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Abstract. Quality attributes (e.g., performance, reliability and secu-
rity) are detailed in a system’s architecture and determine the fitness
of purpose and satisfaction of stakeholders regarding the final prod-
uct. Although research has provided methods to assess different quality
attributes, few checks are automatically performed. Manually checking
a quality attribute from a large and complex architecture is a time-
consuming and error-prone task. This paper addresses this issue by gen-
erating stochastic models that predict and analyze reliability from a soft-
ware architecture description, in an automated way. In addition, our ap-
proach has been compiled into a tool targeting system architects, the
Affidavit tool. This tool is accessible from an architecture development
framework and provides information about structural issues and relia-
bility bottlenecks of systems. As a result, Affidavit allows architects to
reason about the designed architecture, helping to avoid architectural
arrangements that might have a negative impact on the overall system
reliability, at the same time that it indicates the most suitable arrange-
ment for specific contexts. This paper describes the tool and its imple-
mentation details, demonstrating its capabilities on practical systems.

1 Introduction

Software architecture is a fundamental activity of software development, in which
the documentation about the system’s structure and properties at a high-level
abstraction of the whole system is produced. As such, software architecture sup-
ports designer’s decisions on the quality attributes expressed in the final product
such as performance, maintainability, security and reliability. Their assessment
is of utmost importance to serve as a guidance on the decisions to be taken, as
well as, to identify issues and prevent additional costs on fixing late-detected
problems. However, in current practice very few of these quality attributes are
automatically checked, inducing time-consuming and error-prone tasks.

This paper presents a tool [1] that automatically assesses, predicts and per-
forms a thorough analysis on the reliability of a software architecture described
in the Acme Architectural Description Language (ADL) [2]. The Affidavit tool
was developed as a plugin for AcmeStudio [3], aiming to provide automated reli-
ability analysis [4] with an integrated development environment. AcmeStudio is
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an architecture development environment written as a plugin of the Eclipse RCP
Framework [5]. It is a graphical architecture design tool that creates, modifies
or iterates over architectural descriptions in the Acme language.

Affidavit has been integrated into AcmeStudio, which makes it close to the
architecture iteration development cycle, being accessible and easy to use for
architects. Thus, Affidavit provides valuable feedback on issues and changes
of reliability that an architectural iteration has over another. Also, it guides
users until the architecture is compliant with the client requirements and needs,
regarding system reliability.

This paper is organized as follows. Section 2 discusses the adopted method
and the complete set of features of the tool. Section 3 demonstrates the applica-
bility of our approach through modeling, prediction and analysis of a software
architecture. Section 4 presents the related work before Section 5 concludes the
paper.

2 Affidavit Overview

The context of Affidavit is shown through the diagram presented in Figure 1.
This diagram shows how AcmeStudio and Affidavit, both the front-end and the
analysis plugin, interact with each other. Our tool acts as a plugin for the AcmeS-
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Fig. 1. Affidavit context diagram

tudio using the modeled ADL to produce a stochastic model which exhibits the
behavior of the system regarding its reliability. Thus, we provide means for ar-
chitects to predict and analyze system reliability through two different methods:
reliability prediction and sensitivity analysis (thoroughly described in Section
2.2). In each one of these methods, our tool will add the proper information
about the simulation to the history view (i.e., result, simulation description and
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type). From the history view, the architect has at his disposal the possibility to
visualize the architecture used as input in each simulation. When a sensitivity
analysis is performed, Affidavit will also present a graphical representation of
the obtained results, as it is illustrated by the sensitivity view in Figure 1.

2.1 Required Annotations

Our approach requires that specific annotations are embedded in the architec-
ture as properties for a faithful translation and a more accurate prediction. The
specification of each required annotation is eased by using a tool feature that
automatically adds all the needed properties to the elements in any architecture
that will be subject of analysis. In the following paragraphs we detail which
annotations are required and what is their purpose.

– Reliability specification. In order to generate a proper stochastic model that
is able to accurately predict its reliability, it is required to add the probability
of failure on demand (between 0 and 1) for each architectural element. This
failure behavior is specified in terms of a percentage, denoting the number of
successful requests over the total requests performed to that specific module.
For instance, if a module has 80% of reliability, it means that 8 out of 10
requests are well performed and the other 2 fail on some cause, such as
malformed input or other source of failure.

– Assignment of usage profile (or operational profile). We require the specifi-
cation of transition probabilities between different components in order to
model the average usage of each path in the system. Specifically, each user
performs different actions, leading to the invocation of different components.
Since, components may have different reliabilities, each action required by
the user will output a specific reliability value.

