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Abstract

The increasingly popular use of Crowdsourcing as a resource to
obtain labeled data has been contributing to the wide awareness of
the machine learning community to the problem of supervised learn-
ing from multiple annotators. Several approaches have been proposed
to deal with this issue, but they disregard sequence labeling problems.
However, these are very common, for example, among the Natural
Language Processing and Bioinformatics communities. In this paper,
we present a probabilistic approach for sequence labeling using Con-
ditional Random Fields (CRF) for situations where label sequences
from multiple annotators are available but there is no actual ground
truth. The approach uses the Expectation-Maximization algorithm to
jointly learn the CRF model parameters, the reliability of the annota-
tors and the estimated ground truth. When it comes to performance,
the proposed method (CRF-MA) significantly outperforms typical ap-
proaches such as majority voting.

∗The final publication is available at http://link.springer.com/article/10.1007%2Fs10994-
013-5411-2. Machine Learning, Springer.
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1 Introduction

The increasing awareness of the importance of Crowdsourcing (Howe, 2008)
as a means of obtaining labeled data is promoting a shift in machine learn-
ing towards models that are annotator-aware. A good example is that of
online platforms such as Amazon’s Mechanical Turk (AMT)1. These plat-
forms provide an accessible and inexpensive resource to obtain labeled data,
whose quality, in many situations, competes directly with the one of “ex-
perts” (Snow et al, 2008; Novotney and Callison-Burch, 2010). Also, by
distributing a labeling task by multiple annotators it can be completed in a
considerably smaller amount of time. For such reasons, these online work-
recruiting platforms are rapidly changing the way datasets are built.

Furthermore, the social web promotes an implicit form of Crowdsourc-
ing, as multiple web users interact and share contents (e.g., document tags,
product ratings, opinions, user clicks, etc.). As the social web expands, so
does the need for annotator-aware models.

On another perspective, there are tasks for which ground truth labels are
simply very hard to obtain. Consider for instance the tasks of Sentiment
Analysis, Movie Rating or Keyphrase Extraction. These tasks are subjective
in nature and hence the definition of ground truth requires very strict guide-
lines, which can be very hard to achieve and follow. Even in well studied
tasks like Named Entity Recognition linguists argue what should and should
not be considered a named entity and consensus is not easily obtained. In
cases where the task is inherently subjective an attainable goal is to build a
model that captures the wisdom of the crowds (Surowiecki, 2004) as good as
possible while paying less attention to dissonant views.

Another example can be found in the field of medical diagnosis, where
obtaining ground truth can mean expensive or invasive medical procedures
like biopsies. On the other hand, it is much simpler for a physician to consult
his colleagues for an opinion, resulting in a multiple “experts” scenario.

Sequence labeling refers to the supervised learning task of assigning a
label to each element of a sequence. Typical examples are Part-of-Speech
tagging, Named Entity Recognition and Gene Prediction (Allen et al, 2004;
Allen and Salzberg, 2005). In such tasks, the individual labels cannot be
considered as detached from the context (i.e. the preceding and succeed-
ing elements of the sequence and their corresponding labels). Two of the

1http://www.mturk.com

2



most popular sequence models are hidden Markov models (HMM) (Rabiner,
1989) and Conditional Random Fields (CRF) (Lafferty et al, 2001). Due
to the usually high dimensional feature spaces (specially considering CRFs),
these models frequently require large amounts of labeled data to be properly
trained, which hinders the construction and release of datasets and makes
it almost prohibitive to do with a single annotator. Although in some do-
mains, the use of unlabeled data can help in making this problem less severe
(Bellare and Mccallum, 2007), a more natural solution is to rely on mul-
tiple annotators. For example, for many tasks, AMT can be used to label
large amounts of data (Callison-Burch and Dredze, 2010). However, the large
numbers needed to compensate for the heterogeneity of annotators expertise
rapidly raise its actual cost beyond acceptable values. A parsimonious solu-
tion needs to be designed that is able to deal with such real world constraints
and heterogeneity.

In the past few years many approaches have been proposed that deal
with the problem of supervised learning from multiple annotators in different
paradigms (classification, regression, ranking, etc.), however the particular
problem of sequence labeling from multiple annotators was practically left
untouched, and most of the applications typically rely on majority voting
(e.g. (Laws et al, 2011)). Given its importance in such fields as Natural Lan-
guage Processing, Bioinformatics, Computer Vision, Speech and Ubiquitous
Computing, sequence labeling from multiple annotators is a very important
problem. Unfortunately, due to its nature, typical approaches proposed for
binary or categorical classification cannot be directly applied for sequences.

In this paper we propose a probabilistic approach using the Expectation-
Maximization algorithm (EM) for sequence labeling using CRFs for the sce-
nario where we have multiple annotators providing labels with different levels
of “reliability” but no actual ground truth. The proposed method is able to
jointly learn the CRF model parameters, the reliabilities of the annotators
and the estimated ground truth label sequences. It is empirically shown that
this method outperforms the baselines even in situations of high levels of
noise in the labels of the annotators and when the less “trustworthy” an-
notators dominate. The proposed approach also has the advantage of not
requiring repeated labeling of the same input sequences by the different an-
notators. Finally, this approach can be easily modified to work with other
sequence labeling models like HMMs.
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2 Related work

The first works that relate to the problem of learning from multiple annota-
tors go back to 1979 when Dawid and Skene proposed an approach for esti-
mating the error rates of multiple patients (annotators) given their responses
(labels) to multiple medical questions. Although this work just focused on es-
timating the hidden ground truth labels, it inspired other works where there
is an explicit attempt to learn a classifier. For example, Smyth et al (1995)
propose a similar approach to solve the problem of volcano detection and
classification in Venus imagery with data labelled by multiple experts. Like
in previous works, their approach relies on a latent variable model, where
they treat the ground truth labels as latent variables. The main difference is
that the authors use the estimated (probabilistic) ground truth to explicitly
learn a classifier.

