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Abstract—We present arguments for a computational model
of selective attention that relies on the assumption that uncer-
tain, surprising and motive congruent/incongruent information
demands attention from an intelligent agent. This computa-
tional model that we propose has been integrated into the
architecture of a Belief-Desire-Intention artificial agent so that
this can autonomously select relevant, interesting information
of the (external or internal) environment while ignoring other
less relevant information. The advantage is that the agent can
communicate only that interesting, selective information to its
processing resources (focus of the senses, decision-making, etc.) or
to its human owner’s processing resources so that these resources
can be allocated more effectively. We provide both theoretical and
empirical arguments for that computational model.

I. INTRODUCTION

The advent of information technology is a primary reason
for the abundance of information with which humans are
inundated, due to its ability to produce more information
more quickly and to disseminate this information to a wider
audience than ever before. Surprisingly, a lot of recent studies
confirmed what Toffler [1] predicted a few decades ago: the
overabundance of information instead of being beneficial is a
huge problem having many negative implications not only in
personal life but also in organizations, business, and in general
in the world economy. Research proves that the brain simply
does not deal very well with this multitasking process: there is
a waste of time as the brain switches from one task to another
and back again [2]. This explains why decision quality and the
rate of performing tasks degrades with increases in the amount
of information being considered.

A fundamental strategy for dealing with this problem of
information overload [3] should include making devices that
incorporate themselves selective attention agents in order to
decrease the amount of information considered in their own
reasoning/decision-making processes or decrease the amount
of information provided by them to humans, preventing these
from a number of interruptions.

But how to model selective attention in artificial agents?
Although selective attention has been thoroughly researched
over the last 100 years in psychology and more recently in
neuroscience (e.g., [4], [5]), at present there is no general
theory of selective attention. Instead there are specific theories
for specific tasks such as orienting, visual search, filtering,

multiple action monitoring (dual task), and multiple object
tracking.

In spite of this, a number of models of selective attention
has been proposed in Cognitive Science (e.g., [6], [7]). Par-
ticularly related with these models is the issue of measuring
the value of information. A considerable amount of literature
has been published on these measures, especially from the
fields of active learning and experimental design. Most of those
measures rely on assessing the utility or the informativeness of
information (e.g., [8], [9], [10], [11]). However, little attention
has been given to the surprising and motive congruence value
of information, giving the beliefs and desires of an agent.

Opposed to other approaches (e.g., [12], [13], [14], [15])
relying on low-level, raw information, Macedo, Reisenzein and
Cardoso (e.g., [16], [17]), and Lorini and Castelfranchi [18]
proposed, independently, computational models of surprise that
are based on the mechanism that compares newly acquired
beliefs to preexisting beliefs. Both models of artificial surprise
were influenced by psychological theories of surprise (e.g.,
[19]), and both seek to capture essential aspects of human
surprise (see for a comparison [20]). In agreement with most
theories of human surprise, both models of artificial surprise
conceptualize surprise as a fundamentally expectation- or
belief-based cognitive phenomenon, that is, as a reaction to
the disconfirmation of expectations or, more generally, beliefs.
Furthermore, in both models, beliefs are understood as propo-
sitional attitudes (e.g., [21]), and a quantitative belief concept
(subjective probability) is used. Both artificial surprise models
draw a distinction between two main kinds of expectations
or beliefs whose disconfirmation causes surprise (see also
[22]): active versus passive expectations. Although Macedo
and Cardoso initially used the same surprise intensity function,
according to which the intensity of surprise about an event
is proportional to its unexpectedness, Macedo, Reisenzein
and Cardoso subsequently opted for a “contrast model” of
surprise intensity. This model assumes that the intensity of
surprise about an event reflects its probability difference to
the contextually most expected event (see also [23]).

