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ABSTRACT1
We propose a methodology to approximate actual incident occurrence time by analyzing down-2
stream volume sensor data. We model the time difference between actual occurrence time and3
reported time (or delay) as a latent variable that becomes a parameter in a change-point time series4
model. We then apply a maximum a posteriori (MAP) framework to infer the most probable delay.5
This MAP framework uses the time series model as the likelihood function and a bayesian prior6
based on field knowledge.7

We applied our model on 5 months of traffic sensor data and accident reports from 3 Singa-8
pore expressways and corrected the accident start times for 1086 accidents in total. We compared9
the results with a manually constructed baseline and obtained a mean absolute error (MAE) be-10
tween 5.7 and 7.4 minutes and a root mean squared error (RMSE) between 10 and 12.11
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INTRODUCTION1
By their nature, accurate traffic incident occurrence is difficult to detect both spatially and tem-2
porally. Plenty of intelligent transportation systems (ITS) research exist that focus on incident3
detection (e.g. Weil et al. (1), Karim and Adeli (2) and Tang and Gao (3)) but the focus is mostly4
on detecting that an incident has occurred, rather than precisely when it happened. The problem is5
particularly complex whenever the incident occurs away from sensors or when the overall scenario6
is highly prone to sensor noise (e.g. due to harsh weather, sensor quality, traffic conditions).7

The detection and consequent reporting of incidents to the traffic managers can happen in8
different ways, namely via the above mentioned ITS incident detection systems as well as driver9
reporting (e.g. people involved in the accident), personnel reporting (e.g. traffic police) or through10
camera monitoring in the traffic management center. The actual incident occurrence is very often11
not observed at all.12

Accurate information of incident occurrence time can be relevant in a few situations. Traffic13
prediction systems can improve their performance by incorporating incident details at the right time14
and place. Without such information, they may rely on wrong assumptions thus generating faulty15
results. Even with an efficient self-adaptive mechanism, they need time to correct the parameters,16
particularly under complex scenarios. For example, dynamic traffic assignment (DTA) models17
need to update capacity parameters accordingly for affected areas. Data-driven algorithms (e.g.18
Neural Networks, ARIMA) need to adapt to different regimes (e.g. Antoniou et al. (4)). Of course,19
this incident information will arrive itself with some delay, and this needs to be considered by the20
traffic prediction algorithm itself (e.g. by a “roll-back" mechanism).21

The ability of traffic prediction engines to roll-back and re-generate their calculations is22
fundamental because they rely on spatial an temporal correlations, i.e, the error due to lack of23
incident information will be propagated unless the system integrates it properly in the right time.24

The second general motivation regards to post-hoc incident analysis. From the point of25
view of traffic emergency management, it is important to assess the performance of incident re-26
sponse systems, and more accurate information will lead to better informed decisions in a context27
where timing is crucial.28

A third reason, yet very specific to our case, is to correct incident duration information29
in our automated incident analysis framework where we estimate capacity reduction and incident30
clearance duration sequentially in time Pereira et al. (5). These two variables alone, capacity31
reduction and incident duration, sufficiently specify the role of an incident for traffic prediction32
systems, particularly when based on simulation models (e.g. DynaMIT, from Ben-Akiva et al.33
(6)).34

In this paper, we will focus on estimating actual incident occurrence time, tocc, at some35
reporting time t0 or later, where obviously t0 > tocc. Our incident start detection model will rely36
on a signal feed that consists of volumes aggregated by 5 minutes intervals, as observed by the37
closest sensor downstream to the incident. This specific setting is determined by our case study,38
the Singapore expressways, from which we have volumes for a period of 5 months.39

Our task can be described as follows. At time t0, a report is received about an incident that40
occurred at a certain location. We have a feed of volume information from the sensor downstream41
to that location, aggregated by 5 minute intervals. We want to determine the most likely period42
when this incident has occurred. For the purposes of this paper, we assume complete availability43
of data (before and after time t0), leaving for future work a real-time sequential version, where this44
process is run at time t0 and subsequently as new information arrives.45



Pereira, Lederman and Ben-Akiva 3

More often than not, the incident will happen far from the downstream sensor, so its impact1
on the volume signal will be itself delayed. In our case, due to the short distance between sensors2
in the Singapore expressways, it has been observed that this delay is negligible, particularly taking3
into account the 5 minutes aggregation Mak (7).4

