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Abstract—This paper presents a methodology for estimating
the upper and lower bounds of a real-time traffic prediction
system, i.e. its prediction interval (PI). Without a very complex
implementation work, our model is able to complement any pre-
existing prediction system with extra uncertainty information
such as the 5% and 95% quantiles. We treat the traffic prediction
system as a black box that provides a feed of predictions.
Having this feed together with observed values, we then train
conditional quantile regression methods that estimate upper and
lower quantiles of the error.

The goal of conditional quantile regression is to determine a
function, dτ (x), that returns the specific quantile τ of a target
variable d, given an input vector x. Following Koenker [1], we
implement two functional forms of dτ (x): locally weighted linear,
which relies on value on the neighborhood of x; and splines, a
piecewise defined smooth polynomial function.

We demonstrate this methodology with three different traffic
prediction models applied to two freeway data-sets from Irvine,
CA, and Tel Aviv in Israel. We contrast the results with a
traditional confidence intervals approach that assumes that error
is normally distributed with constant (homoscedastic) variance.
We apply several evaluation measures based on earlier literature
and also contribute two new measures that focus on relative
interval length and balance between accuracy and interval length.
For the available dataset, we verified that conditional quantile
regression outperforms the homoscedastic baseline in the vast
majority of the indicators.

Keywords: uncertainty, prediction intervals, dynamic traffic
assignment, quantile regression, traffic prediction

I. INTRODUCTION

Real time traffic prediction involves a very large number of
interacting factors, many of them not directly observable, such
as noise/no data in sensors and communications, behavioral
parameters (e.g. trip destinations), uncertainty in incidents
(e.g. actual occurrence times, capacity reduction), lack of
detailed weather information and many others. Continuously
predicting the state of such a complex system that involves
so many spatial and temporal correlations thus becomes prone
to a very heterogeneous error structure. As a consequence,
traditional error treatment may lead to disappointing estimates
and a frustrating service to the end user. Providing confidence
intervals that assume a constant (homoscedastic) normal error
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distribution may dramatically fail whenever such assumption
is violated.

Provision of robust interval estimates is particularly relevant
in this context. Traffic prediction systems have the ultimate
role of increasing efficiency of the transportation system as a
whole, and users’ compliance and trust in traffic information
and guidance are key to its success. Together with consistent
predictions, that take into account driver’s reaction to infor-
mation [2], [3], trust is also supported by accurate uncertainty
measures. If the system can’t give precise estimates at a given
moment, it should not mislead users into believing so. And
opportunities to show high accuracy should not be lost either.
This can only be achieved with a careful treatment of error.

This paper introduces a methodology for estimating the
upper and lower bounds of the error for a real-time traffic
prediction system. Since we apply a meta-model perspective,
where our prediction model is seen as a black box, this
research can be applied to any other prediction model, within
and beyond the transportation context.

We define error as the difference between the observation
and the prediction. The goal is to estimate the prediction
interval (PI), i.e. upper and lower bound of this error. Thus,
for each prediction that the traffic prediction engine makes by
using its own input (e.g. traffic surveillance data, historical
data, incident information), our algorithm will make its own
prediction of the respective bounds by accessing the same in-
formation, potentially together with other sources (e.g. special
events, weather, previous error values).

Given the nature of the problem, we want to avoid assump-
tions about the error form, for example we do not intend to fit
it into a guassian conditioned on the neighborhood, as is some-
times done for heteroscedascity contexts (e.g. [4], [5]). Given
the black box assumption, we cannot also introduce variance
heterogeneity explicitly into the original model, which is,
to our knowledge, the most popular treatment (e.g. [6], [7],
[8]). Although an attractive option, propagating individualized
error variances back into the traffic prediction model would
potentially demand restructuring of the model itself, which is
often not an option. Conversely, by using a meta-model, we
can develop a relatively complex model that includes context
such as incidents, special events or weather.

In order to estimate the bounds, we use conditional quantile
regression (see e.g. [1], [9]) which directly estimates a given
quantile τ of a response variable as a function of an input
vector. In our case, the response variable will be the deviation,
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d, from the observation, having d = y − ŷ, where y is the
observed value and ŷ is the prediction according to a black
box prediction model.

Our task is thus to add, to each prediction as provided by
a black box model, its upper and lower deviation to obtain a
Q% prediction interval. In other words, the “observed” values
shall fall within such interval at least Q% of the times.

For this article, we will focus on prediction of speeds
according to three distinct models proposed by Antoniou et al.
[10], which incorporate locally weighted scatterplot smoothing
(LOESS) regression; multilayer perceptron (Neural Network);
and a conventional speed density relationship function, as
defined in Ben-Akiva et al. [3]. We will apply such models
to speed predictions in two freeway datasets from Irvine, CA,
and Tel Aviv in Israel. Each dataset comprises 5 days of data.

Each prediction from these black box models will be
augmented with an upper and lower bound estimated by our
meta-model. For this meta-model, we will test two quantile
regression approaches: locally weighted conditional quantile
regression, which essentially estimates an independent linear
model for each input vector x by giving more weight to
the (training set) vectors that fall closer to x; and third
degree splines, a piecewise third degree polynomial model that
provides better smoothing and generalization properties than
locally weighted ones. For the purpose of comparison, we will
also use a baseline model that generates prediction intervals
based on a constant variance (homoscedastic) assumption.
This is the traditional solution of estimating confidence or
prediction intervals from the observed error.

To assess the quality of the results, we will use the
measures proposed by Khosravi et al. [8], namely prediction
interval coverage probability (PICP), mean PI length (MPIL),
normalized mean PI length (NMPIL) and coverage-length-
based criterion (CLC). We will analyze the limitations of these
measures and propose two additions, namely relative mean PI
length (RMPIL) and a revised formulation of coverage-length-
based criterion (CLC2).

