for finding the mapping)6, our Mapper uses three cycles: one for laying

down dormant bridges (with both triangulation and squaring rules); another one for

spreading activation (in our case, a flood fill algorithm); and a final cycle for finding

the mapping. In the first cycle, Mapper builds new dormant bridges whenever two

elements from the two input concept maps share the same relation to the same element

(the triangulation rule). Here, the generic domain (and particularly the isa-ontology)

is extremely important because it is a source of shared knowledge. The Mapper also

adds a dormant bridge between every two elements that share the same relation to

two different elements that are connected by a dormant bridge (the squaring rule).

Thus, while Sapper adds dormant bridges as the mapping is found, the Mapper

creates all possible dormant bridges in the first cycle. The second cycle in Mapper

spreads activation throughout the concept maps. This is different to Sapper where

this activation has no prime factorization or wave. It has only an activation value that

decays as it passes by elements. This activation starts at 100 and is reinforced when

passing near a dormant bridge. Below a threshold (the default value is 20), it stops

spreading. After this second cycle, the network will have a set of sub-graphs with

activated elements, centered in the dormant bridges. The final cycle starts with the

random (or user-given) choice of one of the dormant bridges, the seed mapping. This

dormant bridge is awakened, and thus becomes the first mapping. Then it progresses

in parallel in both concept maps, so that each new pair of elements to be mapped

(i.e. each dormant bridge visited) is connected by a pair of equivalent relations to a

previously awakened dormant bridge.

As a result of the algorithm, the Mapper returns a set of mappings between the

two concept maps. This module was born out of an idea to implement a version of

Sapper that would not worry about returning the best (widest?) mapping or would

bias the mapping towards the highly activated nodes (for instance, in Sapper, the

choice “Scalpel: Snub-Fighter” beats out “Scalpel: B-52” [Veale, 1995, chapt. 6] due

to higher activation; in Mapper, any could be selected). The principle was that, if

it clearly became less effective (slower, with smaller mappings, etc.) than Sapper,

then we would directly use Veale’s algorithm. However, we gradually found that the

Mapper had limitations that would not be resolved by changing to Sapper. As we

will see in the experiments, restricting mappings to structure alignment narrows the

potential of the system, thus we gave the Mapper a secondary (i.e. optional) role in

6Actually, the latest version of Sapper, which has no “prime factorization or wave” employs only
one phase [Veale and O’Donoghue, 2000]. But we based ourselves in Veale’s PhD thesis work, thus
we will focus on that version. Furthermore, as said before, the Sapper project has much more testing
and documentation for the first version than for the latter one.
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ear ↔ wing
nose ↔ bird
eye ↔ lung

mouth ↔ feathers
2 ↔ 2

hear ↔ fly

1

mouth ↔ beak
nose ↔ bird
eye ↔ lung
ear ↔ feathers
eat ↔ eat

2

vegetable food ↔ vegetable
food ↔ food

horse ↔ bird
equinae ↔ aves
animal ↔ animal

human setting ↔ house
wilderness ↔ wilderness
ruminant ↔ oviparous

run ↔ fly
cargo ↔ pet
neigh ↔ chirp
nose ↔ lung

mane ↔ feathers
tail ↔ beak
leg ↔ eye

hoof ↔ wing
4 ↔ 2

eye ↔ leg
ear ↔ claw

hear ↔ catch
grass ↔ grass

3

Figure 5.4: The three mappings

Divago. On the other hand, the behavior of the module was sufficiently satisfactory

to be retained in some situations. In spite of the complexity involved, this module is

fast in returning a mapping and it achieves the same results as Sapper in the majority

of the time .

As an example, we show in figure 5.4 the three different mappings produced for

the concept maps of horse and bird (from tables 5.1 and 5.2). It is important to

understand that every relation has the same weight in the graph and there is no

domain knowledge or special heuristics considered in the mapping construction. This

means that the results may contain non-intuitive associations (e.g. “4” associated

with “2”; “nose” with “bird”).
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5.4 Blender

In Goguen’s algebraic semiotics Blending formalization [Goguen, 1999], a blend is

some sign system that results from the semiotic morphisms from the input and generic

spaces (the injections). These morphisms should be mutually consistent. The “best

blend” (to what he calls 3/2 pushout) would thus result in an ordering of semiotic

morphisms by quality, e.g. they should be as defined as possible, should preserve as

many axioms as possible, and should be as inclusive as possible (i.e. contain the max-

imum number of mappings between concepts). Although this author considers this

“best blend” as the best result over a conjunction of compromises between criteria,

again it is not clear what exactly these criteria are, apart from structure mapping.

Generically, we follow some of the same ideas as Goguen, namely the application of

criteria for ordering a set of candidate blends, and having in structure a fundamental

index for quality. The Blender is the first part of this approach (which will be com-

pleted with the Factory, the Constraints and the Elaboration module) and focuses on

calculating the set of all possible blends.

Assuming a mapping m, generated by the mapping operation φ, as defined by the

Mapper or by an external source, we must specify the transfer operation, ω, which

will transfer knowledge from two concepts into one (as in chapter 4). As with the

mapping function, so the transfer operation works with the concept maps.

First, we have to define what a blending projection is. A blending projection of

an element x from concept map CM is a non-deterministic operation that maps x

to another element (in the blend) which is either x, ∅, x|y or y (y is the counterpart

of x, i.e. (x, y) ∈ m). The symbol x|y is called a compound and can be read as

being both x and y at the same time. In order to consider this symbol, we must have

the alphabet AB, which contains the alphabet A plus every combination of pairs x|y
that are possible to obtain from symbols of A. Thus, given A and AB, two concept

maps CM1 and CM2 (the two input concepts), a mapping m (given by φ), a blending

projection γ is the operation γ: A −→ AB, such that:

γ(x) =





x ∨ x|y ∨ y ∨∅ if x ∈ CM1, ∃y ∈ CM2 : (x, y) ∈ m

x ∨ y|x ∨ y ∨∅ if x ∈ CM2, ∃y ∈ CM1 : (y, x) ∈ m

x ∨∅ if (x ∈ CM1, @y ∈ CM2 : (x, y) ∈ m) or

(x ∈ CM2, @y ∈ CM1 : (y, x) ∈ m)

Informally, a blending projection determines, for each element of a concept map,

what its correspondent will be in the blend. When such an element (x) has a coun-

terpart in the mapping, then it can be projected as a copy (x), as a compound with
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Figure 5.5: The blending projection applied to two small concept maps.

the counterpart (x|y), directly as its counterpart (y) or have no projection at all. For

example, from the third mapping in figure 5.4, “wing” could be projected to “wing”,

“hoof|wing”, “hoof” or be absent in the blend. In figure 5.5, we sketch all possi-

ble projections from two little concept maps. Notice that “human” has no mapping

counterpart, therefore it can only map to its copy or to ∅.

A blend is defined by the blending projections. The transfer operation, ω, is

defined by an algorithm that composes the blend by transferring knowledge from

the inputs to the blend, according to the projections. It corresponds to the step of

Composition of the Conceptual Blending framework. The algorithm follows:

Input:

Two input concepts, C1 and C2, defined by the pairs (CT1, I1) and (CT2, I2),

respectively, with CT1=(CM1, R1, F1, IC1) and CT2 =(CM2, R2, F2, IC2).

Algorithm:

Let Blend ←− {}
For i=1,2 do

For each relation r(a, b) in concept map CMi do

Add relation to Blend with the form
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r(γ(a), γ(b)), iff γ(a) and γ(b) are not ∅

EndDo

For each rule r from Ri, in the form

r = c1(x1, y1) ∨ c2(x2, y2) ∨ . . . ∨ cm(xm, ym) ∨ {Codec} ←− p1(z1, t1)

∧p2(z2, t2) ∧ . . . ∧ pn(zn, tn) ∧ {Codep}, do

Add new rule to Blend such that each cm(xm, ym) is substituted by

cm(γ(xm), γ(ym)) (when γ(xm), γ(ym) 6= ∅) and pm(zm, tm)

is substituted by pm(γ(zm), γ(tm)) (when γ(xm), γ(ym) 6= ∅)
Copy Codep and Codec (the scripts) directly to the new rule.

EndDo

For each frame f from Fi do

Apply the same process as with rules

EndDo

For each integrity constraint ic from ICi do

Apply the same process as with rules

EndDo

For each instance s from Ii, in the form

s = I(x1, x2, ..., xn), do

Add new instance to Blend with the functor I and apply the same process as

with relations (but with arity n and recursively)

EndDo

EndDo

This algorithm basically creates a blend by applying the projections to all the con-

stituents of the input concepts. As the projection operation, γ, is non-deterministic,

when this algorithm is applied without selecting specific projections (i.e. without

restricting to only one projection for each element of the concept maps, as will be

done by the Factory module), it does not produce a single blend, rather it generates

what we call a blendoid. The blendoid contains all possible constituents (relations,

rules, frames, instances and integrity constraints) that can be present in any blend of

two specific input concepts. In other words, it implicitly includes all the search space

of blends (see example in figure 5.6).

Taking a close look over the search space of blends, we notice that, for an input

concept 1 with a concept map with m different elements and an input concept 2
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Figure 5.6: A blendoid.

with n elements, we may have the maximum of
∑k

i=1[
(

m
i

) · (n
i

) · i!] different mappings

(if we use the isomorphic mappings, as in the Mapper), with the largest mapping

having a size k = min(m,n). To understand this formula, let us consider the extreme

case in which all relations (in both concept maps) are equal. Counting all mapping

sizes (from 1 to k), we have, for a mapping size7 i, all combinations of m elements

matching all arrangements of n elements. In reality, the number of mappings is much

lower since there is a variety of different relations in both inputs. Furthermore, we

may also assume that the Mapper will normally produce only the largest mappings

(smaller mappings are generated only when the Mapper loses activation prematurely

when doing the spreading activation process)8.

Assuming each blending projection is independent, we will have a total of l = m+n

different projections in the definition of every blend. So, in the “least complexity

scenario”, the size of the mapping is 0, meaning that we only have two choices for

7A mapping of size i will have i correspondences between input concept 1 and input concept 2.
8This helps to understand why, in spite of this combinatorics analysis, the actual number of

different mappings generated is rather small (e.g. for the concept maps in tables 5.2 and 5.1, the
Mapper generates only three mappings, see fig. 5.4).
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each of the l elements (either it gets projected to the blend or it is not projected), thus

we have 2l different blends. If the size of the mapping is k (the maximum possible),

we have four choices for each of 2k elements (k elements in each of the domains)

because each element x mapped to y can be projected either to x, y, x|y or ∅. Apart

from these 2k elements, the rest (l − 2k) has only two possibilities. This leads us

to the conclusion that, for a mapping of size s (0 ≤ s ≤ k), we have 42s × 2l−2s

different possible blends to choose, which is a very large search space. For example,

for m = n = 20 (an “average” sized pair of networks), we have at least 240 (if s = 0)

and at most 420 (if s = 20) different solutions. If we remember that the Optimality

Principles are mutually competing pressures, then we may guess that this is a very

complex search space. Obtaining a good blend is the main motivation for the Factory

module, which will be the subject of the next section.

The Blender module provides two fundamental services to the Factory: it gener-

ates the blending projections (only once and before the Factory starts searching); it

provides the transfer operation, which is used by the Factory each time it needs to

create a blend.

5.5 Factory

The Factory is the processing core of Divago. It corresponds to the reasoning mecha-

nism of our model of concept invention and is responsible for applying the divergent

strategy, Td, which is, as we will see, encoded as a genetic algorithm.

In our context, the output of the Factory, i.e. the invented concept, will correspond

to a blend. Since a blend is primarily defined by a string of projections, then searching

for an invented concept becomes searching for the string of projections that originates

the best blend. A string of projections that comprises one and only one projection

for each element from the input concepts is called a selective projection. Therefore,

as discussed in the previous section, for a pair of input concept maps, and a mapping

of size s, we have a number of 42s × 2l−2s different possible selective projections.
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Figure 5.7: A possible selective projection from the example of figure 5.5.

Assuming γ′(x) as an algorithmic function that returns each time one and only

one of the possible projections allowed by γ(x), and the pair of concepts C1 and C2

(containing concept maps CM1 and CM2, respectively), a selective projection, λ can

be defined as:

λ(C1, C2) = {γ′(x1), γ
′(x2), . . . , γ

′(xm), γ′(y1), γ
′(y2), . . . , γ

′(yn)},
with xm ∈ AECM1 ∧ yn ∈ AECM2

with AECMi
corresponding to the set of elements that are present in CMi.

Given the complexity of the search space, and for computational reasons, we

decided to implement a parallel search algorithm, a genetic algorithm (GA): a frame-

work inspired by evolutionary theories in which we have a sequence of populations of

individuals, each individual having a fitness value that represents its survival and re-

production possibilities. Each individual has a genotype, its birth given genetic code,

and a phenotype, the actual interpretation of the genotype (in nature, the animal

itself). A genetic algorithm works as follows:

1. N individual genotypes are randomly created (sometimes the researcher might

have an idea as to what is a good genotype and would direct the creation of the
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Figure 5.8: The genotype of the individual corresponding to the selective projection
of figure 5.7.

initial population). These individuals are the initial population.

2. Each individual in the population is evaluated by a fitness function. This eval-

uation is based on the phenotype.

3. The best individuals are chosen for reproduction. This choice can be based on

aspects other than fitness value (e.g. biodiversity).

4. The genotypes of the chosen individuals reproduce using the methods of crossover

and mutation and a new population is formed. Other operators are also used.

In our case, we also use asexual reproduction (direct copy of the genotype)

5. Steps 2 - 4 are repeated for a set amount of times or until a halt condition is

met.

This well-known framework has had much success in problems with a search

space with the complexity characteristics that we described. Further explanation

of GA’s is far outside of the scope of this book, so we direct the interested reader to

[Goldberg, 1989].

In our GA, the genotype corresponds to a “selective projection”. The individual

is thus an ordered sequence of projections (the genes), each one with one of the

allowed values (from the set x, y, x|y and ∅). The phenotype is constructed with the

transfer operation, as given by the Blender module, and elaborated by the Elaboration

module. In figures 5.8 and 5.9, we show examples of the genotype and the phenotype

(generated with the transfer operation).

The initial population has 100 individuals selected randomly. The evaluation of

an individual is made by the application of the Optimality Principles, which then
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Figure 5.9: The phenotype - a horse|bird has wings and is ridden by humans.

participate in a weighted sum, yielding the fitness value. This work is performed

in the Constraints module. The selection of the individuals is of the roulette-wheel

type, i.e. the ones with higher fitness have a greater probability of being chosen.

Our algorithm uses 3 reproduction operations: asexual reproduction (the individual

is copied to the next population); crossover (two individuals exchange part of their

list of projections) and mutation (random changes in the projections). It also allows

the random generation of a new individual, which can be useful when the current

population has low biodiversity. The system stops when a predefined number of

iterations of this process has been done, when it stabilized around an acceptable

maximum for more than a predefined number of iterations or when an individual was

found that has a satisfactory value.

As we have said before, the choice for a GA is connected to computational pref-

erences, thus we do not make a claim for any cognitive implications in this matter.

Other choices could be followed (e.g. simulated annealing), but GAs are highly versa-

tile (with a simple tweak in the process, it can be changed into a simulated annealing)

and offer a bulk of experimental and theoretical bases from which to apply method-

ologies or choose parameters. With this GA, Divago is able to search in a huge space

of blends according to the preferences of the user. The best solution is not guaran-

teed, but it is reasonable to expect that the higher the number of iterations, the more

likely it is to find a good blend, if one exists in the search space.
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5.6 Constraints

The Constraints module implements the Optimality Principles. It makes a prepro-

cessing of each blend (checking frame satisfaction and completion, integrity constraint

violation, vital relation projection, etc.) and then obtains a value for each of the eight

measures. These values then participate in a weighted sum, which yields the value of

the blend (normalized to fall into the [0,1] interval) which is returned to the Factory.

The weight attributed to each optimality pressure is defined by the user. Our proposal

for a computational realization of the eight Optimality Principles concerns solely the

representation and scope of this model9. This doesn’t mean that this proposal should

not be verified or tested with regard to cognition and the blending phenomena in

general, rather we state that we didn’t base our measures on cognitive experiments,

but mainly tried to follow the philosophy behind the description given by Fauconnier

and Turner in the context of our formal model.

While these constraints consider usefulness, as well as many other aspects, it

is clear that they lack any explicit concern to novelty. Instead of adding an extra

constraint for novelty, we decided to face it as an effect rather than as a construction

principle. In other words, we intend to verify if, with the present architecture and

constraints, Divago can produce novelty. In the experiments, we will be able to see

that it is capable of some degree of novelty.

We will now present our computational version of the eight optimality principles.

5.6.1 Integration

Frames gather knowledge around abstractions, tightening the links between elements.

They organize a concept into a more understandable whole. For example, in figure

5.10, two specific frames integrate the blend into a more broad concept of “flying

equinae”.

9A first approach was published in [Pereira and Cardoso, 2003b], followed by
[Pereira and Cardoso, 2003c]. The current version is a revision with differences in Topology,
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Figure 5.10: The blend satisfies (or accomplishes) the frames “Equinae” and “Flying
thing”

Assuming the set F of frames that are satisfied in a blend, we define the frame

coverage of a blend to be the set of relations from its concept map that belong to

the set of conditions of one or more frames in F . The larger the frame coverage of

the blend, the higher the integration value should be. Yet, a blend that is covered

by many frames should be less integrated than a blend with the same coverage, but

with less frames. In other words, if a single frame covers all the relations of a blend,

it should be valued with the maximal integration, whereas if it has different frames

being satisfied and covering different sets of relations, it should be considered less

integrated. The intuition behind this is that the unity around an integrating concept

(the frame) reflects the unity of the blend. The Integration measure that we propose

varies according to this idea. It also takes integrity constraints into account so that,

when a frame violates such a constraint, it is subject to penalty.

Definition 5.6.1 (SingleFrameIntegration). For a frame f with a set C of condi-

tions, a blend b, with a concept map CMb, its blendoid with a concept map, CMB+ ,

and V I, the set of integrity constraints that are violated in the frame, the integration

value, If is defined by:

If =
#C

#CMb

× (1− ι)#V I × (1 +
#CMb

#CMB+

)/2

being ι a penalty factor between 0 and 1, a value that penalizes a frame for each

violation of integrity constraints. An integrity constraint is violated if its premises are

Unpacking and Intensification of Vital Relations
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true. In the context of the integration measure of frame f above, f violates integrity

ic if the conditions Cic of ic are verified and Cic

⋂
C 6= Ø. In other words, f needs to

violate ic in order to be integrated.

We would like to further clarify the above formula: the first factor represents the

ratio of coverage of b w.r.t. f ; the second factor means that each integrity constraint

violation implies an exponential discount; the third factor serves the purpose of max-

imizing the size of the blend (if two frames have the same ratio of coverage, the one

that contains more relations should have higher integration); the division by 2 aims

to normalize the result between 0 and 1.

While the value for a single frame integration is described above, the integration

measure of a blend w.r.t. a set of frames is not necessarily straightforward. At first

sight, it is appealing to just add the values of integration of all frames, or of the union

of their condition sets. Or even their intersection. But this would lead to the wrong

results, because a set of frames can not be reduced to a single frame from the point

of view of integration. In this measure, we want to stimulate unity, coverage and take

into account the strength of each frame individually. In terms of unity, we argue that

the set of relations that make the “core” of all the frames that are satisfied (i.e. the

intersection of the sets C of conditions of all frames) should be highly valued. On

the other side, the coverage of this “core” will be smaller than the overall coverage

(or equal, if the frames have equivalent C sets), which leads us to take into account

the disjoint sets of relations of the frames. Finally, the integration of each individual

frame (as defined above) should also be present in the overall measure. These last

two issues (the overall coverage and the integration of individual frames) are subject

to a disintegration factor because they reflect the existence of different, not totally

intersected, frames. We propose this factor, α, to be a configurable value from the

interval [0, 1]. It is now time to present our proposal for the Integration measure of

a blend:

Definition 5.6.2 (Integration). Let Fb = {f1, f2, ..., fi} be the set of the frames

that have their conditions (Ci) satisfied in the blend b, α, the disintegration factor
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(with 0 < α < 1), and Ifi
, the single frame integration value, as in 5.6.1.

Integration = ITi
0 Ci

+ α× Uncoverage×
i∑
0

Ifi

The Uncoverage value consists of the ratio of relations that do not belong to the

intersection of all frames w.r.t. the total number of relations considered in the frames:

Uncoverage =
#

⋃i
0 Ci −#

⋂i
0 Ci

#
⋃i

0 Ci

The integration measure is fundamental to the blending process. It leads the

choice of the blend to something recognizable as a whole, fitting patterns that help to

determine and understand what a new concept is.

In order to illustrate this reasoning, in figure 5.11, we show 4 blends and the

respective frame coverage. Blend A clearly gets the highest Integration value (all

the relations are covered by a single frame); B is also totally covered, but by two

different frames; Blend C should get lower Integration value than B because it does

not cover every relation (Uncoverage is higher than 0); finally, blend D would possibly

get the lowest value (depending on the value of α) because, although covering every

relation, there is a high dispersion of frames. To help make the calculations clearer,

let us pick specifically the blends A and D and determine their Integration values.

To simplify, let us assume that CMB+ = CMb (the blendoid size is necessary only

for normalization purposes, so any size would do for this example) and that there are

no integrity constraint violations. Our blend A will have a single frame integration,

If , of 1, because it contains all 12 relations of the blend. Since it is the only one and

there are no uncovered relations (Uncoverage is 0), the overall Integration will also

be 1. Now, for the Integration of the blend D, we must repeat the process. There will

be four frames (with If values of 2
12

, 2
12

, 2
12

and 1
12

). There is no intersection between

all frames, which implies that the first term of the sum will be 0. Furthermore, no

two relations belong to different frames (Uncoverage is maximum, i.e. 1) and the

sum of our four single frame integrations will be 2
12

+ 2
12

+ 2
12

+ 1
12

= 7
12

. This leads us

to the second term of the Integration measure: α × 1 × 7
12

(remember α is smaller
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Figure 5.11: The role of frame coverage in Integration value

or equal to 1). This shows that the Integration value of blend D will be considerably

smaller than that of the blend A, as intended.

5.6.2 Topology

The Topology optimality pressure brings inertia to the blending process. It is the

constraint that drives against change in the concepts. This happens because, in order

to maintain the same topological configuration as in the inputs, the blend needs to

maintain exactly the same neighborhood relationships between every element, ending

up being a projected copy of the inputs. In practice, this pressure is normally one

that is disrespected without a big loss in the value of the blend. This is due to

the imagination context that normally involves blends, i.e. novel associations are

more tolerable. Of course, this still depends on the type of blend we are pursuing:

if it regards an analogical or structure alignment construction (e.g. the Buddhist

Monk), then Topology is vital; if it regards a free combination (e.g. a “horse-bird”,

an imaginary object with a goal), then Topology may become secondary.

In our Topology measure, we follow the principle that, if a pair of elements, x and

y, is associated in the blend by a relation r, then the same relation must exist in one

of the inputs. If so happens, we say that r(x, y) is topologically correct. Thus, the

value of Topology corresponds to the ratio of topologically correct relations in the

concept map of the blend.