Another note relates to the reporting times. Even though traffic entities give their best to5
efficiently streamline the process, the heterogeneous characteristics of the incidents and their re-6
sponse sometimes lead to considerable delay in the reporting itself. Besides the detection delay,7
there may be other operational sources of delay that are determined by the incident characteris-8
tics (e.g. the traffic police may detect it soon but first try to unblock the road or provide local9
assistance; in case of multiple incidents, some reports may be keyed in the system with more de-10
lay). As a result, we may observe significant differences between reported time and actual incident11
occurrence.12

We propose to approach this problem in the following way:13

• each accident has its time series of volume data from the downstream sensor, we trans-14
lated this into flow. The actual accident occurrence should originate a change in the flow15
time series parameters. This corresponds to the concept of “change point" in time series16
analysis literature;17

• the true accident occurrence time is, in general, unobserved or latent;18

• we will determine tocc through a latent variable whose best approximation should support19
the maximum likelihood of the observed time series of flow for the downstream signal;20

• since we do not have the ground truth values for tocc, we will build a manual (visual)21
baseline of the start times from the time series signals.22

The next section will be dedicated to the literature review, followed by the description of23
the methodology (Section 4). In Section 5, we describe the experiments. The paper will end with24
a discussion (Section 6) and the conclusions (Section 7).25

LITERATURE REVIEW26
Literature exclusively about inference of incident start times is not abundant, but, on the other27
hand, there exist many works on the related topic of incident detection. In this review, we will28
approach these two major topics.29

Within an analysis of incident detection methods in a Singapore expressway, Mak (7) ver-30
ified that report times do not reflect the actual start time of accidents. And, due to the delay/time31
lag between reported and actual start time, simply using the reported start time would lead to mis-32
classified traffic patterns and affect the accuracy for incident detection models. On the other hand,33
he concluded that, based on the distances between the accident and the adjacent detector, the time34
it takes for the disturbance to reach the sensor falls between 0.4 and 1.39 minutes.35

Finding the incident occurrence time in the sensor signal is however a difficult challenge.36
Dia (8) proposes that a 20% disturbance in traffic parameters (speed, occupancy and volume at the37
upstream station) could be used to indicate either the start or end of an incident. According to (7),38
compared to a visual inspection, this method is more efficient and requires less experience from39
the user. However, in his experiments the two methods gave different start and end time values.40
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Besides, a strict threshold value may be too strong a constraint if we also consider other aspects,41
such as sensor quality, general traffic conditions, weather status or time of day.1

Rather than taken by itself, the task of incident start time inference has often been inte-2
grated within automatic incident detection and incident analysis works (e.g. (9)). In these cases,3
the manual analysis is chosen for practical reasons: incident start times are only needed to help cal-4
ibrate a classification algorithm (of incident detection), not being a necessary input of the model.5
In fact, it is arguable that, in some applications, the exact start time is of secondary importance.6
On an operational setting, the need is to detect the occurrence and characterization of incidents as7
soon as possible, regardless of its precise on-set time. Although the start times are not secondary8
in incident analysis, the traditional practice is still to manually analyze the signal (e.g. using 5D9
stacked bar charts (Lee et al. (10))) or use simple heuristics such as mentioned earlier (Dia (8)).10

However, there are situations where approximating the start time is important. For example,11
Jeong (11) explains that recent studies to validate AID algorithms had to rely on simulated data12
since reported start time normally maintained by freeway patrols and incident management systems13
is not precise. The difference might be a couple of minutes of even more, and creates an undesirable14
shift in the incident data.15

In traffic prediction too, an accurate characterization of incidents is important. For exam-16
ple, DynaMIT (6) uses such information to roll-back the network state estimation process with17
revised assumptions about capacity reduction on the affected links. By doing that, the system will18
better understand the flow changes and generate more accurate predictions. Notice that, in such a19
context, one needs a fully-automated system for incident start time inference rather than one base20
on manual/visual analysis.21

A final motivating argument for incident start time inference relates to incident analysis,22
particularly related to clearance duration and response times. Traffic agencies regularly need to as-23
sess and revise their incident management procedures and wrong incident start times will obviously24
affect accuracy of such evaluations.25

It is thus remarkable that little more has been done on this specific topic despite its rel-26
evance. This may be explained by the almost total lack of observability of incident occurrence27
times and for the higher focus on incident detection systems (which do not necessarily need to28
know when it happen, rather they are focused on that it had happened) rather than for traffic pre-29
diction. Current growing emphasis on traffic prediction services may possibly reverse this trend.30