Thus, the main contribution of this paper is a meta-model
that uses quantile regression for creating prediction intervals in
real-time. Such model can be easily applied to other contexts
and be extended with online learning [11] or stacked regression
[12]. In this paper, we focus on the development and validation
of such meta-model from a methodological perspective, and
leave such extensions for the future work.

To provide a bigger picture for the reader, the next section
quickly summarizes the context of this work within our larger
project, DynaMIT2.0. It will serve to motivate the remainder
of the paper more clearly. We will follow with a literature
review (Section III). The methodology will be presented on
Section IV, followed by the presentation of our data context
and experiments (Section V). We will end this paper with a
discussion and conclusions.

II. CONTEXT

This work belongs to a larger framework called Dyna-
MIT2.0. It corresponds to a next generation dynamic traffic
assignment (DTA) real-time traffic prediction system that

inherits most of the aspects of earlier DynaMIT project [3] and
adds a few innovative aspects that include new types of data
(e.g. feeds from internet, real-time probes, environmental sen-
sors), multi-modality, crisis management advisory, enhanced
online and offline calibration and capabilities to better account
for uncertainty. The latter is the subject of this research.

There is uncertainty both in the input data as well as in
the outputs/predictions. The latter is both due to the inputs
themselves but also to the stochasticity and correction of the
prediction model. At the input side, DynaMIT2.0 will benefit
from information about the quality and reliability of the data;
the reliability at the output side is relevant both for the user
and for the system itself, particularly for the process of (self)
calibration [13].

This article presents a solution that will be capable of
participating both at the input and at the output side since
it will treat the signal generator as a black box. This signal
generator may range from a simple predictor that estimates
speed values from a speed/density relationship function (hav-
ing density as input) to full Origin/Destination travel time
prediction. For practical and methodological reasons, the case
study of this article will be based on the prediction/estimation
of link-based speed. Practically, we have all necessary values
(observed densities and speeds) to validate our results and it
is in itself a building block for the project. DynaMIT uses
speed/density relationship functions [14], [3] to determine
vehicle movement in its mesoscopic simulator. These functions
are often simplifications of very complex phenomena that
may be affected by external factors (e.g. weather status, time
of day, incidents) and carry a relevant level of uncertainty,
and information on uncertainty can itself be important for
DynaMIT’s online calibration process.

Since DynaMIT is not constrained to the speed/density
relationship functions, we explore two other distinct solutions,
namely LOESS regression and neural networks, that may
eventually be integrated in the system.

Methodologically, we prefer to analyze the quality of the
model with the inputs first, focusing on a quantity observed in
our dataset, speeds, and then leave the outputs for a subsequent
step. The latter will include non-observable quantities such as
travel times.

III. LITERATURE REVIEW

The issue of reliability in speed and travel time prediction
has received considerable attention in the literature, as it is
generally accepted that travelers do not only consider the
duration and congestion levels of the trip, but also its certainty,
in making pre–trip and en–route choices [15], [16], [17].
Travel time uncertainty causes scheduling costs due to early
or late arrival [18].

We focus here on uncertainty for short–term traffic forecast-
ing, therefore we redirect the interested reader to a detailed
discussion of uncertainty in medium– and long–term traffic
forecasts by De Jong et al. [19].

There are several dimensions to explore in terms of un-
certainty treatment within short term traffic prediction. The
first one relates to reliability of the input data. Techniques
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that somehow do data fusion from multiple sensor data are
key to consider. They need to take advantage heterogeneity
of sensor types (e.g. loop counters and probe vehicles [20])
as well as spatial/temporal correlations. This is a crucial
aspect in works like Sun et al.’s where they combine multiple
Bayesian networks models [21] into a single one [22] by taking
advantage of spatial/temporal correlations between different
areas/sensors. In this way, for example in absence of data from
a certain sensor, this model is still capable of generating pre-
dictions with comparable reliability in a seamless way. Later
inspired by this concept, Gao et al. [23] use a graphical lasso
(GL) methodology to extract the network correlation structure,
as opposed to the earlier used Pearson correlation coefficient
from [22]. On a somewhat similar vein to these works, Djuric
et al. [24] explore the use of Continuous Conditional Random
Fields (CCRF) to speed prediction. CCRF is a probabilis-
tic approach that can incorporate multiple traffic predictors,
improve prediction accuracy over regression models, provide
information about prediction uncertainty and consider spatial
and temporal traffic data correlations.

A second dimension on uncertainty of traffic prediction
relates to the model structure itself. Multiple traffic situation
scenarios or regimes can occur that may demand different
types of models. In this context, solutions that employ en-
semble methods have been attracting attention, For example,
van Lint et al. [25], [26] presents a framework for real–
time, short–term freeway travel time prediction that uses
an ensemble of state–space neural networks, which learn to
predict travel times directly from data obtained in real-time
that also provides confidence estimates which indicate the
reliability of the model’s outcome, given a certain input. The
resulting reliability indicator in this case does not provide
upper and lower bounds about the prediction, but instead is a
robust indicator of the reliability of that prediction; therefore,
it could be used by the operators as a leading indicator of a
deterioration of the predictive quality, so that they can seek
remedies.

From a Bayesian perspective, an ensemble can be realized as
a mixture model: rather than assuming a single underlying dis-
tribution, data follows a combination of different distributions.
Sun and Xu [27] take this perspective by combining multiple
Gaussian Processes (GP) models into a single regression
model. A Gaussian Processes model is a kernel-based non-
parametric machine learning method with well recognized
advantages in terms of adaptability and generalizability, it
has been gaining very impressive attention within and beyond
the machine learning and data mining communities. It is
however very sensitive to training dataset size since it usually
needs to memorize all input points. By effectively splitting
a hugely complex GP model into a (theoretically infinite)
set of smaller GPs, Sun and Xu are able to divide and
conquer the challenge while at the same time generating an
ensemble model that allows multiple individual probabilistic
distributions that accommodate to the heterogeneity of traffic
characteristics. Due to its probabilistic properties, this model
is capable of generating localized confidence intervals.