Definition 5.6.3 (Topology). For a set TC ⊆ CMb of topologically correct relations,
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such that

TC = {r(x, y) : r(x, y) ∈ CM1 ∪ CM2)}

where CM1 and CM2 correspond to the concept maps of inputs 1 and 2, respectively,

the topology measure is calculated by the ratio:

Topology =
#TC

#CMb

Intuitively, this measure represents the amount of relations from the inputs that

were projected unchanged to the blend. We are aware that this is stricter than the

topology constraint in the blending framework, as it is based on identity rather than

counterparts. As the reader will see, this role of analysing counterparts as maintaining

original structure/neighborhood is left for the Unpacking constraint. At the moment,

the only way to violate topology is by having a pair of concepts projected to the same

one (e.g. “horse” and “bird” projected to “horse”), bringing a new relation that was

exclusive to one of the domains (e.g. ability(bird, fly) projects to ability(horse, fly);

pw(wing, bird) projects to pw(wing, horse)).

5.6.3 Pattern Completion

The Pattern Completion pressure brings the influence of patterns either present in the

inputs or coming from the generic space. Sometimes a concept may seem incomplete

but makes sense when “matched against” a pattern.

At present, in the context of this work, a pattern is described by a frame, i.e.

we don’t distinguish between these two notions, and therefore pattern completion

is basically frame completion. The act of completing a frame consists in asserting

the truth of the ungrounded premises (which is done in the Elaboration module),

a process that happens only after a sufficient number of premises is true. We call

this the completion threshold, a value that is externally configured in Divago. To the

measure regarding the conditions that are actually satisfied by a frame f in a blend b,
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we call the completion evidence of f , e(fi, b). Therefore, completion can only happen

when the completion evidence is higher than the completion threshold.

Definition 5.6.4 (Completion Evidence). The completion evidence e of a frame fi

with regard to a blend b is calculated according to the following.

e(fi, b) =
#Sati
#Ci

× (1− ι)#V I

where Sati contains the conditions of each fi that are satisfied in b, ι is the integrity

constraint violation factor and V I the set of violated integrity constraints.

As in the Integration constraint, we have the problem of taking into account

multiple frames. This time, given that we are evaluating possible completion of

subsets of relations, instead of sets of relations that are actually verified in the blend,

it is difficult to find such a linear rationale (e.g. would two patterns each with an

individual completion x value higher than three each having slightly less than x?).

As a result, we propose to find the union of all the conditions contained within the

patterns and then estimate its own completion evidence:

Definition 5.6.5 (Pattern Completion). The Pattern Completion measure of a

blend b with regard to a set F with n frames is calculated by

PatternCompletion = e(∪n
0fi, b)

This measure has a very important role in increasing the potential of the blend,

for it brings the “seeds” that may be used in the Elaboration module. In figure

5.12, we illustrate Pattern Completion with two examples. Assuming a frame with

three conditions (pw(X, Y ), purpose(Y, fly) and ability(X, fly)), on the left it has a

completion evidence of 66.6% (two relations out of three are already accomplished:

pw(Horse Bird, wings) and purpose(wings, fly)), whereas on the right the comple-

tion evidence is only 33.3% (only pw(Horse Bird, wings) exists). For both, since we

consider only one frame (i.e. one pattern), the value of Pattern Completion is the

same as of the completion evidence.
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Figure 5.12: Pattern Completion examples

5.6.4 Maximization/Intensification of Vital Relations

Fauconnier and Turner propose a set of vital relations that should govern the blend

creation [Fauconnier and Turner, 2002]. As already stated, our approach to CB re-

lies essentially on earlier works from the same authors, thus we must point out that

the approach to vital relations discussed here leaves more open questions that en-

countered solutions. We may say that we are facing vital relations as merely salient

relations, without agonizing with their role in compression - which should be, one

might say, their essential role. Compression is the phenomenon of bringing relations

between concepts from different inputs (the outer-space relations) to the blend (i.e.

they become inner-space relations in the blend)10. Given the fuzzy definition of In-

tensification of Vital Relations and the fact that we are not focussing on compression

for this work, the distinction between Maximization and Intensification becomes yet

another step towards subjectivity, which we intend to avoid. In practical terms, this

means we only propose here a measure for Maximization and leave the discussion of

the distinction and specific measure of Intensification for further research (possibly

when a computational view of compression is explored in depth)11.

By default, we allow the same vital relations12 between and within two concept

maps, some being only rarely used (e.g. change, disanalogy, intentionality). Divago

also accepts the definition of other relations as being vital. For example, in inventing

10To know more about compression, please read [Turner, 2006].
11In fact, an attempt was made in [Pereira and Cardoso, 2003c, Pereira, 2005] to model Intensifi-

cation of Vital Relations, yet this proposal, which assumes more than one type of mapping, could
not be rigorously tested or further explored.

12Change, identity, time, space, cause-effect, part-whole, representation, role, analogy, disanalogy,
property, similarity, category, intentionality and uniqueness.
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concepts for a game, one may decide that the vital relations are “strength”, “de-

fense”, “ability” and so on. The effect of this choice may be that, when giving more

emphasis (higher weight in the fitness function) to Maximization of Vital Relations,

the resulting blends will contain the maximum possible number of these relations.

For implementing this measure, we estimate the impact of the vital relations to

the blend calculated by the ratio of vital relations w.r.t. the whole set of possible

vital relations, contained within the blendoid.

Definition 5.6.6 (Maximization V R). Let Υ be a set of vital relations. From the

concept map of the blend b, we may obtain the set of vital relations in b, BV R:

BV R = {r(x, y) : r(x, y) ∈ CMb ∧ r ∈ Υ}

From the blendoid (the union of all possible blend), B+, we have B+
V R:

B+
V R = {r(x, y) : r(x, y) ∈ CM+

B ∧ r ∈ Υ}

Finally, the Maximization of Vital Relations measure is calculated by the ratio

Maximization V R =
#BV R

#B+
V R

5.6.5 Unpacking

Unpacking is the ability to reconstruct the whole process starting from the blend.

In our view, such achievement underlies the ability to reconstruct the input spaces.

I.e. the reconstruction of the input spaces from the blend demands the assessment

of the cross-space mappings, the generic space and other connections. Thus, what

we are proposing is that Unpacking can be reduced to the ability to reconstruct the

inputs. This is because there is no way to properly reconstruct the inputs without a

reconstruction of the cross-space mappings, generic space and the connections between

spaces.

Unpacking should take the point of view of the “blend reader”, i.e. someone or

something that is not aware of the process of generation, thus not having access to
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the actual projections. Being such, this “reader” will look for patterns that point to

the “original” concepts. Once again we use the idea of frames, more specifically the

defining frame of an element, which comprises the immediate surrounding elements

and relations. For example, if the element “wing” was projected onto x in the blend,

the defining frame with regard to the “bird” concept map would consist of purpose(x,

fly), conditional(x, fly), quantity(x, 2) and pw(x, bird). The more that these relations

are found in the blend, the more likely it is that the “reader” will find it easy to

understand the relationship between x and “wing”.

Definition 5.6.7 (DefiningFrame). Given a blend b and an input space d, the

element x (which is the projection of the element xd of input concept map d to b) has

a defining frame fx,d consisting of

fx,d = C0, C1 . . . Cn −→ true

where Ci ∈ {r(x, y) : r(xd, y) ∈ CMd}. Assuming that k is the number of conditions

(Ci) of fx,d that are satisfied in the blend, the unpacking value of x with regard to d

(represented as ξ(x, d)) is

ξ(x, d) =
k

n′

where n′ is the number of elements to which x is connected. We calculate the

total estimated unpacking value of x as being the average of the unpacking values

with regard to the input spaces. Thus, having input concept maps 1 and 2, we have

ξ(x) =
ξ(x, 1) + ξ(x, 2)

2

Definition 5.6.8 (Unpacking). Let X be the set of m elements of the blend b,

generated from input concept maps 1 and 2. The Unpacking value of b is calculated

by

Unpacking =

∑m
i=0 ξ(xi)

m
,xi ∈ X

In Figure 5.13, we present the defining frame for “horse”, in the “horse” concept

map. In Blend 1, the element “horse|bird” (the projection of “horse”) will have the
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Figure 5.13: Unpacking examples

highest Unpacking value (w.r.t. “horse” concept map) because it fits precisely into

its defining frame. In Blend 2, the value is lower because there are two new relations

(with “fly” and “wings”), meaning that it is not exactly same element. Blend 3 will

get the lowest Unpacking value of all three because it also lacks some relations (e.g.

with “run” and “grass”).

5.6.6 Web

The Web principle concerns being able to “run” the blend without cutting the con-

nections to the inputs. In our opinion, this is not an independent principle, being

co-related to those of Topology and Unpacking because the former brings a straight-

forward way to “maintain the web of appropriate connections to the input spaces

easily and without additional surveillance or computation” and the latter measures

exactly the work needed to reconstruct the inputs from the blend. This is not to say

that Web is the same as Topology or Unpacking. Rather, on one side, Topology pro-

vides a pressure to maintain the most fundamental connection to the input: the same

structure; on the other side, Unpacking evaluates the easiness of reestablishing the

links to the inputs. These two values combined in a weighted sum yield, we propose,

an estimation of the strength of the web of connections to the inputs:

Definition 5.6.9 (Web).

Web = λ× Topology + β × Unpacking

with λ + β = 1.
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Since this is not an independent variable, making independent experiments with

the Web measure would not add any valuable conclusion and thus it will not be

covered in this book.

5.6.7 Relevance

The notion of “relevance” or “good reason” for a blend is tied to the goal of the

blending generation. A blend, or a part of it, may be more or less relevant depending

on what it is for. Once again, frames take a fundamental role as being “context”

specifiers, (i.e. the set of constraints within a frame describe the context upon which

the frame is accomplished). Therefore, having a set of goal frames, which can be

selected from the ones available in the Knowledge Base or specified externally, a

blend gets the maximum Relevance value if it is able to satisfy all of them.

An aspect of the goal frames is that they become queries. For example, if we

want to find a concept that “flies”, we could build a goal frame with the relation

ability(x, fly). The blends that satisfy this frame would be highly relevant.

Definition 5.6.10 (Relevance). Assuming a set of goal frames, Fg, the set Fb of the

satisfied frames of blend b and the value PCNF for the pattern completion of a set

of frames F in blend b, we have

Relevance =
#(Fg ∩ Fb) + #Fu × PCNFu

#Fg

where Fu, the set of unsatisfied goal frames, consists of Fu = Fg−Fb. This formula

gives the ratio of satisfied and partially satisfied goal frames w.r.t. the entire set, Fg

of goal frames.

From the point of view of creativity, we propose the use of Relevance as a “use-

fulness” measure, an idea that will be applied in some experiments.
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5.7 Elaboration

The Elaboration module is responsible for the application of several methods of elab-

oration and completion to the blend. It is where the rules and frame conclusions

are triggered and where the completion of uncompleted frames (or patterns) is done.

Hence, it encodes the elaboration function, θ, of the model presented in the previ-

ous chapter. It allows the three different kinds of elaboration explained: rule-based,

internal logic and cross-concept based.

The rule-based elaboration, θR, is based on the application of rules from the

generic domain. Whenever the premises of any of these rules are proven true, then

their conclusions are inspected and the corresponding effects are processed to the

blend. As an example, we have the rule below, where we say that, if an x lives in

a house, and its habitat is water, then it must live in a water tank, placed in the

house:

rule(generic, water tank, [lives in(X, water tank), habitat(X, water)],

[lives in(X, house)],

[lives in(X, water tank), in(water tank, house)],

[lives in(X, house)]).

If the premises are found to be true, then the Elaboration module will add the

relations lives in(X, water tank) and in(water tank, house) to the concept map of

the blend and also delete the relation live in(X, house). Another, more complex

example, is a rule that applies the movement laws to determine the meeting point of

two objects X1 and X2 moving on the same line:

rule(generic, meeting time, [starting position(X1, P0X1), starting position(X2, P0X2),

{X1\=X2}, speed(X1, SX1), speed(X2, SX2), day(X1, D),

day(X2, D), starting time(X1, T0), starting time(X2, T0)],

[],

[{Dif is SX2-SX1, Dif\=0,T is (P0X1-P0X2)/Dif}, meet(X1, X2),

time(X1, T), time(X2, T)],

[]).
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The internal-logic elaboration, θC , in this module inspects the frames that are

accomplished by the blend and in turn applies their effects, as with the rules. In the

special case of rules that are part of the blend (as a result of projection from one of

the inputs), we can also consider internal-logic elaboration, although the procedure

that controls their application is the same as for any other rules.

The cross-concept based elaboration is probably the least explored elaboration

method used. It is based on pattern completion. When the completion evidence

of a frame (as calculated in the Pattern Completion measure) surpasses a minimum

specified value (the completion threshold), then the Elaboration module will add the

missing relations that can be fully defined. For example, in figure 5.12 (left), if the

completion threshold was below 66%, then the Elaboration module would add the

relation ability(horse|bird, fly). In this case, the relation is fully defined because both

arguments (horse|bird and fly) are known. If, on the contrary, the instantiation of

the frame’s premises had yielded ability(horse|bird, ) or ability(horse|bird,∅), then

no new relation would be created. We call this cross-concept elaboration because it is

based on the transfer of knowledge from an external concept (the uncompleted frames)

to the concept map of the blend. We are aware that this may be both an unsafe and

incorrect way of doing cross-concept based elaboration. It can be unsafe because,

apart from the completion evidence, there is no other method for ensuring correctness

or meaningfulness of the added knowledge. Only when dealing with goal frames (i.e.

when there is an external motivation to accomplish the frame), does the completion

have a meaningful potential consequence. It can be an incorrect perspective on cross-

concept based elaboration because the source concept (the frame) is created from an

analysis of internal logic (the Pattern Completion measure), rather than being another

different concept that, for some reason, appears to be a good source of knowledge.

The rules and frames applied in this module may mutually influence each other.

For example, the new knowledge added by a frame may in turn trigger a rule and

so on. This means that the system is sensitive to order of application. To reduce

this effect, the Elaboration module applies the rules iteratively until no change to the
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concept map is made, i.e. until it stabilizes around a set of relations. The drawback

of this approach is that it becomes sensitive to cycles. For example, suppose the

following list of rules, with r1, r2 and r3 being relations, and a blend containing the

single relation r1.

r2 ∨ not r3 ←− r1

r3 ∨ not r1 ←− r2

r1 ∨ not r2 ←− r3

After running the first rule, the Elaboration module would start by adding r2, then

would trigger the second rule, which would remove r1 and trigger the third rule, which

would return to the initial state, indefinitely. We are aware that this is far from an

unknown problem in the area of Logic Programming, and thus we believe that good

solutions may have already been found. However, for this book, and for the current

version of Divago, the rules must be coded with attention to avoiding cycles, since we

have not investigated farther in this subject.

This module is very useful when one is knowledgeable about the domain for which

Divago is inventing concepts. For example, for the creatures experiment, designed for

a game project, we added some specific rules and frames relating to solutions to

problems (e.g. adding a wooden leg for a creature when there is one leg missing) and

for calculating values (e.g. calculating a new strength value when there are conflicts

between two possible candidates).

The Elaboration module could have been applied after the GA cycle, to the re-

sulting best blend produced by the Factory, but this choice would imply that the

generation of the best blend itself could not take into account the improvements from

the Elaboration. In other words, the system would tend to avoid generating solutions

where, in spite of having originated from a low valued non elaborated blend, the result

after elaboration would compensate its previous imperfections. This was the main

reason for integrating it within the GA of the Factory.

As with the Mapper, so the Elaboration module is optional for it can obscure the

inner workings of the blending mechanism in hiding imperfections of the blend. Since
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this is important for the validation of the system, we also allow the selection of the

specific elaboration methods to apply.

Getting back to the model of concept invention that was the subject of the pre-

vious chapter, we said that the elaboration function, θ, should be used to define the

space that would be traversed by the convergent strategy. Instead, the Elaboration

module is being (optionally) applied by the genetic algorithm of the Factory, which

we described as our divergent strategy. In this case, to be coherent with ourselves,

we ought to acknowledge that, when the Elaboration module is used, we have a strat-

egy that shares both the divergent and convergent perspectives of the model. Thus,

we present here no pure convergent strategy. At first sight, this could be seen as a

flaw in Divago and results from the deliberate compromise of focusing divergence and

bisociation and disregarding other issues. However, and also for the same reasons, it

became gradually clear that the flaw is in the model itself. In fact, it seems much more

natural to consider convergence and divergence intermixed with each other, rather

than having a strict separation. We recall the analyses made in section 2.1, in which

we met the convergence/divergence dichotomy. Although this duality was salient, in

nowhere it was proposed to exist a strict separation (rather, an interaction was often

considered).

5.8 Divago as a creative system

To finalize this chapter, let us analyze Divago with the same criteria of section 2.2.2,

where a classification of creative systems was proposed:

• Architecture. Single agent. As we have explained before, the approach that

we are following is centered on a single isolated system. In future stages, a

natural development would be to include it in a multi-agent environment.

• Model. Divago fits entirely the Cognition Centered Model (CCM) paradigm,
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as it was developed from analyses of creativity from Cognitive Science, Psychol-

ogy, Philosophy and AI, and most of all it partially integrates a computational

implementation of a proposal for a cognitive mechanism, named Conceptual

Blending.

• Episodic Memory. Divago has NO true mechanism of Episodic Memory. Al-

though its implementation may possibly imply little more than a feedback loop

(the outputs would become part of the KB), we are dedicated to a feedforward

version, as it showed sufficiently complex by itself.

• Evaluation. Divago has a built-in evaluation made by the Constraints module.

The only active participation of an external entity happens in the beginning of

the process (by setting the goal and the weights to associate to each optimality

constraint, and possibly also the input concepts and a mapping).

• Theme. The theme of this project is Concept Invention.

• Reasoning paradigm. Divago is clearly a Hybrid system, in that it makes

use of rule-based reasoning, genetic algorithms and, to a much lesser degree,

connectionism (in the Mapper module).

• Domain. As we will see in the next chapter, Divago has been applied to a

variety of domains, namely 2D drawings, 3D creature design and linguistic

creativity.
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Experiments

Ever since its first sketches, Divago has been subject to experiments in several do-

mains. At the risk of making experimentation itself divergent, we decided on this

in-breadth approach for two reasons: we have been arguing in this book for the

consideration of multi-domain environments in computational models of creativity;

with an in-depth approach, we would focus more gradually on specific domain issues

than on Divago itself. Whatever the approach, validating this system with respect to

creativity is a goal that we have been pursuing, without finding any definitive and un-

controversial solutions as yet. Because this is a fragile issue, we must follow the most

solid principles we can find. First, we need to avoid building the input knowledge

structures involved ourselves, the only exceptions being the first two experiments, the

house-boat and the horse-bird. Second, we try to read as little as possible from the

results except when there is a well-defined interpretation mechanism. In other words,

we try to avoid putting our own point of view on to ambiguous events. Third, we seek

to provide the statistically most significant data as possible to support the claims and

conclusions achieved. We follow the Central Limit Theorem, which says that “the

distribution of means from repeated samples from a population will be approximately

normally distributed if sample size is large (> 30) and exactly normally distributed if

the population itself is normally distributed”. Therefore, without knowing in advance

the distribution of the populations involved, we will rely on the condition that each

sample must be large. For example, each of the optimality constraint weight con-

figurations tested was subject to 30 runs with the same starting conditions. Fourth,
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we estimate some of the features for creativity assessment, as presented in section

2.2, which will allow us to follow the same evaluation framework throughout the ex-

periments, which will be useful for comparing the behavior of Divago within its own

domains, as well as providing benchmarks for future comparisons with other systems.

The experiments are presented in chronological order and so the reader will also

perceive the evolution of the system in terms of the modules used, the control over

the results, the methodology and the interpretation of the results. In the boat-house,

we generate the whole set of possible combinations (of boat|house drawings), using

only the Mapper and the Blender. Only in the horse-bird experiments were we able

to apply an objective analysis of the results, when we applied the Factory and the

Constraints modules for the first time. There, we made the definition of novelty

(the nov function) that was applied to the rest of the experiments. The noun-noun

experiments were meant to test Divago with a large Knowledge Base and to compare

it with C3, a Concept Combination system (see chapter 3). The creature generation

experiments are a study for the application of Divago to game environments and

also the first experiments with the use of the Elaboration module. Finally, we apply

Divago to some established blending examples in order to validate it as a Blending

model.

It will be obvious that, as we experiment with the system, some Optimality Con-

straints are preferred over others, leading eventually to the elimination of some and

to the conclusion that one could reduce the list to a subset of fundamental Optimality

Constraints.

We will not hide the difficulties in analyzing Divago, namely in respect to the

value (or quality or usefulness) of the results, the evaluation of the fine-tuning of the

system or the individual effect of each of its components in the results. Nevertheless,

we hope to provide a set of objective conclusions and benchmarks that may be useful

for future comparisons.
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6.1 The Boat-House

The first extensive experiment we made with Divago, published in

[Pereira and Cardoso, 2002], had the goal of generating and analyzing the en-

tire search space from two input concepts. The context then given would be that

of a system with a specific goal (e.g. draw a “house”), but with a limited set of

possibilities (e.g. only one drawing example available), that would ask Divago to

extend its knowledge base of possible drawings.

In this experiment, the knowledge representation was restricted to concept maps

(built using Clouds [Pereira and Cardoso, 2000]) and instances. Such a limited rep-

resentation was chosen because, apart from practical reasons (this was the first ex-

periment with Divago), an important decision was to follow whose view on concept

representation would be the center of further developments (either micro-theory or

exemplar view).

The choice for a “house” and a “boat” was made after some blending and con-

cept combination works (e.g. [Goguen, 1999, Andersen, 1996]). We intended to blend

these two concepts and interpret the newly generated instances according to an un-

ambiguous process. In this case, we decided to define them according to a simple

language (very similar to Logo [Abelsson and diSessa, 1981]), which enabled us to

draw simple objects (a house and a boat) and see the generated space without heavy

computational work. In this language, examples of commands are on/5, meaning

“draw line for 5 pixels”, off/5 meaning “move 5 pixels without drawing” or left/45,

meaning “turn left 45 degrees”. This language as well as the syntax of the instances

are described in Appendix E.