More recently, Snow et al (2008) demonstrated that learning from labels
provided by multiple non-expert annotators can be as good as learning from
the labels of one expert. Such kind of findings inspired the development of
new approaches that, unlike previous ones (Smyth et al, 1995; Donmez and
Carbonell, 2008; Sheng et al, 2008), do not rely on repeated labeling, i.e. hav-
ing the same annotators labeling the same set of instances. In Raykar et al
(2009, 2010) an approach is proposed where the classifier and the annotators
reliabilities are learnt jointly. Later works then relaxed the assumption that
the annotators’ reliabilities do not depend on the instances they are label-
ing (Yan et al, 2010), and extended the proposed methodology to an active
learning scenario (Yan et al, 2011). All these approaches shared a few key
aspects: (1) they use a latent variable model where the ground truth labels
are treated as latent variables; (2) they rely on the EM algorithm (Dempster
et al, 1977) to find maximum likelihood estimates for the model parameters;
and (3) they deal mostly with binary classification problems (although some
suggest extensions to handle categorical, ordinal and even continuous data).

The acclaimed importance of supervised learning from multiple annota-
tors lead to many interesting alternative approaches and variations/extensions
of previous works in the past couple of years. In (Donmez et al, 2010) the au-
thors propose the use of a particle filter to model the time-varying accuracies
of the different annotators. Groot et al (2011) propose a annotator-aware
methodology for the regression problems using Gaussian processes, and Wu
et al (2011) present a solution for ranking problems with multiple annotators.

Despite the variety of approaches presented for different learning paradigms,
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the problem of sequence labeling from multiple annotators was left practi-
cally untouched, with the only relevant work being the work by Dredze et al
(2009). In this work the authors propose a method for learning structured
predictors, namely CRFs, from instances with multiple labels in the presence
of noise. This is achieved by modifying the CRF objective function used for
training through the inclusion of a per-label prior, thereby restricting the
model from straying too far from the provided priors. The per-label priors
are then re-estimated by making use of their likelihoods under the whole
dataset. In this way, the model is capable of using knowledge from other
parts of the dataset to prefer certain labels over others. By iterating be-
tween the computation of the expected values of the label priors and the
estimation of the model parameters in an EM-like style, the model is ex-
pected to give preference to the less noisy labels. Hence, we can view this
process as self-training, a process whereby the model is trained iteratively on
its own output. Although this approach makes the model computationally
tractable, their experimental results indicate that the method only improves
performance in scenarios where there is a small amount of training data (low
quantity) and when the labels are noisy (low quality).

It is important to stress that, contrarily to the model proposed in this
paper, the model by Dredze et al (2009) is a multi-label model, and not a
multi-annotator model, in the sense that the knowledge about who provided
the multiple label sequences is completely discarded. The obvious solution
for including this knowledge would be to use a latent ground truth model
similar to the one proposed by Raykar et al (2009, 2010), thus extending
this work to sequence labeling tasks. However, treating the ground truth
label sequences as latent variables and using the EM algorithm to estimate
the model parameters would be problematic, since the number of possible
label sequences grows exponentially with the length of the sequence, making
the marginalization over the latent variables intractable. In contrast to this,
the approach presented in this paper avoids this problem by treating the
annotators reliabilities as latent variables, making the marginalization over
the latent variables tractable (see Section 3).

In the field of Bioinformatics a similar problem has been attracting atten-
tion, in which multiple sources of evidence are combined for gene prediction
(e.g. (Allen et al, 2004; Allen and Salzberg, 2005)). In these approaches the
outputs of multiple predictors (e.g. HMMs) are usually combined using a
voting of the labels predicted, weighted by the confidence (posteriors) of the
various sources in their predictions (Allen et al, 2004). Non-linear decision
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schemes also exist, for example using Decision Trees (Allen and Salzberg,
2005), but similarly to the linearly weighted voting schemes, the confidence
weights are estimated once and never corrected. This contrasts with the ap-
proaches discussed in this paper, where the goal is to build a single predictor
(CRF) from the knowledge of multiple annotators (sources), and where the
confidence of each source is iteratively re-estimated.

3 Approach

3.1 Measuring the reliability of the annotators

Let yr be a sequence of labels assigned by the rth annotator to some ob-
served input sequence x. If we were told the actual (unobserved) sequence of
true labels y for that same input sequence x, we could evaluate the quality
(or reliability) of the rth annotator in a dataset by measuring its precision
and recall. Furthermore, we could combine precision and recall in a single
measure by using the traditional F1-measure, and use this combined mea-
sure to evaluate how “good” or “reliable” a given annotator is according to
some ground truth. In practice any appropriate loss function can be used to
evaluate the quality of the annotators. The choice of one metric over others
is purely problem-specific. The F-measure was used here due to its wide ap-
plicability in sequence labeling problems and, particularly, in the tasks used
in the experiments (Section 4).