Another angle on uncertainty treatment relates to the (latent)
parameters of the models. It is well known that, particularly

for complex and heterogenous datasets, traditional maximum
likelihood approaches often lead to over fitting, and the
Bayesian framework is often the propsed solution. In this
framework, parameter inference considers not only the training
set likelihood but also prior knowledge on the parameters.
In such a real-world application, this aspect cannot be ig-
nored. Furthermore, depending on model functional form, such
methods are often easily extensible with online learning. For
example, Xie et al. [28] apply this framework with Gaussian
Processes for short-term traffic flow forecasting. As mentioned
above, this model allows for probabilistic interpretation of
the model output, but in these cases, however, they keep the
assumption of homoscedascity. Further work exists that equips
GPs with heteroscedastic capabilities (e.g. [7]), although to our
knowledge not applied to traffic prediction so far.

Still from the Bayesian angle, Fei et al. [29] present a
dynamic linear model for online short-term freeway travel time
prediction. The prediction result is the posterior travel time
distribution that can be employed to generate a single value
(typically but not necessarily the mean) travel time as well as a
confidence interval representing the uncertainty of travel time
prediction. Ghosh et al. [30] use Bayesian time-series models
for short-term traffic flow forecasting. Each forecast has a
probability density curve with the maximum probable value
as the point forecast. Individual probability density curves
provide a time–varying prediction interval, unlike the constant
prediction interval from classical inference methods.

Regarding the specific estimation of prediction intervals,
there has been some relevant work so far. Mazloumi et
al. [31] provide a methodology for constructing prediction
intervals for neural networks and quantifying the extent that
each source of uncertainty contributes to total prediction
uncertainty. The authors apply the methodology to bus travel
time prediction and obtain quantitative decomposition of the
prediction uncertainty into the effect of model structure and
inputs data noise. Mazloumi et al. [32] explore the value
that traffic flow data can provide to the accuracy of bus
travel–time predictions compared with when either temporal
variables or scheduled travel times are the base for prediction.
While the use of scheduled travel times results in the poorest
prediction performance, incorporating traffic flow data yields
minor improvements in prediction accuracy compared with
when temporal variables are used.

Khosravi et al. [33] present two techniques, (i) delta,
based on the interpretation of neural networks as nonlinear
regressors, and (ii) Bayesian, for the construction of prediction
intervals to account for uncertainties in travel time prediction.
The results suggest that the delta technique outperforms the
Bayesian technique in terms of narrowness of prediction inter-
vals, while prediction intervals constructed with the Bayesian
approach are more robust. Khosravi et al. [34] present a genetic
algorithm-based method to automate the process of select-
ing the optimal neural network model specification. Model
selection and parameter adjustments are performed through
a minimization of a prediction interval–based cost function,
with depends on the properties of the constructed prediction
intervals. A review of neural network–based prediction interval
methods can be found in [35].
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We have been analyzing uncertainty treatment in traffic
prediction models that mostly rely on statistical inference or
machine learning, but we cannot ignore the entire realm of
simulation based approaches, such as dynamic traffic assign-
ment (DTA), such as DynaMIT [3] or DynaSMART [36].
In these cases, the same general questions apply, regarding
input data, model parameters or model structure, and some
work has been done in studying their sensitivity to uncertainty
factors (e.g. [37], [38]). Some of the above approaches can
also be applied to this context (e.g. ensembles with different
DTA models; Bayesian formulation of input parameters), and
in fact such simulation models are themselves capable of data
fusion in the sense that they can incorporate different types of
datasources such as car counters (as volume measurements)
and probe vehicle data (as speed/travel time measurements)
(see e.g. [38]). Furthermore, by their nature, they bring the
extra capability of driving behavior simulation, which can
be key to reliable predictions in abnormal situations (e.g. by
incorporating driver’s reactions to information in incident or
crisis scenarios). For example, Antoniou et al. [39] present a
framework for the evaluation of the effectiveness of traffic di-
version strategies for non–recurrent congestion, which results
in travel time savings and increased travel time reliability (in
the form of reduced standard deviations of expected travel
time when predictive information is provided to the drivers).
Waller and Ziliaskopoulos [40] present a chance–constraint
system optimum dynamic traffic assignment formulation that
can provide solutions with a user specified level of reliability.

To conclude, significant work exists on understanding error
structure and level of uncertainty in traffic prediction systems,
mostly by incorporating it into the model itself. There is
also treatment of uncertainty at the input as well as at
the parameters level, to provide interval rather than point
estimates. In general, these works are deeply rooted in their
traffic prediction model formulations. While this is certainly
one of their strengths, it is also a weakness in terms of model
extensibility and flexibility.

What we propose here adds the perspective of an agnostic
approach, where a meta-model is designed that depends on
minimal assumptions and knowledge about the prediction
model and its own error structure. This is, to our perception,
a novel and relevant contribution to Intelligent Transportation
Systems research and practice.

IV. METHODOLOGY

Our methodology is designed with the following assump-
tions in mind:

• There is a black box model that continuously generates
predictions. These predictions can consist of network
performance indicators such as travel times, speeds or
densities;

• We focus on the error of such predictions as defined by
the (positive or negative) deviations between predicted
and observed values. In practice, we transform the error
signal into a sequence of deviations d = y − ŷ, where y
is the observed value and ŷ is the value predicted by the
black box model;

• The error has a heterogeneous nature with respect to
the input dimensions. Although it may generally have a
gaussian noise structure, its parameters vary both in terms
of mean and variance, i.e., the predictions may not only
have heterogenous variance but also be biased;

• Our task is to continuously associate prediction intervals
for this error signal, i.e., upper and lower bounds for the
predicted value of interest.

