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Abstract

Due to the heterogeneous case-by-case nature of traffic incidents,
plenty of relevant information is recorded in free flow text fields instead
of constrained value fields. As a result, such text components enclose
considerable richness that is invaluable for incident analysis, modeling
and prediction. However, the difficulty to formally interpret such data
has led to minimal consideration in previous work.

In this paper, we focus on the task of incident duration prediction,
more specifically on predicting clearance time, the period between in-
cident reporting and road clearance. An accurate prediction will help
traffic operators implement appropriate mitigation measures and bet-
ter inform drivers about expected road blockage time.

The key contribution is the introduction of topic modeling, a text
analysis technique, as a tool for extracting information from incident
reports in real time. We analyze a dataset of 2 years of accident cases
and develop a machine learning based duration prediction model that
integrates textual with non-textual features. To demonstrate the value
of the approach, we compare predictions with and without text analy-
sis using several different prediction models. Models using textual fea-
tures consistently outperform the others in nearly all circumstances,
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presenting errors up to 28% lower than models without such informa-
tion.

Keywords: Incident duration prediction, text analysis, topic modeling,
regression models

1 Introduction

On a daily basis, traffic incidents demand quick reaction and adaptability
from both operators and motorists. In order to provide accurate and timely
travel advisory, a key information is the expected duration of the incident
Noland and Polak (2002); Inc (2006); Ozbay et al. (2009), as defined by the
time period that spans from incident occurrence to road clearance. Dur-
ing this period, the traffic operators need to efficiently execute a response
strategy, which in turn depends on a variety of factors, some objective and
measurable such as number of lanes affected, location or traffic conditions,
others subjective or difficult to assess such as capacity reduction, drivers be-
havior or potential for generating secondary accidents. Traffic operators also
need to provide guidance information for drivers, and it is crucial that this
guidance is consistently trustworthy and accurate MUT (2009).

To support a timely response, traffic management centers establish work-
flows that consist of collecting information, analyzing it and executing the
chosen strategy, continuously using updated information to control traffic,
disseminate information and manage incident response resources (e.g. Lou
et al. (2011); Hu and Chan (2013); Inc (2006)). Each of these steps can be
supported by automatic tools, but the nature of the problem demands sys-
tematic presence of humans in the loop. Since the exception is the norm, the
range of different problem configurations is so wide that constrained-value
interfaces (e.g. buttons, check boxes, pull-down list) become insufficient and
the use of written or verbal messages is needed to communicate between
different actors.

The advantage of human language is its virtual lack of limits in terms
of transmitting the subtle details that allow others to assess the situation,
while the disadvantage is the difficulty that machines find in interpreting it.
With a few notable exceptions (e.g. Miller and Gupta (2012)), earlier works
on incident analysis and prediction have completely ignored this dimension
or based themselves on crude simplifications. In this article, we propose the

2



integration of topic modeling, a state of the art text analysis technique, with
a machine learning model, as an effective means to continuously predict in-
cident duration (or, equivalently, remaining time to clearance) taking into
account the latest report updates. It turns out that topic modeling is par-
ticularly well suited for the domain of incident messages since these have a
relatively homogeneous lexicon and each message aims to objectively convey
clear and synthetic information to help emergency response.

Our main contribution is thus an incident duration prediction model that
is able to consider text messages as well as numeric and nominal information.
As with earlier literature (e.g. Lopes (2012); Boyles et al. (2007); Khattak
et al. (2012)), we define our duration variable as the period from reporting
to clearance, thus excluding the unknown period from occurrence till report-
ing. We focus on accident duration prediction thus leaving aside other kinds
of incidents such as vehicle breakdowns, road works and others. We will
demonstrate the value of the approach by comparing with models without
text analysis and by observing the performance of the model on a realistic
setting, whereby information becomes sequentially available over time.

The remainder of this article is organized as follows. The next section
will motivate this work within the framework of traffic incident management
systems. The subsequent two sections shall provide the reader with the nec-
essary background, first with a general literature review on incident duration
prediction, then with an overview of topic modeling. Sections 5 and 6 de-
scribe the available data and the prediction models, respectively. The article
will end with a short discussion and conclusions (section 7).

2 Motivation: Traffic Incident Management

Traffic incidents have been identified as one of the major contributors to
increased congestion, causing about one-quarter of the congestion on U.S.
roadways NTI (2006). They are estimated to cause more than 50% of delay
experienced by motorists in total for all urban areas. Furthermore, for ev-
ery minute that the primary incident remains a hazard, the likelihood of a
secondary crash increases by 2.8 percent Karlaftis et al. (1999).

In order to mitigate such consequences, traffic incident management (TIM)
procedures take advantage of surveillance information and communication
systems to improve response via the coordination afforded by a Traffic Op-
erations center, as well as the real-time sharing of information among the
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affected agencies. Responders need to estimate its magnitude, expected du-
ration, as well as the expected vehicle queue length, and then should set
up the appropriate temporary traffic controls for these estimates Inc (2006).
Calculation of magnitude can follow earlier incident rating systems (e.g. TIM
(2010)), but determining expected duration and queue length is a more com-
plex task that needs to take into account characteristics of the incident,
historical records, availability of other response systems (e.g. ambulance),
weather and traffic status.

Together with managing incident area clearance, TIM needs to provide
predictive guidance information to motorists (e.g. via VMS, radio) to help
reduce considerably the average travel time for most vehicles traversing the
incident, therefore reducing the total delay in the network Kamga et al.
(2011). However, real-time traffic prediction systems that provide consis-
tent prediction under incident scenarios, such as DynaMIT Ben-Akiva et al.
(2012), also need incident information in the form of capacity reduction and
expected duration. Again, while capacity reduction can be approximated
by directly observable characteristics, such as number of lanes blocked and
weather status Knoop et al. (2008), incident duration demands considera-
tion of many other factors. Testing with seven different case-studies, Lopes
Lopes (2012) demonstrates that an incident information feed (with predicted
duration and capacity reduction) can improve DynaMIT’s normalized root
mean squared error (NRMSE) performance by up to 15%, 44% and 53% for
predicting speeds/travel times for 10, 20 and 30 minutes ahead, respectively.

