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Abstract

Genetic Programming involves the evolution of computer programs, which are usually represented by trees composed by
functions and terminals. In order to assign fitness, one must evaluate the programs, which is the most time demanding step of
GP. In nowadays standard approaches, the evaluation involves an interpretation step. To avoid this step, which significantly
slows the algorithm, some researchers evolve, directly, machine code programs. An alternative approach is to build a
Genome Compiler, i.e. a system that transforms the individual’s trees in machine-code programs and executes this code. Both
techniques can bring huge speed improvements. However, these approaches have some shortcomings. In this paper we
present GenCo: a research project whose main goal is development of a Genetic Programming Genome Compiler system,
that overcomes some of the drawbacks of current approaches, enabling high speed improvements in a wider range of
domains. We will also present experimental results in a programmatic compression task, in which GenCo was, on average, 80
times faster than a standard C based GP system.

1. Introduction

GP is one of the most recent Evolutionary Computation
techniques. Its goal is to evolve populations of computer
programs, which improve automatically as evolution
progresses [Banzhaf 98]. Due to the outstanding influence
of Koza’s seminal book, “Genetic Programming: On the
Programming of Computers by Means of Natural Selection”
[Koza 92], it is common, within the Machine Learning
community, to associate the term GP to the evolution of tree
structures (even when the trees are not interpreted as
computer programs). In this paper we are going to follow
this “classical” definition. Therefore, when we talk about
GP we are talking about the evolution of tree structures,
which are built from a set of functions (f-set) and terminals
(t-set). The internal nodes of the tree are members of the
f-set, and the leafs  are members of the t-set.

The interest in GP is growing rapidly, which can be
easily explained, if we take into account that automatic
programming is expected to be one of the most important
tasks in computer science research over the next twenty
years [Banzhaf 98]. The increase of speed in computer
hardware and capability increased exponentially. However,
software development was unable to keep up with this
growth, and the gap is still increasing. Additionally, the
demand for new software is also growing exponentially, but
there isn’t enough humanpower to respond to this demand.
The process of writing code is simply to slow.

GP has already achieved human-competitive results in a
wide variety of fields. However, the applicability of GP to
complex problems and real life situations is, still,
undermined by the computational complexity of the GP
process. To overcome this problem, researchers have,
frequently, resorted to the use of massively parallel
computers, the problem is that most researchers cannot
afford one. According to [Nordin 94] about 99% of the time
is spend on the individuals' evaluation. In problems such as
symbolic regression, in which the individuals must be
evaluated for a set of fitness cases, this number becomes
even higher. Thus, if we can achieve significant speed
improvements in the evaluation step we will also get
significant overall speed improvements.

The first GP systems where implemented in LISP, over
the time researchers gradually moved to compiled
languages. Nowadays, C and  C++ based systems are the
most popular ones, and are, roughly, 25 times faster than
LISP base ones.

In 1994 Nordin proposed the direct evolution of machine
code programs. His system achieved unprecedented speeds,
being, approximately, 60 times faster than standard C based
GP. Fukunaga [98] proposes an alternative way of getting
significant speed improvements, namely: compile the
individuals online and execute the resulting code. This kind
of system was named a Genome Compiler, and is about 50
times faster than standard C based GP [Fukunaga 98]. The
main advantage of this kind of system over Nordin's



approach, is the ease of implementation, as one only needs
to replace the interpretation step of an existing GP shell by a
compiling and execution step. The disadvantage being that it
is only effective when the individuals are evaluated several
times.

In this paper we present and make a status report of the
research project GenCo. The main goal of this project is to
build a Genome Compiler (GC), and test its performance in
a wide set of tasks. Our proposal may be considered as an
extension to the current GCs, intended to minimize the
drawbacks of the current GC systems and to further extent
their capabilities.

The paper has the following structure: In Section 2 we
make a description of the state of the art in this field, which
includes an analysis of the shortcomings of current GC
systems; in Section 3 we will make a brief overview of the
project; Section 4 comprises an in-depth description of our
project; in Section 5 we will present some experimental
results; finally, in section 6 we will draw some conclusions.