A. Prediction intervals

We need to distinguish the concept of prediction intervals
from that of confidence intervals. A 90% confidence interval
is expected to contain the population mean in at least 90%
of repeated sample experiments while a prediction interval
should contain the next predicted value in at least 90% of
the times. This subtle difference is discussed throughout the
literature (e.g. [41], [42]) and will be relevant to determine the
benchmark model that assumes constant variance, explained
later in this article.

To obtain the prediction interval bounds, we need to deter-
mine a pair of functions, dτ−(x) and dτ+(x), that respectively
provide the lower and upper quantiles, τ− and τ+, for some τ
defined by the modeler 1. This function should give values that
underestimate the observed value of d for only (1 − τ)% of
the x vectors (and conversely overestimates for τ% of them).

B. Quantile regression

Conditional quantile regression provides a solution to this
problem. It is a natural option for dealing with heteroscedastic
error from a meta-model perspective, as we hope to demon-
strate.

We will now explain conditional quantile regression, mostly
following earlier work from Roger Koenker [1]. The reader
will notice that the major difference to common regression (for
the mean value) is the loss function. While common regression
uses the sum of squared error, quantile regression applies the
tilted loss function.

1) Quantile regression with linear models: In contrast to
least-squares regression methods, which fit the regression
parameters to the conditional mean, quantile regression fits
them to the quantiles. The key difference is in the objective
function: in quantile regression, rather than minimizing the
sum of squared residuals, we use the tilted loss function,
which is essentially minimal when the exact proportion of
values fall below a specific value, the quantile. If we are
looking for the quantile τ , the loss of choosing dτ is defined
as ρτ (u) = u(τ − I(u < 0)), with u = d − dτ and I()
as an indicator function. In Figure 1, we show the general
intuition. Notice that, for τ = 0.5, the loss is evenly distributed
throughout both sides, i.e., the ideal value falls exactly in the
middle (the median) of the u line. On the other hand, for
τ = 0.75, there is an unbalance (the tilt) where staying below
the chosen value is less costly.

Another way to see this function is the following:

1To keep notation uncluttered, instead of dτ (x), we will use the following
notation: dτ corresponds to the conditional quantile function while dτi is the
value of that function for input vector xi
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Fig. 1. Tilted loss function, ρ(u).

ρτ (di − dτ ) =

{
τ(dτ − di) di >= dτ

(1− τ)(di − dτ ) di < dτ
(1)

Thus, we can determine the expected loss, Eρτ (D − dτ ),
of choosing dτ to be the τ quantile for random variable D,
given a set of samples di, with i = 1..N :

(τ − 1)
∑
di<dτ

(di − dτ ) + τ
∑

di>=dτ

(dτ − di) (2)

It will be rare to have a set of (training) samples, di, for
each input vector x such that we can precisely estimate its
local quantile in this way. Instead, we can use the distribution
of values throughout an entire dataset to estimate a single
function such that dτi = xi

Tβτ . I.e., at each input vector
xi, there will be a potentially unique quantile value, dτi , that
is a function of its components. Thus, for conditional quantile
regression, we need to minimize

(τ −1)
∑

(xi,di)∈S
di<xi

Tβτ

(di−xi
Tβτ )+τ

∑
(xi,di)∈S

di>=xi
Tβτ

(xi
Tβτ −di) (3)

with respect to the parameters βτ throughout the entire dataset
S = (X,d) of size N, where for each input vector xi ∈ X,
we have the corresponding observed deviation value, di ∈
d. In other words, we need to estimate the values for βτ
since S and τ are all given. This can be reformulated as a
linear programming problem, solvable by the simplex method.
We will not add further details on this procedure here, so we
redirect the interested reader to Koenker’s book [1] on the
subject.

For the purpose of illustration, we created two toy models
of the form y = ax + b + ε where ε is distributed either as
N(0, x) (variance grows with x) or N(0, gp(0, 1)) (variance
is sampled from a Gaussian Processes prior). We call them
noise models 1 and 2, respectively. We assume that our (black
box) predictor, ŷ, corresponds to the denoised model, ŷ =
ax+ b. We then calculated the set of deviations, di = yi− ŷi,
and applied the conditional quantile regression method just
described. The bounds become ŷτ−i = ŷi + d

τ−
i and ŷ

τ+
i =

ŷi+ d
τ+
i , respectively for lower and upper bounds at each xi.

Plots in Figure 2 show this data together with the 5% and 95%
quantile bounds given by our model. Notice that, in this case,
x or y do not correspond to any real world phenomena, they
are purely chosen for demonstrative purposes.

Fig. 2. Toy model 1 (top) and model 2 (bottom). We show the underlying
predictions (of y as a function of x) as well as the lower and upper bounds.

This procedure yields a linear model for each τ quan-
tile, thus it is insufficient when the error varies non-linearly
throughout the entire dataset. A solution is to estimate an
independent model for each prediction point by applying
locally weighted regression, essentially assigning more weight
to neighboring vectors according to some distance function, for

example the squared exponential, si,j= e

(
−
||xi−xj||

2h2

)
, where h

is known as the bandwidth, and xi and xj are any two vectors
in the dataset. Thus, we rewrite equation 3 into:

(τ−1)
∑

i:(xi,di)∈S
di<xi

Tβτ

si,0(di−xi
Tβτ )+τ

∑
i:(xi,di)∈S
di>=xi

Tβτ

si,0(xi
Tβτ−di)

(4)
where si,0 represents the distance between the prediction point
and vector xi from the dataset. Figure 3 illustrates the effect.
The wiggly behavior is due to the preference to the local versus
global fits. We will discuss this in the next section.

