
Availability Evaluation of Software Architectures
through Formal Methods
João M. Franco, Raul Barbosa and Mário Zenha-Rela

Faculty of Science and Technology
University of Coimbra, Portugal

Email: {jmfranco, rbarbosa, mzrela}@dei.uc.pt

Abstract—The quantitative assessment of quality attributes
on software architectures allow to support early decisions in
the design phase, certify quality requirements established by
stakeholders and improve software quality in future architectural
changes. In literature, only few of these quality requirements
are verified and most often they are manually checked, which
is time-consuming and error-prone due to the overwhelmingly
complex designs. The goal of this thesis is to provide means
for architects predict and analyze availability constraints on
software architectures. We plan to generate a stochastic model
from an architectural description specified by an Architecture
Description Language (ADL) properly annotated to be solved
by a probabilistic model-checking tool. This model will allow to
quantitatively predict availability and identify bottlenecks that
are negatively influencing the overall system availability. Hence,
our approach will help architects to avoid undesired or infeasible
architectural designs and prevent extra costs in fixing late life-
cycle detected problems.

Index Terms—Availability, Prediction, Analysis, Software Ar-
chitecture

I. INTRODUCTION

Today software-intensive systems need to fulfill varied and
complex requirements, forcing the evolution of current ap-
proaches of software development to include explicit support
for non-functional requirements (e.g., performance, security,
scalability or availability). This evolution creates major chal-
lenges for software development, maintenance and evolution
as software professionals struggle with tools and methodolo-
gies that have not been designed to handle those qualities,
which determine the success or the failure of large, modern
and distributed systems.

This proposal presents a method that gives means for
architects predict, analyze and identify quality issues in their
designed architecture. Our objective is to support availability
as a quality attribute and apply our method to different phases
of the software development life-cycle. In the design phase, as
an early stage of development, our approach is able to assess
the availability of the designed artifact, allowing architects
to freely transform, correct and adapt their architectures to
meet the desired non-functional requirements before actual
implementation and deployment.

On the other side of the development phase, in the main-
tenance or evolution phase, our approach supports changes
performed at the architecture-level by promoting comparisons

between different topologies, properties and trade-offs in
quality goals. In addition, our approach performs analysis to
identify availability bottlenecks and architectural paths that are
more prone to error which allows architects to evolve their
systems by improving their overall quality.

The main contributions of this PhD thesis are summarized
as: (1) automated predictions of quality attributes from ar-
chitectural software descriptions, (2) a thorough analysis to
identify availability constraints in the architecture and (3)
the integration of our approach into an architectural-design
framework, making publicly available our approach for use
by architects.

This paper is organized as follows. Section II describes the
state-of-the-art, while Section III states the research objectives
addressed in this PhD study. Section IV details the method
adopted and Section V introduces the work done so far. Sec-
tion VI presents the future work before Section VII concludes.

II. STATE-OF-THE-ART

Software architecture has evolved in the past 20 years
and many research studies tried to define the concept, all
of them with minor differences depending on domain and
people’s experience. However, most definitions share common
characteristics that can be exemplified by looking at the
definition by Len Bass et al. [1]: “The software architecture of
a program or computing system is the structure or structures of
the system, which comprise software elements, the externally
visible properties of those elements, and the relationships
among them.”

Availability is defined as “a measure of the delivery of
correct service with respect to the alternation of correct and
incorrect service” and Reliability can be understood as “a
measure of the continuous delivery of the correct service -
or equivalently, of the time to failure” [2]. Availability is
measured through Equation 1, where MTTF is defined as
Mean Time To Failure and MTTR means Mean Time To
Repair.

Availability =
MTTF

MTTF + MTTR
(1)

To the best of our knowledge, literature lacks on studies
addressing the prediction and assessment of availability as
a quality attribute on software architectures. On the other



hand, reliability has been widely considered, tested and several
method have been presented. Since reliability and availability
are close topics in which they only differ on the Mean Time To
Repair (MTTR), we focused our study on the current reliability
approaches that are related or can be adopted to our topic of
research.

Several studies address the reliability assessment from a
software architecture description [3]–[6], among the firsts to
propose architecture reliability modeling using Markov chains
was Cheung [7] and several surveys were presented since
then [8]–[11].