2. State of the Art

GP is a computationally demanding task, so its application
to complex problems is limited by the available
computational power. It is, therefore, imperative to increase
the efficiency of GP. In this section we will make an
overview of techniques that significantly improve the speed
of GP. We will focus on approaches that have a neutral
effect on GP, i.e. that increase the speed without changing,
in anyway, the GP results. Therefore, techniques such as
partial evaluation (see, e.g., [Ochoa 97]) won’t be analyzed.

The most well known methods for improving the speed
of GP systems are:

� Directly evolving machine-code programs
[Nordin 94], and

� Online compilation of the individuals [Fukunaga 98].

The speed enhancements brought by these approaches
are huge, yet, they still haven’t become popular. This can,
probably, be explained by the difficulty of implementing
these approaches, which requires machine-code
programming. The release of Discipulus, a commercial
implementation of Nordin's approach, will certainly change
this picture and bring efficient GP to a broader number of
researchers.

How do these systems manage to get such huge speed
improvements? In standard GP approaches, the evaluation
of an individual implies the transversal of its tree. For each
node, one must call the corresponding function [Koza 92].
The functions in the f-set are usually very simple, e.g. +, -,
*, etc., and can be evaluated by a simple machine-code
instruction. Therefore, the majority of time is spent on:
identifying the appropriate function to call, function calling,
and pushing and popping of arguments [Nordin 94][
Fukunaga 98][Banzhaf 98].

Thus, the speed improvements do not result from a faster
execution of the functions, but from the elimination of the
above mentioned steps.

Nordin’s system was used in a wide variety of domains
and one can expect speeds 60 times faster than standard C
approaches [Nordin 94]. Fukunaga’s Genome Compiler
system wasn’t, at least apparently, as thoroughly tested as
Nordin’s. Nevertheless, in the symbolic regression of
f(x)=x^8 the system was 50 times faster than standard C
approaches, when the individuals where evaluated for 100
fitness cases [Fukunaga 98]. It is important to notice, that
this kind of approach implies the transversal of the
individual’s tree and its compilation. Although the
compilation step can be quite efficient, this implies that this
system will only be useful when the individual is evaluated
several times.

It is unquestionable that these systems can bring
significant speed improvements, nevertheless they have
some shortcomings:

� If the function set includes complex time consuming
functions the speed improvements will be small.

� It’s hard to incorporate new functions, at least in a
way that doesn’t hinder the performance of the
algorithm.

It’s easy to understand why the inclusion of complex
function decreases the speed improvement, if one
remembers that this improvement is mainly due to the
removal of the steps associated with the interpretation of the
tree. If the time spent on, function identification, calling and
argument passing, is small when compared with the time
spent on the computation of the function, the speed
improvement will be marginal.

The second drawback is also easy to comprehend, it’s
possible to incorporate new functions, however if you want
the same type of speed improvement you must implement
them in machine-code.

These systems have an additional shortcoming which is
more subtle and, perhaps, more important.

One of the most interesting aspects of GP is the
emergence of introns, i.e. pieces of code which are not
expressed in the phenotype. The role of introns during the
evolutionary process is still a source of debate (see, e.g.,
[Banzhaf 97, 98] for a good analysis of this issue), and,
probably this role changes as the evolutionary process
progresses. The emergence of introns seems to be linked
with destructive crossover and mutation. It is nowadays
commonly accepted that introns work as a protection against
destructive genetic operations.

As the evolutionary process progresses and the number
of populations increases, it becomes harder to improve the
individuals, eventually the percentage of destructive
crossover will also increase. As a result, individuals which
are more resistant to crossover and mutation, i.e. those with



a higher number of introns, will tend to dominate the
population. After a while, exponential growth of introns will
occur, leading to the stagnation of the run. This problem is
usually named bloat problem, and is one of the central
research issues in GP [Banzhaf 98].