In this paper we describe an artificial selective attention
mechanism that may be used by artificial agents so that only
cognitively and affectively, interesting/relevant information is
selected and forwarded to reasoning/decision-making units.
Our approach relies on the psychological and neuroscience



studies about selective attention which defend that variables
such as unexpectedness, unpredictability, surprise, uncertainty,
and motive congruence demand attention (e.g., [24], [4], [22]).

The next section describes the computational model of
selective attention, focusing on how the multidimensional
value of information is computed. Section 3 presents both
theoretical and empirical arguments for that computational
model of selective attention. Finally, in Section 4 we present
conclusions.

II. A COMPUTATIONAL MODEL FOR FORMS OF
SELECTIVE ATTENTION

Selective attention may be defined as the cognitive process
of selective allocation of processing resources (focus of the
senses, etc.) on relevant, important or interesting information
of the (external or internal) environment while ignoring other
less relevant information. The issue is how to measure the
value of information. What makes something interesting?

We developed an architecture for a personalized, artificial
selective attention agent (see Figure 1). We assume: (i) this
agent interacts with the external world receiving from it
information through the senses and outputs actions through
its effectors; (ii) the world is described by a large amount
of statistical experiments; (iii) the agent is a BDI agent [25],
exhibiting a prediction model (model for generating expecta-
tions, i.e., beliefs about the environment), a desire strength
prediction model (a model for generating desire strengths for
all the outcomes of the statistical experiments of the world that
are known given the desires of the agent – profile of the agent
which include basic desires), as well as the intentions (these
define the profile of the agent); (iv) the agent contains other
resources for the purpose of reasoning and decision-making.

The first of the modules of the architecture (module 1 in
Figure 1) is concerned with getting the input information. The
second is the computation of the current world state. This is
performed by generating expectations or assumptions (module
2), based on the knowledge stored in memory, for the gaps of
the environment information provided by the sensors (module
1). We assume that each piece of information resulting from
this process, before it is processed by other cognitive skills,
goes through several sub-selective attention devices, each one
evaluating information according to a certain dimension such
as surprise (module 4), uncertainty (module 5), and motive-
congruence/incongruence – happiness (module 6). For this
task the selective attention mechanism takes into account
some knowledge container (memory — preexisting informa-
tion (module 7)), and the intentions and desires (motives —
module 8). There is a decision-making module (module 9) that
takes into account the values computed by those sub-selective
attention modules and decides if a piece of information is
relevant/interesting or not. Then, this module of decision-
making selects the more relevant pieces of information so
that other resources (reasoning, decision-making, displaying,
communication resources, etc.) (module 10) can be allocated
to deal with them.

The process of making the right decision depends heavily
on a good model of the environment that surrounds agents.
This is also true for deciding in which information should
the agent focus. Unfortunately, the real world is not crystal
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Fig. 1. Architecture of an artificial selective attention agent.

clear to agents. Agents almost never have access to the whole
environment, mainly because of the incompleteness and incor-
rectness of their perceptual and understanding components. In
fact, it is too much work to obtain all the information from
a complex and dynamic world, and it is quite likely that the
accessible information suffers distortions. Nevertheless, since
the success of agents depends heavily on the completeness of
the information of the state of the world, they have to pursue
alternatives to construct good models of the world even (and
especially) when this is uncertain. According to psychologists,
cognitive scientists, and ethologists [26], [27], humans and, in
general, animals attempt to overcome this limitation through
the generation of assumptions or expectations to fill in gaps
in the present or future observational information. When the
missing information, either of the present state of the world or
of the future states of the world, becomes known to the agent,
there may be an inconsistency or conflict between it and the
assumptions or expectations that the agent has. As defended by
Reisenzein [28], Gardenfors [29], Ortony and Partridge [22],
etc., the result of this inconsistency gives rise to surprise which
in our model of selective attention and according to previous
studies plays a central role in selective attention. It also gives
rise to the process of updating beliefs, called belief revision
(e.g., [30]).