– Architectural Styles. Architects may use different styles with well-known so-
lutions to commonly occurring problems. Each style behaves differently and
it provides distinct reliability values from each other. Hence, if a specific
style is applied to the architecture, we require its specification in order to
generate a stochastic model that exhibits its behavior. Our tool supports
the following style patterns: fault-tolerance, parallelism, call-and-return and
batch-sequential.

– System control flow. The stochastic model requires the specification of the
transition flow that is being held from a component to another. Hence, we
use annotated ports to distinguish between output and input transitions.

2.2 Stochastic Model Generation

Our approach contemplates the automated generation of an architecture-based
stochastic model that expresses the reliability behavior of the system. Reliability
is a probabilistic property that depends on the usage of the system, its architec-
ture, used architectural styles and the reliability of each component. To express
the behavior of the system a widely accepted method is the use of a Discrete
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Time Markov Chain (DTMC) [6–9].
A discrete-time Markov Chain is a tuple M = (S, s,P,L), where:

– S is a finite, non-empty set of states;
– s ∈ S is the initial state;
– P : S ×S → [0, 1] is the transition probability matrix where Σs′∈SP(s, s′) =

1 for all s ∈ S;
– L : S × S → 2AP is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are valid in the state. If L(s1) = L(s2),
then s1 = s2.

Our generation procedure uses the software architecture of the scenario to
be analyzed, where each software component in the architecture is mapped into
a state in the DTMC and each state has a probability of successfully respond
to client requests. In addition, the transitions between states are defined as the
usage of the system (also known as usage profile or operational profile).

The DTMC also includes absorbing states, which are self-loop transitions
and model the successful and failure states of the system. The rationale behind
this approach is that each request is processed through the various software
components in the system and reaches one of two conditions: a successful (sC)
or a failure state (sF ).

Regarding the assumptions that we rely on, we assume that every component
has a probability of failing, so every state in the DTMC has an edge to the
absorbing failure state. In addition, the system reliability is expressed through a
reachability property (true U state = sC) using Probabilistic Computation Tree
Logic (PCTL) [10].

To predict the system reliability, Affidavit solves the DTMC by using Prism [11],
a probabilistic model checking tool, which allows to compute the probabilities
from the initial state si to the absorbing successful state sC . Each architectural
style has its behavior embedded in the DTMC by using code templates that
express the relationships and actions of that particular style. Sensitivity analy-
sis uses the generated DTMC to perform small variations in every component
reliability and usage profile. The aim of this method is to identify critical points
and diminishing returns in the architecture.

2.3 Implementation

Figure 2 illustrates the Affidavit tool simulating an architecture specified in
AcmeStudio. As it can be seen from the History View, the depicted simulation
has performed both the reliability prediction and sensitivity analysis on the spec-
ified architecture.
Reliability prediction is presented as percentage value and it is useful for compar-
ing different architectures, guiding the user on what are the differences from an
architecture to the other. As for the sensitivity analysis, it is presented through
a graphic that relates the variations performed (i.e., component reliabilities or
system usage profile) with the overall system reliability.
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The line chart exhibited in Figure 2 illustrates the variations performed in the
reliability for each component in the architecture, represented as a line in the
graph. This type of analysis provides information about which components have
a greater impact in the overall system reliability and those which display dimin-
ishing returns.

Fig. 2. Architecture analysis using Affidavit

3 Demonstration

Affidavit main goal is to assess and analyze system reliability from an archi-
tectural specification. With this in mind, we modeled two different scenarios
to demonstrate the usefulness and validity of our tool. The used architectures
and reliability values specified in this demonstration were not extracted from a
real system and they do not represent a real case-study. Their purpose is only
to support our method and show the applicability of our tool. The two used
scenarios have the same architectural elements and reliability values, but they
differ in components’ disposal and in the applied architectural styles. For each
scenario, we present a reliability value output by that specific arrangement and
we perform a thorough analysis to identify which components or connections are
affecting system reliability the most.

3.1 Scenario #1

The system used in this scenario is illustrated in Figure 3. Its diagram is depicted
in 3(a) and it is composed by a fault-tolerant architecture with two equal systems.
Each system has:
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– A Processing Module (PM);
– A Parallel Bus (PB);
– An Input/Output Module (IOM);
– Two Sensors (Sensor 1 and 2);
– Two Actuators (Act. 1 and 2).