Finally, beyond real-time incident response, post-hoc analysis CTC (2010);
Ozbay et al. (2009) is a crucial tool for performance assessment and TIM pro-
cess redesign. The typical measures are incident duration, delay, secondary
incidents. Other variables, such as economic cost/loss are calculated from
those measures. The key is to contrast the observed values with reason-
able benchmarks, often set up by regulators CTC (2010). As suggested by
Feyen and Eseonu Feyen and Eseonu (2009), such benchmarks should re-
flect statistical evidence and help expose “root causes of incident response
performance”. The task is thus to study how factors that characterize the
incident (e.g. location, severity, time of day, weather) correlate with the
target measures and design statistical tools that determine an “expectable
performance”.

Our research is motivated by the framework of traffic incident manage-
ment, both contributing for duration prediction in real-time, as new informa-
tion arrives, as well as for off-line post-hoc analysis. On an real-time basis, it
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ultimately aims to provide supply parameter updates to dynamic traffic pre-
diction systems, such as DynaMIT. On an off-line basis, the goal is become
a tool for performance assessment for transport agencies such as the Land
Transport Authority of Singapore (LTA).

For practical reasons, we will focus exclusively on data from incident re-
ports. Traffic and weather data are not available for the same period of time.
Methodologically, this will allow us understand the individual contribution
of text-analysis to the problem of incident duration prediction. In future
work, we will enrich our dataset with other information such as traffic or
weather status and will evolve the prediction model itself considering more
sophisticated options (e.g. survival analysis Nam and Mannering (2000)).

3 Literature review

Task definition. According to the highway capacity manual Hig (2010), traffic
incident time is organized into 4 periods: reporting, the time between occur-
rence of the incident and reporting to traffic operators; response, the period
between reporting and arrival of response team; clearance, the time needed
for response teams to assist involved parties and clear the road; and recovery,
the period from clearance until the restoring of normal traffic conditions. As
with earlier works (e.g. Lopes (2012)), we define our incident duration as the
sum of response and clearance periods, since they are objectively measurable,
differently to the other components.

Sequential and one time models. There are two general types of models,
one that continuously predicts duration (or remaining time) as new informa-
tion becomes available; another that assumes that all information is available
at reporting time and makes a “prediction” at that time. The former, called
sequential model (e.g. Khattak et al. (2012); Lopes (2012); Boyles et al.
(2007); Wei and Lee (2007)) aims for deployment in real-time settings while
the latter, the one time model, is generally motivated by a post-hoc incident
analysis perspective rather than real-time prediction (e.g. Jones et al. (1991);
Golob et al. (1987); Giuliano (1989)).

Modeling techniques. The set of modeling techniques is wide, from statis-
tics based to non-parametric machine learning models. Valenti et al Valenti
et al. (2010) present a comparative analysis of several machine learning tech-
niques that are typical in the literature, including artificial neural networks
(ANN), decision trees, support vector regression/relevance vector machines
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(SVR/RVM), and linear regression (LR). They applied the one time model
perspective and concluded that SVR/RVM outperformed the others for long
durations and ANN for short durations. ANN were also used by Lopes Lopes
(2012) in a sequential model with 4 neural networks with incremental inputs.
With the maximum information model, he achieved the lowest Root Mean
Squared Error (RMSE) so far in literature of 12.45 for major accidents and
7.31 for minor ones. It should be noted, however, that his scenario is highly
homogeneous (a single highway corridor), information rich, and such results
are often achieved at later stages of the incident response process.

From the statistical realm, Nam and Mannering Nam and Mannering
(2000) applied survival analysis to re-estimate duration conditioned on elapsed
time and information updates at three stages, namely incident occurrence,
incident notification and rescuer arrival. According to their results, factors
such as month, rain conditions, geographic information, incident characteris-
tics (e.g. existence of injuries), and response agency are important variables
in forecasting duration. Also taking into account elapsed time, Khattak et al.
Khattak et al. (1995) designed a sequential model with a series of truncated
regression models.

Feature set. The key component of all these models is indeed the set of
features used, sometimes specific to the dataset or location, other times ex-
tremely difficult to compute accurately. A non-exhaustive compilation from
the existing literature (e.g. Khattak et al. (2012); Jones et al. (1991); Giu-
liano (1989); Yang (2013); Ahmed and Abdel-Aty (2013)) includes number
of affected lanes, number of vehicles, time, location, incident type (e.g. vehi-
cle breakdown, accident), type of vehicles involved, life/equipment impacts
(e.g. with/without injuries, damaged infrastructure), response agency (e.g.
police, fire department), weather status, existence of secondary incidents, ge-
ographic information, and traffic conditions. As mentioned earlier, some of
these details are sometimes available in text form.

Synthesis. Historically, research in incident duration prediction had an
initial phase of problem understanding and analysis, mostly centered on sta-
tistical approaches, with crucial works from Golob et al Golob et al. (1987),
Khattak et al Khattak et al. (1995) and Nam and Mannering Nam and
Mannering (2000). More recently, the emergence of powerful computing ca-
pabilities together with massive datasets led to a predominance of machine
learning approaches (e.g. Valenti et al. (2010); Miller and Gupta (2012);
Boyles et al. (2007); Lopes (2012)). In this set, one work, from Miller and
Gupta Miller and Gupta (2012), is the closest to ours in the sense that they
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use text based features. They apply string matching rules to extract certain
features (e.g. type of vehicle) from the text. This approach depends essen-
tially on manual work and on subjective assumptions on what is and what
is not relevant from the text, which implies important limitations in terms
of scalability and flexibility.

4 Topic modeling

Generally, a topic model describes a collection of documents as a statistical
distribution of abstract “topics” or “classes”. The emergence of these sta-
tistical natural language processing (NLP) approaches started in the 1990’s
when the field reached limited success with strictly rule-based, deterministic
approaches (e.g. grammars and description logics). In 1990, Deerwester et
al Deerwester et al. (1990) proposed a document indexing model that used
singular-value decomposition (SVD), in which a large term by document ma-
trix is decomposed into a set of about 100 orthogonal factors from which the
original matrix can be approximated by linear combination. This general ap-
proach was later coined as Latent Semantics Indexing (LSI). With documents
and search queries represented by such reduced dimensionality, the process
to retrieve documents that maximize cosine values becomes more efficient
and noise resistant.