Locally weighted regression has been used with success in
traffic estimation and prediction (e.g. [10], [43]), and falls in
the family of vast literature on non-parametric models such as
gaussian processes [44], k-nearest neighbor regression [4] or
support vector regression [45].

2) Quantile regression with spline models: In our context,
locally linear models have three relevant problems. We need to
estimate multiple individual models; such models are limited
to a linear form and as a result the overall (piece-wise linear)
function is not smooth; unless the point’s neighborhood is
representative enough, it is more prone to overfitting than a
global model. The two latter points are clearly visible in Figure
3.

A solution to these problems proposed in [1] is to use a
splines function. This function is decomposed into a sequence
of piece-wise polynomial functions that are linked together at
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Fig. 3. Locally linear models on toy models 1 (top) and 2 (bottom).

M knot points. The splines function needs to be differentiable
in all its points, including at the knots. We apply a well
known decomposition process, the B-splines, where the spline
function is expressed as a linear combination of Basis splines
with degree k. So now we have a new definition for dτi that
adds a splines component to the linear combination xi

Tβτ
defined earlier. Formally,

dτi = xl
i

T
βlτ +

M+1∑
m=−1

amBm(x
s
i ) (5)

where xl
i and βlτ correspond to the input features and pa-

rameters that remain in the linear part of the model, and xs
i

corresponds to the input features that are applied splines. There
is an am coefficient for each of the M + 2 cubic B-spline
functions, Bm. Each one of these functions calculates the
contribution for xs

i of the piece-wise cubic function between
knots m and m+1. The B-spline functions, Bm, are the subject
of extensive literature and are implemented in a wide variety of
software packages. For further details, we redirect the reader
to [46].

To estimate and run this model, we used the packages
splines and quantreg [47], available in R [48], together with
the objective function specified by equation 3. The most
common form of spline models uses a 3rd degree polynomial,
the cubic splines. Unless otherwise mentioned, we will keep
this choice.

From the point of view of quantile regression, cubic splines
allow for capturing local effects while still being differentiable
at every point, hence the smoothing effect and better general-
ization properties.

In Figure 4, we illustrate the result with the toy model above
described. In this case, we use dτi =

∑M+1
m=−1 amBm(x).

We will not provide further details on quantile regression
so we redirect the interested reader to fundamental literature,

Fig. 4. Cubic splines on toy models 1 (top) and 2 (bottom).

namely Koenker’s book [1], the gentle introduction of Cade
and Noon [9], or specific contributions on local linear models
[49] or application with gaussian processes [44]. We also
advise the use of the very well designed and complete quantile
regression package, quantreg, available for R [47] for those
keen to implement this method.

C. Prediction intervals for homoscedastic processes

As mentioned earlier, we will also use a baseline model
where we use a known constant (homoscedastic) variance to
generate the interval bounds for each prediction, ŷ. First, we
obtain the observed error variance from the training set, σ2,
then we determine the prediction interval bounds, ŷτ− and
ŷτ+ , according to

ŷτ± = ŷ ± tpσ
√
1 + 1/n, (6)

where tp corresponds to the quantile 100((1 − p)/2)% of
Student’s t-distribution with n-1 degrees of freedom. Such
procedure is well know and a common practice (e.g. [50]).

D. Putting it all together

The quantile regression methods presented provide a func-
tion dτ that, for any given input vector, yields the quantile
at the τ level. Our method is to use 2 independent models,
one for predicting the lower bound (τ−), the other for the
upper bound (τ+), that will be estimated from a time series of
error deviations. For the input vector, x, we will consider the
black box predicted value, ŷ, the time of day (peak, non peak),
as well as the L auto-regression lags, i.e. L previous values
of error. A preliminary autocorrelation analysis revealed that
L = 3 should be an acceptable value throughout the dataset,
i.e. in general, up to the third lag, the signal is autocorrelated
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by 0.5 or above. Other input features could be added trivially,
such as weather status or incident information, however we do
not have such information for the available datasets.

The target value is, as defined before, given by di = yi− ŷi,
the deviation between the predicted and observed value for
every single input vector xi. Our algorithms aim to predict
the upper and lower bound values, ŷiτ+ and ŷiτ− , resp., such
that, in 100 ∗ (τ+ − τ−)% of the times, the target value falls
within the interval. We will choose τ+ and τ− to be 0.95 and
0.05, respectively. This implies that, for the constant variance
model, we assign tp = 1.645 (the two-sided 90% value for
the t-distribution).

E. Performance measures

While for pointwise regression the performance measures
are very well defined and accepted (e.g. root mean squared
error, correlation coefficient, relative squared error), the same
cannot be said for evaluating interval regression. This happens
because we need to consider both whether the predicted
intervals did contain the target value as well as how precise
their bounds were. In fact, if we assign extreme values to
the bounds, we trivially get an interval predictor that contains
the targets for 100% of the times. Conversely, we can also
get very narrow intervals that repeatedly fail. A few solutions
were proposed by Khosravi et al. [8]:

• Prediction interval coverage probability (PICP),

PICP =
1

n

n∑
i=1

ci,

where ci = 1 if yi ∈ [ŷτ− , ŷτ+ ]

• Mean prediction interval length (MPIL),

MPIL =
1

n

n∑
i=1

(ŷτ+ − ŷτ−)

• Normalized MPIL, NMPIL = MPIL
R , with R being

defined a priori

• Coverage-length-based criterion (CLC),

CLC = NMPIL(1 + e(−η(PICP−µ))

with η and µ as two controlling parameters.