Each sensor performs a different function in the system and it will invoke
its own actuator (i.e., Sensor1 invokes Actuator1, but not Actuator2). Hence,
from the total number of requests performed by the system, we specify the usage
profile as 40% of the requests are resolved by Sensor1 and the other 60% are
resolved by Sensor2.
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Sensor
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PM1 PM2

IOM2IOM1

Parallel Bus

Sensor
11

Serial Bus
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(a) System’s Diagram

(b) Representation of the system’s architecture in AcmeStu-
dio

Fig. 3. Scenario #1

Then, we modeled this scenario in AcmeStudio, illustrated by Figure 3(b),
and we specified the reliability values according to Table 1.

The performed analysis predicts that the modeled system has 80.3% of relia-
bility. Meaning that from the total number of requests performed in the system,
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Table 1. Component reliabilities

Component PM1 PB1 IOM1 SB1 Sens11 Sens12 Act11 Act12

Reliability 0.95 0.98 0.85 0.80 0.99 0.92 0.99 0.95

Component PM2 PB2 IOM2 SB2 Sens21 Sens22 Act21 Act22

Reliability 0.95 0.98 0.85 0.80 0.94 0.91 0.98 0.93

(a) Variation on components’ reliabilities (b) Variation in system usage profile

Fig. 4. Sensitivity Analysis on Scenario#1

19.7% fail on some cause and they cannot be successfully resolved. Figure 4
shows the variations performed in the sensitivity analysis process according to
the method presented by Franco et al. [12]. Graphic 4(a) depicts the variation
of 10% on the reliabilities of the different components in the system. In this
graphic only the three best and worst reliability variations are illustrated from a
total of sixteen components. We rank the variations by calculating the derivative
of the reliability around the point where the variation is null (i.e., variation of
0%). This ranking is shown through the graphic’s caption, where, from the left
to the right, components are ordered from the lower to the higher increase of
the impact on the overall system reliability.
In this scenario, components Act11, Act21 and Sens21 are the ones in which
their variation has less impact on the overall reliability, and can be considered
as the diminishing returns in the system. On the other hand, components SB1,
SB2 and IOM1 are the ones where their variation has the highest impact. As a
side note, IOM2 presents the same variation value than IOM1, but it has been
omitted since our approach only presents three variations and IOM1 is listed
first than the IOM2.

Regarding usage profile, Graphic 4(b) shows the variation of 50% on the
load of requests that are performed from the SB component to the Sensors. The
connection from SB1 to Sens11 shows that it is an already diminishing return,
but the increase on usage profile from SB2 to Sens21 leads to an improvement
on the overall system reliability. In addition, Graphic 4(b) informs architects
that the load in the connection from SB2 to Sens22 and Sens21 is not fair,
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and it should be subject to change to get the maximum benefit on the system
reliability.

3.2 Scenario #2

In this scenario we applied the same architectural elements, reliability values and
usage profile from Scenario #1. However, as can be seen from Diagram 5(a), it
differs in the applied styles and in the architectural structure. Specifically, we
put together the two Serial Buses as one, which acts as fault-tolerant, connecting
every other architectural element to it. In addition, we joined the Sensors and
Actuators from the previous scenario and we setup them as fault-tolerant.
Figure 5(b) illustrates the system representation in AcmeStudio, which was used
for predicting and analyzing system reliability. Thus, in this scenario the pre-
dicted reliability was of 91.1%, which is an increase of 10.8% when comparing
with the previous scenario.

Figure 6 depicts the sensitivity analysis performed on the system. The vari-
ation on the reliability of system components is illustrated in Graphic 6(a) and
since we used the same reliability values as in Scenario#2, the results are very
similar. The only difference is that the component Sens21 in the previous sce-
nario is replaced by Act22 as one of the diminishing returns. Regarding usage
profile, Graphic 6(b) shows that increasing the load of requests on the connection
SB-Sens2 would increase the system reliability.

3.3 Demonstration Conclusion

The provided examples show that our tool is able to assess different architectures
taking into consideration the distinct styles applied. Therefore, we provide means
for architects compare, test and validate different architectures and possible
architectural solutions that would fulfill the quality requirements established by
the stakeholder. In addition, the sensitivity analysis informs architects on what
should be the future direction to evolve the system, regarding reliability as a
quality attribute.

As an example, from the information provided by the sensitivity analysis in
Scenario#2 (i.e., increasing by 10% the reliability of components SB1, SB2 and
IOM1, as well as, increasing the load of requests sent to the component Sens2 by
20%) Affidavit predicted the system reliability as 92.7%. Thus, an improvement
of 12.4% and 1.6%, when comparing with Scenario #1 and #2, respectively.