The representation of the memory contents (beliefs) relies
on semantic features or attributes much like in semantic net-
works [31] or schemas [32]. Each attribute, attri, viewed by us
as a statistical experiment, is described by a probabilistic distri-
bution, i.e., a set Ai = {< valuej , probj , desireStrengthj >:
j = 1, 2, . . . , n}, where n is the number of possible val-
ues of the attribute, P (attri = valuej) = probj , and
desireStrengthj is the desirability of attri = valuej (for
a related work see [33]).

While the belief strengths are inferred from data using
a frequentist approach and updated as new information is
acquired, the desirability of the outcomes can be previously set
up or learned based on the intentions and contexts of the agent
on which it depends, suffering changes whenever the agent
is committed with a new intention and/or in a new context.
For modelling this dynamics, we make use a desire strength
prediction model, i.e., a model for generating desire strengths
for all the outcomes of the statistical experiments of the world



that are know given the desires of the agent, the intentions, as
well as the context of the user (for more details see [34]). As
seen before, the desire strength is associated with each attribute
together with the belief strength.

Much like the motivation system of Clarion [35], the
module of desires encompasses explicit (goals) and implicit
motives (basic desires). Following the pluralist view of moti-
vation [36], [37], [38], [39], the sub-module of basic desires
(basic motivations/motives) contains a set of basic desires that
drive the behaviour of the agent by guiding the agent to reduce
or to maximize a particular feeling [40]. Among the basic
desires we can find surprise and curiosity.

The module of feelings receives information about a state
of the environment and outputs the intensities of feelings.
Following Clore [41], we include in this module affective,
cognitive, and bodily feelings. The latter two categories are
merged to form the category of non affective feelings. This
means that this module is much broader than a module of
emotion that could be considered. Feelings are of primary
relevance to influence the behavior of an agent, because
computing their intensity the agent measures the degree to
which the desires are fulfilled. In this paper, we highlight the
feelings of surprise and pleasantness/unplesantness.

Although the architecture of the computational model of
selective attention includes all those above-mentioned sub-
selective attention modules, we reserve some room in the
architecture of the model for other sub-selective attention
components, such as coping potential, complexity.

The next sub-sections describe each one of the dimensions
for evaluating information, namely surprise, uncertainty, and
motive congruence/incongruence. While the dimensions of
surprise and uncertainty are related to the value of information
to the belief store of the agent, the dimension of motive
congruence/incongruence is related to the value of information
to the goals/desires of the agent (these dimensions are related
to the concepts of cognitive and affective feelings of [41] and
belief-belief and belief-desire comparators of [33]).

A. Surprise Value of Information

We adopted the computational model of surprise of [16],
[17] which is formally defined in Definition 1 (for related
models see [20]). Macedo, Cardoso and Reisenzein computa-
tional model of surprise suggests that the intensity of surprise
about an event Eg , from a set of mutually exclusive events
E1, E2, . . . , Em, is a nonlinear function of the difference, or
contrast, between its probability and the probability of the
highest expected event Eh in the set of mutually exclusive
events E1, E2, . . . , Em.

Definition 1: Let (Ω, A, P ) be a probability space where
Ω is the sample space (i.e., the set of possible outcomes of the
experiment), A = A1, A2, .., An is a σ-field of subsets of Ω
(also called the event space, i.e., all the possible events), and P
is a probability measure which assigns a real number P (F ) to
every member F of the σ-field A. Let E = {E1, E2, . . . , Em},
Ei ∈ A, be a set of mutually exclusive events in that
probability space with probabilities P (Ei) >= 0, such that∑m

i=1 P (Ei) = 1. Let Eh be the highest expected event from
E. The intensity of surprise about an event Eg from E is given
by:

S(Eg) = log(1 + P (Eh)− P (Eg)) (1)

The probability difference between P (Eh) and P (Eg) can
be interpreted as the amount by which the probability of Eg

would have to be increased for Eg to become unsurprising.