3.2 Sequence Labeling

If for a dataset of N input sequences X = {xi}Ni=1 we knew the actual ground
truth label sequences Y = {yi}Ni=1, we could model the probabilities of the la-
bel sequences Y given the input sequences X using a linear-chain Conditional
Random Field (CRF) (Lafferty et al, 2001).

In a linear-chain CRF the conditional probability of a sequence of labels
y given a sequence of observations x is given by

pcrf(y|x,λ) =
1

Ψ(x)

T∏

t=1

exp

{
K∑

k=1

λkfk(yt−1, yt,x, t)

}
(1)

where Ψ(x) is a normalization constant that makes the sum of the probability
of all label sequences equal to one, fk(yt−1, yt,x, t) is a feature function (often
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binary-valued, but that can also be real-valued) and λk is a learned weight
associated with feature fk. The feature functions can capture any aspect of
the state transitions yt−1 → yt and of the whole input sequence x, which
in fact, can be used to understand the relationship between labels and the
characteristics of the whole input sequence x at a given moment t.

According to the model defined in Eq. 1, the most probable labeling
sequence for an input sequence x is given by y∗ = arg maxy pcrf(y|x,λ),
which can be efficiently determined through dynamic programming using
the Viterbi algorithm.

The parameters λ of the CRF model are typically estimated from an
i.i.d. dataset by maximum likelihood using limited-memory BFGS (Liu
and Nocedal, 1989). The loglikelihood for a dataset {xi,yi}Ni=1 is given by∑N

i=1 ln pcrf(yi|xi,λ).

3.3 Maximum likelihood estimator

Since we do not know the set of actual ground truth label sequences Y for
the set of input sequences X , we must find a way to estimate it using the
sets of label sequences provided by the R different annotators {Y1, ...,YR},
and learn a CRF model along the way.

Let the observed data {y1
i , ...,y

R
i ,xi}Ni=1 be denoted by D. Given this

data, and assuming the instances are i.i.d., the likelihood function, for some
parameters θ (their definition can be ignored for now) can be factored as

p(D|θ) =
N∏

i=1

p(y1
i , ...,y

R
i |xi, θ). (2)

We now introduce a random vector z that represents the reliability of
the annotators. We can define z to be an R-dimensional vector with values
{z1, ..., zR}, so that z ∼Multinomial(π1, ..., πR) with probability

p(z|π) =
R∏

r=1

(πr)
zr (3)

where we made the parameters of the multinomial (π) explicit. If we de-
fine zr to be the F1-measure of the rth annotator, the parameters π of the
multinomial are then defined as

πr = p(zr = 1) =
F1-measurer∑R
j=1 F1-measurej

(4)
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thus ensuring the constraints πr ≥ 0 (since the F1-measure is always non-
negative) and

∑
r πr = 1.2 The expectation of this multinomial random

variable, E{zr} = p(zr = 1), can be interpreted as the probability picking
the label sequences provided by the rth annotator as the correct ones (i.e. for
which F1-measurer = 1) and using those for training. An analogy for this
model would be a student picking a book to learn about some subject. The
student is provided by the University’s library with a set of books that cover
that subject but differ only in the correctness of the content. The student
then has to pick one of the books from which to learn about that subject.
Transferring this analogy back to our multiple annotator setting, the random
vector z can be viewed as picking the best annotator from which to learn from,
thus enforcing competition among the annotators. The correct annotator is
assumed to provide label sequences according to pcrf(y

r
i |xi, λ). The others

are assumed to provide incorrect labels which we assume to come from a
random model prand(y

r
i |xi)). The generative process can then be summarized

as follows:

1. draw z ∼Multinomial(π1, ..., πR)

2. for each instance xi:

(a) for each annotator r:

i. if zr = 1, draw yri from pcrf(y
r
i |xi,λ)

ii. if zr = 0, draw yri from prand(y
r
i |xi)

Figure 1 shows a plate representation of the proposed model.
For the sake of simplicity, we assume the random model prand(y

r
i |xi) to be

uniformly distributed, hence

prand(y
r
i |xi) =

T∏

t=1

1

C
(5)

where T denotes the length of the sequence and C is the number of possible
classes/labels for a sequence element.

Although it might seem too restrictive to assume that only one annotator
provides the correct label sequences, it is important to note that the model

2These constraints are required for the Jensen’s inequality to apply and for the EM
algorithm presented in Section 3.4 to be valid.
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Fig. 1 Plate representation of proposed model.

p(zr = 1), can be interpreted as the probability of the label sequences provided
by the rth annotator being the correct ones (i.e. for which F1-measurer = 1).
Hence, z can be viewed as picking the best annotator from which to collect the
answers, thus explicitly enforcing competition among the annotators. The correct
annotator is assumed to provide label sequences according to pcrf(y

r
i |xi,�). The

others are assumed to provide incorrect labels which we assume to come from a
random model prand(y

r
i |xi)). The generative process can then be summarized as

follows:

1. draw z ⇠ Multinomial(⇡1, ...,⇡R)
2. for each instance xi:

(a) for each annotator r:
i. if zr = 1, draw yr

i from pcrf(y
r
i |xi,�)

ii. if zr = 0, draw yr
i from prand(y

r
i |xi)

Figure 1 shows a plate representation of the proposed model.
For the sake of simplicity, we assume the random model prand(y

r
i |xi) to be

uniformly distributed, hence

prand(y
r
i |xi) =

TY

t=1

1

C (5)

where T denotes the length of the sequence and C is the number of possible
classes/labels for a sequence element.