In domains with a complex fitness landscape bloat is
almost bound to happen, therefore program size and,
consequently, time needed to evaluated the programs will
grow exponentially. Thus, even fast systems like the ones
mentioned above will become slow.

3. Project Overview

In this section we will make a brief overview of our research
project, GenCo. The project is under development and the
expected date of its conclusion is December 2001. As
mentioned before it involves the construction of a Genome
Compiler system. In the current state of development, our
system is similar to the one presented by Fukunaga [98].
Thus, the individuals are compiled online, and the resulting
machine code is executed.

One of the main goals of our project is to overcome or
minimize the above mentioned drawbacks and shortcomings
of current GCs. The basic idea to accomplish this goal is to
decrease the number of operations required to evaluate the
individual. To do so, we will resort to a collection of
techniques, namely:

� Individual code optimization – Nowadays compilers
resort to several optimization techniques in order to
produce faster code. We want to incorporate these
techniques in our system, which implies adapting them
to the requirements of online compilation and to
particularities of GP.

� Intron detection and removal – As mentioned before the
number of introns tends to grow exponentially. Through
the use of intron detection and removal techniques, we
can reduce the number of operations needed to evaluate
the individual;

� Sub-trees caching – presented in  [Machado 99a], it
proved to be useful when the function set includes
complex primitives.

� T-functions – it is effective when the individuals are
evaluated for several fitness cases[Machado 99a].

Techniques for code optimization and intron detection
are widely known. However they have never been applied in
this context. In a previous research project [Machado 99a],
we incorporated sub-tree caching and t-functions in a well
known GP shell (lil-gp). As a result, the system became 15
times faster in problems such as symbolic regression and
programmatic compression. Due to their ease of
implementation these techniques can be seen as a way to get
significant speed improvements, without going through all
the trouble required to implement a GC system. Moreover,
we have good reason to believe that these techniques can be

applied (with some adaptation) in a GC system, bringing
further speed improvements.

Next we make a brief synthesis of GenCo’s main goals:

1. Develop a GC of high usability and of easy set-up.

2. Enhance the compilation methods of current GC's
by incorporating speed oriented optimizing
techniques and methods of intron detection and
removal.

3. Adapt and incorporate the techniques proposed in
[Machado 99a].

4. Perform a comparative study of the performance of
the system in a variety of domains in order to
determine its strengths and shortcomings.

5. Make a restricted release of the GC system, in order
to further test its robustness and usability when used
by third-parties.

The system will be tested in several domains, to evaluate
it in relation to other approaches. In a later phase, it will be
used in concrete situations and will become the engine of at
least one application - NEvAr [Machado 99b].

To conclude, the motivation for this project is twofold:

a) It is, itself, an interesting field of research;

b) The performance improvement open new areas of
application to GP, where high computational power
needs inhibited its use.

4. Project Description

In this section we make a in depth description of our
project. In order to make this explanation clearer, we
divided the description in a set of tasks.

Task 1  Development of a Basic GC System
Expected outcome: A solid prototype of high usability and

easy set-up

The development of the genome compiler system was
already initiated. At this point,  we have already built a basic
prototype, which will be used as a development basis. In its
present form, this prototype is equivalent to the system
presented by Fukunaga [98]. Therefore the speed
improvements should be similar (see Section 5).

The current prototype uses a "static" function set. To
include new functions in the f-set the user needs to write
them in assembly language.

The next steps in the development of the prototype are:

� Expanding the number of predefined f-set functions.

� Enable the inclusion of user defined functions in the
f-set. The user should be able to write functions in C
and integrate them in the f-set in an almost effortless
way.

Additionally, the prototype shall be tested in a vast array
of problems.



Task 2  Inclusion of optimizing and intron detection
techniques

Expected outcome: Improved version of the previous
prototype.

Speed oriented optimization techniques are well know
and have became common in nowadays compilers.