Proposition 1: In each set of mutually exclusive events,
there is always at least one event whose occurrence is unsur-
prising, namely, Eh.

B. Uncertainty-based Value of Information

Information is a decrease in uncertainty which, according
to information theory, is measured by entropy [42]. When
new information is acquired its amount may be measured by
the difference between the prior uncertainty and the posterior
uncertainty.

Definition 2: Let (Ω, A, Pprior) be a probability space
where Ω is the sample space (i.e., the set of possible outcomes
of the experiment), A = A1, A2, .., Am is a σ-field of subsets
of Ω (also called the event space, i.e., all the possible events),
and Pprior is a probability measure which assigns a real
number Pprior(F ) to every member F of the σ-field A. Let
E = {E1, E2, . . . , Em}, Ei ∈ A, be a set of mutually
exclusive events in that probability space with probabilities
Pprior(Ei) >= 0, such that

∑m
i=1 Pprior(Ei) = 1. Let

Ppost be the posterior probability measure, after some data
is acquired, which assigns a real number Ppost(F ) to every
member F of the σ-field A such that it assigns Ppost(Ei) >= 0
with

∑m
i=1 Ppost(Ei) = 1. According to information theory,

the information gain of an agent after some data is acquired,
IG(E), is given by the decrease in uncertainty:

IG(E) = Hprior(E)−Hpost(E)

= −
m∑
i=1

Pprior(Ei)× log(Pprior(Ei))−

(−
m∑
i=1

Ppost(Ei)× log(Ppost(Ei))) (2)

Hpost = 0 if and only if all the Ppost(Ei) but one are zero,
this one having the value unity. Thus only when we are certain
of the outcome does Hpost vanish, otherwise it is positive.

IG is not normalized. In order to normalize it we must
divide it by log(m) since it can be proved that IG ≤ log(m):

IG(E) =
Hprior(E)−Hpost(E)

log(m)
(3)

C. Motive Congruence/Incongruence-based Value of Informa-
tion

While the measure of surprise takes into account beliefs
that can be confirmed or not, the pleasantness function that we
describe in this subsection takes as input desires that, contrary



to beliefs, can be satisfied or frustrated. Following the belief-
desire theory of emotion [33], we assume that an agent feels
happiness if it desires a state of affairs (a proposition) and
firmly beliefs that that state of affairs obtains. The intensity
of happiness about an event is a monotonically increasing
function of the degree of desire of that event as formally
defined in Definition 4.

Definition 3: Let (Ω, A) be a measurable space where Ω
is the sample space (i.e., the set of possible outcomes of the
experiment) and A = A1, A2, .., Am a σ-field of subsets of
Ω (also called the event space, i.e., all the possible events).
We define the measure of desirability of an event on (Ω, A)
as D : A → [−1, 1], i.e., as a signed measure which assigns
a real number −1 ≤ D(F ) ≤ 1 to every member F of the σ-
field A based on the profile of the agent, so that the following
properties are satisfied:

• D(∅) = 0

• if A1, A2, . . . is a collection of disjoint members of
A, in that Ai ∩Aj = ∅ for all i 6= j, then

D(

∞⋃
i=0

Ai) =

∞∑
i=0

D(Ai) (4)

The triple (Ω, A,D) is called the desirability space.

Definition 4: Let (Ω, A, P ) and (Ω, A,D) be the proba-
bility and the desirability spaces described, respectively, in
Definition 1 and Definition 3. Let E = {E1, E2, . . . , Em},
Ei ∈ A, be a set of mutually exclusive events in that probabil-
ity space with probabilities P (Ei) >= 0,

∑m
i=1 P (Ei) = 1. If

P (Eg) = 1, the intensity of happiness, i.e., motive congruence,
about an event Eg from E is given by:

MC(Eg) = D(Eg) (5)

D. The Principle of Selective Attention

Having defined the motive, the uncertainty-based, and
surprise-based selective attention modules, we are now in
a position to formulate, in a restricted sense (without the
inclusion of other information measures such as complexity),
the principle that a resource-bounded rational agent should
follow in order to avoid an overabundance of information and
interruptions in the absence of a model for decision-making.
Note that if this model is known, the problem is reduced to
the classical computation of the value of information that has
been extensively studied (e.g., [8], [31]).