Although it might seem unrealistic to assume that only one annotator provides
the correct label sequences, this assumption is not limiting in any way, since the
model can still capture the uncertainty in who the correct annotator should be. In
alternative to this approach, one could replace the multinomial random variable
with multiple Bernoullis (one for each annotator). From a generative perspective,
this would allow for multiple annotators to be correct. However, as we shall see
later, using a multinomial forces the annotators to “compete” with each other for
the best label sequences and places less emphasis on the form of prand(y

r
i |xi).

Following the generative process described above, we can now define

p(y1
i , ...,yR

i |xi, z,�) =
RY

r=1

n
pcrf(y

r
i |xi,�)

o(zr)n
prand(y

r
i |xi)

o(1�zr)
(6)

where we made use of the assumption that the annotators make their decisions
independently of each other.

Figure 1: Plate representation of proposed model.

can still capture the uncertainty in who the correct annotator should be. In
alternative to this approach, one could replace the multinomial random vari-
able with multiple Bernoullis (one for each annotator). From a generative
perspective, this would allow for multiple annotators to be correct. However,
this places too much emphasis on the form of prand(y

r
i |xi), since it would

be crucial for deciding whether the annotator is likely to be correct. One
the other hand, as we shall see later, by using a multinomial, the probabil-
ities prand(y

r
i |xi) cancel out from the updates of the annotators reliabilities,

thus forcing the annotators to “compete” with each other for the best label
sequences.

Following the generative process described above, we can now define

p(y1
i , ...,y

R
i |xi, z,λ) =

R∏

r=1

{
pcrf(y

r
i |xi,λ)

}(zr){
prand(y

r
i |xi)

}(1−zr)
(6)

where we made use of the assumption that the annotators make their deci-
sions independently of each other.

Including the vector z in our model as observed would yield the following
expression for the likelihood

p(D, z|θ) = p(z|π)
N∏

i=1

p(y1
i , ...,y

R
i |xi, z,λ) (7)

where θ = {π,λ} are the model parameters.
Since we do not actually observe z, we must treat it as latent and marginal-

ize over it by summing over all its possible values. The likelihood of our model
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then becomes

p(D|θ) =
∑

z

p(z|π)
N∏

i=1

p(y1
i , ...,y

R
i |xi, z,λ) (8)

The choice of explicitly including the reliability of the annotators (which
we represent through the vector z) as latent variables and marginalizing over
it, contrasts with typical approaches in learning from multiple annotators
(e.g. (Raykar et al, 2009, 2010; Dredze et al, 2009; Yan et al, 2011)), where
the unobserved ground truth labels are treated as latent variables. Since
these variables are not observed (i.e. latent), they must be marginalized over.
For sequence labeling problems, this marginalization can be problematic due
to the combinatorial explosion of possible label sequences over which we
would have to marginalize. Instead, by explicitly handling the annotators
reliabilities as latent variables this problem can be completely avoided.

Making use of equations 3 and 6, the likelihood can be further simplified
giving

p(D|θ) =
R∑

r=1

πr

N∏

i=1

{
pcrf(y

r
i |xi,λ)

R∏

j=1
j 6=r

prand(y
j
i |xi)

}
(9)

The maximum likelihood estimator is then found by determining the pa-
rameters θMLE that maximize

θMLE = arg max
θ

ln
R∑

r=1

πr

N∏

i=1

{
pcrf(y

r
i |xi,λ)

R∏

j=1
j 6=r

prand(y
j
i |xi)

}
(10)

3.4 EM algorithm

As with other latent variable models, we rely on the Expectation-Maximization
algorithm (Dempster et al, 1977) to find a maximum likelihood parameters
of the proposed model.

If we observed the complete dataset {D, z} then the loglikelihood function
would simply take the form ln p(D, z|θ). Since we only have the “incomplete”
dataset D, our state of the knowledge of the values of the latent variable
z (the reliabilities of the annotators) can be given by the posterior distri-
bution p(z|D, θ). Therefore, instead of the complete-data loglikelihood, we
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consider its expected value under the posterior distribution of the latent vari-
able p(z|D, θ), which corresponds to the E-step of the EM algorithm. Hence,
in the E-step we use the current parameter values θold to find the posterior
distribution of the latent variable z. We then use this posterior distribution
to find the expectation of the complete-data loglikelihood evaluated for some
general parameter values θ. This expectation is given by

Ep(z|D,θold){ln p(D, z|θ)} =
∑

z

p(z|D, θold) ln p(D, z|θ)

=
∑

z

p(z|D, θold) ln
{
p(z|π)

N∏

i=1

p(y1
i , ...,y

R
i |xi, z,λ)

}

(11)

The posterior distribution of the latent variable z can be estimated using
the Bayes theorem, giving

γ(zr) = p(zr = 1|D, θold)

=
p(zr = 1|πold) p(Y1, ...,YR|X , zr = 1,λold)∑R
j=1 p(z

j = 1|πold) p(Y1, ...,YR|X , zj = 1,λold)

=
πoldr

∏N
i=1

{
pcrf(y

r
i |xi,λold)

∏R
k=1
k 6=r

prand(y
k
i |xi)