METHODOLOGY31
Our goal is to estimate the start time of an incident, given a time series signal with traffic flow data.32
It is known that an accident has occurred as well as its reported location. We are also given the33
sensor data from the vicinities of the accident.34

From the point of view of the signal analysis, we can think of two general methodologies:35
heuristics application; anomaly detection. The heuristics solution follows the line proposed by36
Dia (8), that assumes a 20% disturbance in traffic parameters. As with others (e.g. largest flow37
drop), this rule is obviously too rigid, and this threshold would probably vary from dataset to38
dataset. Even with the best choice of threshold, one would face problems in applying the rule. For39
example, what would the time window be? Incident disturbance may be gradual through time, or40
be abrupt and recover quickly.41

The anomaly detection approach defines the model of expected behavior and captures de-42
viations as being anomalies. It lends itself to a more flexible approach than using heuristics in the43
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sense that it does not expect a specific threshold or a deterministic rule.44
In our case, we know that an accident occurred and expect it to somehow impact on the1

traffic signal. We prefer not to make strong heuristic assumptions but still need to assume that there2
was in fact an observable change in the signal. A concept that fits nicely with this description is that3
of time series change-point: when different subsequences of a data series follow different statistical4
distributions, commonly of the same functional form but having different parameters (12). In other5
words, an incident should originate a change in the traffic time series signal parameters that lasts6
during a period of time. It is also plausible that this change ranges from a simple shift in the mean7
to general parameter redefinition.8

Since the actual incident occurrence time is not observed, we will determine it through a9
latent variable. Our task is thus to obtain the most likely value for this variable given the change-10
point model assumption that the signal before the incident occurrence time will have a certain set11
of parameters, and after it will have another set of parameters.12

Formally, our goal is to find the incident occurrence time tocc, which is determined by13
tocc = t0− z, where t0 is the reported time and z is the latent delay observed from the signal. This14
delay in practice corresponds to the reporting delay, and it is in fact our latent variable. We want15
to maximize the probability p(z|y,θ), such that16

p(z|y,θ) ∝ p(y|z,θ)∗p(z)

with y being the vector of time-series signal and θ the vector of parameters. p(z) is the17
bayesian prior for the latent variable z, which will be discussed later. Notice that we can obtain the18
exact posterior probability for certain zi by normalization:19

p(zi|y,θ) =
p(y|zi,θ)∗p(zi)

∑j p(y|z j,θ)∗p(z j)

In general, we are looking for maximizing the probability of z (a process also known as20
maximum a posteriori, or MAP)1. Thus, we will vary choices for θ parameters as well as for the21
value of z. Formally, we want:22

argmax
z,θ

p(y,z|θ) = argmax
z

[
p(y|z,argmax

θ

p(y|z,θ))∗p(z)
]

The likelihood, p(y|z,θ), is expanded as23

p(y|z,θ) = p(yt−l,yt−l+, ...,yt, ...,yt+r−,yt0+r|z,θ) (1)

where l and r correspond respectively to the left and right time window boundaries to24
inspect. Notice that, if the algorithm is intended to run in real-time, r will be constrained to the25
most recent data. The likelihood function is determined by the typical multivariate gaussian, such26
that27

ln(p(y|z,θ)) =−1
2

ln((2π)n|Σ|)− 1
2
(y− ŷ)T

Σ(y− ŷ) (2)

1In fact, the posterior distributions of z should not be ignored since they carrier potentially relevant information
about uncertainty of the start time approximation. However, for simplicity in this paper, we will only focus on the
MAP.
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FIGURE 1 The role of z in determining the overlay and the occurrence time.

for n = r+ l+1 (all points in the time window). Σ is the covariance matrix created with Σi, j28
containing the auto covariance for lag |i− j|. ŷ corresponds to the prediction for y according to a1
time series model that considers the change point specified in z. In practice, we use the time series2
library from the Weka package (Hall et al. (13)). It formulates the time series prediction task as a3
(potentially non-linear) regression problem and transforms each time series point as a single input4
vector that carries temporal relations (e.g. lags) as well as other features, called “overlays". In5
this way, we can run any Weka regression method over our data, such as support vector machines6
(SVM), neural networks and so on. The overlays correspond to the indicator functions in time7
series literature and are crucial to our context.8