Definition 5: A resource-bounded rational agent should
focus its attention only on the relevant and interesting infor-
mation, i.e., on information that is congruent or incongruent
to its motives/desires, and that is cognitively relevant because
it is surprising or because it decreases uncertainty.

We may define real numbers α, β, and γ as levels above
which the absolute values of motive congruency, surprise,
and information gain (decrease of uncertainty), respectively,
should be so that the information can be considered valuable
or interesting. These are what we called the triggering levels of
alert of the selective attention mechanism. Note that, making

one of those parameters null is equivalent to removing the con-
tribution of the corresponding component from the selective
attention mechanism (for a different approach see Martinho
and Paiva’s attention grabbing mechanism [7] which main
feature is not relying on tuned parameters but on expectation
and prediction error).

III. THEORETICAL AND EMPIRICAL ARGUMENTS

The value of a theory is a function of the problems
it resolves and the phenomena it explains. The following
arguments for the computational model described in this paper
permits to assess better its value.

A. Theoretical Arguments

In cognitive science, attentional focus is linked with expec-
tation generation and failure, i.e., with surprise [22]. Therefore,
it is reasonable to consider that any model of selective attention
should rely on a cognitive model of surprise. This justifies
the presence of such a model in the selective attention model
proposed in this paper.

However, surprise is not enough. Happiness/pleasantness,
which according to cognitive theories of emotion and specifi-
cally to belief-desire theories of emotion [33] is directly related
to congruence between new information and the human agent’s
motives/desires, may also play a fundamental role on attention
[43], [44], [45]. This ideas are matched by our computational
model of selective attention by incorporating a measure of the
expected satiation of the desires, i.e., the expected reward or
utility of the information for a specific human agent, based on
her/him particular intentions and desires at hand.

Moreover, it is generally agreed that surprise and cu-
riosity/interest play an essential role in selective attention
[46], [4], [19], [22], [14], [47]. In fact situations that include
novelty (different, unfamiliar), incongruity, unpredictability,
surprise, uncertainty, change, challenging and complexity (hard
to process, challenging, mysterious) (e.g., [46], [24], [48],
[49], [50], [43], [44], [45]) certainly demands greater attention
than a stimulus distinguished by none of these properties.
More precisely, these properties are also those assigned to
situations that cause curiosity [46], [19]. However, among
those variables, only novelty and uncertainty are taken into
account in our selective attention model. In fact, while nov-
elty and uncertainty are captured by the uncertainty-based
and surprise-based measures of information, complexity and
coping potential are not yet considered, although there is room
for them in the present model. This is therefore part of our
future work.

Besides being consistent with theoretical work, the compu-
tational model of selective attention might be used to explain
the basis of other cognitive abilities of the agent in that it
decides in which information those other cognitive abilities
should focus. In fact, the selective attention model selects the
more relevant pieces of information so that other resources
(reasoning, decision-making, displaying, communication re-
sources, etc.) (module 10) can be allocated to deal with them.

The selective attention model also explains other phe-
nomena in various domains. To illustrate, consider the traffic
information domain in which we are applying our model.



Our Intelligent Travel Information System receives information
about the traffic conditions and sends it to the mobile devices
of the travelers. All that collected information is stored in the
knowledge base/memory of the system. There is a personal
selective attention agent for each registered traveler. Each one
of these personal agents has information about the expectations
of its owner based on their travel history.