In our system compilation is performed online and,
therefore, the speed of the compilation is an important
factor. This may decrease the range of optimization
techniques that can be applied. On the other hand, evolved
programs usually include redundant statements, therefore,
there are a lot of simplifications that can be performed.

The detection and removal of introns is deeply linked
with code optimization. introns are pieces of genetic code
that don’t influence the phenotype, these pieces of code can,
consequently, be removed without affecting the execution
results.

The removal of introns may bring important speed
improvements, especially when bloat occurs, since introns
become a considerable percentage of the code and delay
significantly its execution.

It is virtually impossible to remove all the introns,
however a large part can be deleted, through the use of
simple detection techniques, without bringing significant
speed overheads to the compiling stage.

We are also considering the possibility of using more
complex intron detection and techniques. These techniques
can detect a higher number of introns, the drawback is that
they are computationally expensive. Nevertheless, they still
can become handy, specially if one considers the possibility
of attacking the bloat problem by periodically “cleaning”
the introns in the population. Additionally, this type of
technique can be used to simplify the final outcome of the
GP algorithm, resulting in a faster and cleaner (and
consequently easier to understand) final solution.

Task 3  Study and adaptation of other speed
enhancement technique

Expected outcome: A set of speed enhancement techniques
ready to implement

In a previous study [Machado 99a] we have proposed
two techniques, which bring significant speed
improvements to GP systems: sub-tree caching and
t-functions.

The goal of this task is to adapt these techniques so that
they can be incorporated in the Genome Compiler system.
The adaptation of the t-function approach doesn't pose many
problems and should be almost straightforward. The
adaptation of the caching technique is not so obvious.

The idea behind our caching algorithm is to store the
execution results of the individuals' sub-trees.

In a GP algorithm each population is generated from the
previous one. This means that a large amount of the current

population's genetic code was already present in the
previous population. Therefore, most of the sub-programs
(sub-trees) present in the current population were already
executed.

As in any caching algorithm the major difficulties to
handle are, deciding which results should be stored, and
how to retrieve them in an efficient way.

In [Machado 99a] we proposed feasible solutions for
both problems. It is our belief that these solutions can be
improved and adapted for the requirements of our GC
system.

We will also make a survey of the current state of the art,
in order to determine the existence of other speed
enhancement techniques that may contribute to the
improvement of the GenCo. This task was already initiated
and is expected to be concluded at the same time that task 2.

Task 4 Inclusion of other speed enhancement techniques
in the GC compile

Expected Outcome: An improved version of the previous
prototype

The set of techniques to be implemented is going to be
determined in Task 3, which is a prerequisite for this task.
Some of the researchers involved in the previous task will
also be involved in this one, in order to provide the
necessary details. We expect, therefore a swift
implementation.

Task 5 Testing and collection of performance results,
comparison with other approaches

Expected outcome: Successful application of the Genome
Compiler System to several domains.
Assessment of the system’s performance in a set
of benchmark problems.

This task will run in parallel with the previous ones. We
want to perform tests of different versions of the system
(outputs from tasks 1,2 and 4), in order to know how the
inclusion of new techniques affects performance.

The preferential domains of application are:

� Packing

� Symbolic Regression

� Programmatic Compression

The implementation of these approaches doesn’t pose
difficult problems since they have already been tackled by
members of our team.

Additionally, GenCo will replace the current GP engine
of NEvAr [Machado 99b]. NEvAr is an Evolutionary Art
Tool developed by Penousal Machado. The substitution of
the current engine by GenCo will result in a faster version of
the tool. Moreover, intron detection, optimization and
caching techniques can help the implementation of a set of
features related with machine learning.



Task 6 Restricted Release and testing of the Beta
Version

Expected Outcome: Evaluation of the system by third
parties

This task involves making adjustments to the developed
software so that it can be used by third-parties.

During the development we will keep in mind that one of
our goals is to develop an "user-friendly" system. It is,
however, unrealistic to think that we will arrive to this stage
of development with such a system.