The tables 6.1 and 6.2 show the concept maps of “house” and “boat”. A short

interpretation of these concept maps tells us facts like “a boat has a sail, a hatch,

a mast and a vessel, the vessel is the floating structure that serves as container”

or “humans live in houses, that have many rooms, a roof, a window, a door and a
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isa(house,physical structure) isa(human,mammals)
isa(physical structure, physical entity) isa(night, time object)
isa(time object, information entity) isa(skyscraper, physical structure)
isa(door, physical object) isa(window, physical object)
isa(roof, physical object) isa(observation, task)
purpose(roof, protection) isa(protection, task)
isa(body, physical object) isa(container, physical object)
isa(room, house part) isa(house part, space location)
isa(day, time object) isa(water proof, property)
isa(tree, vegetable) isa(vegetable, living entity)
live in(human, house) color(night, black)
have(house, door) have(house, window)
have(house, roof) have(house, body)
purpose(body, container) purpose(window, observation)
purpose(door, entrance) property(skyscraper, very big)
purpose(body, container) have many(skyscraper, house)
have many(house, room)

Table 6.1: The house domain concept map

isa(boat, physical structure) isa(sailing boat, boat)
isa(sail, physical object) isa(movement, task)
isa(triangle, geometric form) isa(geometric form, information entity)
isa(water proof, property) isa(hatch, physical object)
isa(observation,task) isa(mast, physical object)
isa(vessel, physical object) shape(sail, triangle)
shape(hatch, circle) have(sailing boat, sail)
have(sailing boat, hatch) have(sailing boat, mast)
have(sailing boat, vessel) have(vessel, floating structure)
purpose(sail, movement) purpose(hatch, observation)
purpose(mast, support) purpose(vessel, container)
property(sailing boat, slow) property(hatch, tiny)
property(boat,water proof) place(sailing boat, sea)
use(human, sailing boat) sail(human, sailing boat)

Table 6.2: The boat domain concept map
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Figure 6.1: The boat and the house, as drawn from the instances

entrance ↔ movement
task ↔ task

protection ↔ support
roof ↔ mast
door ↔ sail

house ↔ sailing boat
physical structure ↔ boat

window ↔ hatch
body ↔ vessel

water proof ↔ slow
container ↔ container

observation ↔ observation
1

body ↔ sail
container ↔ movement

door ↔ hatch
entrance ↔ observation

house ↔ sailing boat
physical structure ↔ boat

window ↔ mast
roof ↔ vessel

water proof ↔ slow
protection ↔ container

observation ↔ support

2

Table 6.3: Two mappings for the house-boat experiment

body1”.

The Mapper generated 4 different mappings. In table 6.3, we show the two map-

pings which most commonly appeared. While some concept mappings come naturally

(like “window-hatch” or “body-vessel”, in mapping 1), others, less intuitively accept-

able, appear as a consequence of the exhaustiveness of the mapping function. For

example, “water proof-slow” appears because both can be “properties” of something

(e.g. “physical structure can be water proof”, and “boat can be slow”).

In table 6.4, we can see an excerpt of the blendoid corresponding to mapping

1. According to it, possible relations in a blend could be that “a house|sailing

boat has a window|hatch that serves for observation, a door|sail that serves for

entrance|movement and has the shape of a triangle”, etc. Notice the combinatorial

explosion that results from the choices given by the blending projection operation.

Apart from definitions of shape that emerge in the blend (like, shape(door|sail,

1We are calling body to the four walls that hold the house
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isa(entrance|movement, task) purpose(door|sail, entrance|movement)
isa(entrance, task) purpose(door, entrance|movement)
isa(movement, task) purpose(sail, entrance|movement)
isa(roof|mast, physical object) purpose(door, entrance)
isa(roof, physical object) purpose(sail, entrance)
isa(mast, physical object) purpose(door, movement)
purpose(roof|mast, protection|support) purpose(sail, movement)
purpose(roof, protection|support) shape(door|sail, triangle)
purpose(mast, protection|support) shape(door, triangle)
purpose(mast, protection) shape(sail, triangle)
purpose(mast, support) have(house|sailing boat, body|vessel)
purpose(roof, protection) have(house, body|vessel)
purpose(roof, support) have(sailing boat, body|vessel)
have many(house|sailing boat, room) have(house, body)
live in(human, house|sailing boat) have(sailing boat, body)
live in(human, house) have(house, vessel)
live in(human, sailing boat) have(sailing boat, vessel)
have(house|sailing boat, door|sail) have many(skyscraper, house|sailing boat)
. . . . . .

Table 6.4: The blendoid concept map for house and boat

triangle)), we don’t know exactly how to produce the visual re-interpretation of

objects (e.g., what is the visual shape of door|sail?). In other words, how can we

read a blend? Since there is a (visual) precise semantics for some of the concepts

involved (such as roof , sail or door), in the form of Logo procedures, we must decide

how to use them to produce the new drawings. In the case where these concepts

are found alone, their interpretation is straightforward (just read the corresponding

Logo procedures in the potentially new context), but in the case of compounds (e.g.

door|sail), the problem becomes difficult. The ideal solution would be to find a way of

getting one degree of abstraction down and also blend the Logo procedures themselves.

However, the explorations done in this direction were leading to a degree of complexity

unjustifiable for the goals of the experiment. For this reason, the interpreter made

for these drawings ignored the compounds and produced both alternatives (e.g. for

door|sail, a drawing with door and another with sail), thus producing the same

results as with separate projections. Perhaps the most important conclusion from

this experiment was that the interpretation of a compound in itself opens up another
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Figure 6.2: Images that result from mapping 1.

blending problem, recursively until a final and definitive answer is found (a possible

solution in drawings could be to apply visual morphing). In spite of reducing the

search space considerably by not proposing a different interpretation for compounds

and only taking into account the mappings that would have visual effects, a large

set of new drawings was produced. The mappings presented in table 6.3 generate

respectively a set of 240 and 408 drawings with repetitions (giving approximately 80

and 100 different images, resp.). From mapping 1, we found drawings such as those

shown in figure 6.2.

By analyzing these house|boats, we can see some subtle transfers (e.g. the square

hatch in the first sail boat; the circular window in the house) and some blends that

clearly share knowledge from both inputs, either visually fortunate (e.g. the boat

with rectangular sail) or unfortunate (e.g. the house with the triangular door and a

mast on top). It is also of relevance to say that these unfortunate instances appear

as a consequence of not having specific domain-knowledge for generating a drawing

or just because of unfortunate combinations (second, third and fifth images).

When applying mapping 2, the results are as shown in figure 6.3. Notice for

example the different placement of the circle (and door). With the mapping 3 (body ↔
vessel, door ↔ mast and window ↔ sail), Divago produced drawings such as in

figure 6.4. Finally, the fourth mapping, which has a different variation (body ↔
vessel, door ↔ hatch, roof ↔ mast and window ↔ sail), gave rise to images such
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Figure 6.3: Images from the mapping 2.

Figure 6.4: Images from the body ↔ vessel, door ↔ mast and window ↔ sail blend.

as in figure 6.5.

The visual quality of the results would vary considerably depending on the ap-

plication of domain specific knowledge, such as guiding the result to what a house

or a boat should look like or which physical/structural rules they should fulfill. Our

goal with this experiment was to assess the generativity of the system, regardless of

any aesthetical judgment. Let us return to the context given in the beginning of this

section, a system with the goal of drawing a house, and imagine the situation in which

this system searches for house drawings in the house domain, but cannot find any

satisfactory solution. It can then try to diverge gradually from the original domain

(where novelty is minimum), and get into a space of blends, where novelty increases,

Figure 6.5: Images from the body ↔ vessel, door ↔ hatch, roof ↔ mast and
window ↔ sail blend.
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Figure 6.6: A search in a multi-domain environment

a sort of middle space where concepts do not belong to a specific domain, but share

knowledge from more than one. In figure 6.6, we present this idea graphically.

Since we cannot have any precise measure of novelty or usefulness for the drawings

(that is not obscured by the subjectivity of the image) we cannot do a thorough

analysis of these results with regard to the criteria presented in chapter 2.2. However,

we can say that Divago produces a large proportion (over 90%) of drawings that are

definitely different from typical drawings of houses or boats (they gather different

elements of house and boat in the same drawing, sometimes lacking some parts or

violating basic drawing principles, like non superimposing objects) in a total of more

than 1300 drawings (with repetitions), if counting all the mappings. This basically

corroborates that, far from reinventing (i.e. converging), instead it generates novel,

yet potentially pointless, results (i.e. diverging).

In general, we can say that, although the two concepts of a house and a boat are

close to each other (both are physical structures, used by humans), this can be an

example of computational modelling of divergent thought because a large amount of

new instances was generated from the blending of two different concepts. According

to this perspective, Divago could serve as a meta-level engine for helping another
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system with extending its search space. This is particularly feasible in situations

where the search space consists of a set of independent knowledge structures, such as

in Case-Based Reasoning.

6.2 The Horse-Bird

The Horse-Bird experiment (presented in [Pereira and Cardoso, 2003a]2) was the first

to assess the behavior of the Factory and Constraints module. Actually, it consists of

two different kinds of experiments, each with a distinct goal: assessment of the indi-

vidual effects of each measure on the final results; qualitative evaluation and tuning of

the model. After several preliminary GA parameters tuning tests, we decided for 100

individuals as the population size, 5% of asexual reproduction (copy of an individual

to the following population), 80% of crossover (combination of pairs of individuals),

14% of mutation and 1% of random generation (to allow random jumps in the search

space)3. We have three different stopping conditions: appearance of an individual

with the maximum value (1); achieving n populations (n = 500); being stalled (no

improvements in best value) for more than m populations (m = 20). We kept these

GA configurations throughout the whole experimentation related to the Horse-Bird

blending, as described here.

As a result of the problems relating to the interpretation of compounds in the

house-boat experiment (e.g. window|hatch), we decided to drop this kind of pro-

jection, thus reducing the search space, now having from 2l to 32k × 2l−2k different

blends. Notice that the concept maps of horse and bird (already given in tables 5.1

and 5.2) have (m=) 29 and (n=) 33 different concepts, respectively, which gives an

l=m+n=62. The three mappings used (already given in figure 5.4) have sizes k=6,

2In the experiments reported in this book, we applied the revised version of the constraints,
therefore the results here may slightly differ from the ones given in the paper.

3These rather large values for mutation and randomness result from the fact that some mutations
have a null effect in the projection scheme (e.g. if an element projection is mutated to nil, it won’t
have effects if its surrounding elements are already projected to nil). In order to stimulate diversity,
these values seemed appropriate. Future experiments are expected to overcome these issues and
apply more common values.
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k=5 and k=21, thus the search space will have a minimum size of 262 and a maximum

size of 342 × 220. Even if discounting the concepts and relations that are repeated in

both concept maps (e.g human), this corresponds to a very large set of blends.

This experiment also introduces the criteria for defining novelty (the nov function,

converse of Ritchie’s typ function) which will be used throughout the rest of this

chapter. This function is based on the comparison of the concept map of the blend

with those of the inputs. The exact value of distance between an input x and the

blend b corresponds to the sum of the relations that belong to b and that are missing

in x with those that belong to x and are missing in b. Let us call it d(b, x). This

can be seen as an edit distance - the set of delete and insert operations needed to

transform one into the other. Since this value becomes proportional to the sizes of the

concept maps involved, we divide it by the size of the blend concept map (the number

of relations), thus getting a normalization that allows us to compare among different

experiments and assess the behavior of the system. Following one of the measures

of comparison to an archetype (novelty2(x)) by [Pease et al., 2001], we define the

function distance as returning the normalized minimum distance to one of the inputs:

distance(b) =
min(d(b, x1), d(b, x2))

sizeb

such that x1 and x2 are the input concepts for generating b and sizeb is the size

of the concept map of b. The larger the distance to inputs, the higher is the novelty,

therefore, the function nov is defined as:

nov(b) =





1 distance(b) > 1

distance(b) otherwise

Determining usefulness (use) presupposes the existence of a purpose. Therefore,

we will only apply it when this is explicit in the experiment. In the second part of

these experiments, we have the goal of finding a pegasus, and the distance to this

point in space will give us an estimate to use. When analyzing the set of values for

nov and use given in a sequence of runs, we tend to prefer the median since it is not

sensitive to outliers, as happens with the mean, and it normally represents a specific
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blend that is representative of the mean and that we can inspect. Whenever this

assumption becomes unsafe, if there is a large difference between the median and

the mean and a large standard deviation, we will also consider other indicators. In

any case, the reader will find the values for median, mean, standard deviation and

mode in the result files (found in appendix F). Therefore, unless stated otherwise,

the statistics presented refer to the median of the results for 30 runs. The inspiring

set (following section 2.1) will comprise the two creatures, horse and bird, as well as

the pegasus, since the latter was also explicitly defined by us.

6.2.1 Evaluating the Optimality Pressures

This experiment serves to observe the effect of each pressure in the final results,

bringing up a way to predict and control the system. For the first part of these

experiments, we isolated each optimality pressure, by attributing zero weight to the

remaining criteria. Since one of the optimality pressures is not independent (Web) and

another (Intensification of V.R.) was not accounted for in our current implementation

we have only six different criteria to take into account.

The input domains applied were the domains of horse and bird (in tables 5.1

and 5.2), meaning that the expected results range from the unchanged copy of one

(or both) of the concepts to a horse-bird (or bird-horse) which is a combination of

selected features from the input domains. The generic domain consists of the general

ontology, integrity constraints and a set of frames (already given in table 5.3; see also

Appendix F).

We applied the three mappings presented in figure 5.4. For each mapping, we

tested the six optimality pressures, each of these comprising 30 runs4. The Elabo-

ration module was not used. Each blend was examined by the Constraints module

without being subject to any transformation after the projections.

We now present an analysis of the individual effect of each of the measures:

4A run is an entire evolutive cycle, from the initial population to the population in which the
algorithm stops

147



Chapter 6. Experiments

• In Integration, frames behave as attractor points in the search space. More-

over, the frames with a larger coverage tend to be preferred, although when too

large (like aprojection or aframe) they are dropped. The evolution is directed to

a compromise of coverage and satisfaction. The complexity of the search space

grows with mapping size (the number of cross-space associations found by the

mapping algorithm). In fact, when we have a mapping of size 5, six different

blends are returned, the best choice being retrieved 43% of the times, while with

a mapping size of 21, eight different solutions are found, the best choice being

retrieved a mere 6% of the time. This confirms the complexity and dimensions

of the search space we discussed in section 5.5. A good compensation for this

apparent loss of control is that the returned values are clearly higher (0.68, for

the best) than in the small mappings (0.22), suggesting that, with larger map-

pings, the probability of finding a better solution is higher than in smaller ones.

Finally, the novelty was 0.71, meaning that the set of frames used does not lead

naturally to any of the inputs, i.e. the system diverges from its input concepts.

• Pattern Completion drives the blend to partially complete (i.e. satisfies some

conditions but not all) the highest possible number of frames, leading, in each

case, to several sets of relations which fit into those frames without satisfying

them completely. This means that, isolated, Pattern Completion only leads to

disperse, non-integrated results and so it is not very useful. Interestingly, it can

be useful when combined with Integration because it gradually brings to the

blend the concepts and relations that are needed to complete the frames and

so it speeds up the process of finding frames with high Integration value. In

respect to the search landscape, it seems to be very rich in local maxima. The

most constant results came from mapping 2 (of Figure 5.4), with the best results

obtained 13% of the time and the second best 20% of the time. An interesting

remark is that the local maxima always fall within a very strict range of values

(of maximum amplitude 0.11, in mapping 3). The median value for nov was

0.79, which confirms our expectancy that Pattern Completion would be close
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to Integration, in these terms, since they use the same set of frames.

• From the experiments with Topology, we can observe that there is a tendency

to bring all the relations from both concept maps to the blend, without being

transformed. This means that, at the limit, the blend will comprise the union

of the two concept maps from the inputs, thus (if both the inputs have the

same size) the novelty will tend to be 0.50 (half the concept map of the blend

would have to be deleted to become an exact copy of one of the inputs). This

prediction is corroborated by the result (nov= 0.51).

• The influence of Maximization of Vital Relations in the results is straight-

forward, given that its highest value (1) reflects the presence, in the blend, of

all the vital relations that exist in the inputs. As the evolution goes on in each

run, the value grows until reaching the maximum reasonably early. For each

set of the 30 runs, it reached the value 1 a minimum of 93% of the times, and

the remaining 7% achieved at least a value of 0.95. As in Topology, the search

space of Maximization of Vital Relations is very simple since there is a global

maximum in the neighborhood of (almost) every point. However, in contrast

to Topology, this measure results in very high novelty (0.99), which can be

explained by the fact that the number of vital relations in the concept maps

is relatively small and that there is no constraint on the arguments of these

relations. In other words, it does not matter what the vital relations actually

associate with, only that their simple presence in the blend is important in or-

der to get the maximum value in this measure, yielding an apparently random

choice of elements projected.

• The results of the Unpacking measure show that it drives towards similar

results as Topology, with the main difference being that the relations in the

blend are clusters of copies of subgraphs from the inputs. I.e., Unpacking only

copies those relations that do not imply conflicts (e.g. some concepts that belong

to both domains, such as leg, can become problematic because its Unpacking is

unambiguous). It is therefore a force of inertia. The median value for nov was
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0.63, testifying that, whatever was present in the concept map of the blend, it

was similar to one of the inputs yet missing some parts that would make it an

exact copy, which intuitively agrees with its definition.

• The first part of the test on Relevance focussed on making a single relation

query. In this case, we asked for “something that flies” (ability( , f ly)). The re-

sults were straightforward in any mapping, accomplishing the maximum value

(1) in 100% of the runs, although the resulting concept maps did not reveal

necessarily any overall constant structure or unity, giving an idea of random-

ness in the choice of relations other than ability( , f ly). In other words, the

evolution took only two steps: when no individual has a relation ability( , f ly),

therefore with value 0; when a relation ability( , f ly) is found, yielding a value

1, independently of the rest of the concept map. The second part of the test on

Relevance, by adding a frame (ability explanation) to the query, revealed

similar conclusions. There was no sufficient knowledge in any of the input do-

mains to satisfy this new frame completely, so the algorithm searched for the

maximum satisfaction and reached it 100% of the time in every mapping. So the

landscape seems to have one single global and no local maxima, reflecting the

integration of the two parts of the query. The existence of local maxima would

be expected if there were separate frames. Intuitively, the search landscapes of

Integration and Relevance seem to be similar. As with Integration, the novelty

is dependent on the available frames, more specifically on the frames used in the

query. With the ones used, the value for nov was 1. This is consistent with the

observations just made of the apparent randomness of the choice of relations

for complementing the concept map.

6.2.2 Finding the pegasus

For our concerns, we define a pegasus as being a “flying horse with wings”, so leaving

out other features it may have (such as being white). These extra features could

also be considered but would need knowledge about any aspects of ancient Greece,
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Greek mythology and some ontological associations (e.g. purity is white). Moreover,

they would make the generation of the blend considerably more complex, although

possibly more interesting. Formally, the pegasus we want to generate has the same

concept map as the horse domain augmented with 2 wings and the ability to fly

(so, it should also have the relations ability(horse, fly), motion process(horse, fly),

pw(wing, horse), quantity(wing, 2) and purpose(wing, fly)).

For validation purposes, we started by submitting a query with all the relations of

the pegasus, so as to check if they could be found in the search space, and the results

reveal that only the mapping 3 (see figure 5.4) respects such constraints. This led us

to use this mapping exclusively throughout the rest of the experiment. Knowing that

the solution exists in the search space, our goal was to find the minimal necessary

requirements (the weights, the frames and the query) in order to retrieve it. From

a first set of runs, in which the system considers a large set of different frames and

no query, we quickly understood that it is not simple (or even feasible) to build

the pegasus solely by handling the weights. This happens because the optimality

pressures provide control regarding to structural evaluation and general consistency,

but only by pure chance can we find the exact weights to match the same relations

of the pegasus, a very specific blend that fails to follow all but a few of constraints,

but a combination of them. This drives us to the need of queries.

A query may range from specific conditions that we demand the blend to respect

(e.g. the set of conditions for flying, enumerated above) to highly abstract frames

that reflect our preferences in the blend construction (e.g. the frame aprojection:

elements from input concept map 1 should all be projected). Intuitively, the best

options seem to comprise a combination of the different levels of abstraction.

Since a query is only considered in the Relevance measure, its weight must be large

if we intend to give it priority. In fact, using only Relevance is sufficient to bring the

concept map of the solution to the blend, when the query is specific enough, as

we could test by using a query with aprojection and the flying conditions. From

a creativity point of view, it is not expected to have very specific queries and we
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are more interested in less constrained search directives. In table 6.5, we show the

parameters we used, as well as the nov and use values obtained. use is calculated as:

use(b) = 1− d(b, target)

sizeb

with target being the concept map of an optimal blend (in this case, the Pegasus).

The weights we present correspond to Integrity (I), Pattern Completion (PC), Topol-

ogy (T), Maximization of Vital Relations (MVR), Unpacking (U) and Relevance (R).

The fly conds. are the relations that the blend must have in order to be a flying

creature, and aframe, aprojection and new ability are frames as described before

(and detailed in appendix F). The values presented correspond to the median in each

set of results.

Exp. Weights Query nov use Best blend
# I PC T MVR U R (nov/ use)
1 0 0 0 0 0 100 fly conds. + aprojection 0.59 0.53 0.40/0.74
2 0 0 0 0 0 100 fly conds. + aframe 0.86 0.26 0.0/a

3 0 0 0 0 0 100 fly conds.+ aprojection + aframe 0.59 0.53 0.40/0.71
4 50 0 0 0 0 50 fly conds.+ aprojection + aframe 0.51 0.62 0.19/0.97
5 33.3 33.3 0 0 0 33.3 fly conds.+ aprojection + aframe 0.78 0.34 0.82/0.32
6 33.3 0 33.3 0 0 33.3 fly conds.+ aprojection + aframe 0.60 0.52 0.49/0.66
7 25 0 25 25 0 25 fly conds.+ aprojection + aframe 0.70 0.28 0.45/0.58
8 20 0 20 20 20 20 fly conds.+ aprojection + aframe 0.62 0.33 0.47/0.51
9 34 0 16 10 4 36 fly conds.+ aprojection + aframe 0.43 0.70 0.44/0.95
10 34 0 16 10 4 36 new ability+aprojection+aframe 0.26 0.71 0.35/0.73
11 20 0 0 0 0 80 fly conds. +aprojection+aframe 0.16 0.76 0.21/0.90
12 20 0 0 0 0 80 new ability+aprojection+aframe 0.58 0.47 0.18/0.92

aNote: In configuration 2, there is more than one highly scored blend, none with use higher than
0.59.

Table 6.5: The 10 different configurations used.

An observation that must be made is that the target is very similar to one of

the inputs (the “horse”), its novelty being exactly of 0.26, a very low value that was

only acknowledged after the first experiments. Since making it less typical would

imply artificial changes in the concept map (actually the Pegasus is a horse with

wings), we decided to leave it untouched. Furthermore, it is theoretically possible to

generate a blend that is close to the pegasus, yet far away from the horse (if it falls

in the opposite direction of similarity). As we can see from the experiments, there

are useful results that nevertheless fail the threshold of novelty and there is no linear

relationship between nov and use, although when use gets high scores, the opposite
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happens with nov.

The first eight configurations were dedicated to understanding the effect of gradu-

ally adding optimality pressures to the fitness function. In the first three, where only

Relevance was used, we verified that, although it was easy to have all the concepts

and relations we expect for a pegasus, often it was complemented by an apparently

random selection of other relations. This results from having no weight on Integra-

tion, which we added on the configuration 4, yielding the result that was closest to

our pegasus: the projection of the entire horse domain, and the selective projection

of wings and the fly ability from the bird domain. There were a few extra bits

of knowledge, such as having two claws, feathers or chirping. The majority of the

time, the extra knowledge results in blends that are distant to the inputs and to the

pegasus, i.e. the pegasus found was more a singularity than the average situation.

