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Abstract. In the era of multi and many-core processors, computer sim-
ulations increasingly require parallel, small and fast pseudorandom num-
ber generation. Although linear generators lend themselves to a simpler
evaluation that ensures favorable properties like guaranteed period, they
may adversely affect the result of simulations or be quite large. Con-
versely, nonlinear generators may provide apparently random sequences,
but are either very slow or difficult to analyze regarding their period.
This is the case of our previous functions, Tyche and Tyche-i. Despite
being among the fastest in their class and having average periods of
2127, they may contain smaller cycles of arbitrary size. To overcome this
limitation, in this paper we explore different forms of counters impacting
either the state or the speed of the generator. We also introduce two
number-theoretic generators that use 2 × 127 bits for periods of 2116

and 2125 and low to moderate computational costs. We experimentally
demonstrate the efficiency of our new generators and observe that they
exchange speed for period guarantees in a tradeoff that seems widespread
in state-of-the-art random number generators.
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1 Introduction

Pseudorandom number generators (PRNGs) attempt to generate sequences that
have similar properties to that of genuinely random sequences, while simultane-
ously being deterministic and reproducible. Most commonly-used generators are
based on number-theoretic constructions: linear congruential generators (LCGs)
work over the ring of integers modulo m, linear feedback shift registers from
the ring of polynomials modulo p, and so on. Working in such mathematical
structures makes it easier to reason about period, equidistribution, and other
desirable properties of PRNGs. However, they are often linear, which adversely
affects real-world simulation results, and speed, due to the required arithmetic.

Nonlinear generators can be divided in two main camps. On one hand, we
have the number-theoretic generators, which rely on number theory to demon-
strate their properties, such as period and distribution. On the other hand,



there are the cryptography-based generators, which rely on the avalanche effect
of cryptographic primitives to mask any relationship from one state to the next.

Recently, non-number-theoretic, nonlinear generators have been proposed
with some success [20,24]. These often try to “mix” the bits of the PRNG’s state
as best as possible across iterations, thus obtaining quality random sequences.
Despite passing statistical tests, these generators tend to rely on heuristic as-
sumptions, making it impossible to guarantee their period or distribution prop-
erties.

Some generators, most notably the Mersenne Twister [17], use very large
states to thwart some of the drawbacks of their linearity. The SIMD-oriented
version of the Mersenne Twister [23] is indeed quite faster, but still uses a state
of similar size as the original MT, requiring hundreds of 128-bit words. Smaller-
state generators, like Xorshift [16], have small state but struggle to provide
adequate statistical quality [22].

Meanwhile, computer architecture is shifting. It is becoming harder to put
more transistors within the same chip area, and manufacturers are often forced
to choose between memory and execution units. For now, general-purpose chips,
such as x86-64 and ARM, tend to favor fast memory (cache), while special-
purpose chips (e.g., GPUs) lean toward more computational power. The current
trend appears to be towards more cores, and therefore one can expect less mem-
ory per running thread. Future PRNGs should therefore save memory and share
no state between threads, to avoid contention. By decreasing order of relevance,
modern PRNGs should have the following properties:

High quality Any proposed generator must pass stringent statistical tests, such
as TestU01’s “Big Crush” battery [13].

Large period While opinions vary about the minimum acceptable period, we
aim for a minimum of 2128.

Small state The size of the state should not be significantly larger than the
binary logarithm of its period, which we assume to be roughly 2128.

Fast The generator must be as quick as possible, because it is often in the
critical path of simulations.

Linearity enables design of fast generators with provable properties, such as
period, statistical distribution, and small state [14,26]. However, linear congru-
ential generators often possess a lattice structure that can skew the results of
a simulation [15,9]. To run away from linear generators’ drawbacks, we add an-
other requirement to a good generator: nonlinearity. This means that a generator
should not be representable as an affine transformation in F2,Zn, or any such
ring. Since provable properties such as period often affect the speed of PRNGs, in
this paper we propose a number of different algorithms, including elliptic curve
generators, to explore the speed/period tradeoff. We believe that our generators
provide excellent state-of-the-art speeds for their properties.

Our contribution in this paper is twofold: firstly, we present two nonlinear
number-theoretic generators based on elliptic curves over a prime field. Secondly,



we introduce two new tweaks to the Tyche generator [20], representing two dif-
ferent tradeoffs between period guarantee and speed. We analyze and discuss
the results in Section 3.

2 Small nonlinear generators

Generators based on number-theoretic structures are among the most common in
the literature, and include the linear congruential generator, the linear feedback
shift register and its many variants, the inversive congruential generator, Blum-
Blum-Shub [5], and others. Generally, generators in this category that are linear
are reasonably fast, while nonlinear ones tend to underperform and are less
commonly used in real applications.