The change-point defined by z is turned into the following overlay:9

ci =

{
1 ti + z > t0
0 otherwise

where ci is the value of the overlay at time ti. The visual intuition for this effect is in Figure10
1.11

In this way, the regression algorithm will be able to distinguish between the two regimes12
while still keeping the whole time series in a single model. With adaptable regression models,13
this should both allow for superficial, mean-shift changes, as well as to entire regime changing14
situations, maximizing the global coherence, as opposed to explicitly breaking the series into two15
separate parts and re-estimating the models separately.16

Regarding the bayesian prior model for z, its role is to introduce local knowledge about17
the delays. Although the precise occurrence time is generally impossible to capture, for many18
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accidents traffic operators are able to provide rough estimates. In our case, traffic operators shared19
the intuition that reporting delays should average around 5 minutes or less. This obviously provides1
only the mean for the prior, so its form is left to the modeler. Care must be taken to avoid negative2
delays (i.e. an accident cannot occur after reported time), therefore symmetric forms such as the3
normal distribution are not an option. Moreover, it is reasonable to expect high mass in lower4
delays (e.g. 5 minutes and below) and a long tail for the high delays. A log-normal distribution5
can provide such a behavior.6

After determining the most likely occurrence time in the signal, there is one last step to7
consider. This analysis only gave us the moment in time where the incident disturbance reached8
the sensor. We also need to consider the time it takes such disturbance to go from the actual incident9
location to that sensor’s location. We can consider two situations, depending on the sensor position10
relative to the accident, namely whether it is upstream or downstream.11

In the upstream case, the disturbance propagation should be dependent on the queue forma-12
tion rate. For such case, one needs to model the queue shockwave (also using information on speed13
and capacity) to determine the time it takes for the disturbance to reach the sensor. A few solutions14
exist for this model (e.g. cell transmission model (Daganzo (14)), shockwave speed model (Kuhne15
and Michalopoulos (15))).16

When the sensor is downstream to incident, the time difference of the disturbance should17
be much smaller. Mak (7) showed that, for the case of Singapore expressways, the time it takes for18
the disturbance to reach the sensor is between 0.4 and 1.39 minutes. If we’re working with larger19
time intervals (e.g. 5 minutes), this time difference becomes negligible. Our own observations on20
the same dataset reinforce this conclusion.21

As mentioned before, this paper deals with the downstream case, leaving a solution that22
simultaneously considers upstream and downstream sensors to further work.23

Summarizing, our method approximates the incident occurrence time by maximizing the24
likelihood of a change-point model. This model is parameterized by the latent variable, z, that25
represents the delay and directly defines the change-point. The other parameters are determined26
by a general training procedure. This method does not demand any particular functional form27
for the change-point time series model and uses a bayesian prior for the variable z that builds on28
operational field knowledge.29

As in earlier works, since we don’t have a set of ground-truth observations, we will man-30
ually define a baseline for comparison. Of course, such baseline will be affected by our own31
perception biases. For example, one intuition is that a “very large drop" in flow should indicate32
the incident occurrence. While this may be a reasonable assumption, this drop may itself follow33
a trend (e.g. peak hour effects) or be a second consequence of the incident (e.g. police arrival).34
To allow a clearer analysis, we also assign a confidence value (between 1-low and 5-high) to each35
case. We have high confidence when the signal is stable enough and the disturbance is clear enough36
(as in Figure 1) or supported by the text report. We will evaluate our model with the root mean37
squared error (RMSE) as well as the Mean Absolute Error (MAE).38

EXPERIMENTS39
Data40
The dataset comprises 5 months of traffic flow data from 268 sensors located in 3 Singapore ex-41
pressways. During this period a total of 1086 traffic incidents were recorded. The distance between42
incidents and downstream sensors is distributed according to Figure 2.43
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FIGURE 2 Distance between incidents and downstream sensors.