}

∑R
j=1 π

old
j

∏N
i=1

{
pcrf(y

j
i |xi,λ

old)
∏R

k=1
k 6=j

prand(yki |xi)
} (12)

As long as we are assuming a uniform model for prand(y
r
i |xi), this expression

can be further simplified, giving

γ(zr) =
πoldr

∏N
i=1 pcrf(y

r
i |xi,λold)∑R

j=1 π
old
j

∏N
i=1 pcrf(y

j
i |xi,λ

old)
(13)

Making use of equations 3, 6 and 11 the expected value of the complete-
data loglikelihood becomes

Ep(z|D,θold){ln p(D, z|θ)}

=
R∑

r=1

γ(zr)
{

ln πr +
N∑

i=1

ln pcrf(y
r
i |xi,λ) +

R∑

j=1
j 6=r

ln prand(y
j
i |xi)

}
(14)
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In the M-step of the EM algorithm we maximize this expectation with
respect to the model parameters θ, obtaining new parameter values θnew.

The EM algorithm can then be summarized as follows:

E-step Evaluate

γ(zr) ∝ πoldr

N∏

i=1

pcrf(y
r
i |xi,λold) (15)

M-step Estimate the new ground truth labels sequences Ŷnew and the new
parameters θnew = {πnew,λnew} given by

λnew = arg max
λ

N∑

i=1

R∑

r=1

γ(zr)
{

ln pcrf(y
r
i |xi,λ)

}
(16)

Ŷnew = arg max
Ŷ

pcrf(Ŷ|X ,λnew) (17)

πnewr =
F1-measurer∑R
j=1 F1-measurej

(18)

where in Eq. 17 the new ground truth estimate is efficiently determined
using the Viterbi algorithm3, and in Eq. 16 the new CRF model parameters
λnew are determined using limited-memory BFGS similarly to normal CRF
training (Sutton and McCallum, 2006). However, the loglikelihood function
now includes a weighting factor: γ(zr). From this perspective, when learning
from the label sequences of the different annotators, the proposed approach
is weighting the latter by how much we expect them to be right, considering
also how likely the other annotators are to be correct. If, for example, there
are only two “good” annotators among a group of five, they will share the
responsibility in “teaching” the CRF model.

The initialization of the EM algorithm can be simply done by assigning
random values to the annotators reliabilities or by estimating the ground
truth label sequences Ŷ using majority voting. The algorithm stops when the
expectation in equation 11 converges or when the updates to the annotators
reliabilities fall below a given threshold.

3Note that the ground truth estimate is required to compute the F1-scores of the
annotators and estimate the multinomial parameters π.
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3.5 Maximum-a-posteriori

Sometimes we know a priori that some annotators are better or more trust-
worthy than others. This knowledge can be incorporated in the model by
imposing a Dirichlet prior with parameters {α1, ..., αR} over the annotators
reliabilities z. Similarly, it is also useful to add a zero-mean Gaussian prior
with σ2 variance over the CRF parameters λ to enforce regularization (Sut-
ton and McCallum, 2006). The maximum-a-posteriori (MAP) estimator is
found by determining

θMAP = arg max
θ
{ln p(D|θ) + ln p(θ)} (19)

An EM algorithm can then be derived in a similar fashion.
When no prior knowledge about the annotators reliabilities is given, the

Dirichlet prior can also be used as non-informative prior with all parame-
ters αr equal. This prior would act as a regularization term preventing the
model to overfit the data provided by a few annotators. The strength of the
regularization would depend on the parameter α.

4 Experiments

The proposed approach is evaluated in the field of Natural Language Process-
ing (NLP) for the particular tasks of of Named Entity Recognition (NER)
and Noun Phrase (NP) chunking. NER refers to the Information Retrieval
subtask of identifying and classifying atomic elements in text into predefined
categories such as the names of persons, organizations, locations and others,
while NP chunking consists of recognizing chunks of sentences that corre-
spond to noun phrases. Because of their many applications these tasks are
considered very important in the field of NLP and other related areas.

We make our experiments using two types of data: artificial data gener-
ated by simulating multiple annotators, and real data obtained using Ama-
zon’s Mechanical Turk (AMT). In both cases, the label sequences are rep-
resented using the traditional BIO (Begin, Inside, Outside) scheme as intro-
duced by Ramshaw and Marcus (1995).

The proposed approach (henceforward referred to as “CRF-MA”)4 is com-
pared with four baselines:

4Datasets available at: http://amilab.dei.uc.pt/fmpr/ma-crf.tar.gz
Source code available at: http://amilab.dei.uc.pt/fmpr/crf-ma-datasets.tar.gz
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• MVseq: majority voting at sequence level (i.e., the label sequence with
more votes wins);

• MVtoken: majority voting at token level (i.e., the BIO label with more
votes for a given token wins);

• MVseg: this corresponds to a two-step majority voting performed over
the BIO labels of the tokens. First, a majority voting is used for the
segmentation process (i.e. to decide whether the token should be con-
sidered as part of a segment - a named entity for example), then a
second majority voting is used to decide the labels of the segments
identified (e.g. what type of named entity it is).

• CRF-CONC: a CRF using all the data from all annotators concatenated
for training.

The proposed model is also compared with the two variants of multi-
label model proposed in (Dredze et al, 2009): MultiCRF and MultiCRF-
MAX. The latter differs from the former by training the CRF on the most
likely (maximum) label instead of training on the (fuzzy) probabilistic labels
(kindly see (Dredze et al, 2009) for the details).