Let us illustrate how the value of information is computed
by the selective attention mechanism. Suppose that a traveller’s
navigation system provided the pre-route path containing a
road A for an agent (a driver) based on its profile (e.g.,
preference for shortest routes). Suppose the agent has the
following expectations for the traffic conditions of road A,
for a certain period/time of the day for a certain day of the
week: 60% of probability of “good traffic conditions” (event
E1), 30% of probability of “moderate traffic conditions” (event
E2), and 10% of probability of “bad traffic conditions” (event
E3). Suppose the desire strengths of these events are 1, -0.5,
and -1, respectively. Given that the agent plans to go trough
that route, suppose its module for generating/managing desires
assigns a null desire strength for the other routes as it does not
care about the traffic conditions of the other roads that are not
part of its planned route. What is the relevance of becoming
aware that the current traffic conditions of road A are good
(event E1)? Considering solely the motive-based component,
the outcomes (events E1, E2, and E3) elicits happiness (motive
congruence) with intensity 1, -0.5 and -1, respectively. E1 is
congruent/consistent with the goals of the agent, while E2 and
E3 are incongruent with the goals of the agent.

According to Equation 1, the surprise value of E1, E2, and
E3 are, respectively, 0, 0.38, and 0.58. Illustrating for the case
of E3:

Surprise(E3) = log(1 + P (E1)− P (E3))

= log(1 + 0.6− 0.1) = 0.58 (6)

According to Equation 3, the normalized information gain
value of E1, E2, or E3 is:

IG(E) =
Hprior(E)−Hpost(E)

log(m)
=
Hprior(E)− 0

log(3)

=
−
∑3

i=1 Pprior(Ei)× log(Pprior(Ei))

log(3)
= 0.82 (7)

Assume the Principle of Selective Attention described
above, with parameters α = 0.3, β = 0.5, and γ = 0.6.
Are all these events interesting? Considering the motive-
based component all those events are interesting. However,
from the perspective of the surprise-based selective attention
component, the answer is “no” to the question related with
the events E1 and E2 in that their surprise values, 0 and
0.38, respectively, are below β. With respect to E3 the answer
is “yes” given that its surprise value is 0.58. Taking the
uncertainty-based component into account, the answer is “yes”
for all the events because their occurrence gives a normalized
information gain of 0.82 which is above γ.

By enabling the possibility of considering different values
for the parameters α, β, and γ, the model permits the existence
of different selective attention models. Thus, if the parameters
are learned for a specific person (e.g., by using machine
learning techniques), it is possible to model the subjectivity
of selective attention models of different persons.

B. Empirical Arguments

We applied the selective attention model to the domain of
traveling information. As mentioned before, we are developing
an Intelligent Travel Information System in which there is a
personal selective attention agent for each registered traveler.
Each one of these personal agents has information about the
expectations of its owner based on their travel history. There
is also a master agent whose main function is gathering travel
information from various sources (e.g., Points of Interest (POI)
databases, real-time level of traffic, Google API) and make it
available to the personal agents.

We did an exploratory study in order to compare the
value of information computed by the selective attention agent
in the three dimensions described above and the value of
interest assigned by humans to traffic information and POI
recommendation. While the value of interest rated by humans
is of subjective nature, the value of interest computed by
the artificial selective attention agents is based rigorously on
expectations computed from statistical data collected from
previous travelling situations. The artificial agent used Equa-
tions 1, 3, and 5 to compute the cognitive and affective value of
information about traffic events. The results provide evidence
of the value of the model (for more details see [34]).

IV. CONCLUSION

We presented a computational model for selective attention
based on cognitive and affective feelings. We found theoretical
and empirical evidence indicating that the mechanism models
to a certain extent human selective attention. The integration
of such mechanism in artificial agents opens a wide range
of applications. In the traveling information domain that we
mentioned as in others, the selective attention mechanism
may contribute for decreasing the amount of unnecessary
information while maintaining acceptable the performance of
the owner (a human).
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