Ideally, PICP should be as close as possible to the
(τ+ − τ−). In our case, this should be 0.9. For MPIL, the
lowest value possible is sought. NMPIL demands a specific
parameter, R, that is not clearly defined in [8], so we propose a
specific implementation, the relative mean prediction interval
length (RMPIL),

RMPIL =
1

n

n∑
i=1

(ŷτ+ − ŷτ−)
|y − ŷ|

i.e., we normalize the interval length by the observed error.
Large intervals are in fact necessary whenever actual error

is large itself, otherwise it is not possible to cover the target
value.

In the CLC measure, the µ parameter has a very clear
meaning: it represents the desired PICP value. On the other
hand, the parameter η is difficult to materialize; it magnifies
the importance of reaching the desired PICP . Furthermore,
the interval length measure, NMPIL, has a potentially negli-
gible role. If we have a PICP below µ, even by a very small
amount, CLC becomes unreasonably affected. For example,
with µ = 0.9, η = 200 as in [8], a model with coverage
very close to the ideal such as 89% (PICP = 0.89) would
obtain a CLC higher than NMPIL2, in fact being worse than
any other model with PICP of 0.9 or above that relaxes the
bounds up to NMPIL2. In other words, unreasonably large
intervals would be preferable than a more precise model with
PICP marginally below the objective.

The value of η serves to control this effect, however its
choice is arbitrary and becomes a challenge in itself. Assigning
a very low value would also underestimate the importance
of PICP. After repeated empirical tests, we decided to set
the value to 100. We also propose a simpler measure, called
CLC2:

CLC2 = e(−RMPIL(PICP−µ))

This measure gives both MPIL and PICP comparable
roles and removes the subjective control parameter. We will
use all defined measures just discussed in our evaluation.

V. EXPERIMENTS

A. Experimental design

Two freeway data-sets from Irvine, CA, and Tel Aviv in
Israel have been used for this research. In both cases, weekday
data were used. The Irvine data set includes five days of
sensor data from freeway I-405. The application involved
training/calibration with four days of data and subsequent
testing/validation of the model framework for the fifth day (not
used in the calibration). Data from 10am to 12midnight have
been used, since this period includes the (pm) peak flow for
this direction. Speed, occupancy and flow data over 2–minute
intervals were available for calibration and validation. Occu-
pancy data have been converted to density using a relationship
from May ([14], eq. 7.2 in p. 193).

The second data set was collected in Highway 20 (Ayalon
Highway), a major intra–city freeway running through the
center of Tel Aviv in Israel. Four days of data were used for
the training of the models and a different fifth day was used
for validation. Speed, occupancy and flow data were available
and were aggregated over 5-minute intervals. Occupancy data
have been converted to density using the same relationship as
above.

The following different cases are developed, based on the
type of approach that is used for state (where applicable) and
speed prediction:

1) Typical speed-density relationship: a commonly used
relationship is fit to the speed and density data of the
training data set.
The following speed-density relationship model was
used as the reference model [3]:
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u = uf

[
1−

(
max(0, k − kmin)

kjam

)β]α
(7)

where, u denotes the space mean speed, uf the free flow
speed, k the density, kmin the minimum density, kjam
the jam density, and α and β are model parameters.
This is a variant of the speed-density traffic flow theory
relationship that is commonly used in mesoscopic traffic
simulation models. For example, this is the relationship
used in the DynaMIT model [3] and very similar to
the relationship used in the DynaSMART [36] and
mezzo [51] models.
The estimated relationship is then used to calculate
speed values based on the densities in the test data
set. The true densities (instead of predicted) are used
in this process, thus eliminating any prediction error
and providing an even better than expected prediction
of speeds for this baseline model.

2) Speed prediction framework presented in Antoniou et
al. [10]: a complete state and speed prediction frame-
work has been applied using the available data. The
methodology comprises training and application steps.
During the training step archived surveillance data are
used to (A) identify the various traffic states through
clustering the available observations; (B) estimate the
transition processes between these regimes; and (C)
estimate cluster-specific traffic models. This information
is stored into a knowledge base and supports the appli-
cation of the framework. As new measurements become
available, they are (D) classified into the appropriate
regimes and, based on the transition processes and the
short-term evolution of the traffic state, (E) short-term
predictions of the traffic state are performed using the
applicable estimated transition processes. Furthermore,
(F) the appropriate flexible traffic model is retrieved
and applied to the new observations to (G) perform
speed predictions. In this case, the optimal number of
states is used, i.e. the number of states that minimizes
the Bayesian Information Criterion (BIC), based on the
results from the model-based clustering algorithm.

3) Simplified framework presented in Antoniou et al. [10]:
The complete state and speed prediction framework is
used, but neural networks are used for the clustering and
classification steps. This is a simpler approach that is
implemented in order to assess the incremental benefits
of the proposed framework components.

These three approaches will be our black box speed pre-
diction models. Henceforth, for simplicity of reference, we
will call the first approach as spddsty; the second one will be
LOESS (locally weighted scatterplot smoothing) and the last
one will be NNet.

For each dataset and each black box model, we will run
our three prediction interval meta-models: with constant vari-
ance (const); splines quantile regression (splines); and locally
weighted quantile regression (local). We will use the first 2/3
of the dataset (ordered in time) for training and 1/3 for testing.

Fig. 5. Speed-density function performance in Ayalon.

B. Results

Table I shows the overall results obtained. Unsurprisingly,
we can see that the constant variance model achieves PICP
values close to the intended prediction interval coverage (of
0.9) in all cases but it does so at the expense of the largest
interval ranges. This also indicates that the variance observed
in the training set is similar to that of the test set, i.e. they
seem to be adequately balanced. Except for two models in
Ayalon (NNet and Loess), the quantile regression models
obtain performance with good PICP, interval length and CLC
measures. And we can also observe that the CLC2 measure
provides a more balanced evaluation with regards to PICP and
interval length.