The straight explanation is that the weight of Integration leads Divago to satisfy

frames that compete with the pegasus (e.g. bframe, which would project the bird’s

concept map structure) in many different ways. In configuration 5, the influence of

Pattern Completion led the results to minimum incompleteness (e.g. a pegasus with

everything except a mane, wings or any other item), which revealed that, by itself,

it is not a significant or even positive contribution to the present goal, a reason for

dropping its participation in the subsequent configurations.

Adding Topology (conf. 6) essentially brought two different kinds of results. As

with configuration 4, it returned the “correct” pegasus with extra features like having

feathers or a beak, each of which was apparently selected at random. These were

also given the highest scores in the fitness function. However, in some of the runs

(10%), the results contained both creatures (horse and bird) in the same concept

map, as if they were connected (e.g. having the same legs or ears). This is a rather

unwanted result, and it suggests that the weight of Topology should be relatively

small in comparison to others.

The following configuration, the inclusion of Maximization of Vital Relations,

confirmed the same conclusions as from Topology, but with more control over the
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kind of extra relations transferred to the blend. For example, the blend may have

2 wings (from the relation quantity), a beak and feathers (from pw), but it is never

an oviparous (from member of). On the other hand, we can sense a gradual lack of

focus on the overall results (no two runs returned the exact same result) complicating

considerably our goal of controlling the system. There is a simple explanation for this:

Relevance, Integration, Topology and Maximization of V.R. all have the same weight

and some (like Maximization) are more easily satisfied, thus driving the evolution

towards their maxima, from wherever the evolution started. This same phenomenon

happened in configuration 8, although Unpacking had brought a more stable set of

results.

An immediate conclusion we took from these experiments was that each pressure

should have a different weight, correspondent to the degree of influence it should

have in the result. In our case, we are seeking for a specific object (the pegasus), we

know what it is like, what it should not have and some features not covered by the

query conditions that we would like it to have. This led us to a series of tests for

obtaining a satisfiable set of weights, used in the configurations 9 and 10. Given the

huge dimension of the problem of finding these weights, they were obtained from a

generate-and-test process, driven by our intuition, so there is no detailed explanation

for the exact choice of why these values and not others. Yet, a qualitative analysis

can be made and we see a clear strength given to Relevance and Integration. The

former serves to “satisfy what we asked” and the latter guarantees overall coher-

ence (centered on the query frames) and consistency (e.g. it prevents the solution

from having 2 and 4 legs simultaneously). There is also a more discrete presence of

Topology, Maximization and Unpacking, to allow the transfer of extra knowledge.

Configuration 9 revealed, possibly, the “richest” pegasus found, in the sense that,

although largely failing the target, it contains all of its relations as well as a selection

of other relations (having lungs, feathers, a pair of claws). Still, although this result

appeared consistently throughout some runs, there is a high variability of results (for

configuration 9, the mean of nov was 0.64 with standard deviation σ = 0.17; for conf.

10, the mean for nov was 0.57, σ = 0.17) testifying the difficulties in controlling the
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system.

Finally, from what we had learned in the first configurations, we decided to reduce

to only two constraints (Relevance - 80% and Integration - 20%), predicting that we

would find the best approximation to the target. Indeed, this was confirmed by the

results, particularly for configuration 10. Although still not avoiding very bad outliers

in two runs which seriously affected some indicators (it yielded meannov = 0.24,

σnov = 0.08 and meanuse = 0.70, σuse = 0.30), the results were very stable (if removing

the 6% outliers, we get meannov = 0.16, σnov = 0.06 and meanuse = 0.77, σuse = 0.10).

We will use this specific configuration later on when we know with some confidence

the kind of output to get (and we have the necessary frames).

Now, for a more detailed analysis, we will calculate the values for Ritchie’s fea-

tures (or criteria). As we have referred to before, we assume a mapping between

the pairs novelty/usefulness and typicality/value, such that novelty is the opposite

of typicality (typ=1−nov) and usefulness equals value (val=use). The latter may

become controversial, yet it may be the best method for applying Ritchie’s features

in this context and, above all, it is our conviction that, for a formal setting such as

the one we are describing, one can only measure the value of something as much as it

accomplishes a goal or satisfies a set of conditions. In other words, it must be a solu-

tion to a problem, i.e. be useful. According to this philosophy, we obtain the values

in table 6.6. We remember that we have assumed the value 0.5 for the parameters α,

β and γ

From the first four features, we can say that Divago is producing typicality and

value near the half scale (features 1 and 3), but clearly produces more valued than

typical items (2 and 4). From criterion 5, we can see that all typical results were

valued, which is clearly due to our target falling within the range of typicality. How-

ever (from 6 and 7) there are some valued but non-typical outcomes, which is a good

indication of creativity. The proportion of valued non-typical outcomes with regard

to the typical ones (criterion 8) can be misleading since we are comparing results with

different configurations - the last 4 configurations clearly yield more typical, valued
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Criterion Value
1 0.443
2 0.273
3 0.504
4 0.636
5 1.000
6 0.364
7 0.500
8 1.333
9 0.000
10 N/A
11 0.406
12 0.483
13 0.273
14 0.636

Table 6.6: Ritchie’s [Ritchie, 2001] features results.

results than the others. Reinventions only occurred in occasional runs, which do not

fall into the statistical validity, therefore we cannot say that Divago has consistently

produced reinventions, as can be seen by the features 9 and 10. This fact is important

in understanding why features 11 to 14 are reproductions of the first four. Indeed,

there is such a correlation between these eight features that we suspect they can be

reduced to a smaller set.

For determining the fine-tuning of the system according to [Colton et al., 2001]

(see Appendix A), we can at most determine an estimate, given the participation of

so many variables in the definition of each result. From the experiments so far, we

can say, for example, that Relevance and Integration are creatively more useful than

Pattern Completion, and that aframe is less creatively useful than aprojection

(compare configurations 1 and 2). However, we can also see the high complexity

involved. Compare, for example, configurations 11 and 12. The former normally

produced better results than the latter, but the latter has a best blend with higher

scores. It seems, therefore, that configuration 11 earned more stability at the cost of

losing better singularities to the configuration 12. To check the individual influence

of the frames in configuration 11, we applied the same weight configuration of 80%
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Best Blend
Query nov use nov/use
empty list 1.00 0.00 1.00/0.00
fly conds. 1.00 0.00 1.00/0.00
aprojection 0.36 0.56 0.19/0.74
aprojection, fly conds. 0.35 0.81 0.21/0.95
aframe 0.00 0.74 0.00/0.74
aframe, aprojection 0.15 0.67 0.00/0.81
aframe, aprojection, fly conds. 0.16 0.76 0.21/0.90

Table 6.7: Checking the fine-tuning of Divago.

Relevance and 20% Integration to all possible combinations of the query (see table

6.7). Notice that the first two queries (void query and fly conds.) completely fail to

achieve anything useful. This results from not having applied an organizing frame

(such as aframe or aprojection). In this case, Divago was directed towards satisfying

anything (empty list) or just a small set of relations (fly conds.), preventing it from

using an organizing frame and therefore making a coherent whole. From this, we can

conclude that aframe and aprojection are important to organize the blend (in this

case, towards the same organization of the horse concept map).

We can also notice that, when using only aframe and aprojection (aframe alone

or combined with aprojection), Divago produces either an exact copy of “horse” or

a very similar result. However, when put together with the flying conditions, it makes

a whole that can lead to (very nearly) the pegasus. This may indicate a high fine-

tuning towards the pegasus, however we can also see that the same combination can

lead to other results depending on the weights applied (e.g. configuration 5) and

other combinations (e.g. configuration 12) can lead to the same results with the same

weight configurations. To conclude, if, on the one hand, the frames are a method for

controlling/tuning the system, it is also true that their application does not guarantee

valuable results and that, in this sense, fine-tuning the system is an extremely difficult

task. This results from the complexity of the space and from the specificities of frame

combinations (while may be compatible, some others may be competing).

It is clear that the results in this section were driven subjectively by us in the
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choice of the concepts and frame design, but the argument we are trying to make is

that we can lead Divago to produce novel and useful outputs. Nevertheless, it is a

difficult system to control, a good aspect on one side - it is hard to be intentionally

biased to specific outputs -, but bad on the other side - it is extremely difficult to test

its full potential.

We also developed (in collaboration with Pablo Gervás [Pereira and Gervás, 2003])

an Interpreter for generating textual descriptions of the blends, based on Natural Lan-

guage Generation techniques. This system made descriptions by comparison with the

input concepts of “horse” and “bird”. Examples of automatically generated descrip-

tions of blends are:

(1) A horsebird is a horse. A horsebird has two wings and feathers. It

can fly, and it moves by flying.

(2) A horsebird is a horse. A horsebird can fly, it has feathers, a beak,

and wings for flying and it moves by flying.

(3) A horsebird is a horse. A horsebird can fly. It chirps, it has wings for

flying and it moves by flying.

The example (1) corresponds to a result from configuration 4. Examples (2) and

(3) are interpretations from configuration 9.

6.3 Noun-noun combinations

In the experiments with noun-noun combinations (published in [Pereira, 2003]), we

show the behavior of Divago with a dataset constructed independently by other re-

searchers ([Costello, 1997]) and make a comparison to C3 (see section 3.3.1). Each

concept (associated to a noun) is represented with a syntax that is equivalent to the

one adopted for Divago. Here, we apply for the first time the two-step methodol-

ogy that will be followed in the subsequent experiments, which starts by “tuning”
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the system with preferred outcomes and then allowing it to do free generation, con-

strained by a given query. Also for the first time, we define a more precise criterion

for usefulness (use), which will correspond to the score obtained for the Relevance

principle. The rationale is that a blend is useful (i.e. valued) if it accomplishes a set

of pragmatic conditions that may be specific to a situation (e.g. it should be a clay

object that serves to cut food) or a generic demand for an application (e.g. it should

be an object with a single color and a single shape), which can be given as a query

to the system. Thus, use will now correspond to the value of Relevance. This may

seem contradictory with the choice for use in the previous experiment, but the only

difference is that now use will participate in the search, which goes in agreement with

the model of creativity presented, in which the invention of new concepts should be

purpose-driven. The value for nov will be given exactly as before.

The dataset used in these experiments comprises 179 concepts (noun conceptual

descriptions) borrowed from Fintan Costello’s PhD thesis [Costello, 1997] on noun-

noun conceptual combination. In this thesis (and in subsequent publications e.g.

[Costello and Keane, 2000]), the author describes each concept by a set of attribute-

value pairs, as shown below (for “necklace”)

Necklace

name: (necklace)

feature-set: (solid inanimate static)

color: (silver gold)

shape: (small circular)

structure:

made of: metal

parts: (pendant)

found:

function: ((wears person3 necklace neck)

(decorates necklace person3))
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The conversion to our concept maps is straightforward: each of the “features”

becomes a property relation; the attributes color, shape and made of become rela-

tions with the respective name; each of the parts is converted into a pw (part whole)

relation; each “function” is converted into a set of actor and actee relations (with

third arguments, such as place or instrument). The actor is expected to be the first

argument of the function, while actee is the second. Therefore, our concept map

representation for “necklace” is as follows:

property(necklace, solid) made of(necklace, metal)

property(necklace,inanimate) pw(pendant, necklace)

property(necklace,static) actor(wears, person3)

color(necklace,silver) actee(wears, necklace)

color(necklace,gold) place(wears, neck)

shape(necklace,small) actor(decorates, necklace)

shape(necklace,circular) actee(decorates, person3)

In the original dataset, there are interrelationships between nouns. For example,

there is also a representation for pendant, person3 and neck, so, along with necklace,

these nouns can be seen as a small graph representing the knowledge about people

and necklaces. Within this small graph, there is normally no repetition of function

specifications (e.g. in neck or person3 representation, there is no wears function, al-

though it exists implicitly). For this experiment, we directly and separately converted

each noun to a concept map, and there is no communication between our concept

maps, which means that many nouns in our knowledge base lose their original im-

plicit data. This was necessary since automatically converting that implicit network

into our concept maps would not be a trivial exercise in terms of programming and

would clearly fall away from the goals of this project. Another aspect of the dataset
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is that some concepts have several different instantiations (e.g. person3 is the third

representation of the noun person). We also converted these directly and separately

to our knowledge base, without merging them.

The main goal of these experiments was to observe how Divago behaves with

respect to criteria of novelty and usefulness when applied to knowledge from another

concept combination system. Another intention was to improve the control over

Divago with regard to these measures.

The noun-noun interpretations we consider in the experiments are either hy-

brid interpretations or property interpretations (see section 3.3.1). In some tests

we made prior to these ones, the Mapper (which is based on structure alignment) was

clearly unable to allow other types of interpretations such as relational and known-

concept interpretations. This may point in the same direction as Costello and Keane

[Keane and Costello, 2001], who argue that conceptual combination cannot be re-

duced to structure alignment. In our case, the strictness of the structure alignment

methodology affects Divago’s needed flexibility: 1-to-many mappings should some-

times be considered (rather than 1-to-1); representation of inputs sometimes with

variable granularity should be possible (e.g. “fido is a canine, who is a mammal”

mapped to “tweety is a bird” should yield fido ↔ tweety and mammal ↔ bird,

rather than canine ↔ bird or canine ↔ tweety). Still, we cannot argue that these

limitations are more than computational and/or representational limitation, so fur-

ther exploration regarding structure alignment and computation should be taken

before claiming it as too rigid.

In order to provide a pragmatic background for the experiments, we invite the

reader to consider a situation where one wants to obtain combinations with a specific

set of characteristics, we can thus define this set via scripts with the same syntax of

the nouns described above. A useful concept must have specific values for the slots

of the script and respect a set of integrity constraints. The slots and values required

can thus be grouped together in a query. In all experiments (except in the tuning

set), this query consisted of:
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property(A,[animate, inanimate]),

property(A,[liquid, solid]),

property(A,[static, mobile]),

made of(A, ),

shape(A, ), color(A, ),

actor(F, ), actee(F, )

Square brackets mean disjunction (e.g. the concept A must be animate or

inanimate). The presence of actor and actee relations means that the concept should

have a function.

Beforehand, we could not know exactly which kinds of frames were needed to

build “good” combinations, leading to the need of a tuning phase that helped us find

a set of appropriate frames. Only after this tuning, are we able to test the system,

leaving it to construct its own concepts.

6.3.1 Tuning

The tuning set we used consisted in 30 pairs of randomly selected concepts from the

list. For each one, we constructed a solution (called the tuning target) correspondent

to our own interpretation of the noun-noun combination. This hybrid interpretation

considered exclusively the knowledge contained within the selected noun represen-

tations and was centered on the head noun, which means that, in any pair A-B of

nouns, the interpretation was that “an A-B is a B with such and such A character-

istics”. In other words, the concept B, the head, is always the focal concept in our

interpretations.

Each experiment consisted of making 30 runs for each pair (each run with the

exact same starting conditions), having in the query the set of frames that could

be expected to achieve the target. The weight configuration followed was 90% for

162



Chapter 6. Experiments

Relevance and 10% for Integration, which reflects our intention to test the frames.

When the results were mostly missing the target, we either selected other frames or

designed new ones and made the 30 runs again. More specifically, this happened when

there was an error of more than 2 relations to the target or when this error was due

to fundamental relations (i.e. without them, the result would not be novel or valued).

In table 6.8, we show a sample with the tuning combinations, target descriptions,

resulting difference to the target, novelty score and frames used in the query. It is

important to remember that the target interpretations are obtained using only the

existing knowledge representation of both nouns, which justifies the appearance of

awkward interpretations (e.g. “head hammer handle”, “pen person”). We can also

see that the frames were initially tailored to fit the target interpretations and reused

later when effective (e.g. the “shape transfer” was created for “bullet potato”, and

used often in the succeeding experiments).

The table 6.9 presents the frames that were obtained (or selected from the already

existing ones in the generic domain). For the rest of the experiment, this became the

set of available frames.

It is clear though that both the target interpretations and the frames were made

by us, so introducing a subjectiveness component in these experiments. Since there

does not seem to be any simple automatic frame generation mechanism and given that

the language itself demands some expertise, the frames had to be constructed with

the method described. On the other hand, it would be possible to use other people’s

interpretations of the randomly generated pairs, requiring a reasonably large set of

participants with some expertise to understand the constraints (interpretations are

confined to the specific representation). This was done for the next two experiments

(established blends and game creatures). Not having done so for this experiment, we

tried to follow our intuition and imagination in each case. At worst, the experiments

reflect our specific ways of noun combination on the tuning set applied to the free

generation set.

The mappings used in all the experiments were automatically generated by our
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Combination Tuning Target Error Frames nov
bullet potato small and cylindrical potato 2 bcore. shape transfer. 0.08

slot set completion
cow vehicle body black and white vehicle that eats grass 0 bcore, function transfer, 0.44

slot set completion
eagle shirt brown, bird-shaped shirt 1 bcore, structure transfer, 0.46

shape transfer
engine ball self-mobile ball 0 bcore, feature set contrast 0.29
flower bloom plant spherical plant 0 bframe, shape transfer 0.12
fruit1 paper1 paper with fruit-seeds that humans eat 0 bcore, structure transfer, 0.40

function transfer
head hammer handle1 mobile and animate (living) hammer handle 2 bframe, feature set contrast 1.00
neck instrument a small and straight instrument 0 bcore, shape transfer 0.25
necklace paper circular paper that people use in the neck for 1 bcore, function transfer 0.45

decoration
patient paper1 paper that has illness 0 bcore, function transfer 0.14
pen person thin, long person, that is used (by others) to 2 bcore, function transfer 0.67

write on paper
pencil pendant thin, long pendant, used to write on paper 0 bcore, shape transfer, 0.46

function transfer
potato acorn brown, spherical acorn 1 bframe, function trasnfer 0.30
potato herring tail spherical herring tail 2 bcore, shape transfer 0.12
pottery spoon spoon made of clay 1 analogy transfer 0.56
skin stem thin stem 0 bcore, shape transfer 0.14
spoon1 frame brown frame 1 bframe, single 0.00

differentiating feature
spoon1 handle lens straight and long lens 0 bcore, shape transfer 0.25
thorns hammer1 small and sharp hammer 0 bcore, shape transfer 0.13
tool boxcar a boxcar used to make other objects 2 bcore, function transfer 0.08
torso pencil1 small, animate and mobile (living) pencil 0 bcore, feature set contrast 0.36
utensil web a metal web, used to make food 0 feature set contrast, 0.40

function transfer
vegetable person3 static, inanimate person 0 feature set contrast 0.37
vegetable spoon a thing with spoon shape that grows on earth 1 bcore, function transfer 0.50
vehicle body vessel1 vessel made of metal 1 bcore, slot set completion 0.14
vessel1 food concave shaped food in which one can put 0 bcore, function transfer, 0.37

something shape transfer
victim projectionist projectionist that was damaged by a gun 0 bcore, function transfer 0.25
wheel sitting room circular sitting room 0 bcore, shape transfer 0.25

Table 6.8: Excerpt of the tuning set (average distance to target (average error)=0.67,
standard deviation=0.994)

Frame Description
bframe The blend has the same relations of head noun (although the arguments may

differ)
bcore The blend has the same relations and arguments (except those related to

function) of head noun
analogy transfer Transfer all neighbor elements and relations of an element of modifier to the

mapping correspondent of head
function substitution A function from head is substituted by a function of modifier
single differentiating feature Head and modifier differ only on one feature, which is transferred to head
function transfer The head gains a function that was part of the modifier
shape transfer The head gains the shape of the modifier
structure transfer The head gains the structure of the modifier
slot set completion The slots in head that did not have a value are filled with modifier’s corres-

ponding values
feature set contrast The feature-set in the head are replaced by the feature-set of the modifier

Table 6.9: The frames used in the experiments
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structure alignment algorithm, with the seed dormant bridge connecting the individ-

ual identifier symbol of the nouns (for example, in “necklace paper”, the seed dormant

bridge is necklace and paper, which then goes to the made of relations, establishing

a mapping between metal and paper and so on). It typically established mappings

between elements with the same role in both nouns (color value with color value,

made of value with made of value, etc.)

6.3.2 Free generation

The free generation of noun-noun combinations consisted of selecting randomly a set

of 33 pairs of concepts (the free generation set, which is completely distinct from the

tuning set) and using the above described query to generate new blended concepts.

Every frame shown in table 6.9 was available to the system so that it could find itself

the selection of frames that suited the highest scores of the fitness function. The op-

timality constraint weights were chosen from what we had learned from the previous

experiments. In this case, we wanted to give a central role to the frames (thus giving

high value to Relevance and to Integration), while also allowing a little control to

Topology, Maximization V.R.2 and Unpacking. The latter received a higher weight

to reinforce inheritance of the input concept’s main characteristics. The values were:

Relevance, 45%; Integration, 30%; Topology, 5%; Maximization of V.R., 5%; Unpack-

ing, 15%. We also added an integrity constraint of having at least two frames being

accomplished so as to stimulate knowledge transfer. Apart from these, parameters

were equal to those used for tuning.

In figure 6.7, we show examples of the generation of the “fish tail1 desk” and “fish

spider” blends, with the inputs (“fish tail1”, “desk”, “fish” and “spider”) and the

frames that were applied.

In table 6.10, we show the results achieved. For each pair of concepts, we show the

best result (in terms of the fitness function) of the 30 runs and describe it textually

2The vital relations chosen were isa, pw, purpose and quantity
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Figure 6.7: Frames used in the construction of “fish tail1 desk” and “fish spider”

by enhancing the differences to the head. The use score corresponds exactly to the

resulting Relevance value. Therefore, a 100% means that every condition of the query

was satisfied and no integrity constraints were violated. Other values indicate that

either some condition was not satisfied or that integrity constraints were violated (or

both).

For example, in Figure 6.7, we can observe that both blends satisfy all require-

ments of the query (therefore scoring 100%). If, say, there were no values for made of

and color, then use would be 75% since two (in eight) conditions were not satisfied.

Another situation could be an integrity constraint violation (e.g. “Something can-

not be black and made of flesh at the same time”), which would lead to a penalty

(e.g. supposing integrity constraint violation penalty was 20%, “fish spider” useful-

ness value would be 80%). The frames listed correspond to the frames found in the

construction of the best result for each combination.