Later, Papadimitriou et al Papadimitriou et al. (1998) and then Hofmann
Hofmann (1999) laid a more comprehensive theoretical foundation for LSI
and introduced probabilistic Latent Semantics Indexing (pLSI). In contrast
to LSI with SVD, the probabilistic variant defines a generative data model
in which each document is probabilistically assigned a latent topic z, each
topic being defined as a distribution over words.

Latent Dirichlet allocation (LDA) is a generalization of pLSI developed
by Blei et al Blei et al. (2003), that allows documents to be mixtures of topics.
In LDA, each document is represented as a distribution over topics, and each
topic is a distribution over words. In contrast to other approaches, LDA has
the practical advantage of being more interpretable. In general, topics can
be intuitively associated to a specific higher-level meaning. For example in
our case, some topics can be associated to “seriousness” indicators, such as
whether there are injuries or oil spillage, while other topics are related to
progress monitoring, such as if the police arrived, if participants exchanged
information, photos were taken, etc.
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Given each document d defined as a vector wd of n words, wd = {wd,1, . . . wd,n}
and the parameter K, representing the number of different topics, LDA as-
sumes the following generative process:

1. Draw a topic βk from βk ∼ Dirichlet(η) for k = 1 . . . K

2. For each document d:

(a) Draw topics proportions θd such that θd ∼ Dirichlet(α)

(b) For each word wd,n:

i. Draw topic assignment zd,n ∼ Multinomial(θd)

ii. Draw word wd,n ∼ Multinomial(βzd,n)

The parameters α and η are hyperparameters that indicate respectively
the priors on per-document topic distribution and per-topic word distribu-
tion. Thus, wd,n are the only observable variables, all the others are latent
in this model1. For a set of D documents, given the parameters α and η, the
joint distribution of a topic mixture θ, word-topic mixtures β, topics z, and
a set of N words is given by:

p(θ, β, z,w|α, η) =
K∏
k=1

p(βk|η)
D∏

d=1

p(θd|α)

N∏
n=1

(
p(zd,n|θd)p(wd,n|βk, k = zd,n)

)
Broadly speaking, the training task is thus to find the posterior distri-

bution of the latent variables (the per-document topic proportions θd, the
per-word topic assignments zd,n and the topics βk) that maximize this prob-
ability. As with most generative models, the exact inference of such values
is intractable to compute, therefore approximate inference techniques are
used, namely Markov Chain Monte Carlo methods (e.g. Gibbs sampling), or
variational Expectation-Maximization (EM). For further details on this pro-
cedure please refer to the original article of David Blei and colleagues Blei
et al. (2003).

1For the interested reader, we present the plate notation of our LDA model - specifically
called “smoothed LDA” - in Figure 9 of the Appendix, with a brief explanation
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With a trained LDA topic model, one can apply the same general proce-
dure to assign topics to every new document Blei et al. (2003). In this case,
the problem is considerably simpler since all parameters except for zd,n and
θd are already defined, so the assignment for small documents (e.g. under
1000 words) is practically instantaneous.

The key point is that, for each document, LDA assigns a vector of topic
weights in a similar fashion as Principal Components Analysis (PCA) does
with numeric data. In that sense, LDA is also a dimensionality reduction
technique for unstructured text whereby a “signal” of N words is reduced to
a vector of K topics and, in general, K << N .

A final remark relates to the document representation that is typically
adopted for LDA and similar techniques, known as the bag-of-words repre-
sentation. Having a dictionary with W different words, this representation
translates each document into a vector with dimensionality W , where each
element contains the frequency of a dictionary word observed in the docu-
ment. This technique obviously disregards the original order of words in the
text, being based purely on word counts. In most circumstances, this is not
a relevant limitation. In our case, it is only necessary to preserve sentence
order according to timestamps, so we keep the chronology of report messages
as a sequence of different documents.

5 Data

5.1 Data description

The data available for this work consists of 2 years of records from all acci-
dents that occurred in the expressways of Singapore, from January 2010 to
December 2011. Each record is internally created at the traffic management
center and can be originated by external information (driver’s call, police, lo-
cal traffic agents) and via traffic camera observation. The time delay between
actual occurrence and the initial reporting is estimated to be below 5 min-
utes, according to local agents. The incident response is then continuously
adapted to the situation as new information becomes available. Initially, the
operator keys in the affected lanes, location data (road name, coordinates,
distance to on/off ramps, zone ID), direction, traffic status (congested/non
congested), and number of vehicles affected. Then, as new information comes
in, it is gradually inserted in textual form, together with a time tag. When
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the accident is fully cleared, the report is closed.
Below is an example of an incident record2.

id: 473586

zone ID: 2

Location (X, Y): 26266.6, 34916.9

Road name: AYE

Location type: 3

Lane blockage: Lane 1, Shoulder blocked

Down point: 20.32

Congestion status: 0

Queue length: 500m

Start time: 2010-08-20 22:50:01

End time: 2010-08-20 23:31:45

Number of vehicles: 2

2250hrs - TP Joe X spots an accident. car and

bike involved.

2255hrs - Passers-by shift the bike to the

shoulder.

2300hrs - Ambulance arrives at location. LTM

arrives at location.

2309hrs - Ambulance conveys rider to National

University Hospital.

2310hrs - TP arrives at location.

2311hrs - Notify by LTM the rider is seriously

injured. The accident involves a car

and bike.

2331hrs - TP requests RC and LTM to resume

patrolling. All other vehicles move

off. Shoulder clear.

From literature review (Lopes (2012); Khattak et al. (2012); Valenti et al.
(2010)), discussions with traffic authorities and data inspection, we estab-
lished an upper limit of 180 minutes, leaving out nearly 100 cases, which are
either particular outliers or in fact reports wrongly left open. After some
further data cleaning, where we eliminated cases without any text or explic-
itly wrong (e.g. wrongly created, duplicated, zero duration), we obtained a
total of 10139 accident cases for the expressways, each one having up to 16
sequential messages, unevenly spaced in time. Figure 1 presents the result-
ing distribution. One interesting observation is that, quite differently from
some earlier literature that mentions distribution fittings to lognormal (e.g.

2Due to data non-disclosure compromises, this case does not correspond to a real
occurrence although it strictly exemplifies the content of original data.
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Figure 1: Distribution of revised durations.

Jones et al. (1991); Golob et al. (1987); Giuliano (1989)), our data indicates
a strong fit to an exponential distribution (λ = 0.029, p < 0.01).