4 Related Work

In this section we present set of tools or methods that allow to perform quanti-
tative prediction of properties, such as reliability or performance, from an archi-
tectural description. Palladio Component Model [13, 14] is a tool that supports
the prediction of both performance and reliability, as non-functional properties,
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from software architectures during design. It is targeted at model-driven quanti-
tative predictions, deriving stochastic regular expressions and queuing network
models. In addition, it allows to identify bottlenecks and support architectural
design decisions. However, Palladio does not account with different architectural
styles and nothing is stated on which ADL is used.

LIGHT [15] is a platform that allows to generate and customize a Domain-
Specific Language (DSL) for a particular project. In addition, this platform
performs a set of simulations to analyze certain system features, such as latency,
memory usage, energy consumption and reliability. Regarding reliability, LIGHT
platform implements the method developed by Roshandel et al. [16]. Hecht et.
al [17] demonstrate the use of Mobius (a tool for developing dependability mod-
els of stochastic, discrete-event systems) on AADL to automatically generate a
reliability/dependability model. In particular, they use a graphical representa-
tion of the system along with error behavior specification producing Stochastic
Petri Nets (SPN) and Stochastic Activity Network (SAN) representations. Mo-
bius allows to specify the failure detection and recovery behavior of the system,
although this specification relies on manual effort to be produced.

Altarica [18] is a workbench dedicated to reliability and dependability analy-
ses of critical systems by using the Altarica language. This language is specified
as a constraint automata and is compiled into lower level formalisms such as
Boolean formulae, Petri nets and finite state automata. However, the constraint
automata are not generated automatically from an architectural description,
which is the main focus of our work. Although it would be conceivable for the
Affidavit tool to translate ADL specifications into Altarica models, we chose to
translate into the Prism language to model the system behavior. The rationale
behind this choice is that Prism performs probabilistic model checking, which
allows not only to formally verify system properties (e.g., safety, liveness), but
also to obtain a probability of reaching a particular state.

Affidavit differs from previous works by assessing, predicting and analyz-
ing software architectures without any manual effort. Our approach generates a
Deterministic-Time Markov Chain (DTMC) expressing the reliability behavior.
This behavior specification accounts with predefined architectural styles that
are precompiled and ready to be used, however, it can be extended to support
different ones by enriching their proper behavior to the Prism generated file.
We applied our approach to Acme, a known architecture description language
(ADL) which complies with the conventions of ISO/IEC/IEEE 42010 [19], an
international standard for systems and software architecture descriptions. As a
result, our approach offers abilities to architects reason about system reliability
and assure that a particular architectural setup meets the desired quality goals.

5 Conclusion and Related Work

Today, most of the assessments and analyses of quality attributes are performed
through the generation of stochastic models that exhibit the proper behavior
of the system. One of the problems with this approach is that these models
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are most often constructed by hand and, as in any other manual activity, it is
an error-prone and time-consuming task. Thus, we developed a tool that auto-
matically generates stochastic models to predict and analyze system reliability,
allowing to reduce the manual effort by decreasing the time spent on develop-
ing stochastic models and the propensity for error occurrence. In addition, the
generated models can be modified by the user to enrich them through adding
different architectural styles or particular features in order to make them closer
to the reality as possible.

In this paper we demonstrate the applicability and usefulness of the Affidavit
tool which is available for architects to test, experiment and analyze reliability
properties in their modeled architectures. Affidavit can be applied in the design
phase to detect and fix early reliability issues and ensure that a particular ar-
chitecture meets the stakeholders reliability requirements, even before a system
prototype has been built. Moreover, our approach supports architectural evolu-
tion by providing information on which architectural elements require reliability
improvement and by identifying reliability trade-offs from the comparison of the
original architecture with the evolved one. As a result, our approach gives sup-
port for practitioners and researchers to avoid, prevent and detect undesired or
infeasible architectural redesigns which could result in degradation of the overall
system reliability.

Regarding current work, we are applying our automated generation of stochas-
tic models for self-adaptive systems. The rationale is to integrate reliability
prediction methods to reason about possible adaptation strategies and decide
whether a specific strategy will meet the self-adaptive goals or not. As future
work, we plan to show the applicability of our approach into real world scenarios
by assessing and analyzing the reliability of an open source software project. The
goal is to promote our tool as well as to contribute to the open source software
community.
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