The most general construction for a generator is of the form

Si = f(Si−1)

xi = g(Si)

The functions f and g are known as the transition and output functions. This
construction allows for much freedom in the design process, and encompasses
the vast majority of the existing generators. For example, in the common linear
congruential generator [14], f is the Si = aSi−1 + b mod m recurrence, while g is
usually a truncation of the current value. In this case, the computational effort is
skewed almost completely towards f . Conversely, a generator created from, e.g.,
a block cipher EK (e.g., AES-128) in counter mode [8] has Si = Si−1 + 1, and
xi = EK(Si). This case is computationally skewed towards the output function.

There are advantages and disadvantages on each of these extremes. It is easier
to find a simple function that achieves full period — for example f(x) = x + 1
— and use the output function to produce random-looking outputs, than it is to
find a random-looking transition function that also has large guaranteed period.
However, the latter case is often computationally better than the former; simple
functions often do not have good statistical properties, and the output function
has to do a large amount of work to achieve enough bit diffusion.

To achieve full period in the least possible space, the transition function
must be invertible, i.e., a permutation. Non-invertible functions have an expected
period of 2n/2 for n bits of state ; such functions therefore need 2n bits to achieve
2n period, which breaks our space-efficiency requirement. On the other hand,
there are not many restrictions on the output function.

2.1 Elliptic curves

Elliptic curves have found many uses in cryptography [18,10], and are the current
leading candidate for public-key key-exchanges and digital signatures. The set
of solutions (x, y) to the Weierstrass equation over some field F

E(F ) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, x, y, ai ∈ F (1)



together with the “point at infinity” P∞ and an point addition operation +
form an Abelian group. The order of this group, #E, follows the famous Hasse
bound:

#F + 1− 2
√

#F < #E(F ) < #F + 1 + 2
√

#F (2)

These two facts allow one to define a linear congruential-style generator of
the form

Pi = G + Pi−1 (3)

which will then have an order equal to that of the generator G. Apart from
having guaranteed period, such generators are also known to have desirable
statistical properties [11,6], have small state (i.e., one point), and can skip ahead
quickly by noticing that

Pn = nG + P0 (4)

where nG means repeated addition and can be done in O(log n) additions
using standard techniques. For a generator of this kind to be fast, two things are
required: i) fast arithmetic over F ; ii) fast point addition.

Despite all elliptic curves being representable in affine coordinates satisfying
Equation 1, several other representations exist that present certain performance
tradeoffs: Jacobian projective coordinates [7], Montgomery curves [19], Jacobi
quartics [7], Hessian curves [7], Edwards curves [4], Twisted Edwards curves [2],
and others1. Of these, there are two main representations that are of interest
to us, when it comes to cheap point addition: Montgomery curves and twisted
Edwards curves.

Algorithm 2.1: MontgomeryDouble(X,Z)

comment: K is Constant for a given curve

K ← (a2 + 2)/4
A← (X + Z)2

B ← (X − Z)2

C ← A−B
return (AB,C(B + KC))

Twisted Edwards curves have recently been used to break speed records in
elliptic curve scalar multiplication [3]. However, these curves require rather large
point representations (4 field elements) to achieve the best speeds, and even then
have relatively high addition and doubling costs. In comparison, Montgomery

1 Most known efficient formulas for various curves and point representations are found
in the Explicit-Formulas Database: http://hyperelliptic.org/EFD/index.html

http://hyperelliptic.org/EFD/index.html


curves only require two field elements but do not support full addition, instead
requiring differential addition to perform scalar multiplication. Point doubling
of Montgomery curves, listed in Algorithm 2.1, has the best operation count,
at 4 multiplications, 4 additions, and 1 multiplication by a constant. This fact
motivates our new generator mode, vaguely resembling the Blum-Blum-Shub [5]
generator:

Pi = Pi−1 + Pi−1 = 2Pi−1. (5)

This new recurrence has two advantages: it only requires point doubling,
and requires less fixed constants by removing the need for G. This recurrence
computes the sequence 2P, 4P, . . . , 2iP and is therefore also possible to skip
ahead by computing

Pn = (2n mod ord(P0))P0 (6)

and the period of this sequence is given by ord(2) mod ord(P0). The order of
this generator is thus dependent not only on the number of points in the elliptic
curve, but also on the order of 2 in the ring of integers modulo the order of the
initial point.