Differently to other earlier studies, we did not have access to traffic data
for the same entire period, therefore our model will not consider such type of
information. The question of how much the model would improve with that
additional information will be left open for future work.

5.2 Data preparation

Our feature set comprises two types of data: the basic set of values originally
created by the operator (location, lanes blocked, etc.) together with values
computed from them; and topic distributions assigned by our LDA algorithm.
Regarding the basic set, we started by converting the nominal attributes
(e.g. zone id, road name) into dummy binary variables, and normalizing the
numeric ones. Then, we computed a few other features that should contribute
to the prediction. For each record we calculated the number of accidents that
occur at several distances (100m, 1000m, 5000m, same road) during a time
window before the current accident. This follows the recommendation from
Khattak et al. Khattak et al. (2012), on the interactions between different
accidents that are close in time and space. We also identified the type of
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day of week and time of day (peak, non-peak, morning, night, etc.), and
calculated a simplified capacity reduction value by dividing the number of
affected lanes by the total number of lanes in the affected area.

The second data type, the topic assignments from the text, is the subject
of the next section. For now, we explain its data preparation. LDA receives
as input a set of documents in the bag-of-words representation mentioned
above. Thus, now we explain the task pipeline that generates, for each
incident text description, its corresponding bag-of-words vector:

• timestamp matching: The timestamp is actually inserted by hand by
the operator, varying its form in many ways, sometimes not exactly in
the beginning of the line. For example using colon (“:”) or not. We
apply regular expressions to match these patterns;

• abbreviation recognition: Given the nature of the messages involved,
we can easily match some common abbreviations and acronyms. For
example, the word for ambulance can either be “amb”, “ab”, “ambul”
or “ambulance”, the word “m/cycle” means “motorcycle” and so on.
We identified less than 20 of such sets of synonyms. This task is impor-
tant because a more uniform set of words will increase LDA quality;

• treatment of negation: Treating negation is a typical problem in natural
language texts. In this case, fortunately the texts are objective enough
such that a simple concatenation will generate the relevant word. For
example, “no injuries” becomes “noinjuries”;

• stop word removal: It is also important to remove all words that have
no semantic relevance for the problem, as for example articles, prepo-
sitions, pronouns, or common verbs such as to have, to be or to do;

• stemming: Stemming is the process of reducing each word to its word
family root. For example “seriously injured” and “serious injuries”
both reduce to “serious injur”;

• dictionary construction: The above processes aim to reduce a wide set
of words into a smaller set of relevant words to be catalogued in a
dictionary. Each word in this dictionary will thus correspond to an
index in the bag-of-words representation.
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Except for the first and last parts, these tasks are all typical of NLP and
there are plenty of available open source tools to use such as NLTK Bird
(2006).

To illustrate this process, we now transform the text example given above
into the set of words generated, with corresponding timestamps:

[0: 2250] tp joe x spot acc veh bike involv

[5: 2255] passer shift bike sh

[10: 2300] ab arr ltm arr

[19: 2309] ab convei rider nation univers hosp

[20: 2310] tp arr

[21: 2311] notifi ltm rider serious injur acc

involv veh bike

[41: 2331] tp request rc ltm resum patrol veh

move off sh clear

The last step of data preparation for LDA is then to generate the bag-
of-words vector. In our example, we only have 26 different words, and our
dictionary has 3545 words, which leads to very sparse vectors. For this reason,
its representation is generally in compressed format as a list of pairs <word
id: count>.

5.3 LDA training and topic assignment

The training of the LDA model requires defining three parameters, namely
K, α and η. The latter two are in fact vectors of dimension K and W ,
respectively, the general practice being to assume the same value for each
element, often 1/K for both cases. Regarding K, it represents the set of
different topics that we expect to be present in a message. The training and
assignment procedure is then an iterative process using the variational EM
algorithm (see Blei et al. (2003) for more details and Řeh̊uřek and Sojka
(2010) for a stable python package that applies this method).

To get a small illustrative example, we trained an LDA model on our
dataset, with K = 6, α = 1/6 and η = 1/6. Below, we show the list of all 6
topics obtained. Due to space limitations, we restrict each topic to its top 6
words.

tp #0: 0.15*noinjur + 0.09*veh + 0.08*noinfst + 0.07*came + 0.06*across + 0.05*self-

driven

tp #1: 0.11*open + 0.09*spill + 0.09*oil + 0.09*scdf + 0.08*close + 0.06*2ln
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tp #2: 0.06*polic + 0.06*drive + 0.04*crew + 0.04*drink + 0.03*div + 0.03*driver

tp #3: 0.07*ab + 0.07*tow + 0.06*convei + 0.06*rider + 0.06*hosp + 0.05*bike

tp #4: 0.08*damag + 0.07*call + 0.04*tow + 0.04*veh + 0.03*tp + 0.03*vig

tp #5: 0.06*tp + 0.05*convei + 0.05*ab + 0.04*tow + 0.04*hosp + 0.04*veh

We can recognize that topic 0 represents minor accidents without injuries
in which vehicles are self driven out of the area; topic 1 relates to oil spillages;
topic 2 is about drink driving cases; topics 3 and 5 involve accidents with in-
juries (“ab” is ambulance) with bike and car, respectively; and topic 4 relates
to infrastructure damages. Applying the assignment procedure mentioned in
Section 4, our earlier incident example would obtain the following topic as-
signment (0.01, 0.02, 0.02, 0.32, 0.13, 0.50), meaning that our document can
approximately be re-represented as 0.5× topic5 + 0.32× topic3 + . . .

To choose appropriate values for K, α and η, we trained a set of linear
regression models for incident duration prediction. The features were defined
in the previous section, and each model would only differ from the others in
the combination of K, α and η. Since the model estimation is computa-
tionally costly, we randomly sampled from combinations of these values. For
the best results of correlation coefficient and mean average error, we further
explored neighbor values. The best configuration was with K = 25, α = 0.5
and η = 0.75 (see table 3 in Appendix for more details). Unless otherwise
stated, these values will be assumed throughout the rest of this article. We
should note, however, that we only verified significant sensitivity to different
values of K, while variations in α and η lead to minimal changes in the re-
sults. We also ran experiments with values much larger than 1 and did not
find meaningful difference. This is not surprising since α and η are simply
parameters of prior distributions for θ and β, respectively, and these are ad-
justed during the training phase. The fact that they converge to very similar
values independently of their prior indicates that the dataset is sufficiently
large with regards to robustness of the LDA process.