We notice that every experiment ended satisfying a bcore frame. This is

not surprising considering the query we used, which comprises a set of rela-

tions that coincides almost with the bcore frame relations. Still with regard to
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Combination Interpretation use nov Frames
barrel spoon Spoon 1.00 0.09 bcore
bed pips Oblong pips 0.53 0.25 bcore, shape transfer
bird1 sea A bird shaped sea, with wings, and 1.00 0.67 bcore, shape transfer

head and made of flesh structure transfer,
slot set completion

bird head clothes Curve shaped clothes 0.81 0.12 bcore, bframe,
slot set completion,
shape transfer

cow head torso Conical torso 0.60 0.14 bcore, shape transfer
desk ornament Brown, wooden, ornament one can put1.00 1.00 bcore, function transfer

paper on slot set completion
desk1 spoon bowl Spoon bowl besides which one puts a 1.00 0.31 bcore, function substitution

chair (and is not used to put food in)
engine apple tree Oblong, long and large apple tree 0.43 1.00 bcore, shape transfer
fish spider Spider with fish tail that lives in sea, 1.00 0.69 bcore, function substitution,

but does not make webs structure transfer
fish tail1 desk Thin, triangular desk 1.00 1.00 bcore, shape transfer
flower bloom hammer A spherical hammer 1.00 0.13 bcore, shape transfer
food body part A body part that serves to be eaten 0.35 0.33 bcore, function transfer
herring instrument A silver, fish-shaped (with fin and tail)1.00 0.87 bcore, shape transfer,

instrument that lives on sea and is not function substitution,
used to play music structure transfer

horse head insect Insect 0.04 0.00 bcore
insect rodent A small rodent 1.00 0.12 bcore, shape transfer
mattress knife A long knife that is on a frame 0.00 1.00 bcore, shape transfer,

function substitution
oak horse A horse that grows on earth, it has a 1.00 0.58 bcore, structure transfer,

trunk and a crown, but keeps its horse function transfer
shape

paper1 chair seat White chair seat 0.50 0.17 bcore,
slot set completion

patient fruit Human shaped, skin-colored fruit that 1.00 0.60 bcore, shape transfer,
is ill function substitution

patient plant Human shaped, skin-colored plant 1.00 0.28 bcore, bframe,
shape transfer,
slot set completion

person5 paper Paper that sleeps in bed 1.00 0.14 bcore, function substitution
person5 stem Stem that sleeps in bed 1.00 0.50 bcore, function substitution
potters wheel desk A flat and circular desk 1.00 0.38 bcore, shape transfer
pottery neck A neck made by a human 1.00 0.37 bcore, function transfer
rose bloom desk Desk 1.00 0.42 bcore
sole bird A black bird 1.00 1.00 bcore,

slot set completion
spider legs carriage Carriage 0.67 1.00 bcore, bframe
stem vehicle A straight, green vehicle 1.00 0.18 bcore, shape transfer,

slot set completion
train building A building with the shape and 1.00 0.54 bcore, function transfer,

structure of a train, and which serves structure transfer,
to transport people shape transfer

utensil pottery Pottery 0.04 0.50 bcore
victim potters wheel Potters wheel 0.05 0.00 bcore
wheel machine Black and circular machine 1.00 0.22 bcore, shape transfer,

slot set completion

Table 6.10: Results (average usefulness=78%; standard deviation=35%; me-
dian=100%)
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frames, we can also see that the results used essentially 6 different frames (bcore,

slot set completion, shape transfer, structure transfer, function transfer

and function substitution). A possible explanation may be that the other 4 were

either too specific (single modifying feature) or too generic (bframe) to achieve

stability in the runs.

Results show that there is no correlation between novelty and usefulness, which

seems intuitively plausible. Yet, use may contrast with our intuition in some examples

(e.g. there is no apparent reason why a “horse head insect” is less useful than a

“rodent insect”) and its explanation is simply that, for the context we are dealing

with, the new object may lack some fundamental conditions.

Probably because the query is too much centered on the “core” of the object

(every aspect except its function), it may lose its function during the blend gener-

ation, even when it is vital. For example, in blending “herring” and “instrument”,

the result says it is an instrument, but it lost its musical function, so leading to an

empty concept. We also point out to the blends “train building1” and “bird1 sea”.

Both reveal inconsistencies (“a train building1 is a building that serves to transport

people” and “a bird1 sea is a sea with wings...it is made of flesh”). These inconsis-

tencies may be revealed as creative if explored from a metaphoric perspective, a very

complex computational challenge although sometimes trivial for humans. Preventing

the existence of these extreme examples depends on adding integrity constraints (e.g.

“something that serves for transportation cannot be made of bricks”) but these will

go against the creative potential of the system.

From the observation of the use scores, it should be clear that the average of

78% obtained is highly dependent on the specific query and on the specific knowledge

contained in the dataset. If the query was less constrained (e.g. having just half of the

conditions), the score would certainly be higher, whereas if we added conditions that

could not be satisfied within the dataset, use would never achieve 100%. What these

numbers show is that the model is able to search for the query satisfaction when it is

(the knowledge base, the query and the factory) properly configured, thus providing
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Criterion Value
1 0.543
2 0.563
3 0.782
4 0.781
5 0.778
6 0.344
7 0.786
8 0.786
9 0.036
10 16.000
11 0.513
12 0.831
13 0.500
14 0.781

Table 6.11: Ritchie’s [Ritchie, 2001] features results.

useful outcomes for the context in question.

Calculating the features from Ritchie, we obtain the results in table 6.11

In comparison with the previous experiments (of horse-bird) shown in table 6.6, we

notice an increase of scores for typicality and value (1-4), with or without considering

the inspiring set (11-14). Apart from the inherent differences of both experiments,

this also reflects a higher control over Divago, due to the methodology followed (tun-

ing+free generation) and to acquired experience in weight choice. This experiment

also shows a more realistic setting. For example, not all typical items are valued

(criterion 5) and a few reinventions were made (9), although these were a very little

proportion of the results (10). Interestingly, Divago produced almost exactly the same

proportion of untypical and valued items as in the previous experiments, with regard

to the whole set of outputs (6). It even increased, if only considering the untypical

items (7).
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6.3.3 Comparison to C3

We had access to a set of analogous experiments that Costello and Keane did with

C3. In these experiments, the authors randomly generated 10 pairs of nouns (e.g.

“eagle” and “tulip”) and, for each pair, generated interpretations for the two possible

combinations (e.g. “eagle tulip” and “tulip eagle”). This gives 20 combinations,

for which C3 provided interpretations (e.g. “An eagle tulip is a tulip that grows

on an eagle”). These experiments were intended to model the creativity of concept

combination and therefore it makes sense to compare them with Divago. However, we

cannot do a comparison that survives subjectivity because both the values referred

here (of novelty and usefulness) and by C3 output (plausibility, informativeness and

diagnosticity) are not aligned in the same perspectives. Surely, C3 interpretations

would often fail in the use measure suggested by our script, and Divago would not

necessarily do well with C3 constraints, and any of these conclusions would lead

nowhere in terms of saying which one is more creative. We can do a different, perhaps

more interesting, experiment: check if Divago can arrive to the same results of C3

(thus proving the possibility of achieving the same creativity, whatever it is); and

determine which frames would be needed (would they have to be different?). First of

all, to level both systems in terms of representation, we had to allow Divago access

to the implicit relations with other concepts.

In order to check if Divago could find the same results as C3, we applied the

process described above as tuning phase and found that Divago is able to achieve the

same results with an average error of 2.4 and median 1. This means that the normal

error was either 0 or 1 and so the average was strongly affected by two outliers, of

errors 8 and 10. These latter cases, in which Divago failed, were interpretations that

included knowledge from third nouns, i.e. when there are attributes that do not

belong to any of the inputs and come from other elements in the knowledge base.

In the rest, it normally achieved the same results of C3. Another remark is that it

tended to include knowledge (e.g. that “an eagle tulip is solid”) that C3 had excluded

via the informativeness constraint. Whichever one is more correct in this issue, it was

170



Chapter 6. Experiments

also clear that, by declaring that the diagnostic features of each noun are the features

that differentiate the noun in relation to other nouns (an information that is actually

available in C3), Divago could reduce drastically this extra knowledge.

Perhaps the more striking conclusion from this experiment was that Divago could

achieve the same results of C3 (with the error just described) with a very small set of

frames. Indeed, only two frames were needed about 85% of the time: acore (or bcore,

depending on whether the focus was the modifier or the head) and analogy transfer.

This means that, essentially, C3 picked one of the nouns (head or modifier), built the

combination centered on it - which means it has the same structure and the same

“core” attributes-, and also transferred the attributes directly related to the other

noun. By directly related we mean attributes with distance 1 in its graph represen-

tation. This seems to indicate that combinations generated in C3 were essentially of

the property type. The other 15% of the results used also the bframe (or aframe,

depending on the focus). The results, representations and C3 results are listed in

appendix F.

To conclude, Divago is able to achieve the same results of C3 by using a proper

set of frames (aframe, bframe, acore, bcore and analogy transfer) as goals in

the search. This means that, if wanting to configure it as a noun-noun combination

interpretation system, only a smaller set of frame combinations should be considered,

at least for hybrid and property types, and attention should be paid to other factors,

namely to diagnostic features. On the other hand, considering the other experiments

in this book, we conclude that Divago offers a much larger set of possibilities, without

focusing specifically on the linguistics of combinations. In other words, C3 models

noun combinations3 and Divago deals with concept combinations, being more open

to other problem solving situations. We cannot answer the doubt about the limits of

C3 (could it also achieve the same results of Divago, with a proper configuration?),

but it is clear that these are internally very different systems that tackle the same

3An aspect to refer is that the combinations, as modelled in C3, are specific to a set of human
languages (English, German, Dutch...). Others, like Portuguese and French, are less ambiguous
because of the obligatory use of prepositions.
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cognitive problem from different perspectives.

6.4 The creature generation experiment

We now invite the reader to imagine the following context: a game with a knowledge

base of objects (creatures, physical objects, scenarios, etc.) coded according to Divago

representation. Instead of having a specific object pre-determined for each game

situation, let us suppose only a partial specification is given (e.g. for situation x,

the game needs a friendly creature that belongs to the blue team and should have

a strength y). Depending on the size of the knowledge base, on the abstractness of

these specifications, and on a competent engine for retrieving these objects, such a

game could become more unpredictable and surprising, which is one of the current

challenges in the area of game development.

We are developing a blending engine for games [Ribeiro et al., 2003] that would

fit the context just given, which will partly be a re-implementation of Divago with

attention to the specific domain of games and to performance issues, always vital in

game development. In order to assess the feasibility of the idea and have a first insight

on the problems involved, we made some experiments with generating creatures in

Divago.

6.4.1 Tuning

We built an initial battery of 12 creatures, based on the Magic c© The Gathering game,

which comprises hundreds of different creatures, each one with a strength and defense

value pair, a team color, and a mana cost (interpreted by us as food consumption).

They could also have functionalities (e.g. protect another creature) and abilities (e.g.

fly). Below, we show an example, the pajem angelical (all the creatures used are in

Appendix F):
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isa(pajem angelical, human) pw(wing, pajem angelical)

isa(pajem angelical, bird) pw(left leg, pajem angelical)

member of(pajem angelical, creature) pw(right leg, pajem angelical)

strength(pajem angelical, 1) actor(strength enhancement, pajem angelical)

defense(pajem angelical, 1) actee(strength enhancement, creature)

food consumption(pajem angelical, 2) points(strength enhancement, 1)

team color(pajem angelical, white) cost(strength enhancement, 0)

color(pajem angelical, human colored) actor(defense enhancement, pajem angelical)

made of(pajem angelical, flesh) actee(defense enhancement, creature)

ability(pajem angelical, fly) points(defense enhancement, 1)

pw(head, pajem angelical) cost(defense enhancement, 0)

pw(left arm, pajem angelical)

pw(right arm, pajem angelical)

pw(torso, pajem angelical)

For this stage, we had to obtain blends of creatures (to become the targets). In

order to avoid our own bias, we asked another researcher, not aware with Divago’s in-

ner processes and having little knowledge of Conceptual Blending, to select randomly

pairs of creatures and invent three different combinations for each of them. He chose

14 pairs of creatures, thus making 42 combinations. It was then our task to obtain

the set of frames that could help Divago generate the same set of combinations.

Prior to starting the testing and designing of frames, it was necessary to check

whether the solution actually existed in the search space, as we did in previous ex-

periments. In other words, given a query with the exact relations of the target, the

mapping applied by the designer4, no integrity constraints (so that, whatever incon-

sistencies the target may have, it will not be less valued), and a configuration of 90%

weight on Relevance (and 10% on Integration), Divago should be able, after a suffi-

cient number of generations (aprox. 30, for the Horse-Bird experiment), to generate

the exact same blend. In such a configuration, the search space has only one max-

imum, containing either the set of relations of the target or the subset that can be

achievable by Divago.

4In this step, we had to extract this mapping ourselves from the 42 combinations, which was not
difficult since every creature has a relatively small set of relations and concepts.
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Figure 6.8: Least possible error achievable by Divago for each of the blends (mean
values over 30 runs)

In figure 6.8, we can observe that only five of the combinations are completely

contained in the search space. The reason for this apparent failure is simple when

we inspect the combinations that produced bigger error. Let us analyze one of these

combinations, the second combination of field surgeon with pajem angelical, which

has an error of 5. The concept map of pajem angelical has been given above and

field surgeon is represented as:

isa(field surgeon, clerical) pw(head, field surgeon)

member of(field surgeon, creature) pw(left arm, field surgeon)

strength(field surgeon, 1) pw(right arm, field surgeon)

defense(field surgeon, 1) pw(torso, field surgeon)

food consumption(field surgeon, 2) pw(left leg, field surgeon)

team color(field surgeon, white) pw(right leg, field surgeon)

color(field surgeon, flesh colored) actor(healing, soltarian priest)

made of(field surgeon, flesh) actee(healing, creature)

size(field surgeon, medium size) points(healing, 1)

The designed combination for field surgeon|pajem angelical2 was:
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member of(field surgeon, creature) pw(pajem angelical right arm, field surgeon)

strength(field surgeon, 2) pw(pajem angelical torso, field surgeon)

defense(field surgeon, 1) pw(pajem angelical wing, field surgeon)

food consumption(field surgeon, 1) pw(field surgeon left leg, field surgeon)

team color(field surgeon, white) actor(defense enhancement, field surgeon)

points(defense enhancement, 2) actee(defense enhancement, creature)

made of(field surgeon, flesh) color(field surgeon, human colored)

cost(defense enhancement, 1) pw(field surgeon head, field surgeon)

moves(field surgeon, jumping) pw(pajem angelical left arm, field surgeon)

As we can see, there was a scrambling of all the numbers involved (strength,

defense, food consumption, points and cost). This would be no problem if the substi-

tution was consistent with the projection mechanism of Divago, but this was not the

case: sometimes the number 1 becomes projected to 2 (both projection of strength),

sometimes to 1 (in defense), the case becomes even more complicated because 0

projects also to 1 (in cost). The problem we are raising is that, by definition, a se-

lective projection can have one and only one projection for each concept in the input

concept maps, thus even if, by the mapping function, 1 is mapped to 0, 1 and 2

(which wouldn’t be possible anyway with our 1-to-1 structure alignment algorithm),

it can only be projected as one of these in the blend. This now seems to us a serious

limitation, which we are focussing on in the development of the game engine. Another

problem in this blend is that there is one completely new concept, jumping, which

did not exist in any of the inputs. The reasoning followed by the designer was that,

since the new creature has only one leg, then it can only move by jumping. This

was important information, since it gave rise to a rule in a knowledge base. After

determining the least possible error, we may proceed to determining the frames.

We can see that some of the previous frames (aframe, bframe, acore, bcore) were

simplified with parameters (frame(X) and core(X), respectively), although maintain-

ing the same reasoning. In figure 6.9, we show the best performance achieved and in

figure 6.10 we show the difference compared to the best possible result. The weight

configurations remained the same (90% Relevance, 10% Integration). In Appendix
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creature(X) The name of the creature is the same as the name of the creature X
frame(X) The creature maintains the same set of relations of input X
core(X) The creature contains the core (all attributes) of input X
shape amputation(L) The creature has not any of the shape items(arms, legs, etc.) in list L
shape transfer(S, X) The creature inherits from X the shape S
function transfer(X) The creature inherits a function from input X
fightAttr(X) The creature inherits the fight attributes (strenght and defense)

from input X
shape(X) The creature inherits the overall shape from input X
attr transfer(L, X) The creature inherits from input X the set of attributes in list L

Table 6.12: List of frames used in the creature blends

F, we list the generated blends.

Except for a few situations, it was not difficult to find a combination of frames

that would give us the best result or a result that was very close to it. Since we tried

to avoid tailoring the frames to the specific blends, for some (namely the ones with

error bigger than 2, in figure 6.10), it was difficult to find a set of stable combinations

of frames. Whatever combination of frames given, the search space became much too

convoluted and, in order to accomplish some frames, Divago had to drop others, even-

tually achieving many different local maxima throughout the 30 runs. An example of

such incompatible frames are the frames for shape amputation(List) and shape(X)

(in table 6.12). The former removes a piece of the creature, while the latter tries to

make it as a whole.

6.4.2 Free generation

In order to see the capacity of Divago of generating novel creatures, we applied several

different configurations and creature combinations. Given the game context, this time

we want to apply elaboration and produce a visual output. Due both to copyright

obligations and to the availability of a set of three completely defined 3D creatures

(a werewolf, a dragon and a horse, see figure 6.11), the content of the knowledge base

was changed to include only these latter objects, coded in a similar manner as the

creatures from Magic c© The Gathering used above.

By changing the knowledge base and keeping the frames and rules obtained, we
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Figure 6.9: Best possible + frame results (mean values)
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Figure 6.10: Efficency of Divago: difference to best possible values (mean values)
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Figure 6.11: The creatures available in the knowledge base.

may verify that Divago has some degree of versatility. In fact, since we maintained the

same kinds of relations in the concept maps, only a few rules and integrity constraints

had to be created. We added rules for stating that something that has wings should

have the ability to fly, something with an odd number of legs should get a wooden

leg in the missing connection and it should move by jumping. Another rule calculates

the mean when there are two different numerical values for the same attribute (and

replaces them with this mean). We also added a rule stating that, when something

is dangerous, very strong and very large (strength > 5 and size > 3), then it should

get an ogre head and lose the original one. The new integrity constraints state that

a creature should not have two different values for the same attribute, they should

be symmetric, they should not have two heads, two torsos, or two members in the

same place (e.g. two left arms)5.

We only applied a single query throughout this experiment. To determine this

query, we analyzed the history of frame combinations used to build the 42 creatures

in the previous stage. We concluded that each one had two or three abstract frames

such as creature(X), frame(X) or core(X). Since core(X) can be too specific, we

decided to have creature(X) and frame(X) (the former forces to only have one

creature name in the blend, the latter to follow its relational structure). There is also

some regularity in the transfer of shape parts from each of the inputs, so we decided

to have shape transfer(E1, Y), shape transfer(E2, Y), {E1 \= E2}, with X

5Of course, this does not imply that these creatures will never be generated. The system is only
told that such constructions are to be avoided.
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Combination Weights nov use Best blend
I T MVR U R (nov/ use)

horse werewolf 34 16 10 4 36 0.50 1.00 0.56/1.00
horse dragon 34 16 10 4 36 0.31 1.00 0.25/1.00
werewolf dragon 34 16 10 4 36 0.50 1.00 0.62/1.00
horse werewolf 10 0 0 0 90 0.86 1.00 0.86/1.00
horse dragon 10 0 0 0 90 0.69 1.00 0.57/1.00
werewolf dragon 10 0 0 0 90 0.74 1.00 0.65/1.00
horse werewolf 20 0 0 0 80 0.86 1.00 0.86/1.00
horse dragon 20 0 0 0 80 0.87 1.00 0.75/1.00
werewolf dragon 20 0 0 0 80 0.76 1.00 0.65/1.00
horse werewolf 30 5 5 15 45 0.83 1.00 0.71/1.00
horse dragon 30 5 5 15 45 0.37 1.00 0.50/1.00
werewolf dragon 30 5 5 15 45 0.59 1.00 0.65/1.00

Table 6.13: Results of creature combinations

different from Y. Thus, the query is:

creature(X), frame(X), shape transfer(E1, Y ), shape transfer(E2, Y ), {E1\ =

E2, X\ = Y }.

A good blend would therefore consist of the structure of one of the creatures with

at least two of the shape parts of the other creature. In table 6.13, we show, for

each pair of creatures and a weight configuration, the median results of novelty and

usefulness obtained, as well as the scores for the best blend. The weight configurations

consist essentially of the ones used in previous experiments.

In these experiments, almost every result entirely satisfied the query, thus giving

a value of 100% for each one (the mean was 0.98 with a standard deviation of 0.05

corresponding to a few outliers). With respect to novelty, we can observe the vari-

ability of the results with the weight configurations. Indeed, when there is a focusing

on Relevance and Integration, the system runs away from typicality, which is under-

standable when we analyze the used frames. They favor the use of knowledge from

both inputs, without significantly favoring one input over the other. When doing so,

as also verifiable in the other experiments, novelty tends to increase. When, on the

contrary, the frames favor one of the inputs (e.g. the Pegasus is a horse), then the
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typicality will tend to increase. When applying optimality principles other than Rel-

evance and Integration, namely Topology and Unpacking, we can notice a decrease of

novelty, although also achieving the 100% solution. This results from a heavy weight

on Relevance, but also a preference for those blends that, although accomplishing the

goal frames, respect the other principles as much as possible (Topology and Unpack-

ing particularly favoring similarity to inputs). From applying Ritchie’s features, we

obtain the table 6.14, where we can see that the average and ratio of typicality has

lowered slightly in comparison to the previous experiments (features 1 and 2). The

average and ratio of value is, of course, 100% given that every result entirely satisfied

the query (3 and 4). This fact implies also maximum values in other features (5, 7,

12 and 14). Again, this demonstrates the difficulties both in determining the value of

something as well as in comparing it with other experiments. The ratio of untypical

and valuable results, a very important measure for creativity, was raised to 0.667

(remember that in previous experiments, it was rounded to 0.333), expectable given

that everything is now maximally valued. The rest of the features confirm the same

conclusion: Divago was able to satisfy the value criteria for every combination, it did

not reinvent any of the inputs and it was able to produce some proportion of results

with low typicality (i.e. high novelty).

The generation of these 3D images was made by an interpreter developed in col-

laboration with other researchers [Ribeiro et al., 2003]. It receives the concept maps

generated by Divago and produces a “wavefront obj” file, which describes the 3D

image. The several parts of the creature were coded separately (e.g. horse back leg,

ogre head) and placed together according to the concept map. To give an idea of the

creatures generated, we now show some examples (the rest in appendix F). In figures

6.12, 6.13 and 6.14 we show the images of the best blends found in configurations 1,

2, 3 and 4, respectively.

In order to give an insight on the range of generated creatures, we also show the

worst results. In these, we can see that they either lack one member (e.g. a wing),

they have more than one member in the same point (e.g. a horse|werewolf with four
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Criterion Value
1 0.343
2 0.333
3 1.000
4 1.000
5 1.000
6 0.667
7 1.000
8 2.000
9 0.000
10 N/A
11 0.308
12 1.000
13 0.333
14 1.000

Table 6.14: Ritchie’s [Ritchie, 2001] features results.

Figure 6.12: The best blends for horse|dragon (nov=0.25), horse|werewolf (0.56) and
werewolf|dragon (0.62).

Figure 6.13: The best blends for horse|dragon (0.37), horse|werewolf (0.86) and
werewolf|dragon (0.65).
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Figure 6.14: The best blends for horse|dragon (0.75), horse|werewolf (0.86) and
werewolf|dragon (0.65).

Figure 6.15: The best blends for horse|dragon (0.50), horse|werewolf (0.71) and
werewolf|dragon (0.59).

back legs) or a pirate leg. See figure 6.16.

We left the visualization of these creatures to the end of this section to prevent

the reader from placing excessive importance on the images. Indeed, there is much

more behind each of these creatures, namely characteristics such as the abilities, their

strength and defense values and so on. Therefore their novelty, as reported in the

captions, may have been affected by these non-visual characteristics.