As an upper-bound, we also show the results of a CRF trained on ground
truth (gold) data. We refer to this as “CRF-GOLD”.

For all the experiments a simple set of features that is typical in NLP tasks
was used. The features used are summarized in Table 1. In CRF-MA, the EM
algorithm was initialized with token-level majority voting (MVtoken). The
MultiCRF model was initialized with uniform label priors. All the results
are reported using (strict) phrase-level F1-score.

During our experiments we found that using the square of the F1-measure
when computing πr gives the best results. This has the effect of emphasizing
the differences between the reliabilities of the different annotators, and con-
sequently their respective importances when learning the CRF model from
the data. Hence, we use this version in all our experiments.

4.1 Artificial data

4.1.1 Named Entity Recognition

There are a few publicly available “golden” datasets for NER such as the
2003 CONLL English NER task dataset (Sang and Meulder, 2003), which
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Table 1: Summary of CRF features.

Features
Word identity features
Capitalization patterns

Numeric patterns
Other morphologic features (e.g. prefixes

and suffixes)
Part-of-Speech tags

Bi-gram and tri-gram features
Window features (window size = 3)

is a common benchmark for sequence labeling tasks in the NLP community.
Using the 2003 CONLL English NER data we obtained a train set and a test
set of 14987 and 3466 sentences respectively.

Since the 2003 CONLL shared NER dataset does not contain labels from
multiple annotators, these are simulated for different reliabilities using the
following method. First a CRF is trained for the complete training set.
Then, random Gaussian noise (with zero mean and σ2 variance) is applied
to the CRF parameters and the modified CRF model is used to determine
new sequences of labels for the training set texts. These label sequences
differ more or less from the ground truth depending on σ2. By repeating this
procedure many times we can simulate multiple annotators with different
levels of reliability.

An alternative approach would take the ground truth dataset and ran-
domly flip the labels of each token with uniform probability p. However,
this would result in simulated annotators that are inconsistent throughout
the dataset, by labeling the data with a certain level of randomness. We
believe that the scenario where the annotators are consistent but might not
be as good as an “expert” is more realistic and challenging, and thus more
interesting to investigate. Therefore we give preference to the CRF-based
method in most of our experiments with artificial data. Nonetheless, we also
make experiments using this alternative method of label-flipping to simulate
annotators for the NP chunking task.

Using the CRF-based method described above, we simulated 5 artificial
annotators with σ2 = [0.005, 0.05, 0.05, 0.1, 0.1]. This choice of values intends
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to reproduce a scenario where there is a “good”, two “bad” and two “aver-
age” annotators. The proposed approach (CRF-MA) and the four baselines
were then evaluated against the test set. This process was repeated 30 times
and the average results are presented in Table 2. We also report the re-
sults obtained on the training set. Note that, unlike for “typical” supervised
learning tasks, in our case the F1 of the training set is important because it
represents the estimation of the “unobserved” ground truth from the opinions
of multiple annotators with different levels of expertise.

The results in Table 2 indicate that CRF-MA outperforms the four pro-
posed baselines in both the train set and test set. In order to assess the
statistical significance of this result, a paired t-test was used to compare the
mean F1-score of CRF-MA in the test set against the MVseq, MVtoken,
MVseg and CRF-CONC baselines. The obtained p-values were 4 × 10−25,
7× 10−10, 4× 2−8 and 1× 10−14 respectively, which indicates that the differ-
ences are all highly significant.

Regarding the MultiCRF model, we can see that, at best, it performs al-
most as good as MVtoken. Not surprisingly, the “MAX” version of MultiCRF
performs better than the standard version. This behavior is expected since
the “hard” labels obtained from majority voting also perform better than
the “soft” label effect obtained in CRF-CONC. Nonetheless, neither version
of MultiCRF performs as well as MA-CRF (test set p-values are 1 × 10−26

and 1× 10−11 for the MultiCRF and MultiCRF-MAX respectively).
In order to empirically show that the proposed approach does not rely on

repeated labeling (i.e., multiple annotators labeling the same data instances),
the same “golden” NER dataset was split into 5 subsets, and for each subset
an annotator was simulated with a different level of reliability σ2 (namely
σ2 = [0.005, 0.05, 0.05, 0.1, 0.1]) according to the CRF-based procedure de-
scribed above. This process was repeated 30 times and the average results for
the provided test set can be found in Table 3. Since there was no repeated
labeling, the majority voting baselines, as well as the multi-label models
(MultiCRF and MultiCRF-MAX), did not apply. The obtained results indi-
cate that, in a scenario without any repeated labeling, the proposed approach
(CRF-MA) still outperforms the CRF-CONC baseline. The statistical sig-
nificance of the difference between the F1-scores of the two methods in the
test set was evaluated using a paired t-test, indicating that the difference of
the means is highly significant (p-value = 1.47× 10−11).

The comparison of both experiments (i.e. with and without repeated la-
beling) indicates that, in this setting, having less repeated labeling hurts the
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Table 2: Results for the NER task with 5 simulated annotators (with σ2 =
[0.005, 0.05, 0.05, 0.1, 0.1]) with repeated labeling.