6 Prediction models

6.1 One time prediction

The one time prediction model assumes that all information is available when
the incident is reported. This assumption was followed implicitly or explicitly
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by some of the earlier studies (e.g. Jones et al. (1991); Valenti et al. (2010)),
mostly to understand the predictive power of individual features. We will
follow the same reasoning and leave the more realistic scenario of sequential
prediction for the next section.

To maximize consistency with the state of the art, we use the same mod-
els as Valenti et al Valenti et al. (2010), which is a comprehensive set that is
quite popular for the subject: linear regression (LR), support vector regres-
sion (SVR/RVM), artificial neural networks (ANN), and decision/regression
trees (DT). We also add radial basis functions (RBF). Also following earlier
literature, performance is assessed in terms of correlation coefficient between
observed and predicted (CC) and Mean Average Error (MAE). Similarly to
Boyles et al Boyles et al. (2007), we also use the median error (ME), which
is less sensitive to outliers.

Given that we have an exponentially distributed target variable, we ap-
plied a logarithmic transformation to approximate it to a normal distribu-
tion during the training process. Of course, for the purposes of evaluation
we transformed the results back to the original values, and recalculated all
measurements on this scale.

We have four sets of feature configurations: basic set (which includes
original and computed attributes); initial message (basic set+first message);
full message (basic set+complete report); only text (no data from basic set).
We use 10-fold cross validation in all experiments. Tables 1 and 2 show the
results.

For illustrative purposes, we also included RBF*, where we test the RBF
model against the training set, which should represent in practice the best
possible values given the data.

Table 1: Comparison of different one time prediction models (Correlation
Coefficients, all p < 0.05).

Model basic initial msg full msg only text
LR 0.45 0.61 0.74 0.63
SVR 0.39 0.44 0.49 0.5
ANN 0.28 0.44 0.54 0.64
DT 0.46 0.62 0.74 0.71
RBF 0.48 0.62 0.75 0.73
RBF* 0.96
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Table 2: Comparison of different one time prediction models. MAE (ME in
parenthesis) are in minutes.

Model basic initial msg full msg only text
LR 22.2 (17.3) 18.4 (13.0) 16 (11) 22.3 (17.1)
SVR 22.1 (14.2) 20.9 (12.6) 21.2 (12.8) 20.4 (11.8)
ANN 28.3 (21.9) 23.6 (15.4) 21.9 (13.1) 19.3 (14.5)
DT 22.2 (17.2) 18.3 (12.7) 15.9 (10.7) 16.4 (10.9)
RBF 21.9 (16.6) 18.2 (12.6) 15.5 (10.5) 15.9 (10.4)
RBF* 4.4 (2.6)

From tables 1 and 2, we can see that the radial basis function outperforms
the others in almost all cases, being closely followed by the linear regression
and regression tree models. Notice also that, although the SVR model shows
a very low correlation coefficient, it is competitive in terms of mean and
median errors particularly in the models with less text information, which
would be coherent with the findings from Valenti et al Valenti et al. (2010).
However, with a closer look at the results, we verified that it is highly biased
towards durations between 0 and 50 minutes while completely ignoring higher
ones.

The major performance increment is between the basic (best CC=0.48;
MAE=21.9; ME=14.2) and the initial message model (best CC=0.62; MAE=18.2;
ME=12.6), which means that the topics extracted from the initial text alone
provide significant information, even though it is often very incomplete at
that early stage.

Another interesting point is that, if we are left only with text informa-
tion, our model seems to be lightly affected. From the point of view of the
sequential model, this becomes a big advantage in that it eliminates the de-
pendency on having a minimal set of features from the beginning. It could
rely solely on a textual message feed. We will explore this aspect in the next
section.

In order to understand the error relative to observed duration, a common
measure has been the Mean Absolute Percentage Error (MAPE), defined as:

MAPE =
1

|M(t)|
∑

i∈M(t)

∣∣∣ x̂i − xi
xi

∣∣∣× 100%
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where M(t) corresponds to the set of measurements that occurred in
time t and xi and x̂i the observed and predicted values, respectively. Figure
2 shows the MAPE value by duration. We highlight the upper thresholds
proposed by Lewis Lewis (1982), of 50%, 20% and 10% to qualitatively assess
prediction performance, as “reasonable”, “good”, and “highly accurate”, re-
spectively. Although such type of thresholds are always very arbitrary, we
use them to better compare the different models, as with earlier literature
(e.g.Wei and Lee (2007)). According to these criteria, our model has “reason-
able” performance for incidents between 20 and 110 minutes in total duration,
and it outperforms the model without text analysis except for incidents that
have a duration between 15 and 30 minutes.

From these experiments, we can conclude that the models that use text
analysis are significantly more correlated with the data than those with no
text. To provide further insight on the comparative role of information, we
analysed the parameter coefficients from the linear regression model as well as
the word distributions in topics. We can identify topics that strongly suggest
longer duration (related to injuries, oil spillage, need for towing vehicle)
while others go on the opposite direction, such as when the driver is able to
self-drive the car off the road. The topics, regression coefficients and other
statistics are in Tables 4 and 5 of the Appendix, respectively.

Despite the better results of our text-analysis approach, the amount of
error involved is still considerable which is not surprising given the high
variance of the duration throughout the entire dataset. Figures 3 and 4
illustrate this discussion and let us visualize the difference between the basic
and the more complete model. We also point out its performance in terms
of 10 and 20 minutes interval accuracy. For example, the full message model
predicts duration with error less than 10 minutes in 54.5% of the times.

6.2 Sequential prediction

In reality, only little information is available when a report is created, and as
time progresses it becomes continuously updated. As mentioned in section
5.2, we can extract message update timestamps that we can use to simu-
late information flow in time. Regarding the other features (the basic and
computed sets), except for those objectively related to location and time, we
cannot exactly determine their recording times from the reports since those
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Figure 2: MAPE performance of models with and without text analysis
features.

fields might have been overwritten during the incident resolution. We will
explore two assumptions, one where all information is available at the be-
ginning (all features model), and the other where such information is not
available at all (conservative model). We reckon that the latter is utterly
pessimistic, since all incidents will have some intermediate moment where
information such as number of blocked lanes or number of vehicles involved
is available.