For each incident, we have the report start time as well as the traffic volumes for the down-44
stream sensor, aggregated on 5 minute windows, the observed incident duration and a small text1
report. In Figure 3, we show two incident cases where we consider that the disturbance is clear2
(top) and unclear (bottom). We also show the results according to our algorithm (“tocc").3

For each incident, we obtained the downstream sensor data from 180 minutes before and 604
minutes after the reported time (i.e. l = 180 and r = 60 in equation 1). We standardized the signal5
having as reference the same time of day and type of day (weekend/weekday) throughout the entire6
dataset. The total number of cases is 1086. From this set, we manually inspected 401 cases for7
later comparison and validation. This manual inspection was essentially visual, very occasionally8
using the report text for further verification.9

Experimental design10
For each incident, we independently ran our model. After a trial period, where we tested with11
the complete regression portfolio from Weka (Hall et al. (13)), we decided to use a support vector12
machine algorithm. We also defined the number of lags to be 12 and kept the remaining parameters13
at default values after some exploratory experiments.14

We defined the bayesian prior for z to be the lognormal with mean 1.87 and shape (σ2) of15
0.26.16

Since our dataset is aggregated on 5 minute intervals, our values for z will also vary dis-17
cretely in the same fashion. For each incident and each possible value of z within the range [−l,r]18
(with z being a multiple of 5), we estimate a time series model as above described. We calculate19
the likelihood using equation 2 and multiply it with the prior probability. The highest value will20
indicate the maximum a posteriori, i.e. the best estimate for the incident occurrence time.21
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FIGURE 3 Two incident signals.

Results22
The left plot in Figure 4 shows the distribution of the general results through the dataset. The23
values are negative with respect to reported time (i.e. -5 corresponds to "5 minutes before the24
reported time"). Expectably, we see a high frequency of 0 and 5 minute delays, but also that there1
is a relatively long tail up to 45 minutes. One can argue that such concentration in short delays is2
artificially induced by the prior. To understand its influence, we depict the results without the prior3
effect on the right.4

It turns out that the bayesian prior does have a strong influence. Its role is essentially to5
bias the maximum a posteriori towards the 5 minutes delay other things being approximately equal.6
Notice that, for each incident, the dataset has a reasonably large number of points (50 points, from7
-180 to 60 minutes) and therefore the prior is only relevant when multiple MAP candidates exist8
with competitive probabilities. This behavior is expectable for a prior. Whether it is desirable9
or correct is subject to the context. In our case, we will compare these results with the manual10
baseline mentioned above.11
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FIGURE 4 Distribution of results through the dataset.

Tables tables 1 and 2 show the MAE and RMSE results, respectively, in comparison with12
our manual baseline, with and without using the bayesian prior for z. We show the results for the13
cases with higher confidence (ranked either 4 or 5) and for all cases evaluated.14

TABLE 1 Comparison with manual baseline (MAE)

Prior No Prior
5.7692 9.9573 High

confidence
7.3852 12.615 all

cases

TABLE 2 Comparison with manual baseline

Prior No Prior
10.096 15.832 High

confidence
11.874 17.739 all

cases

Regarding the bayesian prior, it has a non-negligible role in both MAE and RMSE. We also1
tested with different scale parameters and the chosen mean and scale yielded the best results. It2
is arguable that our own baseline is itself biased, but the intuition that the prior helps avoid over-3
fitting is relevant. Since we estimate an individual change-point model for each incident, without4
the prior, the only knowledge considered would be the flow time series for that specific window,5
which would make the model too sensitive to local context (e.g. sensor noise, secondary accidents).6
Of course, the parameters of the prior themselves should be realistic as much as possible.7

On a less positive note, the MAE and RMSE errors in comparison with the baseline are con-8
siderably high, even when using the bayesian prior. There may be several general explanations for9
this fact. Upon visual inspection, there are incidents with more than one plausible occurrence time10



Pereira, Lederman and Ben-Akiva 11

FIGURE 5 Both baseline and adjusted are plausible incident occurrence times.

and, in these cases, intuition provides contradictory answers: delay time shouldn’t be unreasonably11
high (i.e. it should be as close as possible to report time, t0); the incident may generate several flow12
disturbances (i.e. occurrence should be the earliest possible, followed by other episodes, maybe13
more intense). Figure 5 gives two examples.14

Another explanation for the differences to the baseline is that our algorithm captures time15
series model changes rather than single signal drops, therefore it may “see" patterns that the human16
eye cannot. In Figure 6, we show an example where our algorithm apparently caught the beginning17
of a new time series pattern rather than the earlier big flow drop.18

Another problem is ambiguity in the change-point determination due to the discrete nature19
of the signal. In some baseline cases, we chose the beginning of a large drop to correspond to the20
incident occurrence time, while the algorithm may also choose the end or middle of this drop (see21
Figure 7 for an example) depending on the maximum likelihood of the change point model.22

Finally, an important limitation relates to having only one change point. The sensor signal23
may have more than two regime changes due to the incident. Indeed, if we want to include the24
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FIGURE 6 Chosen time is the beginning of a new time series.