Train set Test set
Method Precision Recall F1 Precision Recall F1
MVseq 24.1% 50.5% 32.6 ± 2.0% 47.3% 30.9% 37.3 ± 3.1%

MVtoken 56.0% 69.1% 61.8 ± 4.1% 62.4% 62.3% 62.3 ± 3.4%
MVseg 52.5% 65.0% 58.0 ± 6.9% 60.6% 57.1% 58.7 ± 7.1%

CRF-CONC 47.9% 49.6% 48.4 ± 8.8% 47.8% 47.1% 47.1 ± 8.1%
MultiCRF 39.8% 22.6% 28.7 ± 3.8% 40.0% 15.4% 22.1 ± 5.0%

MultiCRF-MAX 55.0% 66.7% 60.2 ± 4.1% 63.2% 58.4% 60.5 ± 3.6%
CRF-MA 72.9% 81.7% 77.0 ± 3.9% 72.5% 67.7% 70.1 ± 2.5%

CRF-GOLD 99.7% 99.9% 99.8% 86.2% 87.8% 87.0%

performance of CRF-MA. Since this model differentiates between annotators
with different levels of expertise, its performance is best when the more reli-
able ones have annotated more sequences, which is more likely to happen with
more repeated labeling. Naturally, the opposite occurs with CRF-CONC.
Since in this setting the less reliable annotators dominate, more repeated
labeling translates in even more predominance of lower quality annotations,
which affects the performance of CRF-CONC.

4.1.2 Noun Phrase Chunking

For the NP chunking task, the 2003 CONLL English NER dataset was also
used. Besides named entities, this dataset also provides part-of-speech tags
and syntactic tags (i.e. noun phrases, verbal phrases, prepositional phrases,
etc.). The latter were used to generate a train and a test set for NP chunking
with the same sizes of the corresponding NER datasets.

In order to simulate multiple annotators in the NP chunking data, the
alternative method of randomly flipping the label of each token with uniform
probability p was used. Since for this task there are only two possible labels
for each token (part of a noun phrase or not part of a noun phrase)5 it

5In fact, since a BIO decomposition is being used, there are three possible labels: B-NP,
I-NP and O, and these labels are the ones that were used in the random flipping process.
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Table 3: Results for the NER task with 5 simulated annotators (with σ2 =
[0.005, 0.05, 0.05, 0.1, 0.1]) without repeated labeling.

Train set Test set
Method Precision Recall F1 Precision Recall F1

CRF-CONC 52.1% 56.5% 54.0 ± 7.3% 53.9% 51.7% 52.6 ± 6.4%
CRF-MA 63.8% 71.1% 67.2 ± 1.7% 65.7% 62.7% 64.2 ± 1.6%

CRF-GOLD 99.7% 99.9% 99.8% 86.2% 87.8% 87.0%

is trivial to simulate multiple annotators by randomly flipping labels. This
annotator simulation process reproduces situations where there is noise in the
labels of the annotators. Using this method we simulated 5 annotators with
label flip probabilities p = [0.01, 0.1, 0.3, 0.5, 0.7]. This process was repeated
30 times and the average results are presented in Table 4. Differently to
NER, NP chunking is only a segmentation task, therefore the results for the
MVseg baseline would be equal to the results for MVtoken. The experimental
evidence shows that the proposed approach (CRF-MA) achieves a higher F1-
score than the MVseq, MVtoken and CRF-CONC baselines. The statistical
significance of the difference between the test set F1-scores of CRF-MA and
all these three baselines (MVseq, MVtoken and CRF-CONC) was evaluated
using a paired t-test, yielding p-values of 2× 10−30, 7× 10−22 and 2× 10−16

respectively. As with the NER task, the CRF-MA model also outperforms the
MultiCRF and MultiCRF-MAX approaches (test set p-values are 6× 10−32

and 2× 10−21 respectively).

4.2 Real data

The use of Crowdsourcing platforms to annotate sequences is currently a
very active research topic (Laws et al, 2011), with many different solutions
being proposed to improve both the annotation and the learning processes at
various levels like, for example, by evaluating annotators through the use of
an expert (Voyer et al, 2010), by using a better annotation interface (Lawson
et al, 2010), or by learning from partially annotated sequences thus reducing
annotation costs (Fernandes and Brefeld, 2011).

With the purpose of obtaining real data from multiple annotators, we
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Table 4: Results for the NP chunking task with 5 simulated annotators (with
p = [0.01, 0.1, 0.3, 0.5, 0.7]) with repeated labeling.

Train set Test set
Method Precision Recall F1 Precision Recall F1
MVseq 50.6% 55.6% 53.0 ± 0.4% 66.1% 63.1% 64.6 ± 2.4%

MVtoken 83.6% 76.1% 79.7 ± 0.2% 83.3% 86.9% 85.0 ± 0.7%
CRF-CONC 84.3% 84.7% 84.5 ± 1.8% 83.8% 82.9% 83.3 ± 1.9%
MultiCRF 76.6% 65.6% 70.7 ± 0.4% 75.6% 64.9% 69.8 ± 0.4%

MultiCRF-MAX 83.6% 81.3% 82.5 ± 1.0% 81.2% 79.0% 80.1 ± 1.0%
CRF-MA 92.0% 91.8% 91.9 ± 1.9% 89.7% 89.7% 89.7 ± 0.8%