The positive conclusion from these experiments was that Divago, as a generative

model, can enhance the dynamics of a game environment. Suppose that it is allowed to

blend not only creatures, but also scenarios, physical objects, behaviors, and so on.

Figure 6.16: Some worst blends for horse|dragon (nov=0.73), horse|werewolf (0.44
and 0.60) and werewolf|dragon (0.67).

182



Chapter 6. Experiments

Even more, with appropriate frames, it is theoretically possible to blend creatures

and scenarios (with blends that, say, transfer the color or texture of a scenario to

a creature, or the function of an object), which would considerably potentiate the

possibilities of the game.

Although these experiments were stimulating as a motivation for developing a

game, they also revealed some problems that need to be solved:

• The majority of the mappings used in this experiment were not made by the

Mapper, they were hand coded, first because the Mapper is easily fooled by the

representation simplicity (e.g. it can map back leg to right arm because both

are connected to the creature with the same relation, pw), and second because

some of the mappings are not based on structure alignment. The above situation

of the scrambling of numbers is a good example.

• The projections are too restrictive, which prevents them from achieving a lesser

error to the targets. Perhaps the game engine should consider multiple projec-

tions for the same concept map element.

• Divago is extremely slow in generating each creature. This is acceptable for

a Prolog based prototype, but not for an on-line system. For this reason, the

game engine must be developed in a computationally faster and lighter setting.

6.5 The established Blending examples

One of the contributions of this work is a computational model of Conceptual Blending

and therefore it is fundamental to validate it with a set of examples recognized in

literature as being conceptual blends. In section 3.3.2 and in Appendix B, we present

what we call the established Blending examples. These are Blending case studies

that appear in literature and that we think should be considered when building a

computational model of Conceptual Blending. Although more examples could be

183



Chapter 6. Experiments

included, we restricted ourselves to the ones sufficiently specified (they should they

should at least discriminate all the mappings and elements from the inputs) and

which considered only two input spaces (there are many examples with multiple

input spaces). Moreover, they should be considered “conceptual blends” somewhere

in their description, to prevent any subjective evaluation from our side.

In table 6.15, we enumerate the examples, as well as their characterization. We be-

lieve that they are representative of a number of situations that have been approached

over the last few years in the main CB reference literature. In order to provide Elab-

oration, a few rules were added to the generic domain, namely the movement laws

rule (as presented in section 5.7) and rules stating common sense implication (e.g.

“When an x and a y are married, they form a couple”). The Mapper was not used

because the mappings for each example were already given in the literature.

Name Typology
The Riddle of the Buddhist monk Mirror network, Topology preserving
CEO boxing fight Single-scope network
Gun wound Nominal compound, Double-scope network
Kant debate Double-scope, Mirror network,Pattern Completion
Land yacht Nominal compound, Analogical
Trashcan basketball Double-scope
Computer desktop Double-scope,Metaphorical
Computer virus Double-scope,Category metamorphosis
Same-sex marriage Double-scope, Category metamorphosis
Sandwich counterfactual Counterfactual blend, Single-scope
“Mabel is the daughter of Paul” XYZ blend,Single-scope
Pet fish Nominal compound

Table 6.15: 12 examples of Conceptual Blending found in literature

From each of these examples, we extracted the input domains, the blend, the

generic space and the mapping. Normally, all these were directly available in tables

or diagrams. The special cases were “Computer Desktop” and “Computer Virus”,

which were completed with some common-sense knowledge inserted by us.

For each of the examples in table 6.15, the goal of these experiments was to

understand to what extent Divago was able to achieve the “correct” blends (the

targets). Unlike the previous experiments, we will not focus on novelty and usefulness

as the goal here is not to assess the creativity of the system, but to find how competent
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actor(shoot, agent).
actee(shoot, human).
means(shoot, gun).
result(shoot, wound).

error=0.75 −→

actor(shoot, agent)
actee(shoot, target)
means(shoot, gun)
result(shoot, wound)
result(shoot, result)

Figure 6.17: Target blend for the “gun wound” example (left) and a blend (right)

it is in being a model of CB, i.e. in minimizing the error to the target. These targets

correspond to the blends described in each example in literature. In table 6.17, we

show the target for the “gun wound” blend as well as a (hypothetical) blend with

error 0.75. It has 2 relations that do not belong to the target (“actee(shoot, target)”

and “result(shoot, result)”) and misses one target relation (“actee(shoot, human)”),

yielding a sum of 3. Since the size of the target is 4, we have an error of 3/4 (=0.75).

Please notice that this error measure (which follows the same reasonings described

for calculating distance in the Horse-Bird experiments, in section 6.2) potentiates

error values that may be higher than what intuition would say. For example, if a

projected relation r erroneously replaces another one, this will count as two (one for

delete, another for insert) instead of one (i.e. there is “only one” wrong relation).

This doesn’t mean we should divide by two the estimated errors, but we must take

this into account when quantitatively analysing the errors found.

As in the Horse-Bird experiments, we divide the experiments into two different

stages: isolated constraints and combined constraints. In the former, we will be able

to watch the behavior of each isolated optimality constraint of Divago w.r.t. each of

the examples. In so doing, it is possible to observe which of these constraints is able to

achieve minimum error in the blend generation. The results will also be useful for the

last stage of the experiments, in which we will combine constraints according to the

results obtained previously. We will not focus on the principles of Web, Maximization

and Intensification of Vital Relations. The reasons are now obvious: Web is not

considered independent in our implementation, thus it wouldn’t make sense to test it

in isolation; we are not considering the compression role of Vital Relations, which is

after all their reason of existence, thus the results of Maximization/Intensification of
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Frame Description
aframe The blend has the same relations of input space 1 (although the

elements may differ)
aframe The blend has the same relations of input space 2 (although the

elements may differ)
aprojection The blend has the elements of input space 1
bprojection The blend has the elements of input space 2
analogy transfer [Part of] the blend results from the transfer of all neighbour

elements and relations of mapped elements of input space 2
to their counterparts in input space 1

role transfer [For a noun-noun compound blend] the head is projected to
a role element of the modifier (e.g. for “gun wound”, “wound”
is projected to “result” in the blend)

Debate The blend has all the relations expected for a debate scenario
(see example 3)

day compression All temporal elements of both inputs become referent to the
same day

head transfer [For a noun-noun compound blend] all relations and elements
connected to the head (input space 2) are projected untouched
to the blend

Table 6.16: An informal description of the frames used

Vital Relations wouldn’t produce conclusions that we could confront with their own

corresponding theory.

We also followed the methodology for the noun noun experiments, with a first,

tuning, step to obtain the frames. The set of frames achieved is listed in table 6.16

and we show their code in appendices B and F. The table 6.17 shows the goals used

in each of the examples.

In table 6.17, we can observe some regularity in the choice of frames. Normally,

there is at least one generic organizing frame (e.g. aframe, bprojection), which

establishes the general structure of the blend (aframe makes the blend maintain the

relations of input 1; bprojection makes the blend maintain the elements of input 2).

Then, there may be other frames that can be transforming (e.g. analogy transfer,

head transfer, day compression) or organizing (e.g. role transfer). Finally,

pattern identifying frames like debate are used in specific situations. A final remark

concerns the “sandwich counterfactual” example. As referred to in the creatures

experiment, Divago is technically unable to reach the target when a 1-to-many map-

ping is necessary, as happens with this blend, so we removed it from the rest of the
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Goal
Example Frames Relations
Buddhist monk day compression meets(monk1, monk2)
CEO boxing aframe, bprojection
Gun wound aframe, role transfer
Kant debate bprojection, debate
Land yacht aprojection,

head transfer
Trashcan basketball aframe,

analogy transfer
Computer desktop aframe, bprojection,

analogy transfer
Computer virus aframe, head transfer
Same-sex marriage aframe same sex(person1, person2),

married with(person1, person2)
Sandwich counterfactual
Mabel is the daughter of bframe, aprojection
Paul
Pet fish aframe, bprojection

Table 6.17: The goals used for the Relevance principle

experiments. Apart from Relevance, no other Optimality principles demand special

configuration concerns, therefore their application depends exclusively on their weight

being higher than zero.

6.5.1 Experiments with isolated principles

The intention of this part of the experiment is to find the dominant principles of each

blend within the first order i.e., it gives us the principle that seems to be immediately

prevalent in the blend (within the second order, we would see pairs of principles that

seem to be prevalent, and so on), thus giving a first classification for our blends.

This latter idea can become even more precise when considering the behavior of

all (isolated) principles for each blend and comparing them as a set, so, instead of

comparing each value individually, we can compare a sequence of values.

In figure 6.18, we present the overall results of each of the optimality principles.

An immediate conclusion can be drawn from this graph: the Relevance principle has

consistently smaller error than any other principle; the “CEO Fight” blend beats the

record of maximum error in two of the principles. This confirms the results of previous
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Optimality Principles in Isolation
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Figure 6.18: The median of the error, for the optimality principles in isolation

experiments and highlights the importance of this principle. On the other hand, it

demonstrates that almost none of the blends have a naturally inherent tendency for

the other principles in isolation (at least, as we implemented them). Furthermore,

since the Relevance principle is configured differently for each blend according to

an intuitive, trial-and-error, choice of goals, it seems to indicate that there is no

generic, context-independent, principle that can lead to an exact solution. It is also

important to say that, since Relevance demands a specific configuration, its value may

vary immensely according to the choices of the goals used and so the reader should

retain this aspect while interpreting these graphs.

A more practical conclusion from figure 6.18 regards the graphical representation

itself. Although using bars seems to be correct given that we have no scale in the x

axis, it does not simplify the task of understanding and organizing the several kinds

of blends we may be considering. For this reason, we decided to represent it as a line

graph (fig. 6.19).

Analyzing the results paying attention to the typology presented in table 6.15 was

our first concern for this stage. However, we found no particularly revealing patterns

in the results. There may be many different explanations for this, but the most salient

one suggests that there may be no correlation between any of the principles and the

given typologies. For example, a double-scope blend may be Topology preserving and
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Figure 6.19: Reduced line graph corresponding to the error of isolated optimality
principles

another one may demand strong Integration, a mirror network may also preserve (or

not) Topology. For this latter case, even if it does preserve Topology, the value of

this principle may not have to be very high (i.e. in a mirror network, there is a priori

topological correspondence between the input spaces, so the preserving effort may be

low). Many other arguments that testify to the complexity of blends could be given,

eventually ending up in the uncertainty of the typology itself (e.g. the difference

between single and double-scope can become extremely subtle).

On the other hand, we found clear patterns in the choices of goal frames for the

Relevance principle. Both single-scope blends achieved exactly the target with the

pair xframe and yprojection (being x and y either “a” or “b”). This completely

agrees with the idea of single-scope - the elements of one of the inputs are organized

according to the frame of the other. Nominal compounds also show a pattern: there

is a “projection” of one of the inputs, the one that coincides with the focus of the

compound. The exception is “gun wound”, which is also double-scope. Double-scope

examples normally demand more specific frames (e.g. debate, analogy transfer,

etc.) or specific relations (e.g. same sex(person1, person2)) and were less consistent

in reaching the exact target. This confirms that “in a two-sided network [i.e. double-

scope] (...) it is necessary to use a frame that has been developed specifically for the

blend and that has central emergent structure. (...) In two-sided networks, then, we

expect to see increasing competition between optimality principles and increasingly
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Figure 6.21: Group 2

many opportunities for failure to satisfy them” [Fauconnier and Turner, 1998].

Considering a qualitative evaluation based on similarity in terms of the shape of

the graph and of the principles that yield smaller error, we found four different groups

of blends: Group 1 (“Same-sex marriage”, “Computer Desktop”, “Pet fish” and “Gun

wound”); Group 2 (“Computer Virus”, “Kant Debate”, “CEO fight” and “Trashcan

Basketball”), Group 3 (“Mabel is the daughter of...”) and Group 4 (“Buddhist Monk”

and “Land yacht”). These are shown in figures 6.20, 6.21, 6.22 and 6.23.

Except for “Computer Desktop”, the blends in Group 1 have Relevance yielding
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the smaller error being followed by the Integration and in similar proportion by Pat-

tern Completion. “Computer Desktop” was the only example that we weren’t able

to find a good set of goal frames for. As a result, isolating Relevance yielded an

extremely large error. Thus, the reason for including it in this group lies on the other

principles. We can see that, as in the other examples of this group, Integration yields

the smaller error, followed by Pattern Completion. Topology and Unpacking show a

less constant pattern, although all falling within a small error range.

Figure 6.21 shows Group 2, which consists of blends that have in Pattern Comple-

tion the second smaller error and in Integration and Topology the two highest errors.

Another interesting remark is the high similarity between the results of “Computer

virus” and “Kant debate” (except for Relevance which, as said previously, may vary

according to goal configuration). Group 3 has only a single example. As we see in

Figure 6.22, there is a pattern of zero error in Relevance followed by stabilization

around a specific error value. Every principle (except Relevance) got an error of 2.

After analyzing the results carefully, we understand that: a) it is based on a single

relation (daughter of(mabel, paul)); b) being so, the target is only achieved when

bframe and aprojection are achieved simultaneously, which does not happen con-

sistently except in Relevance. In Integration, we observed that the system gives a

higher score to the accomplishment of bframe alone, instead of its combination with

aprojection. This agrees with our intuition for Integration presented in section 5.6,

in which we argue that, when the blend is totally covered by a single frame, its In-

tegration value should be stronger than when it is totally covered by two different

frames.

The examples that have Topology and Relevance as the main principles were

gathered in Group 4 (fig. 6.23). In fact, particularly for the “Buddhist Monk”,

this agrees with the analysis of Fauconnier and Turner [Fauconnier and Turner, 2002,

p.45], who stress the role of Topology as being fundamental for this example. The

results of “Land yacht” were unexpected and some further analyses revealed that

the target is topologically very similar to one of the inputs (the “land”) and so the
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Weights
Combination (I, PC, T, U, R)
Relevance+Integration (Group 1) (50, 0, 0, 0, 50)
Relevance+Pattern Completion (Group 2) (0, 50, 0, 0, 50)
Relevance+Integration+Topology (Group3) (33.3, 0, 33.3, 0, 33.3)
Relevance+Topology (Group 4) (0, 0, 50, 0, 50)
Combination 2 (20, 20, 20, 20, 20)
Combination 3 (38, 0, 18, 4, 40)
Combination 4 (21, 0, 21, 5, 53)

Table 6.18: Weights used in the experiments with combination of principles

highest value in Topology may get close to the target, particularly when few elements

are projected from the other input (the “yacht”), thus having, in the blend, a copy

of the “land” domain. Moreover, since this example had difficulty in achieving small

errors (except for Relevance), the salience of Topology is probably magnified.

There seems to be no specific pattern underlying the groupings found. We ana-

lyzed issues like concept map size, emergent structure and difference to input domains,

but still no patterns were found. In the next section, in which we will apply combina-

tions of weights to each of the groups, it will be possible to check if the same grouping

tendencies are maintained. If this happens, then we will have more evidence of the

meaningfulness of the groupings made.

6.5.2 Experiments with combination of principles

The second part of these experiments is dedicated to combining the optimality princi-

ples in different ways. We made four different combinations: the two principles with

least error from the previous stage of these experiments; all principles with equal

weight (Combination 2); application of two sets of weights derived from Horse-Bird,

normalized to exclude MVR (Combinations 3 and 4, resp.). In Table 6.18, we show

the weight configurations used.

We organized the results by maintaining the groupings already discussed and, for

each blending example, we also added the best value of error obtained in the previous
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section in order to better understand the evolution.

The first observation is that combination 2 tends to obtain the worst results,

meaning that adding all principles with equal weights reveals unproductive, support-

ing the idea that each blend may result from different combinations of these competing

pressures. Another immediate observation regards the difficulty in approaching the

target, i.e. in comparison to the best so far achieved (with the isolated principles)

the error only becomes smaller than this best in the examples of “Kant debate” and

“Trashcan basketball” (both when combining Relevance with Pattern Completion),

while in “Gun wound” and “Buddhist monk”, the first combination reaches the best

solution error. For all the others, no combination brought better results. This raises

perhaps the most important question for this experiment: is Relevance (or the way
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we configure it) sufficient to achieve the best blend? From all the experiments done

so far, the answer turns out to be “yes”. Indeed, with a proper goal choice, it is

in principle possible to find the target, independently of its complexity. And this

takes us to the perspective of classifying blends by frames rather than by optimality

principles.

It is also observable that the four groupings found in the previous section are

generally consistent with the new results, although the groupings may seem dubious at

points (e.g. we could equally imagine the interchange of some examples from Groups 1

and 2 or from Groups 3 and 4). Therefore, we may now find two distinct major groups

(let us call them clusters), the first one comprising groups 1 and 2. In this cluster,

Combination 2 normally gets the highest error, followed by Combination 4. Except in

Group 2, there is also a tendency for obtaining the same value for Combination 3 and

the “two best principles” combination. The other cluster comprises groups 3 and 4, in

which Combination 4 seems to acquire much better results than Combinations 2 and

3. This may mean that the blends in question demand less Integration (which can be

confirmed in the previous section), since Combination 4 differs from Combination 3

essentially in the weight of Integration. Still in this cluster, we can also see that one

example, the “Buddhist monk”, is very stable in the obtained errors, getting worse

results only when the weight of Relevance is shared with all others (Combination 2).

A final and more practical point regards the computational performance of the

system. Given the complexity of some blends and our experiment requirements (30

runs for each blend, for each configuration), our search engine needed a considerable

amount of time in some cases. We used an Intel Pentium IV r at a speed of 2.4 GHz,

which needed sometimes four to five hours to find a solution (only in the most complex

cases like “Computer Desktop” with Combinations 2, 3 or 4). At best, it took 2-5

seconds to find a result. These values can get much lower after an optimization of

the system, but it will find it hard to become fast enough to enable comparison with

the performance of our own cognitive system, particularly if taking into account the

extremely large amount of background knowledge that we are able to cope with.
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6.5.3 Some considerations

Given the complexity involving several aspects of Conceptual Blending and the ex-

tremely wide range of situations considered, the Blending mechanism of Divago is far

from an exhaustive model. Its initial and most fundamental motivation was to be

the Bisociation module for Divago. Thus, its scope can be considered very limited in

comparison to what we can find in all the CB literature. This fact does not inhibit

us from understanding how much our model is capable of simulating and making

predictions in the context of established examples. Furthermore, given that, as far

as we know, there are no operational models for the study of blends with a stable,

commonly used, methodology across researchers, Divago could be a starting point for

the validation and discussion of the subset of blends that it can consider. We believe

that such a study would bring some interesting outcomes: (possibly new) categoriza-

tions of blends; understanding of the underlying frames that are recurrent in some

blends; validation of observations previously made (e.g. Topology is important in the

“Buddhist Monk”); predictions regarding novel blends (e.g. its underlying frames).

It is a fact that, with the knowledge representation used, Divago was able to find

the targets (or very similar solutions) also found in the literature. Achieving such, it

is our opinion that it reached a capacity for making Conceptual Blending, although

still at a relatively basic level in comparison to our own cognition and to the world of

examples discussed in [Fauconnier and Turner, 2002], some considering many input

spaces, many consecutive blends, the majority of them not formally described or

represented. Clearly, a more dynamic knowledge representation, perhaps not entirely

symbolic, would be needed to cope with more elaborate, and more realistic, examples

at the level of cognition.

6.6 Discussion

The experiments presented in this chapter raised a set of questions we would now

like to discuss. We will start by a set of practical issues and progress towards more
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philosophical questions. We intend to focus on the problems and virtues of the im-

plementation and of the model, and lead the reader towards possible evolutions and

applications.

From the results obtained (namely regarding nov and use), it is an undeniable

fact that a few predictions can now be made regarding the behavior of Divago. We

can now say that, with a problem that can be specifiable via a query, it is able to

retrieve a good solution, if this exists in the space of concept combinations and if

some prominence is given to Relevance and Integration weights. We can also predict

that Divago will diverge from the inputs if this query so implies, or when there are

frames available that so imply. Ultimately, if we have no query or frames available,

Divago will have the tendency not to reinvent the inputs, but to generate blends

that inherit parts from both, although without any specific overall coherence, namely

because of its space complexity. This raises the issue that, by themselves, the Opti-

mality Constraints, as we modelled them, did not have success in Divago, except for

Relevance and Integration. In this context, and perhaps in general, we believe that

the eight constraints of Fauconnier and Turner can be reduced to three: Relevance,

for purposefulness; Integration, for internal coherence; and Topology/Unpacking, for

external coherence. We must acknowledge, though, that we did not present a thor-

ough account for the Vital Relations and their compression role, which may imply

that those three constraints are incomplete regarding an implementation of CB.

With respect to a direct comparison with WASP (the poetry generation referred

to in section 2.2.2 [Gervás, 2000b, Gervás, 2002]) regarding the values of Ritchie’s

features, as we said earlier, such an exercise is merely academic in the sense that, in

practice, these are very different from each other. Nevertheless, some new conjectures

can be made. First of all, we must provide the values obtained for WASP, as well as

a summary of Divago’s results (figure 6.19).

From an analysis of these results, the first thing to conclude is that WASP clearly

produces a higher average of typicality and lower average of value than Divago (fea-

tures 1 to 4). This imbalance also affects features 5 to 8, which basically reassures
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Experiment
Criterion Horse-Bird Noun-Noun Creatures WASP

1 0.443 0.543 0.343 0.71
2 0.273 0.563 0.333 0.54
3 0.504 0.782 1.000 0.47
4 0.636 0.781 1.000 0.24
5 1.000 0.778 1.000 0.36
6 0.364 0.344 0.667 0.05
7 0.500 0.786 1.000 0.12
8 1.333 0.786 2.000 0.28
9 0.000 0.036 0.000 0.000
10 N/A 16.000 N/A N/A
11 0.406 0.513 0.308 0.71
12 0.483 0.831 1.000 0.47
13 0.273 0.500 0.333 0.54
14 0.636 0.781 1.000 0.24

Table 6.19: Ritchie’s [Ritchie, 2001] features: summary of Divago + WASP results.

that outcomes of Divago were classified as higher valued than WASP’s, and features

11 to 14, which get the same conclusions by comparison with the inspiring set. Notice

that, by features 9 and 10, neither system tends to reinvent the inspiring set in any

way (i.e. these latter features cannot add any new conclusions). We must insist that

the actual values should not be taken further in this comparison. At this point, the

most one can do (and the actual importance of Ritchie’s features in this case) is to

conclude that, according to the features used, Divago seems to be more inventive than

WASP. To go further, one would have to compare the specific evaluation procedures

of each system. This would imply a comparison of a Poetry generation system evalua-

tion methodology (which was based on people’s interviews and stylistic analysis) with

the ones used in our system. As this is an unsafe comparison to make, we trust that

the evaluations just made will be more important for future related works (e.g. of

creativity assessment in concept invention systems) than for a competent comparison

of Divago and WASP (to read more about this subject, also including a comparison

with Dupond, read [Pereira et al., 2005]).

It can also be said that our measures of typicality and value are simplistic and
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therefore lead to a high variability in Ritchie’s features as well as to some counter-

intuitive results. As a formal system, Divago needs a set of well defined criteria and

the question is whether the effort of building more complex formulae or heuristics

would be justified by an added value in results. As we said earlier, there can be no

universal measure of value, and therefore following the Occam’s razor principle seems

the adequate choice. Moreover, this choice becomes a virtue of Divago in the sense

that this system suggests a validation that can be applied to different domains, not

being tailor-made for the specific application, as happens in the majority of systems

referred to in this book.