Since temporal sequence is now important, the experimental design differs
considerably from the previous section. We split the dataset into two parts:
a training set comprising one year and nearly 2 months (66% of the overall
dataset) and a test set with the last 10 months (33% of the dataset). Each
case is now split into a sequence of vectors, each one tagged with its elapsed
time and topic assignment from total text available at that moment. Thus,
each incident will have a topic assignment that will “evolve” as time advances.

We maintain the same algorithm configuration parameters: K = 25;α =
0.5; η = 0.75; RBF algorithm; and logarithm of duration as target. We will
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Figure 3: Best model with basic features (Radial Basis Function). Blue
45 degree line indicates ideal performance. Red dashed line corresponds to
linear fit to observations.

Figure 4: Best model with full message (Radial Basis Function).
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test three model types: the basic set model, which also includes basic and
computed attributes; the all features model, which has all available features,
including the topic assignments; and the conservative model, which only has
text information (topic assignments) as well as incident location and reported
start time.

As time progresses, these models generate prediction updates whenever
new text information is received, also taking into account the elapsed time.
For comparison purposes, at each of these moments, we also obtain prediction
updates from the basic set model.

Intuitively, the quality of predictions should gradually improve as new in-
formation becomes available, particularly when also considering the elapsed
time. In Figure 5, we present the MAPE diagram through time. The dif-
ficulty in predicting for lower than 15 minute durations together with the
lack of information in the beginning turn all models effectively useless during
that initial period. Throughout the entire period, the model with complete
information outperforms the one without text features and it is notable that
after minute 120. It is also interesting to observe that the conservative model,
which has only textual features and their time stamps, has good performance
during the first hour after which it has an erratic behavior. This result is
not trivial to interpret but it suggests that, after that period, a combination
with other factors not obtainable from textual topics (e.g. capacity reduction,
time of day) is necessary to discriminate between different incident duration
expectations.

To illustrate the performance improvements as a function of the number of
messages received, we plot different MAPE results in Figure 6. Now we show
the incremental progress of both models that use text-based features, while
receiving messages 1 to 16. With arrival of each new information, the model
is able to improve gradually. Notice that there is not necessarily a direct
mapping between number of messages and elapsed time, which complicates a
connection with the previous figure. Sometimes, during the first five minutes
we observe many messages, and in other cases message updates arrive at a
much lower pace.

An interesting change of perspective on these models is given by count-
ing down the time to clearance. This provides a plot where the timeline is
reversed and the first prediction is placed at t = duration since it will cor-
respond to the total remaining time to clearance. Hence, this lets us see the
performance with regards to a key indicator: remaining time. In Figure 7, we
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Figure 5: Mean Absolute Percentage Error through time.

Figure 6: Mean Absolute Percentage Error with number of messages.
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compare four models, basic set, all features, conservative and full message.
The latter, shown as a dashed purple line, will serve as the best possible
baseline where the full text report is available at initial reporting time. In
fact, this corresponds to the best one time prediction model from Section 6.1,
spread along the reverse timeline. The goal is to enhance the importance of
timeliness.

Figure 7: Performance of 4 models with respect to remaining time to clear-
ance. Light colored dots represent prediction errors for the conservative
model to illustrate the spread of the errors, which is visually similar to all
models. The four lines are 5 degree polynomial fits to respective data.

We can consider the basic and full message models as the upper and lower
error bounds, respectively, with respect to timeliness of message updates. For
example, if we systematically delay the message updates, the blue and cyan
lines (all features and conservative, respectively) will come closer to the basic
model performance. The intuition is simple: if the message arrives too late,
text features will not add relevant information in comparison to the elapsed
duration itself. On the other hand, if we obtain the messages earlier in time,
we improve the predictions, in the limit being as good as the full message
model, which has all information at time zero. This lets us visualize the
practical benefits of a more efficient workflow of the reporting process at the
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6.43 min

12.4 min

11 min
9.85 min 5.16 min

Figure 8: Performance through time.

traffic management center.
Another observation is that the last 15 minutes before clearance present

a general decline in the median/mean performance of the models (except
for the model with full message). Again, the problem lies in the large set of
incidents that last less than 15 minutes, that now concentrate on the far right
of the graph. A possible solution to this problem would be a two-tier model
where a binary classifier first distinguishes between incidents with more or
less than 15 minutes duration, and then two regression models estimate the
duration.

Finally, Figure 8 illustrates the performance through time of the model
with all features in terms of absolute error. Each of the 16018 individual
points indicates a prediction error obtained at a specific moment in time.
Each incident thus generates as many predictions as message updates, in-
cluding the last one (often a clearance or closing notification). The error
is highly skewed to the higher durations due to exceptional outliers, thus
the use of the median line. Interestingly, many such outliers correspond to
repeated prediction failures for the same incident.

Relative to the model without topics (basic), the overall median error of
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the all features model decreases by 28% (9.9 vs 13.8). Except for the very
long durations, we notice that there is always some residual error, of at least
5 minutes. Although this may be mostly related with the inherent statistical
heterogeneity of this problem, our intuition is that there is potential for
improvement, namely by adding new information, such as traffic conditions,
distance to emergency response bases or weather status.

7 Conclusions and future work

This paper presented a machine learning framework that uses topic modeling,
a text analysis technique, in addition to typical features (number of vehicles
involves, lanes blocked, etc.) to generate predictions of accident duration.
The model continuously generates predictions as new information becomes
available in form of textual updates to the incident report.

We evaluated extensively the range of possible parameters for our topic
modeling technique, called latent dirichlet allocation (LDA) Blei et al. (2003),
and concluded that our report messages can be re-represented as combina-
tions of 25 different topics. Following earlier literature Valenti et al. (2010),
we evaluated several machine learning models, and for our context the Radial
Basis Function revealed the best results. We compared predictions with and
without text analysis using several different models. For a single prediction
with full information, our model could achieve a correlation coefficient of
0.75 and a median error of 10.5 minutes, as opposed to 0.48 and 16.6 min-
utes for the best model without text analysis, representing a decrease in the
error of more than 35% and a relevant improvement in terms of the overall
behaviour of the model. For the sequential prediction, it is able to generate
reliable predictions after 15 minutes and consistently improves the estimates
as new information arrives, gradually reducing the median error from 12.5
to less than 5 minutes after 150 minutes of elapsed time. Comparing the se-
quential models with and without topics, the overall median error decreases
by 28%.