2.2 The M127 generator

Our first concrete proposal of a generator that achieves near 2128 period consists
of the following Montgomery curve over the integers modulo the Mersenne prime
2127 − 1:

y2 = x3 + 131074x2 + x. (7)

This curve has order 4·p1, p1 = 425352958651173079342024066491067747332.
The constant 131074 was chosen so that 32769 = (131074 + 2)/4 has Hamming
weight 2 and multiplication can be performed via one shift and one addition:
32769x = x� 15 + x.

Points are represented in the traditional Montgomery curve fashion (X,Z).
This representation only contains information about the X coordinate of a given
point; the Y coordinate is ignored, and thus points are in reality an equivalence
class of (X,Y ) and (X,−Y ). The (X,Z) representation avoids costly inversions
by storing X as a fraction, i.e., X = X/Z.

The underlying field, F2127−1, was chosen to minimize the cost of modular
reduction. Modular reduction by 2n − 1 is known to be achievable by the divi-
sionless expression

x mod (2n − 1) ≡ (x mod 2n + bx/2nc) mod (2n − 1). (8)

To select a starting point from a (say) 128-bit seed s, one can compute
P0 = s(2, 1). Note that (2, 1) has order p1, and thus there is no chance that an

2 The order of Montgomery curves is always a multiple of 4.



unlucky seed will get stuck in a small order point forever. The only seed that
must be avoided is, of course, p1 itself, since this would result in the point-at-
infinity as the starting point.

This generator is appropriate for architectures where integer multiplication
is fast. There are 4 F2127−1 multiplications per iteration, each of which requires
4 64 × 64 → 128-bit multiplications. While there is plenty of exploitable paral-
lelism in both field and curve arithmetic to attenuate the effect of high-latency
multiplication instructions, it may not be enough.

2.3 The M31x4 generator

The curve from the previous section relied on fast arithmetic over the under-
lying field. While this can be reasonably expected from large general purpose
processors, it is often the case that smaller or specialized processors are unable
to perform multiple-precision arithmetic very quickly. Furthermore, small inte-
ger multiplication has quadratic complexity, and for CPUs with small register
sizes that complexity grows quickly. For this reason we propose the following
generator, which only requires 32-bit arithmetic.

This generator uses not one, but 4 Montgomery curves in parallel over the
Mersenne prime 231 − 1:

y2 = x3 + vix
2 + x (9)

where v = {904572996, 1467357171, 1043599384, 1244578513}. The 4 curves
have orders of respectively 4 · 536871259, 4 · 536872363, 4 · 536872907, and 4 ·
536873203. At the end of each iteration, the generator outputs the combination
of the x-coordinates of the points:

g(x0, x1, x2, x3) = x0 ⊕ (x1 ≪ 7)⊕ (x2 ≪ 11)⊕ (x3 ≪ 29) (10)

where ⊕ means XOR and ≪ means rotation towards the most significant
bits.

The 4 vi parameters were chosen to maximize the order of 2 in the respective
fields. This makes the overall period of this generator 536871258 · 536872362 ·
536872906 · 536873202 ≈ 2116.

This generator allows many different implementation approaches, and is suit-
able for large CPUs (where it can be implemented using general purpose instruc-
tion or SIMD) and GPUs alike.

2.4 Tweaking Tyche with a counter

The Tyche generator [20] is a generator based on the ChaCha core permuta-
tion [1], which works in a mode similar to OFB mode in block ciphers. We refer
to [20] for the complete description of Tyche. While it shows great performance
across many architectures, due to its use of simple 32-bit instructions, it has
several drawbacks:



No provable period Treating the core permutation MIX as a random permu-
tation allows us to estimate the expected period of a sequence to be roughly
2127. However, this says nothing about the actual cycle structure of Tyche,
and unlikely as it may be, there may be some hidden pitfalls in this generator.

No random access While Tyche provides some higher level parallelism sup-
port by defining different stream starting points, it is impossible to jump
ahead inside a single stream. This may be inconvenient in some situations.

In this section we propose a tweak to Tyche [20], named Tyche-CTR-R, to
change the mode of operation of Tyche. Once the initial state is set up, the
least significant 64 bits are used as a counter incremented by the odd constant
58717810085618958653, while the most significant 64 bits remain constant, serv-
ing as identifier (a nonce) of the current stream. Then, this state is processed
R times by the MIX function, and the least significant word is returned. Algo-
rithm 2.2 describes Tyche-CTR-R.

Algorithm 2.2: Tyche-CTR-R(a, b, c, d)

(b, a)← (a + 232b) + 5871781008561895865
(a′, b′, c′, d′)← (a, b, c, d)
for i← 0 to R
do (a′, b′, c′, d′)←MIX(a′, b′, c′, d′)

return (a′)

Our experiments have suggested that 5 rounds, i.e., Tyche-CTR-5, are suffi-
cient to achieve enough diffusion to pass known statistical tests. It is easy to see
that the period of Tyche-CTR-R is 264 and it is easy to jump ahead arbitrar-
ily within a stream, by adding an appropriate multiple of the constant used in
Algorithm 2.2. This also implies the generator is massively paralellizable. One
should notice that Tyche-CTR-5 provides 264 distinct streams with a guaranteed
period of 264, and still enables further tweaks to the lengths of the counter and
nonce.