The knowledge representation showed itself to be problematic in some experi-

ments. Namely for the noun-noun combinations and for the established blending

examples, it is clear that our common sense knowledge of the concepts goes far be-

yond the representations considered, this being one of the main reasons for such

counterintuitive results. Although the frames seemed extremely powerful, they can

never compensate for the poor quality of the concept maps. Ideally, the concept maps

should be dynamic (such as in the Slipnet of Copycat [Hofstadter and Mitchell, 1988])

and not isolated. Actually, this leads to the first strong self criticism we must make

regarding Divago.

While, throughout this book we have been arguing for a multi-domain environ-

ment, Divago, as it is implemented, only considers this on a superficial level. We

can see this at two levels. At the level of the individual experiments, the pairs of

input concepts considered are rarely distant enough to each other such that one can

unquestionably consider them from different domains. Still at the level of individual

experiments, Divago is given externally (or randomly) a pair of concepts, and thus it

does not “wander” in the multi-domain environment, but in the space defined by the

Blender, which is much more restrictive. At the level of the overall experiments, it

did not consider input concepts from two different experiments (e.g. blending a house

and a horse, or a werewolf with a paper). After verifying the complexity we faced in

the experiments presented, it becomes obvious that our choice for a set of isolated

200



Chapter 6. Experiments

experiments, some with familiar concepts (horse-bird, house-boat, creatures), some

with less familiar concepts (noun-noun combinations, established blending examples),

comes from a need to observe the capacity of bisociation of Divago, while avoiding

being distracted by other, yet also important, aspects. We trust that, first of all,

in order to reason in a genuine multi-domain environment, such a system must be

able to deal with simpler situations, with the motivation of gradually being open to

a wider scope, as we made with Divago.

We have been recurrently criticizing the structure alignment algorithm used in

Mapper, but we must add that this is very much unexplored ground and we have so

far found no promising alternatives. The algorithm demonstrated the virtue of being

computationally inexpensive and of proposing mappings for Divago in some of the

experiments.

Another issue to discuss is the interpretation of the blends. We proposed visual

and textual interpretations, yet these describe only a selection of aspects, leaving out

some others of potential importance. This is rather a problematic issue. The concept

theories and instances were designed to be self explicatory, however in order to avoid

ambiguities, large amounts of knowledge are necessary, and each piece of knowledge

recursively demands the explanation of its constituents, thus demanding the existence

of ground symbols. The semantics of these ground symbols must be context dependent

(e.g. the semantics of a wing can be a 3D or 2D image, a functionality description,

a word, another network of concepts with feathers and bones, each one appropriate

in a different context). This means that, while knowledge representation for concepts

can be domain independent, their interpretation must be domain dependent (or at

least context dependent).

Divago’s versatility has also been recurrently referred to in that it needs no struc-

tural changes for working with any two different pairs of input concepts. For each

pair of concepts, it demands their description (via concept theory and instances), a

choice (or creation) of frames to use as query and to add to the generic domain, and

a choice of the weights for the Constraints module. The description of the concepts
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will always demand some effort, while the rest may be picked from those available.

Of course, for each application, an interpreter may be necessary, this being the least

versatile, although unavoidable, aspect.

We have demonstrated also that Divago is divergent in the sense that it tends not

to reproduce the input concepts and agrees with the theories and principles enun-

ciated in the previous chapters regarding Conceptual Blending and our Model of

Concept Invention. It was empirically demonstrated that, with an appropriate set

of frames (and sufficient Relevance and Integration) the system is able to produce

useful and novel results. Indeed, we believe frames have an extraordinary power only

superficially explored here. Remember that they may comprise small programs with

the expressiveness of the Prolog language.

In spite of the uncertainties in the assessment of issues like creativity or divergence,

these experiments show that Divago was able to accomplish two very objective goals:

it is able to reach approximately the same results of C3, with a specific set of frames;

it can produce the same blends, or approximate ones, as in the examples listed from

the Conceptual Blending literature. The latter is particularly important as it may

become a computational methodology for analyzing blends.

As suggested by some of the contexts that we invited the reader to imagine, we

assume that the model presented in this book is more useful as a reasoning mechanism

(possibly at the meta-level) that can help a computational system to extend its space

of possibilities, i.e. transform it. Such a system would need to give our model the

description of what a valid possibility involves via a language such as used in the

queries of Divago), which would then generate bisociations until finding a satisfactory

outcome. We argue that this emulates, at least partially, the process of imagination

according to Koestler, Guilford and Fauconnier and Turner. However, we are aware

that Divago is very incomplete with regard to the implementation of such a model.

As a model of creativity, we have to reassert that it lacks some fundamental parts,

namely the interaction with the environment, which is so fundamental, according to

Csikszentmihalyi and others. If Divago was a perfect implementation of the model
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of Concept Invention discussed here, it would still be somewhat autistic due to a

lack of contact with the external world. This is another reason why it should not be

considered alone and independent of a specific purpose or environment.

In conclusion, as far as our definition of creative system given in section 2.2.2 goes,

Divago clearly falls into that category. For every experiment made, it produced more

results that are not replications of previous solutions than copies of its own knowledge;

it was able to reach the established goal or just fall short of it in the majority of the

situations. It is based on a cognition-centered model - the model of Concept Invention,

from chapter 4.2 - and is implemented as a hybrid AI system, since it applies typical

Knowledge Based Systems techniques (rules, constraints, knowledge representation)

as well as Evolutionary Computation algorithms (the GA of the Factory module).

Thus, one can conclude that Divago is also an AI system, an argument for the thesis

that Computational Creativity should be part of AI, as much as creativity is part of

intelligence.
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Conclusions and Future Directions

Now that we are reaching the end of this book, it is time to draw the main conclu-

sions, both at the level of Creativity modelling and its many associated questions

that have been referred to since the beginning and at the level of the practical imple-

mentations and models presented here. We cannot finish without elaborating on the

main contributions and pointing to possible future directions of research.

Modelling Computational Creativity can be seen, by the most skeptical, as an a

priori impossible mission. As a formal machine, a computer is deprived of aspects that

are often considered fundamental, such as intention or emotion. The same argument

is also used against Artificial Intelligence. In either case, one falls into a human-centric

view which is monolithic and reductionist at the same time. It is monolithic because

it assumes that only a being (or a thing) that has all the characteristics together in a

whole can be considered creative or intelligent and it is reductionist because it reduces

creativity and intelligence to an all or nothing basis, assuming that only humans fulfill

all of these conditions. From the many studies in the areas of Psychology, Philosophy

or Cognitive Science, some of which have been described here, we have reached the

different conclusion that Creativity is more continuous than discrete and that it is

related to many different aspects, some more computational than others. We have

presented arguments for the construction of Computational Creativity, which does not

have to be the same or measured with the same thresholds as the Human Creativity.

Computational Creativity must be defined more precisely and we have proposed that
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it should be bound by the capacity of generating a reasonable amount of valued and

atypical solutions to a problem. One conclusion we took from this work was that this

modelling of creativity must not run away from an AI framework. In other words,

one should not avoid facing creativity as a problem of search for solutions to problems

(although these become normally much less specified) or using mechanisms typically

from AI (e.g. genetic algorithms, logic programming, neural networks). This does

not mean that creativity can only bring new applications of AI techniques, on the

contrary we believe that creativity is a missing part of AI and, in the same way that

humans (and nature in general) need creativity to be more versatile, less constrained

to usual solutions to usual problems, more open to change and ready to cope with

unpredictability, the machine will need to use more creative behavioral skills in order

to become more competent.

The model presented here applies many of the well known AI techniques, such as

rule-based systems or genetic algorithms, but these are only the means to the broader

end of modelling bisociation and divergence, which have not been approached within

AI. Traditional AI search has been considered throughout this work, but always with

attention to the world beyond the search space, and to methods for how to reach it.

It is within this paradox of reaching the unreachable that the study of Creativity can

become fundamental within AI. This book brings some contributions motivated by

this quest:

• Model of Concept Invention based on principles and theories from Psy-

chology, Philosophy and Cognitive Science. This model was the leitmotif of

this book, representing an ideal system, as opposed to an actual implementa-

tion. It proposes a set of modules and their interaction for the invention of

concepts via the combination of concepts from distinct areas of the knowledge

base. This concept invention is essentially inspired by Koestler’s bisociation

[Koestler, 1964] and Guilford’s divergent thinking [Guilford, 1967], while still

leaving open other forms of concept creation and of concept combination.

• Computational model of Conceptual Blending. We present
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the first extensive computational approach to Conceptual Blending

[Fauconnier and Turner, 1998], which takes into account the several processes

(composition, completion, elaboration, selective projection) and principles (op-

timality principles) described in that framework. This model is directly appli-

cable to the study of blends that are based on one-to-one mappings and two

input domains. Once these input domains are represented according to Divago’s

representation, they can be tested and analyzed, as we showed. A specific sug-

gestion we obtained from this computational model of blending was that the set

of optimality principles proposed in the framework are reducible to a smaller

set of principles (Integration, Topology and Relevance).

• Divago. The two models above ultimately led to the implementation of a sys-

tem, Divago, which comprises a set of proposals for how to implement the many

modules involved. It is a system entirely built in Prolog and completely func-

tional and configurable. It has been thoroughly described in this book and is

available for use by other researchers (e.g. for experiments with Conceptual

Blending) or for connecting to another system (e.g. to extend this other sys-

tem’s knowledge base). Divago is unique in many aspects, namely its ability

to generate results that are valued (according to a purpose known to it) yet

untypical1. It is a basic argument of this book that this tendency to diverge is

fundamental for creative behavior.

• Multitude of applications. Divago was tested with a multitude of appli-

cations. If not useful for the applications themselves, for they were more hy-

pothetical situations for testing the system than actually directed to specific

problems, they can be used for comparison later with similar systems and as a

starting point for more specific applications of Divago. More importantly, they

allowed an observation of the system within different situations and the analysis

of its evolution and behavior. They are also proposals for situations where biso-

ciation can become important and computationally applicable: the creation of

1This being, of course, much depending on the situation, configuration and knowledge available.
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new concepts for another system (a drawing system in the house-boat; a game

system in the creature generation); and the study of conceptual combination

(the noun-noun experiments and the established blends).

• Creativity assessment. The issue of evaluation is one of the fundamental

problems in the study of creativity. Throughout this book, it has been a pri-

mary concern and, without promising the holy grail of universal formulae of

usefulness or novelty, we propose some ideas for the assessment of creativity in

computational systems, and for systems like Divago in particular. The main

pillars for defining the criteria used in the creativity assessment of Divago were

the works of Ritchie [Ritchie, 2001], Wiggins [Wiggins, 2001, Wiggins, 2003]

and Colton et al [Colton et al., 2001]. We characterized the Model of Concept

Invention with the more abstract and generic perspective of Wiggins, and an-

alyzed Divago with the more concrete perspective of Ritchie and Colton et al.

The latter led to a precise definition of typicality, which consists of the distance

to the inputs (what is known), and of value, which is defined by how much

the system accomplishes a goal2. As these analyses are rare within the field of

Creative Systems, we believe that this work contributes to the evolution of the

field in general and to the problem of assessment in particular.

There is an extensive set of future directions that this research can pursue, either

by us or others and here we list a few that seem to be fundamental:

• Other processes of invention other than bisociation. In this book, we have

focused almost exclusively on bisociation as a method for concept invention.

However, other methods may also apply, such as concept re-representation or

interaction with the environment, to name only two candidates. There is no

reason to expect that these methods would have to be considerably different

or antagonistic to the one presented here, therefore allowing other alternatives

2The notion of goal here does not imply a thorough definition, for it can be only partially defined.
For example, a thoroughly defined goal can be “draw me a white house, with two windows, a door
and a roof”, while a less defined can be “draw me a construction where one can live in”.
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which could result in the extension of the Model of Concept Invention with new

modules or further exploration of already existing ones.

• Evolutions to the Blending model. The computational model of Blend-

ing presented here should also be subject to further developments, namely the

redesign of the optimality principles, possibly reduced to a smaller set, the in-

clusion of the latest changes, namely the vital relations and the compressions.

The big leap for this model would be to cope with more than one input space as

well as allow a more realistic knowledge base, which would have to be extremely

large and organized.

• Evolutions to Divago. As this was the main practical part of the work,

it was subject to many compromises, namely paths that we did not follow

for pragmatic and research direction reasons. These paths are deserving of

particular attention in the future:

– Real multi-domain environment. Divago is still not able to work in

a real multi-domain environment since the choice of the pairs of concepts

to bisociate is either made randomly or externally. In a multi-domain

environment, it should, when facing a problem, make an inspection of all its

knowledge, which would comprise many different domains and knowledge

representations, and would be able to pick for itself the sources for concept

invention. Possible algorithms for developing this capability could come

from works on analogy retrieval, where, before establishing an analogy

between two concepts, the system searches for candidates in the knowledge

base (e.g. MAC/FAC, from [Gentner and Forbus, 1995], or ARCS, from

[Holyoak and Thagard, 1997]).

– Meta-level reasoning. Being able to do meta-level reasoning would

be a giant leap for Divago. It would then reason about its own knowl-

edge and processes, potentially evolving them. A possible inspiration

for enabling meta-level reasoning in Divago could be Simon Colton’s HR

[Colton et al., 1999], which is able to generate theories about its theories,
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and theories about its own rules. Analogously, Divago would bisociate

its own internal rules, such as the optimality constraints or the blending

projections or, a more realistic situation, create new frames by bisociat-

ing existing ones. All this seems extremely complex and demanding of a

serious research effort.

– Interaction with the environment. It was argued in the beginning of

this book that environment is important for creativity. For some theories

(e.g. the Systems model of Csikszentmihalyi [Csikszentmihalyi, 1996]), it

is even a necessary condition for the existence of creativity. In this sense,

Divago is rather autistic and clearly demands more contact with the en-

vironment. Integrating Divago within a multi-agent society environment

seems an interesting project to develop, possibly a hybrid society, as sug-

gested by [Pazos et al., 2002]).

– Elaboration. The Elaboration phase in concept invention is of great im-

portance. It is there that part of the emergent structure of a new concept

is constructed. However, the processes by which concepts are elaborated

vary a lot depending on the situation. While it is generally agreed that

part of the emergent features come from rule-based elaboration, i.e. ac-

complished by straightforward reasoning about a situation (e.g. a “beach

bicycle” must have “large tyres”), other features seem not to have straight-

forward explanations (e.g. why does “Dracula” hate garlic?). Alternative

processes must be sought for the elaboration, for this may have a great

effect on the creativity of the results. We suggest that a possible contribu-

tion could be the use of other knowledge from the knowledge base (other

than the inputs or the generic domain), for example, by searching for sim-

ilar concepts and bringing new knowledge from them (e.g. when blending

“horse” and “bird”, the result may become similar to “dragon” and get

new knowledge, such as “spitting fire”).

In conclusion, the area of Computational Creativity has been growing in the past
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few years and is clearly in its early stages. The current need for stronger and con-

sensual definitions is notable, as well as evaluation methodologies, and benchmarks

for comparisons. Its relationship with AI and other sciences must be established, if

it is to gain its own place and flourish to fulfill its promises. In this sense, our work

is only one step in that direction.

210



Appendix A

The effect of input knowledge

In chapter 6, we make some calculations to estimate the effect of input knowl-

edge in the creativity of Divago. In this appendix, we reproduce the theoretical

basis behind those calculations. Simon Colton, Alison Pease and Graeme Ritchie

[Colton et al., 2001] propose a set of criteria for evaluating creativity, now with spe-

cial attention to the effect of input knowledge.

One of the main problems in evaluating computational creativity (and of AI sys-

tems in general) relates to the extent to which the system’s knowledge is fine-tuned,

i.e. the system essentially replicates known items to a greater extent than it causes

the generation of novel high-valued items [Colton et al., 2001].

Let OK be the set of output items corresponding to input knowledge K. We define

VK as the set of high-valued items in OK ; RK are the reinventions (the items that

belong to the inspiring set I); and CK is the creative set (the items in VK which were

not in RK).

In order to determine the effect of a subset K ′ of K (the input knowledge), let us

first examine the possible effects on V(K−K′):

• K ′ is creatively irrelevant if VK = V(K−K′).

• K ′ is creatively useful if V(K−K′) ⊂ VK .
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• K ′ is creatively destructive if VK ⊂ V(K−K′).

For the creatively useful K ′, Colton et al. define the dependency set D′
K , such that

D′
K = VK − V(K−K′), which corresponds to the set of items that will not be obtained

if we remove K ′ from input knowledge. We can now say that K ′ is fine-tuned if

[Colton et al., 2001]:

|D′
K ∩RK | > 0 and |D′

K ∩ CK | = 0

This means that the presence of K ′ in input knowledge only contributes to the repli-

cation of high-valued items, without having influence in the production of creative

outcomes. For cases where K ′ still contributes to creativity (i.e. |D′
K ∩CK | > 0), we

can obtain a measure of how fine-tuned K ′ is:

ft(K ′) =
|D′

K ∩RK |
|D′

K ∩ CK |

Naturally, when ft(K ′) is greater than 1, it means that K ′ is used to rediscover

more items than to generate new ones of value. In order to determine whether a

program P is fine-tuned when using knowledge K, Colton et al. propose the following

two measures (assuming P was constructed using inspiring set I):

• m1(P, I,K) =
|Kft|
|K| , where Kft =

⋃
K ′

K ′ ⊂ K : K ′ is fine-tuned

• m2(P, I,K) = max(ft(K ′)) over K ′ ⊂ K

If m1 is greater than 0 or m2 greater than 1, we can claim that P using K has

been fine-tuned to some extent. If m1 is 1, P using K is completely fine-tuned. If m2

is greater than 1, then there is at least one such subset of K which is used more to

replicate known artifacts than to find new ones [Colton et al., 2001].

Some of the measures presented in this section were applied to the work presented

in this book. Maybe due to being quite recent and still demanding refinements of

many sorts, these measures have not been applied in practical computational systems,
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with the exception of the analysis of Pablo Gervás to his poetry generation system,

WASP [Gervás, 2002], who applied Ritchie’s criteria, and of Colton’s HR fine tuning

analysis [Colton et al., 2001].
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Established examples of

Conceptual Blending

In this appendix, we will show the established blending examples that are used in

chapter 5. In chapter 3, we have already described two examples (“Riddle of the

Buddhist Monk” and “computer virus”). As with those, we reproduce the diagrams,

tables and explanations as close as possible to the original ones.

The “CEO boxing fight” example has two input spaces with different organizing

frames [Fauconnier and Turner, 2002, p. 128]. It is a metaphoric scenario that con-

ceptualizes business competition. According to this metaphor, we can say that “one

CEO has landed a blow but the other one has recovered”, “one of them knocked the

other out cold”, etc. In other words, it is the structuring of the business domain

according to the boxing domain. In figure B.1, we show the corresponding network

as proposed by F&T. Since only one input space determines the organizing frame of

the blend, this is a single scope blend.

The trashcan basketball example (in figure B.2) refers to the “game” one imag-

ines to play when throwing papers at the wastepaper basket [Coulson, 2000, p. 118].

This involves the integration of the domains of Basketball (imagination) and trash dis-

posal (reality). The emergent structure arises from affordances in the environment. In
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Figure B.1: The blending diagram of CEO fight.

trashcan basketball, some elements are inherited from trash disposal domains (“trash-

can”, “crumpled-paper”) while others from the basketball domain (“shoot(person,

paper, trashcan)”). Since the structure of the game comes from both domains (the

rules of basketball, the affordances of the room), this is considered a double-scope

blend.

The next example is a nominal compound that leads to a permanent category

change. More precisely, the notion of “same-sex marriage”. One input space is

the traditional scenario of marriage, while the other describes an alternative domes-

tic scenario involving two people of the same sex [Fauconnier and Turner, 2002, p.

271]. The cross-space mappings may link typical elements such as partners, common

dwellings, commitment, love, sex. Selective projection then pulls to the blend social

recognition, wedding ceremonies and mode of taxation from the traditional marriage

input, while same sex, absence of biologically common children and culturally defined

roles of the partners are projected from the other input (see figure B.3). Thus, this

is also a double-scope blend.

Another very classic example is known as the “Debate with Kant” (see figure

B.4) . It is about the following monologue (more precisely, an imagined dialogue)
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Figure B.2: The blending diagrams of Trashcan Basketball.
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Figure B.3: The blending diagram of Same-sex marriage.
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[Fauconnier and Turner, 2002, p. 62]:

I claim that reason is a self-developing capacity. Kant disagrees with me

on this point. He says it’s innate, but I answer that that’s begging the

question, to which he counters, in Critique of Pure Reason, that only

innate ideas have power. But I say to that, What about neuronal group

selection? And he gives no answer.

In one input space, we have the modern philosopher (m) making claims, aware of

Kant (k2) - the eighteenth century philosopher. In a separate input space, we have

Kant (k1) - the living philosopher -, thinking and writing. The blended space has

both people and the “debate” frame has been recruited since there is no debate in

either input. The debate frame comes to the blend through pattern completion, since

so much of its structure is already in place as a result of composition (i.e. many of

the elements and relations of the debate frame were already in the blend before it was

recruited). Once the blend is established, we can “run the blend”, in this case, this

is done by instantiating the debate frame with arguments from both input spaces.

In the next examples (“gun wound”, “pet fish” and “land yacht”), Seana Coulson

approaches a subject that is typical of Conceptual Combination: noun-noun com-

pounds. She thus proposes applying the Conceptual Blending to explain the (conven-

tional) meanings of each of the compounds. A “gun wound” is a “wound” (directly or

indirectly) caused by a “gun”. The strategy followed to deconstruct this compound

is by recruiting the action frames associated with each domain. The generic space

contains the generic ViolentAct frame with a cause and a result, while the blend

contains the more specific Shoot frame. The input spaces bring the cause (the “gun”

domain) and the effect (the “wound”) [Coulson, 2000, p. 130] (see table B.1).
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Figure B.4: The blending diagram of Kant Debate.
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Input1 Input2 Blend Generic
Gun Wound GunWound ViolentAct
Elements Elements Elements Elements
Agent DangerousAct Agent ViolentAct
Target Human Human Patient
Gun Means Gun Means
Result Wound GunWound Damage
Relations Relations Relations Relations
Shoot(Agent, Cause(DangerousAct, Shoot(Agent, Cause(ViolentAct,
Gun, Target) Means, Human) Gun, Human) Means, Patient)
Result(Result) Result(Wound) Result(GunWound) Result(Damage)

Table B.1: Gun Wound mappings.
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Input1 Input2 Blend
Elements Elements Elements
Pet Fish PetFish
Owner Water Owner
House House

Tank
Relations Relations Relations
Feeds(Owner, Pet) Lives-in(Fish, Water) Feeds(Owner, Fish)
Loves(Owner, Pet)

Swims(Fish) Swims(Fish)
Lives-in(Fish, Tank)

Table B.2: Pet Fish mappings.