FIGURE 7 Ambiguity due to signal discretization.

recovery phase, we’d need at least two change points.1

DISCUSSION2
As with any other model designed to solve a concrete real-world problem, our methodological3
decisions were sensitive to the available dataset, which had 5 min aggregations of flow data and4
its own characteristics in terms of sensor quality and spatial distribution. With speed information5
for the same sensor locations, we could extend the model in a number of ways. Ideally we would1
integrate the speeds into the joint distribution of equation 1, thus Σ in equation 2 would also have2
to consider speed-flow signal correlations, for example using the fundamental traffic flow diagram.3
Alternatively we could use a quasi-likelihood solution, by assuming independence between speed4
and flow.5
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Another extension would be to include upstream sensor data, in a dual-sensor model. Fol-6
lowing the same principles from this paper, we could obtain two independent approximations, but7
we should take advantage of their spatial/temporal relationships. Depending on distance to both8
sensors as well as upstream queue buildup, the disturbance should arrive at potentially distinct, and9
physically plausible, times to both locations. Furthermore, unless there is an intersection between10
the sensors, their time series models should be somehow correlated, particularly before the inci-11
dent occurs. These considerations imply a joint distribution model with both signals, in equation1
1, and again particular care with covariance matrix Σ to reflect the cross-correlations between the2
two signals.3

An extension of this model that considers speed data as well as both upstream and down-4
stream sensors will be presented in a subsequent article.5

The empirical evaluation of the results shows that, in general, our model proposes plausible6
incident occurrence times. However, the lack of observability makes this evaluation essentially7
subjective. An alternative validation methodology is to use a microsimulation traffic model that8
is able to simulate incidents (e.g. MITSIMLab (Ben-Akiva et al. (16))). Having noise and spatial9
models for sensors we can understand the sensitivity of our proposal with respect to these aspects.10

From the point of view of the modeler, the role of the bayesian prior needs particular11
attention. While one should not “tweak" it to influence the results towards some subjective goal, it12
may be a mistake to ignore field knowledge and intuition. The results showed that the knowledge13
introduced by the field operators was relevant to the quality of the model, as compared to the14
baseline. More objective solutions could have been explored, such as conditioning the prior on15
some general heuristic, such as the largest drop or the 20% rule suggested by Dia (8).16

Finally, this model intends ultimately to be applied on a real-time basis. This implies17
that the data available will be limited, particularly the right bound, r, of the time window will be18
increasing sequentially in time. An obvious next step is thus to simulate such a sequential model19
and observe how its predictions evolve accordingly.20

CONCLUSION21
We proposed a methodology that fully automates the approximation of incident occurrence time22
by analysis of downstream sensor flow data. We apply a latent variable framework that uses a23
change-point time series model as the likelihood function. The actual incident occurrence time24
has been generally neglected in literature, either being reduced to a calibration parameter during25
training of incident detection models; or in post-hoc incident analysis works. In both cases, the26
typical approach is to manually analyze the signal (e.g. (Mak (7))) or apply simple heuristics such27
as disturbance thresholds in traffic parameters (e.g. (Dia (8))).28

We built the model over a few principled statements: unless in exceptional cases, the re-29
ported time should have a delay with respect to actual incident occurrence time; unless under very30
low flow/high capacity, incidents should affect the traffic flow signal during a period of time right31
after its occurrence; unless there is an intersection or the distance to the sensor is too high, such32
disturbance should reach the downstream signal shortly after the incident.33

We tested our model on a dataset with flows from Singapore expressways for a period of34
5 months, together with an incident records database. In order to evaluate our model, we manu-35
ally built a baseline on a sub-set of this dataset. Results show that our model generally proposes36
plausible incident occurrence time approximations, even when disagreeing with our baseline.37

One of the biggest challenges of such a framework is effectively the lack of ground-truth38
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and consequently an objective validation. A next step is to use traffic microsimulator model to39
generate incidents as well as sensor data, and study the quality of our model with respect to sensor40
data quality and distance to the incidents.41

We will also extend the model to consider other types of data (e.g. speed information) as42
well as both the downstream and upstream sensors in a single formulation.43
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