CRF-GOLD 99.9% 99.9% 99.9% 95.9% 91.1% 91.0%

put 400 news articles from the 2003 CONLL shared NER task (for which
we had ground truth) on Amazon’s Mechanical Turk for workers to label.
In this experiment, the workers were then required to identify the named
entities in the sentence and classify them as persons, locations, organiza-
tions or miscellaneous. Together with the named entity definition and the
categories description, the workers were also provided with two exemplifying
sentences. Workers with just a couple of answers were considered uninter-
ested in the task and their answers were discarded, giving a total of 47 valid
annotators. The average number of annotators per news article was 4.93,
and each annotator labelled an average of 42 news articles (see Figures 2a
and 2b). In order to assess the “quality” of the annotators, we measured
their F1-scores against the ground truth. Figure 2c shows a boxplot of the
F1-scores obtained. It is interesting to notice that the quality of the AMT
workers really varies enormously, with the lowest F1-score being 17.60% (a
very unreliable annotator), while the highest F1-score is 89.11% (arguably
almost an expert).

As with the experiments with simulated annotators, the different ap-
proaches are evaluated in the provided test set, as well as in the ground
truth labels for those 400 news articles. The obtained results are presented
in Table 5. These results indicate that the proposed approach is better at
uncovering the ground truth than all the other approaches tested. This in
turn results in a better performance on the test set. Furthermore, the RMSE
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Figure 2: Boxplots for (a) the number of answers per AMT worker, (b) the
number of answers per news article, and (c) the F1-scores of the annotators.

obtained between the true F1-scores of the annotators (measured against the
actual ground truth) and their estimated F1-scores according to the CRF-
MA approach (measured against the estimated ground truth) was 8.61%,
meaning that the reliability of the annotators is being approximated quite
well. These results also indicate that crowdsourcing presents an interesting
alternative solution for obtaining labeled data that could be used for training
a NER system.

In order to evaluate the impact of repeated labeling, a random subsam-
pling of the AMT data was performed. This experiment will allow us to
reproduce a situation where each article is only labeled by one annotator,
thus representing the minimum cost attainable with AMT (with the same
price per task). For each of the 400 news articles, a single annotator was
picked at random from the set of workers who labeled that article. This pro-
cess was repeated 30 times to produce 30 subsampled datasets. The average
precision, recall and F1-scores of the different methods are shown in Table 6.
Notice that, since there is no repeated labeling, both the majority voting
baselines and the multi-label models (MultiCRF and MultiCRF-MAX) do
not apply. The obtained results show that CRF-MA also outperforms CRF-
CONC in this setting (p-value = 3.56× 10−7). Interestingly, when compared
to the results in Table 5, this experiment also shows how much could be
gained by repeated labeling, thus providing a perspective on the trade-off
between repeated labeling and cost.
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Table 5: Results for the NER task using real data obtained from Amazon’s
Mechanical Turk.

Train set Test set
Method Precision Recall F1 Precision Recall F1
MVseq 79.0% 55.2% 65.0% 44.3% 81.0% 57.3%

MVtoken 79.0% 54.2% 64.3% 45.5% 80.9% 58.2%
MVseg 83.7% 51.9% 64.1% 46.3% 82.9% 59.4%

CRF-CONC 86.8% 58.4% 69.8% 40.2% 86.0% 54.8%
MultiCRF 67.8% 15.4% 25.1% 74.8% 3.7% 7.0%

MultiCRF-MAX 79.5% 51.9% 62.8% 84.1% 37.1% 51.5%
CRF-MA 86.0% 65.6% 74.4% 49.4% 85.6% 62.6%

CRF-GOLD 99.2% 99.4% 99.3% 79.1% 80.4% 74.8%

Table 6: Results for the NER task using data from Amazon’s Mechanical
Turk without repeated labelling (subsampled data from the original dataset).

Train set Test set
Method Precision Recall F1 Precision Recall F1

CRF-CONC 71.1% 42.8% 53.1 ± 10.5% 35.9% 70.1% 47.2 ± 8.7%
CRF-MA 76.2% 54.2% 63.3 ± 1.6% 46.0% 78.2% 57.9 ± 1.8%

CRF-GOLD 99.2% 99.4% 99.3% 79.1% 80.4% 74.8%

5 Conclusion

This paper presented a probabilistic approach for sequence labeling using
CRFs with data from multiple annotators which relies on a latent variable
model where the reliability of the annotators are handled as latent variables.
The EM algorithm is then used to find maximum likelihood estimates for
the CRF model parameters, the reliability of the annotators and the ground
truth label sequences. The proposed approach is empirically shown to signif-
icantly outperform traditional approaches, such as majority voting and using
the labeled data from all the annotators concatenated for training, even in
situations of high levels of noise in the labels of the annotators and when
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the less “trustworthy” annotators dominate. This approach also has the ad-
vantage of not requiring the repeated labeling of the same input sequences
by the different annotators (unlike majority voting, for example). Although
we presented a formulation using CRFs, it could be easily modified to work
with other sequence labeling models such as HMMs.

Future work intends to explore dependencies of the reliabilities of the
annotators on the input sequences they are labeling, which can be challeng-
ing due to the high dimensionality of the feature space, and the inclusion
of a Dirichlet prior over the qualities of the annotators. Furthermore, the
extension of the proposed model to an active learning setting will also be
considered. Since the annotators reliabilities are being estimated by the EM
algorithm, this information can be used to, for example, decide who are the
most trustworthy annotators. Requesting new labels from those annotators
will eventually improve the models performance and reduce annotation cost.
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