The model here presented did not have access to traffic sensing infor-
mation, which means that it didn’t take into account the traffic conditions.
However, it is arguable that, together with text-based evaluation of accident
severity, such information should help the model increase further its accu-
racy. For example, if there exist injuries or oil spillage, the traffic conditions
on the roads that connect to the emergency support services will influence
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the clearance time. Thus, a natural next stage of this research is to include a
real-time information feed that reveals the traffic conditions in the relevant
areas.

This methodology is applicable to other areas within transportation be-
yond incident scenarios. In fact, it applies to any other context where relevant
information is available in natural language form. For example, in the Inter-
net, we may find traffic information in text form (e.g. from Twitter or Waze)
as well as special events announcements (e.g. Facebook, Eventful). Verbal
communications, such as radio stations, often carry last-minute information
about the transport system before becoming available to authorities or de-
tected by sensors. With appropriate analysis tools, one can extract uniquely
rich information to feed applications in transport operations, planning and
management.
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APPENDIX

7.1 LDA plate notation

Figure 9 depicts the LDA model in plate notation. This is a common graphi-
cal model representation, particularly useful for generative models. It allows
us to see the dependencies and groupings between different variables. The
dark shaded nodes represent observed variables. The boxes (the “plates”)
represent multiple iterations of the same sub-graph. For example, there exist
a set of K samples of βk, drawn from a (dirichlet) distribution parameterized
by η.

Figure 9: Plate representation for the LDA model.

D denotes the number of documents, N the number of words in each doc-
ument, βk represents the word distribution of a topic, θd represents the topic
distribution of a document, zd,n the topic assigned to word n of document d,
and wd,n the word itself, which is determined by the topic k = zd,n using a
multinomial distribution with parameter βk.

7.2 LDA parameter analysis

To select an appropriate set of values for K, α and η, we sampled sequential
prediction runs withK ∈ {5, 10, 15, 18, 25, 30}, and α, η ∈ {0.01, 0.25, 0.5, 0.75, 1}.
We chose sets of fixed values to easily compare pairs of runs with only one
differing parameter. We defined a limited number of different values to con-
strain the search space. In this way, we have 6×5×5 = 150 possible runs. For
practical reasons, we did not run all of them, and we used linear regression
instead of slower algorithms such as Radial Basis Functions.

For the best case (α = 0.5, η = 0.75), we further explored the neighbor-
hood values. We chose K = 25 instead of K = 30 since the latter brings
a negligible gain (of 0.1 minutes) at the expense of more 5 variables. No-
tice that the resulting values are inferior to the final ones reported in the
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paper (obtained with the RBF), which would be expectable. To certify the
overall consistency of the results, we also re-ran some of the sampled combina-
tions, confirming similar performance relative to the chosen set of parameters
(K = 25, α = 0.5, η = 0.75).

7.3 One time model linear regression

Tables 4 and 5 present the coefficients of the LR model and the LDA topic
list, respectively. The LR algorithm used also applies feature selection, using
the M5’s method, which steps through the attributes removing the one with
the smallest standardised coefficient until no improvement is observed in the
estimate of the error given by the Akaike information criterion (AIC).

We can identify topics that are relevant, namely 1, 4, 6 and 14 suggest
longer duration (related to injuries, oil spillage, need for towing vehicle)
while others suggest shorter times such as when the driver is able to self-
drive the car off the road. We remind the reader that the target variable is
in logarithm form so a strong negative value (as in topic 17) simply forces to
predict zero duration. We can also note that some topics are essentially noise
that effectively was dropped out by the linear regression model, for example
topics 3, 19 and 20.
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Table 3: Selection of hyper parameters

K=5 CC K=5 MAE

0.01 0.25 0.5 0.75 1 0.01 0.25 0.5 0.75 1
0.01 0.57 0.57 0.57 0.01 19.1 19.0 19.0
0.25 0.25
0.5 0.57 0.56 0.57 0.5 18.9 19.1 19.0
0.8 0.57 0.8 18.9
1 0.56 0.57 1 19.0 18.9

K=10 CC K=10 MAE

0.01 0.25 0.5 0.75 1 0.01 0.25 0.5 0.75 1
0.01 0.56 0.01 19.1
0.25 0.25
0.5 0.56 0.5 19.2
0.8 0.57 0.8 19
1 1

K=15 CC K=15 MAE

0.01 0.25 0.5 0.75 1 0.01 0.25 0.5 0.75 1
0.01 0.58 0.01 18.9
0.25 0.25
0.5 0.57 0.5 19
0.8 0.57 0.8 18.8
1 0.56 1 19.2

K=18 CC K=18 MAE

0.01 0.25 0.5 0.75 1 0.01 0.25 0.5 0.75 1
0.01 0.58 0.58 0.56 0.01 18.9 18.9 19.1
0.25 0.6 0.25 18.5
0.5 0.57 0.58 0.58 0.6 0.6 0.5 18.9 18.9 19 18.4 18.4
0.8 0.57 0.56 0.8 19 19.2

K=25 CC K=25 MAE

0.01 0.25 0.5 0.75 1 0.01 0.25 0.5 0.75 1
0.01 0.58 0.58 0.01 18.7 18.7
0.25 0.61 0.25 18.3
0.5 0.58 0.59 0.61 0.61 0.5 18.8 18.4 18.2 18.2
0.8 0.58 0.59 0.8 18.8 18.6
1 0.57 1 19

K=30 CC K=30 MAE

0.01 0.25 0.5 0.75 1 0.01 0.25 0.5 0.75 1
0.01 0.58 0.58 0.01 18.6 18.9
0.25 0.58 0.25 18.6
0.5 0.61 0.61 0.61 0.5 18.1 18.1 18.2
0.8 0.8
1 0.58 1 18.8

Eta Eta

alpha alpha

Eta Eta

alpha alpha

Eta Eta

alpha alpha

Eta Eta

Eta Eta

alpha alpha

alpha alpha

Eta Eta

alpha alpha
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Table 4: Linear regression results for K = 25, α = 0.5 and η = 0.75
(codes=*p < 0.1; **p < 0.05; ***p < 0.001; ****p << 0.001)