We will make a release of the Beta version, which will
be available to a restricted and reliable group of researchers.
While waiting for feedback, we will conduct our own set of
tests and provide the assistance to the groups using our
system.

Task 7 Project conclusion
Expected Outcome: Final version of the program

We will use the feedback from other research groups and
the results of our own testing to make minor adjustments in
the beta version, and to correct bugs which are bound to
appear.

5. Experimental results

In this section we present some preliminary experimental
results achieved with GenCo. As mentioned before, in the
current state of development GenCo is roughly equivalent to
the system proposed by Fukunaga [98]. Therefore the results
should be roughly the same. To implement GenCo we used
lil-gp [Zongker 96] and replaced the interpretation step of
the algorithm by a compilation step.

We tested our system in a programmatic image
compression task [Nordin 95]. We used a 32x32 pixel
version of the well-known know “Lena” image (see Fig. 1),
which became popular in the image compression field.

Figure 1. The Lena image

The experimental settings were the following: population
size=500; generations=1500; f-set={+, -, *, %} (where % is
the protected division operator [Koza 92]); terminal set =
{X, Y, ephemeral random constants}; tournament selection

of size 5; 70% crossover, 20% mutation, 10% reproduction;
depth limit=25; initialization method = ramp-half-and-half.
The experiments were repeat 50 times, in order to guarantee
the statistical significance of the results.

The chart in Fig. 2 shows the speed improvements
achieved by GenCo, when compared with the standard lil-gp
implementation, and relates to population 500 to 1500.
During the first 500 generations GenCo was, on average,
120 times faster than the standard lil-gp approach. The
overall speed improvement between population 500-1500 is
of 81.95.
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Figure 2. Speed improvements achieved with GenCo between
populations 500 and 1500.

As the number of populations increases the speed
improvement gets smaller, eventually stabilizing in 60 times
faster. Next we will try to explain why this occurs.

In the tests conducted, as the evolution progresses, the
size of the individuals tends to grow. When GenCo is
dealing with small individuals, it can store most of the
arguments in registers. As the individuals become larger, the
percentage of arguments stored in registers becomes small
when compared with the percentage stored on the stack.
This implies a overhead in the retrieval of the arguments,
which explains the decrease of GenCo’s performance.

This decrease was expected, and that was the main
reason for allowing a depth limit of 25 and concentrating
our analysis on populations 500 to 1500.
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Figure 3. Number of individuals evaluated per second.



The chart in Fig. 3 shows the number of individuals
evaluated per second using GenCo and standard lil-gp, the
difference may seem small, however this is only apparent,
the y scale is logarithmic.

In Fig. 4 we show the percentage of time spent on the
individuals’ evaluation and on the breeding stage, for
GenCo and standard lil-gp. In a standard approach 99.472%
of the time is spent on the evaluation step, in GenCo only
69.53% of the time is spent in evaluation.
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Figure 4. Percentage of time spent on evaluation and
breeding between populations 500 and 1500.

We consider these experimental results to be extremely
promising, specially when we take into consideration that
the compiling stage can be further optimized, and that our
management of registers is, still, a little rudimentary.

6. Conclusions

In this paper we made a report of the research project
GenCo. We started by describing its relation with the state
of the art. Then, we made a brief overview of the project
describing its main ideas, the motivation and the goals. Next
we made a detailed description of the project, resorting to a
list of tasks. Finally, we presented some experimental
results, which prove the soundness of our approach.

Our system is still under development, and there is still
much work to be done. In its present form GenCo achieves
results similar to the system presented in Fukunaga [98]. We
consider, however, that our system as potential to
outperform previous GC approaches (e.g. Nordin’s and
Fukunaga’s) in the previously mentioned situations, namely:

� When the function set includes time consuming
functions.

� When the number of introns grows exponentially.

The incorporation of techniques such as: code
optimization, intron detection, sub-tree caching and
t-functions, is bound to bring further speed enhancements.

We have already started to implement code optimization
and expression simplification techniques, and we expect to
present the results achieved with these methods soon.
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