“Pet fish” is a blend in which the two inputs (“Pet” and “Fish”) are counterparts

and map onto the same element in the blended space, i.e. they fuse into the same

concept. As in many examples already given, the blend inherits structure from both

input spaces. Knowledge having to do with “pet ownership” are inherited from the

“Pet” domain, while fish attributes come from the “Fish” domain [Coulson, 2000, p.

143] (see table B.2).

The “Land Yacht” compound demands more subtle reasoning. A land yacht is a

very high class luxury car, it inherits the central properties of car and the diagnostic

properties of yacht (in relation to other sailboats, a yacht is a luxury boat, extremely

expensive and providing high social status to the owner). Therefore, the projection

from inputs is more unbalanced than was the case with “Pet Fish”, where the central

properties of each were projected to the blend. Here, incongruities would arise if so

happened (e.g. a car cannot sail). Here goes the cross-space mappings as Coulson

presents them [Coulson, 2000, p. 155] (see table B.3).

The example of the “computer desktop” comes from Tim Rohrer, who is interested

in the relationship of Metaphor with information technologies [Rohrer, 2000]. The

computer desktop interface comes as a metaphorical projection of a physical desktop

in an office, with folders, storages, waste basket, documents and the respective actions

(moving physical objects from different places, opening folders), to computer data
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Input1 Input2 Blend
Land Yacht Land Yacht
Elements Elements Elements
land water land
driver skipper driver
road course highway
car yacht luxury car
owner tycoon rich owner
Relations Relations Relations
Drives(driver, car, road) Sails(skipper, yacht, course) Drives(driver, car, highway)

Yacht Luxury Car
Function: sails Function: drives
Sign-of: upper-class Sign-of: wealth
Owner: tycoon Owner: rich person

Table B.3: Land Yacht mappings.

management representation (directories, files) and physical objects (screen, drive).

Table B.4 is, therefore, not descriptive of the blending process. It basically shows

the direct correspondences between the desktop with the blend, leaving implicit the

computer domain elements.

Counterfactuals are also a recursive theme in Blending literature ([Lee and Barnden, 2001]).

Counterfactuals are statements about the consequences of things that happen to be

false (e.g. “If I were you...”). We present one of Seana Coulson’s counterfactual ex-

amples: “If I had bread, I could make a sandwich”. The inputs are the Actual space

(Seana has turkey, cheese and mustard in the fridge), and a Sandwich space, in which

there is bread, condiments, meat and cheese [Coulson, 2000, p. 206] (see table B.5).

According to the author, this is a single-scope blend because the organizing struc-

ture of the counterfactual comes from the Sandwich space, i.e., it states the individual

roles of each element.

The final example we show is also an established theme in blending literature:

the “X is the Y of Z” constructions. In this case, it is instantiated as “Mabel is

the daughter of Paul”[Coulson, 2000, p. 119]. It is also a single scope blend, since

structure comes only from input 2 (see table B.6).
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Desktop Human-Computer Interface
(input 1 - source domain) (blend - target domain)
Desktop → Screen
Documents → Files
Folders → Directories
Storage → Drive icons
Moving physical objects → Dragging icons
Putting physical objects down → Dropping icons
Deleting objects → Dropping icons in trash (recycle bin)
Focusing on a task → ’Zooming in’, opening window
Putting away a task → ’Zooming out’, closing window

Table B.4: Computer Desktop mappings.

Input1 Input2 Blend
Actual Sandwich Counterfactual
Seana Agent Seana’
Fridge Fridge” Fridge’
Turkey Turkey” Turkey’
Cheese Cheese” Cheese’
Mustard Mustard” Mustard’

Bread” Bread’

Table B.5: Sandwich counterfactual mappings

Input1 Input2 Blend
Elements Elements Elements
Mabel Daughter Mabel
Paul Father Paul

Relations Relations
Daughter-of(Daughter, Father) Daughter-of(Mabel, Paul)

Table B.6: “Mabel is the daughter of Paul” mappings
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The Generalized Upper Model

Hierarchy
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C. The Generalized Upper Model Hierarchy

Figure C.1: The Concept Hierarchy
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Figure C.2: The Relations Hierarchy
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Appendix D

Programming the frames

D.1 Syntax and Overview

The syntax of every frame is:

Predicate: frame(Domain, Name, PosConds, NegConds, PosConc, NegConc)

Domain identifier of the domain or concept in which

the frame is included. (e.g. generic, eating)

Name name of the frame (e.g. aprojection, flying thing)

PosConds Positive premisses (e.g. have(X, wings))

NegConds Negative premisses (e.g. weight(X, very heavy))

PosConc Positive conclusions (e.g. ability(X, fly))

NegConc Negative conclusions (e.g. habitat(X, water))

In first order logic, the frame can be represented as:

PosConc or not (NegConc) ←− PosConds and not(NegConds)

For example (prolog like):

ability(X, fly); not (habitat(X, water)) :- have(X, wings), not(weight(X, very heavy)).

Applied to the blend, this would mean that, if X has wings and it is not very

heavy, then it has the ability to fly and its habitat should not be water. If we used

the above frame as a query to the blend (measured within the “relevance” optimality
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constraint), it would tend to evolve towards a blend that has the concept wings

projected (and so the relation has( ,wings) as a consequence) while the very heavy

concept is not projected (it can be projected, but it must be in such a way that

weight( , very heavy) is not)1.

Later, in the “elaboration phase”, the conclusions are triggered, so the predicate

ability(X, fly) is added, while the predicate habitat(X,water) is removed (if it exists).

D.2 Programming of the frame

Four kinds of terms are allowed in any of the frame conditions (or conclusions) part:

1. Regular concept map binary predicates, like “sound(X, neigh)” or “purpose(Y,

fly)”. There are also special variations in which we can give multiple options for

a predicate parameter, specified inside a list. For example, “sound(X, [neigh,

bark, chirp])” means that if X neighs, barks or chirps, then the condition is sat-

isfied. A specific binary predicate, isaN, is also considered, being the transitive

closure for isa (e.g. “isaN(human, animal)” because “isa(human, primate)” and

“isa(primate, mammal)” and “isa(mammal, animal)”).

2. Projection specifications, with the syntax projection(Domain, Origin, Destina-

tion). And the meaning of this condition is that concept Origin, which belongs

to the domain Domain, should be projected into concept Destination, in the

blend. For example, if we had the condition “projection(horse, neigh, neigh)”

in a frame, it means we are requiring the concept “neigh” to be kept in the

blend as it is in the (input space) horse domain. Of course, this doesn’t mean

the neighbour concepts also keep their original “names” (e.g. it is possible to

find “produce(beak, neigh)”, instead of “produce(mouth, neigh)”.

1Notice that, in the condition side we consider “negation by failure”, i.e. something is
not true whenever one cannot prove its truth. For example, if there is not the predicate
weight(fly, very heavy), the we may assume its falsity. On the other hand, on the conclusion
side, negations imply deletion, i.e. something will cease to be true if the rule is triggered.
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3. Special operators, with the syntax op(Operator), where Operator corresponds to

any command the frame interpreter should understand. Currently, we have only

one single operator: exists(List). This operator converts the elements of List

into the binary predicates and projection format. For example, op(exists([sound/X/neigh,

purpose/Y/fly, projection/horse/neigh/neigh])) will just convert the list into

“sound(X, neigh), purpose(X, fly), etc” and add it to the list of conditions of

the frame.

4. Prolog calls, inside curly brackets (“{}”), just as in DCG grammars syntax.

This allows the programming of frames in “regular” prolog. Naturally, some

specific predicates have been created, for situations that happen regularly in

frame programming:

• stats(D,X) yields some statistics of the current blending operation (e.g.

stats(domain1, X) returns the identifier of domain 1; stats(frame, f) means

that the frame f is satisfied in the blend)

• current blend(Blend) Blend is the identifier of the blend being created

• m(R, X, Y) Returns the mapping correspondences according to the vital

relation R (e.g. m(analogy, horse, bird) means there is mapping between

horse and bird, according to analogy)

• rel(D, X, R, Y) Direct access to the concept map of domain D (e.g.

rel(horse, legs, quantity, 4))

• projection(B,D,X,Y) Direct access to the projection predicates, where B

is the blend in which X, from domain D is projected into Y.

• other input domain(D1,D2) Given D1 or D2, instantiates the other with

the “opposite” input domain (e.g. other input domain(bird,X) ’ X= horse)

• relationArc(Domain, Action) True if Action has a action/actee configura-

tion in Domain (e.g. relationArc(eating, eating), relationArc(basketball,

shoot)”
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• descendant(R, GUMConcept) R is descendant of GUMConcept in the

GUM hierarchy (e.g. descendant(snowing, ambient process))

D.3 Examples

We show some example frames, organized according to the level of abstraction. Simple

frames only use “regular” binary predicates, while intermediate frames already apply

predicates in brackets, still connecting to “lower level” reasonings. The abstract

frames deal with the reasoning behind the blend construction (e.g. “project concepts

from one domain, while maintaining the structure of the other”).

Simple frames

Name:haunted

Code: frame(generic, haunted,

[contain(X, Y), cause effect(Y, fear), attribute(X, [magic, unknown])],

[],

[property(haunted,X), cause effect(haunted, interesting)],

[]).

Description: Something is haunted if it contains something that causes fear and

is magic or mysterious

Name: artefact

Code: frame(generic, artefact(X),

[isaN(X, physical object), purpose(X, Y), isaN(Y, task)],

[],[],[]).

Description: X is an artefact if it is a physical object whose purpose is a specific

task

Name: habitat earth
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Code: frame(generic, habitat earth(X),

[place(X, [land, earth, ground, solid])],

[],[],[]).

Description: The habitat of X is earth if its place is in either land, earth, ground

or solid

Name:habitat water

Code:frame(generic, habitat water(X),

[place(X, [sea, ocean, water, liquid])],

[], [], []).

Description:The habitat of X is water if its place is in either sea, ocean, water or

liquid

Intermediate frames

Name: habitat water

Code: frame(generic, amphibious(X), [stats(frame, habitat water(X)),

stats(frame, habitat earth(X))],[],[isa(X, amphibious)],[]).

Description:X is an amphibious if it satisfies frames habitat water(X) and habi-

tat earth(X)

Name: new ability

Code: frame(generic, new ability(D1),

[ability(X,A), purpose(P, A), pw(P,X),

{current blend(Blend), projection(Blend, D1, X, X),

other input domain(D1,D2), projection(Blend, D2, A, A)},
op(exists([projection/D1/X/X, projection/D2/A/A]))],

[{rel(D1, X, ability, A)}],
[new ability(X, A)], []).

Description: A concept projected from domain D1 has a “new ability” in the
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blend. I.e. there is a X (projected from D1) that has an ability A that didn’t exist in

D1 and was projected from D2. In order to be a “well founded” ability, X must have

a subpart (P) that enables it to do A.

Name: quality transfer

Code: frame(generic, quality transfer(D1,Q),

[{current blend(Blend), rel(Blend, X, Q,A), descendant(Q, simple quality)},
{projection(Blend, D1, X, X), other input domain(D1,D2),

projection(Blend, D2, A, A)},
op(exists([projection/D1/X/X, projection/D2/A/A]))],

[{rel(D1, X, Q, A)}],
[new quality(X, A)], []).

Description: There is a quality transferred from domain D2 onto D1. In the blend,

there is a concept X that has a relational quality (i.e. a relation that descends from

the simple quality node in GUM hierarchy) A that didn’t exist in the original space.

Name: living thing personificationA

Code: frame(generic, living thing personificationA,

[actor( ,A), {current blend(Blend), projection(Blend, D, A, A),

rel(D, A, isa, Type)}],
[isaN(Type, living entity)],

[personification(A, living thing)],[]).

Description: A is able to be an actor of some action, and this becomes a personi-

fication of a living thing if A is not a living thing (e.g. a “actor(eating, pencil)” ’ we

are doing a personification of the pencil, which is not a living thing)

Name: living thing personificationB

Code: frame(generic, living thing personificationB,

[ability(A, ), {current blend(Blend), projection(Blend, D, A, A),

rel(D, A, isa, Type)}],
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[isaN(Type, living entity)],[personification(A, living thing)],[]).

Description: The same as above, but A is not expected to be an actor, but instead

it should have an ability (e.g. “ability(book, fly)”)

Abstract frames

Name: aprojection

Code:frame(generic, aprojection(A),

[{stats(domain1, A), current blend(Blend),

findall(projection/A/X/X, (projection(Blend,A,X, )), L1)},op(exists(L1))],
[],

[aprojection(A,Blend)],[]).

Description: Every concept from domain 1 (A) should be projected (unchanged)

to the blend. For example, in “aprojection(horse)”, every single concept of “horse”

(legs, mouth, snout, mane, neigh, run, cargo, pet, etc.) should be present in the

blend.

Name: analogy transfer

Code: frame(generic, analogy transfer,

[{stats(domain1, A), stats(domain2, B),

findall(projection/A/X/Y, (m( , X, Y), not(relationArc(A, X))), L1)},
op(exists(L1)),

{findall(projection/B/Y/Y, (m( , , Y), not(relationArc(B, Y))), L2)},
op(exists(L2))], [],

[analogy transfer(B,A)],[]).

Description: Every mapped concept X that are part of domain A should be pro-

jected to their counterpart Y of domain B (except when X corresponds to an ac-

tor/actee action name, e.g. “eating” is projected to “eating” and not to “reading”).

And every concept Y from domain B should also be projected to Y in the blend.

Name: aframe
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Code: frame(generic, aframe(A),

[{stats(domain1, A), current blend(Blend),

findall(R/X/Y, (rel(A, XA, R, YA), projection(Blend, A, XA, X),

projection(Blend, A, YA, Y)),L1)}, op(exists(L1)),

{findall(projection/A/Action/Action, relationArc(A, Action), L2)},
op(exists(L2))], [],

Description: Every relation R that is present in domain 1 (A), should also be

present in the blend, regardless of the projection of the argument concepts (e.g. the

ability relation in “ability(bird, fly)” should be present in the blend as in “abil-

ity(horse, fly)”). Once again, there is the special case of actor/actee relation descrip-

tions, which should also be projected (e.g. if using aframe in blending “basketball and

trash disposal”, “shooting” should be projected to the blend, as well as the relations

from the basketball domain.

Name: noun noun

Code: frame(generic, noun noun(A,B),

[{stats(domain1, A), stats(domain2, B), L=[projection/A/A/A,

projection/B/B/B]}, op(exists(L)), isa(B, Something), projection(A,C,B),

{C\=B}, {(rel(generic, C, isa, Something); rel(A, C, isa, Something))}],
[], [], []).

Description: A proposal of a noun-noun combination. The idea is that A and B

have a relational connection such as “property of”, “lives in”, etc.

For the example “house dog”, where A=house and B=dog, the frame implies that

“house” and “dog” are projected to the blend exactly as they are (they remain the

same concepts), but there is also a projection from the “house” domain to the “dog”

(e.g. “projection(house, person, dog)”), which yields a dog that inhabits a house ’

which is one of the interpretations for “house dog”
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Figure D.1: Three frames in a small blend

In Figure D.1, we give an idea of the application of frames to a blend (to im-

prove readability, both the frames and the concepts are simplified). We say that the

blend accomplishes (or satisfies) “aframe”, “transport means” and “new ability” and

that its overall frame coverage is 100% (every relation is included in a frame). The

coverage of “aframe” is aproximately 72% (the ratio of the blend that is covered by

“aframe”) and “transport means” and “new ability” have coverages of 54% and 27%

(respectively).
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Appendix E

Instances in the house-boat

experiment

In this appendix, we describe the language used in the instances for the house-boat

experiment.

An instance follows a hierarchical case representation, each node in the hierarchy

written in prolog-like form:

case(Instance Name, Node Address,Node Name,Command List).

with Instance Name being the identifier of the instance; Node Address a unique

identifier of the node within the instance with respect to its position; Node Name an

identifier of the node within the instance (which can be repeated); and Command List

the list of commands that correspond to the semantics of the specific node. There-

fore, this representation is structured top to bottom (the attribute “son” indicates

the descendants of a node):

• each level adds a number to the address (e.g., 0 is the root node, 0:0 is the first

son of the root node, 0:0:1 is the second son of 0:0)

• each node in the structure corresponds to an area of the drawing, containing

one or more shapes.
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• some shapes are pre-defined (e.g., parallelogram boat, oval, rectangle, etc.) in

Logo.

• each shape position is relative to a reference point (“in” indicates the commands

to apply from the reference point to the starting point of the shape), normally

the upper right corner of the smallest rectangle that can include the shape

The Logo keywords for defining shapes are:

• left/X. Rotate 45 degrees left

• right/X. Rotate 45 degrees right

• on/X. Move and write X pixels in the current direction

• off/X. Move without writing X pixels in the current direction

For example, the function that defines the shape triangle(X) is defined by the list

[on/X, right/120, on/X, right/120, on/X, right/120]. The used shapes are all defined

in the file “logoCommands.pl”. The representation for sailing boat goes like this:

case(b1,0,sailing boat,[sons=3,size=small, type=simple,son name=vessel, son name=

mast,son name=sail]).

case(b1,0:0, vessel, [sons=2, in=[left/90,off/14,right/90],son name=floating struc-

ture, son name=hatch]).

case(b1,0:0:0, floating structure, [shape=parallelogram boat, size=small]).

case(b1,0:0:1, hatch, [shape=oval(5,5), size=small, in=[off/25,right/90, off/6,

left/90]]).

case(b1,0:1, mast, [shape=rectangle(4,30), type=very thin, in=[off/18]]).

case(b1,0:2, sail, [shape=triangle(30), in=[off/18, right/90, off/7, right/90,

off/13,right/180]]).

And the house is represented as:

case(1,0, house, [sons=2, size=small, type=simple, son name=roof, son name=body]).

case(1,0:0, roof, [shape=triangle(30)]).
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case(1,0:1, body, [sons=3, in=[left/90,off/25, right/90],son name=structure,

son name=window, son name=door]).

case(1,0:1:0, structure, [shape=square]).

case(1,0:1:1, window, [shape=square(5), in=[off/20, right/90, off/15, left/90]]).

case(1,0:1:2, door, [shape=rectangle(4, 10), in=[off/3]]).
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Appendix F

Experiments, Databases and other

documents

This appendix corresponds to the CD that comes attached to this document. It has

the directory structure shown in the figure F.1. The reader will also find “readme”

files with explanations about some of the files and directories.
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Figure F.1: The directory structure of the CD.
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strucción de modelos cognitivos complejos. Exploración de la ‘creatividad artificial’

en composición musical. Universdad de La Coruña.

[Chandler, 2002] Chandler, D. (2002). Semiotics: The Basics. Routledge.

[Cohen, 1981] Cohen, H. (1981). On the Modelling of Creative Behaviour. In Rand

paper. Santa Monica, Calif: Rand Corporation.

[Colton, 2001] Colton, S. (2001). Experiments in Meta-theory formation. In Wiggins,

G., editor, Proceedings of the AISB’01 Symposium on AI and Creativity in Arts

and Sciences. AISB.

[Colton et al., 1999] Colton, S., Bundy, A., and Walsh, T. (1999). HR: Automatic

concept formation in pure mathematics. In Proceedings of the International Joint

Conference on Artificial Intelligence. IJCAI’99.

[Colton et al., 2000] Colton, S., Bundy, A., and Walsh, T. (2000). Agent Based Coop-

erative Theory Formation in Pure Mathematics. In Proceedings of the Symposium

on Creative and Cultural Aspects and Applications of AI and Cognitive Science.

SSAISB.

[Colton et al., 2001] Colton, S., Pease, A., and Ritchie, G. (2001). The Effect of Input

Knowledge on Creativity. In Cardoso, A., Bento, C., and Wiggins, G., editors,

Proceedings of the First Workshop on Creative Systems, International Conference

of Case-Based Reasoning. ICCBR-01.

241



BIBLIOGRAPHY

[Conklin and Witten, 1995] Conklin, D. and Witten, I. (1995). Multiple viewpoint

systems for music prediction. Journal of New Music Reasearch, 1(24).

[Cope, 1991] Cope, D. (1991). Computers and Musical Style. A-R Editions.

[Costello, 1997] Costello, F. J. (1997). Noun-noun conceptual combination: the poly-

semy of compound phrases. PhD thesis: Trinity College, Dublin.

[Costello and Keane, 2000] Costello, F. J. and Keane, M. T. (2000). Efficient Creativ-

ity: Constraint-Guided Conceptual Combination. Cognitive Science, 24(2):299–

349.

[Coulson, 2000] Coulson, S. (2000). Semantic Leaps: Frame-shifting and Concep-

tual Blending in Meaning Construction. New York and Cambridge: Cambridge

University Press.

[Cox, 1926] Cox, C. (1926). Genetic studies of genius: The early mental traits of

three hundred geniuses, volume 2. Stanford University Press.

[Craft and Cross, 2003] Craft, A. and Cross, I. (2003). A n-gram approach to fugal

exposition composition. In AISB’03 Symposium on AI and Creativity in Arts and

Science. SSAISB.

[Csikszentmihalyi, 1996] Csikszentmihalyi, M. (1996). Creativity: flow and psychol-

ogy of discovery and invention. HarperCollins.

[Eliasmith and Thagard, 2001] Eliasmith, C. and Thagard, P. (2001). Integrating

structure and meaning: a distributed model of analogical mapping. Cognitive

Science, 25:245–286.

[Ernst and Newell, 1969] Ernst, G. and Newell, A. (1969). GPS: A Case Study in

Generality and Problem Solving. Academic Press, New York.

[Evans, 1968] Evans, T. (1968). A heuristic program to solve geometric analogy prob-

lems. PhD thesis, M.I.T., Cambridge, Mass.

[Falkenhainer et al., 1989] Falkenhainer, B., Forbus, K. D., and Gentner, D. (1989).

The Structure Mapping Engine: Algorithm and Examples. Artificial Intelligence,

41:1–63.

[Fauconnier and Turner, 1998] Fauconnier, G. and Turner, M. (1998). Conceptual

Integration Networks. Cognitive Science, 22(2):133–187.

[Fauconnier and Turner, 2002] Fauconnier, G. and Turner, M. (2002). The Way We

Think. Basic Books.

242



BIBLIOGRAPHY

[Ferguson et al., 1997] Ferguson, R., Forbus, K., and Gentner, D. (1997). On the

proper treatment of noun-noun metaphor: A critique of the Sapper model. In

Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society,

volume 913.

[Figueiredo and Campos, 2001] Figueiredo, A. D. and Campos, J. (2001). The

Serendipity Equations. In Cardoso, A., Bento, C., and Wiggins, G., editors, Pro-

ceedings of the First Workshop on Creative Systems, International Conference of

Case-Based Reasoning. ICCBR-01.

[Finke et al., 1992] Finke, R., Ward, T., and Smith, S. (1992). Creative cognition:

Theory, reasearch and applications. Cambridge:MIT press.

[Forbus and Oblinger, 1990] Forbus, K. D. and Oblinger, D. (1990). Making SME

pragmatic and greedy. In Proceedings of the Twelfth Annual Meeting of the Cogni-

tive Science Society. Hillsdale, NJ: LEA.

[French, 2002] French, R. M. (2002). The Computational Modeling of Analogy-

Making. Trends in Cognitive Sciences, 6(5):200–205.
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