TABLE I
OVERALL RESULTS TABLE.

blckbx meta
model dataset model PICP MPIL RMPIL CLC CLC2
Loess Irvine local 0.82 8.79 10.86 6.70E+04 2.39
Loess Irvine const 0.88 9.69 12.50 1.71E+03 1.33
Loess Irvine splines 0.81 8.67 10.76 8.09E+05 1.21
Loess Ayalon local 0.59 4.52 5.75 2.86E+14 5.90
Loess Ayalon const 0.85 8.83 11.22 3.07E+04 1.85
Loess Ayalon splines 0.69 7.42 9.80 1.25E+11 6.70
Spddsty Irvine local 0.74 15.04 12.83 1.47E+08 7.36
Spddsty Irvine const 0.92 20.88 18.12 3.56E+02 0.638
Spddsty Irvine splines 0.95 21.59 18.95 3.62E+02 0.408
Spddsty Ayalon local 0.74 8.05 9.64 2.00E+08 4.75
Spddsty Ayalon const 0.89 17.50 19.00 1.14E+03 1.16
Spddsty Ayalon splines 0.93 12.42 12.15 1.55E+02 0.698
NNet Irvine local 0.87 9.50 17.17 8.08E+02 1.51
NNet Irvine const 0.88 9.56 18.07 3.57E+03 1.71
NNet Irvine splines 0.88 10.05 19.33 4.08E+03 1.56
NNet Ayalon local 0.66 4.44 15.43 6.71E+11 5.61
NNet Ayalon const 0.86 9.53 42.22 1.08E+05 39.4
NNet Ayalon splines 0.69 6.46 23.75 7.34E+11 146

Before getting into further details, let us take a quick look
at a few of the error signals, di. Figures 5, 6, 7 and 8 show a
few examples. Due to space constraints, we focus on the more
challenging case of Ayalon, adding an example from Irvine.

There is a striking difference in variance between the
speed/density function and the other two models. And it
could be argued that this variance changes in time (x axis)
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Fig. 6. Neural network performance in Ayalon.

Fig. 7. LOESS performance in Ayalon.

Fig. 8. Speed-density function performance in Irvine.

Fig. 9. Prediction intervals for Ayalon speed density model based on splines.

in all cases, particularly for the speed/density function. For
the Irvine case, we can say that the same behavior applies,
although less sharply. Recalling Table I, the obvious interpre-
tation is that quantile regression is a good option for cases with
high, heteroscedastic, variance but, under lower and less varied
error, the traditional confidence/prediction intervals approach
may be ideal if we value coverage (PICP ) more than interval
length (RMPIL).

To better illustrate the actual performance of the algorithms,
we plot the prediction intervals through time between the
splines quantile regression and constant variance models, for
two black boxes: speed density (Figures 9 and 10) and LOESS
(Figures 11 and 12). Obviously, constant variance model
always generates the same interval length, so its coverage
depends essentially on the bias of the model. The speed
density function model seems more biased but together with
the splines model it is clearly capable obtaining the best
performance. If we take a look at CLC2, this same conclusion
would apply to the Irvine case, although it is arguable that the
splines quantile regression obtained unnecessarily high PICP
at the expense of intervals that are much larger than necessary.
Figure 13 illustrates this point.

VI. DISCUSSION

In this article, we demonstrate a methodology that is ca-
pable of obtaining prediction interval bounds for a black box
predictor that depends on very few weak assumptions. These
are: the error quantile bounds of the target variable can be
defined as a function of some available input vector x; this
function has either a linear or polynomial form (potentially
composed into a global splines model); and the training and
test sets should be independently and identically distributed
(iid). There are no other constraints with respect to the error
form or the properties of the black box model.

Of course, this versatility does not come without a cost:
being disconnected from the source itself (the black box
model) implies that we are treating the effects, not the cause.
If the traffic prediction engine has very poor performance, our
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Fig. 10. Prediction intervals for Ayalon speed density model based on
constant variance.

Fig. 11. Prediction intervals for Ayalon LOESS model based on splines.

Fig. 12. Prediction intervals for Ayalon LOESS model based on constant
variance.

algorithm won’t do more than emphasizing it more clearly, by

Fig. 13. Prediction intervals for Irvine spddsty model based on splines.

Fig. 14. Slack box plots for Ayalon spddsty model.

providing very large bounds.
We could see that, from the experiments, it is not trivial

to evaluate the quality of our three models independently of
the quality of the underlying predictions. For example, if the
observed speed value is 50km/h and the predictor gives 120
km/h, then the ideal meta-model should only allow enough
slack to cover these two values2. In this case, the smallest
slack would be 120−50 = 80 and any higher value would be
erring on the conservative side, while a lower value would
be failing to cover the observed value. The RMPIL was
designed to capture this effect, but we can better see how
the several algorithms behave in terms of slack amounts with
a visualization. Figures 14 and 15 present the box plots for the
speed density function and LOESS for Ayalon, respectively.
We show the (extra) slack performance for each of the three
meta-models. On the x axis, we show the observed speed.

In practice, a box plot for a good model should be centered
slightly above 0, preferably enough not to go below that

2We are assuming that the predicted value should be contained in the
interval. In our experiments, this was generally the case but the models could
learn otherwise.
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Fig. 15. Slack box plots for Ayalon LOESS model.

value. I.e., it would provide just enough slack above the ideal
interval length, to err on the conservative side. Except for a
few exceptions, we can clearly see that the constant variance
model chooses the largest intervals. The splines model seems
to be better than the local one in the sense that the latter
obtains more negative slacks. This is coherent with what we
see in Figures 3 and 4 of our toy model and with the related
discussion on over fitting and smoothness.