2.5 Tyche as a counter-dependent generator

The tweak presented in the previous section was fairly aggressive: instead of one
MIX call per iteration, we now require R ≥ 5 calls to achieve the same effect. This
is a massive slowdown, even though it does enable some desirable properties, and
the higher latency may be hidden by computing several values in parallel.

We propose in this section another tradeoff: a 232 guaranteed minimum pe-
riod, 2159 average period, and 160 bits of state. The approach we follow is known
as counter-dependent generators [25], and is pictured in Algorithm 2.3.

3 Counters that add an odd constant different from 1 are often known as Weyl gener-
ators.



Table 1: Timing and period information of Section 2 generators, a 128-bit LCG,
and a 128-bit EC-RNG.

Generator State bits Cycles/Iteration Average period Min period Jump ahead

LCG-128 127 32 2127 − 1 2127 − 1 Yes

EC-LCG 3 × 127 238 ≈ 2127 ≈ 2127 Yes

XORWOW [21] 192 7 2192 − 232 2192 − 232 Yes

M127 2 × 127 96 ≈ 2125 ≈ 2125 Yes

M31x4 2 × 127 38 ≈ 2116 ≈ 2116 Yes

Tyche [20] 128 12 ≈ 2127 1 No

Tyche-i [20] 128 6 ≈ 2127 1 No

Tyche-CD-32 160 12 ≈ 2159 232 No

Tyche-CTR-5 128 44 264 264 Yes

Algorithm 2.3: Tyche-CD-32(a, b, c, d, e)

e← e + (e2 ∨ 5) mod 232

(a, b, c, d)←MIX(a, b, c, d)
return (b + e)

Since this tweak does not enable random stream access, we opted to use the
T-function x+(x2∨5) (mod 2n), proven by Klimov and Shamir to be invertible
and single-cycled [12]. This function is executed in parallel with MIX, and is
not expected to significantly slow down the generator. Additionally, the greater
complexity of this function provides some more diffusion than a simpler counter.

3 Results and discussion

The generators described in Section 2 have passed the TestU01 [13] “BigCrush”
battery of tests. Therefore, to evaluate their performance, we include timings
for a 128-bit LCG with modulus 2127 − 1 and multiplier 43, and an EC-LCG
using projective coordinates over a Weierstrass curve of prime order over the
same prime as M127, 2127 − 1. Additionally, we also compare the original Tyche
algorithm against the variants proposed in Section 2.4 and 2.5.

Table 1 shows the number of cycles per iteration of the aforementioned gen-
erators. The timings were obtained on an Intel Core-i7 2630QM “Sandy Bridge”
processor, with Turbo Boost and hyperthreading disabled.

It is apparent from Table 1 that M127, despite much optimization effort, is
quite far from the performance of a similar-period LCG. Nevertheless, it is more
than twice as fast as an EC-LCG of similar period, most of this stemming from
the faster Montgomery doubling operation. The speed of the M31x4 generator
is on the same order of magnitude as the LCG, due to the lack of large integer
arithmetic in favor of parallel small elliptic curves and a simple combiner.



One pattern that emerges is that the number-theoretic generators do not
seem to have significant advantages over the counter-based generator. The counter-
based generator Tyche-CTR-5 not only is faster than the nonlinear number-
theoretic generators, but also contains every feature found in the latter. Note
that if storage space is not an issue, it is possible to, e.g., run 4 or 8 parallel in-
stances of the Tyche-CTR in SIMD registers, resulting in a significant speedup.
This would be impossible in recursive generators.

Finally the Tyche-CD-32 generator strikes a balance between features and
speed. It is as fast as Tyche, hiding the extra instructions in between Tyche’s
critical path, guarantees a reasonable minimum period of 232, and does not
require vectorization tricks to be extremely quick.

Ultimately, this is the tradeoff generators seem to make: linear generators can
be fast, small, and provably periodic, but suffer in statistical properties; nonlinear
generators can be fast and small, but their period will not be provable and
are purely sequential; nonlinear number theoretic generators will have provable
period, but will suffer in speed due to the heavy arithmetic.

Future work involves investigating additional number-theoretic constructs
to obtain faster generators; perhaps elliptic curves are not the optimal choice,
despite their popularity in cryptography.
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