Attribute Coefficient Std. Error Std. Coeff. Tolerance t-stat p-value Code
time of day = night 0.264 0.034 0.598 0.943 7.87 0.0 ****
time of day = morn peak -0.051 0.033 -0.109 1.0 -1.565 0.148
time of day = aftrn npeak -0.057 0.035 -0.162 0.995 -1.621 0.131
time of day = aftrn peak -0.069 0.032 -0.146 0.994 -2.129 0.038 **
time of day = dinner 0.024 0.035 0.064 0.999 0.685 0.499
time of day = morn npeak -0.049 0.033 -0.112 0.999 -1.466 0.184
CONGT STATUS 0.382 0.03 0.624 0.983 12.713 0.0 ****
NUM BLOCK LANES 0.056 0.035 0.044 0.994 1.593 0.139
capacity reduction 0.396 0.063 0.366 0.988 6.295 0.0 ****
block shoulder 0.258 0.038 0.36 1.0 6.73 0.0 ****
qlength 0.014 0.01 0.029 0.96 1.387 0.217
y coord -0.003 0.001 -0.001 0.999 -2.998 0.003 ***
topic1 2.333 0.092 2.713 0.713 25.293 0.0 ****
topic2 -0.836 0.185 -0.997 0.993 -4.509 0.0 ****
topic4 0.999 0.266 0.973 0.979 3.748 0.0 ****
topic6 1.623 0.122 1.538 1.0 13.283 0.0 ****
topic7 -1.482 0.221 -1.669 0.986 -6.722 0.0 ****
topic8 -4.45 1.023 -1.901 0.808 -4.35 0.0 ****
topic11 -0.878 0.232 -0.772 0.987 -3.792 0.0 ****
topic14 2.834 0.157 3.262 0.904 18.065 0.0 ****
topic15 -2.978 0.325 -2.614 0.95 -9.171 0.0 ****
topic17 -17.566 1.397 -5.702 0.649 -12.569 0.0 ****
topic18 -1.744 0.276 -1.598 0.981 -6.328 0.0 ****
topic21 -2.261 0.104 -1.824 0.598 -21.812 0.0 ****
topic22 -0.49 0.181 -0.629 0.996 -2.704 0.008 ***
msg size 0.001 0.0 0.001 0.644 20.076 0.0 ****
same road 0.054 0.012 0.111 0.973 4.55 0.0 ****
less100 0.065 0.027 0.256 0.994 2.425 0.017 **
less5000 0.086 0.008 0.124 0.96 10.129 0.0 ****
(Intercept) 2.779 0.066 42.209 0.0 ****
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Table 5: List of 25 topics inferred by our LDA model with K = 25, α = 0.5
and η = 0.75 (we show the top 7 words)

Topic word distribution
topic #1 0.085*tp + 0.071*convei + 0.070*ab + 0.064*tow + 0.062*hosp + 0.056*rider + 0.048*bike
topic #2 0.054*ir + 0.049*confirm + 0.045*congest + 0.034*traffic + 0.027*case + 0.023*soe + 0.018*heavi
topic #3 0.001*veh + 0.001*nch + 0.001*spot + 0.000*rc + 0.000*clear + 0.000*ltm + 0.000*1ln
topic #4 0.064*exit + 0.030*road + 0.025*hit + 0.022*wait + 0.020*io + 0.019*bu + 0.014*case
topic #5 0.001*veh + 0.001*nch + 0.001*spot + 0.000*rc + 0.000*clear + 0.000*ltm + 0.000*1ln
topic #6 0.138*tow + 0.122*noinjur + 0.092*veh + 0.080*present + 0.066*clear + 0.061*owner + 0.047*nodamag
topic #7 0.074*scene + 0.053*imt + 0.019*rd + 0.018*check + 0.016*op + 0.015*inf + 0.014*inv
topic #8 0.024*taken + 0.012*photo + 0.010*drove + 0.010*nodetail + 0.008*told + 0.006*two + 0.006*avail
topic #9 0.288*vr + 0.113*ltm + 0.089*rta + 0.061*awai + 0.029*disp + 0.025*incid + 0.019*ln
topic #10 0.001*veh + 0.001*nch + 0.001*spot + 0.000*rc + 0.000*clear + 0.000*ltm + 0.000*1ln
topic #11 0.101*assist + 0.056*taxi + 0.045*notifi + 0.032*requir + 0.029*came + 0.029*p3 + 0.027*passeng
topic #12 0.076*polic + 0.041*otm + 0.033*2nd + 0.033*last + 0.023*div + 0.022*tm1 + 0.016*1st
topic #13 0.077*damag + 0.071*call + 0.043*skid + 0.034*tp + 0.029*near + 0.028*self + 0.027*vig
topic #14 0.072*left + 0.057*activ + 0.050*tp + 0.045*2ln + 0.040*scdf + 0.035*open + 0.029*spill
topic #15 0.160*minor + 0.049*exchang + 0.047*particular + 0.032*advis + 0.029*refus + 0.025*detail + 0.013*involv2
topic #16 0.001*veh + 0.001*nch + 0.001*spot + 0.000*rc + 0.000*clear + 0.000*ltm + 0.000*1ln
topic #17 0.011*sd + 0.001*bin + 0.001*wish + 0.001*skip + 0.001*veh + 0.001*tel + 0.001*design
topic #18 0.112*report + 0.093*rc + 0.063*tm + 0.041*btw + 0.036*lorri + 0.034*bef + 0.032*actv
topic #19 0.001*veh + 0.001*nch + 0.001*spot + 0.000*rc + 0.000*clear + 0.000*ltm + 0.000*1ln
topic #20 0.001*veh + 0.001*nch + 0.001*spot + 0.000*rc + 0.000*clear + 0.000*ltm + 0.000*1ln
topic #21 0.112*veh + 0.107*off + 0.086*move + 0.077*selfdriven + 0.071*1ln + 0.064*clear + 0.057*rc
topic #22 0.037*ado + 0.033*unabl + 0.033*resourc + 0.016*send + 0.016*spot + 0.015*ema + 0.014*activ
topic #23 0.001*veh + 0.001*nch + 0.001*spot + 0.000*rc + 0.000*clear + 0.000*ltm + 0.000*1ln
topic #24 0.031*tid + 0.017*messag + 0.015*msg + 0.010*manual + 0.010*test + 0.009*implement + 0.008*depatch
topic #25 0.077*alreadi + 0.049*selfskid + 0.035*a1 + 0.031*invl + 0.028*e2 + 0.026*em1 + 0.026*c1
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