Let us now summarize a few other observations from the
experiments:

• The quantile models rarely underestimate the upper
bound but sometimes overestimate the lower bound.
This can be concerning in the case of speeds since it
corresponds to an optimistic perspective. For example,
DynaMIT2.0 may fail to anticipate congestions properly;

• As a consequence of the above, the PICP in some of
the quantile models is very low, particularly for Ayalon
NNet and Loess. The constant variance model definitely
works better in those cases but we note that it is at the
expense of large intervals (in the NNet, the RMPIL is
42.22);

• After testing with changing the splines degree to other
values {1,2,4,5}, the performance degrades;

• After testing different bandwidths, h, for the locally
weighted quantile regression {5, 10, 50, 100, 200}, the
value that provides best results, used throughout the
experiments. is 100. This is the best balance between
overfitting (small values) and noise (high values) for this
specific dataset, but we cannot speculate further about its
meaning.

• In terms of computational performance, these algorithms
spent negligible time in training and prediction on our
dataset. However, the case study deals with a single
sensor for each case study and a dense network coverage
might lead to non-negligible run times. It is expectable
that the locally weighted regression model degrades fast
with dataset size because it effectively estimates and
predicts a new model for each query. The splines model
will be slower to estimate but this can be done on an off-

line basis. The constant variance model obviously poses
minimal constraints to dataset size and can be estimated
on an off-line basis.

An important issue may arise when using conditional quan-
tile regression: the problem of crossed quantiles, when, for
a given xi, the upper quantile is below the lower quantile.
We were minimally affected by this phenomenon so it was
neglected in the work presented. However, it deserves a more
cautious treatment in practice, particularly in light of available
literature on the subject (e.g. [52], [53]).

Another concern relates to the sensitivity of the model to
traffic state dynamics. We want a model that, under stress
conditions, is able to keep the expected reliability. While it is
not easy to replicate or identify such conditions in our dataset,
we can get some insights by comparing the performance for
peak/off-peak periods. Starting with the splines model, we
see a somewhat surprising result: during peak periods, its
PICP actually increases in all cases (e.g. it improves from
0.87 to 0.91 in Irvine NNet). This obviously happens at the
expense of larger prediction intervals. Our intuition is that,
given similar circumstances in the training set (higher local
variance), the quantiles will tend to err on the safe side. For the
homoscedastic model, the opposite happens (e.g. it degrades
from 0.89 to 0.55 in Irvine NNet), which is not surprising
given the total lack of flexibility of this model. Finally, the
locally weighted quantile regression model presents mixed
results (e.g. it improves from 0.73 to 0.93 in Irvine NNet,
while it degrades from 0.88 to 0.81 in Irvine Loess). We should
however be cautious in this analysis despite these results being
encouraging. Traffic state dynamics will probably be more
challenging under exceptional circumstances (e.g. incidents,
special events, harsh weather) than the duality of peak/off-
peak. Further work will need to be done at this respect.

Finally, these experiments intended to test our methodology
without pretending an immediate real-world application with
these black box models. Although relevant for this trial, the
dataset is somewhat poor in contextual detail that should
actually improve the prediction interval capabilities. For ex-
ample, having information on incidents, weather or special
events would certainly lead to a more meaningful real-world
application.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a meta-model methodology that is capable
of estimating, in real-time, the prediction intervals for a traffic
prediction system by analyzing its error history. It does so
by applying conditional quantile regression to the time series
signal of the observed error and also considering the predicted
value itself. The lower and upper bounds become simply the
lower and upper quantiles, as per choice of the modeler. We
implemented this concept and tested it with two case-studies
in Israel and California, USA. In each case-study, the original
prediction task consisted of predicting speeds from sensed
densities.

We compared our prediction interval methodology with
a constant variance baseline and the experiments show that
quantile regression approaches are capable of determining
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smaller prediction intervals and comparable accuracy (or pre-
diction interval coverage probability, PICP ) in most cases.
More importantly, under high variance and heteroscedascity,
our approach is more adequate than using traditional confi-
dence intervals. This is particularly relevant when the error
structure is not known.

We specifically applied this concept to speed prediction but
it can be tested with any other regression task with very little
effort. For example, if we want to add interval prediction
capabilities to an existing bus arrival prediction algorithm, we
only need access to the feed of predictions and observations
as well as any other variable that is believed to correlate to
the prediction error (e.g. traffic conditions, weather status).
The model implementation and experimental methodologies
are essentially the same as in this paper.

Future research includes an investigation into the role of
different network geometry and other characteristics into the
performance of the presented approach, as well as the impact
of different prediction intervals. In this work, a preliminary
assessment of the robustness of the approach was achieved
by looking at data from different networks (i.e. Israel vs.
California), and different prediction intervals (i.e. 2 vs 5 min).

We also introduced two new performance measures that aim
to better evaluate prediction interval models, both extending
the previous work of Khosravi et al. [8] aiming for a better
balance between PICP and interval length. We add the notion
of slack as the ideal interval length corresponding to the
difference between observed and predicted.

The next step consists of the extension of this work with
the gaussian processes algorithm, from a Bayesian approach
perspective, building on the work from Boukouvalas et al.
[44] and Lázaro-Gredilla et al. [7]. We expect a performance
at least comparable to the splines model, while becoming
a very good solution for online learning. Any real-world
implementation of a prediction intervals meta-model needs to
accompany performance evolution of its associated prediction
model (online learning).

This project is integrated in the DynaMIT2.0 framework,
and participates both as an input data quality estimator as
well as a service for the end user, providing upper and lower
bounds for predictions of traffic information such as travel
times, speeds or volumes.
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