According to these surveys and as depicted by Figure 1,
the reliability assessment of software architectures can be
performed through three different approaches which combine
the architecture with the failure behavior [9]: additive, path-
based and state-based models.

Additive
Model

Path-based
Model

State-based
Model

Composite Hierarchical

Architecture
+

Failure Behaviour

Fig. 1: Approaches to combine the architecture with the failure
behavior

The former estimates the reliability using the components
failure data and does not consider explicitly the topology of
the architecture. Evaluating reliability as an assembly of com-
ponents considering their interactions and system properties,
rather than in isolation, provides a much useful and accurate
assessment. The path-based model assesses the reliability of
the system according to the possible execution paths, which
can be obtained experimentally, by testing or algorithmically.
System reliability is calculated by averaging the path reliabil-
ities which assumes an equal likelihood of transversing each
path, providing only an approximate estimation of the system
reliability. The latter, state-based model, assumes that the tran-
sitions between states satisfy the memoryless Markov property,
meaning that at any time the future behavior of components
or transitions between them is conditionally independent of
the past behavior. In addition, the state-based models can be
divided into composite [12] and hierarchical [13] methods.
The former combines the architecture of the system and the
failure behavior of its components into a single model. The
hierarchical method considers that the architecture and the fail-
ure behavior are detached, more specifically the architecture is
modeled by a semi-Markov process and the failure behavior
can be modeled according to a Poisson process [14] or by
a time-independent failure rate [2]. Hierarchical methods are

simpler to compute than the composite ones, since the failure
behavior is detached from the architecture. However, the major
drawback of the hierarchical method is that it only provides
an approximation of the reliability, and hence the reliability
metrics obtained using this model are not as accurate as the
ones from composite models.

III. RESEARCH OBJECTIVES

The main goal of this proposal is to research towards a
method that supports automatic evaluation and analysis of
availability as a quality attribute from a software architecture
description. The first step of our approach consists on the
generation of a stochastic model from an architecture descrip-
tion specified by an Architecture Description Language (ADL)
that exhibits the architectural behavior regarding availability.
The second step resides in predicting the overall system
availability from the generated stochastic model, according to
four architectural degrees of freedom. These degrees consist
on the disposal of components and connectors, the system
usage profile, the different architectural styles used by the
architect and the specified values of properties such as the
Mean Time To Repair (MTTR) and the Mean Time Between
Failures (MTBF). The final step of this thesis, consists on
a sensitivity analysis on the stochastic model, allowing to
identify bottlenecks that are negatively influencing the overall
system availability.

The availability evaluation during the design phase ad-
dresses architect’s uncertainties on the assignment of the initial
values of the degrees of freedom. In addition, a sensitivity
analysis supports the evolution of an architecture by informing
the architect about availability bottlenecks and by allowing to
perform comparison between different architectures.

The complete development of our approach, will allow to
perform architectural validation, avoiding undesired or infea-
sible designs and prevent extra costs in fixing late detected
problems.

Hereupon, and with what was previous stated in mind,
this thesis aims to propose new approaches to assess the
availability from a software architecture description, helping
both the research and practitioner community.

IV. METHODOLOGICAL APPROACH

This thesis focuses on conducting automated availability
evaluations from software architectures. Thus, we divided the
big picture into four smaller and well defined tasks: detail the
ADL specification to integrate availability features, automate
the generation of stochastic models, perform availability eval-
uation and finally, carry out a sensitivity analysis to identify
bottlenecks that require improvement.

A. ADL Specification

We employ ADL annotations by extending architectural
entities with the required information to perform availability
prediction [15]. More specifically, our approach supports the
following annotations to generate an accurate mathematical
model of the system:



• Specification of the control flow of the system. The
architect can specify the flow of transitions that are being
held from a component to another, by using annotated
ports to distinguish between output and input transition.

• Assignment of system usage profile. The architect can
describe the usage profile of the system by specifying a
transition probability to a connector.

• Component failure behavior specification. Each compo-
nent must be annotated with a probability of failure on
demand which can be determined in the design phase
through consultation with the commercial entities that de-
veloped Commercial Off-The-Shelf (COTS) components
or estimated from expert knowledge or historical data
for components developed in house. Regarding already
developed or deployed systems, the probability of failure
can be extracted from the running system [16].

• Identification of used architectural styles. The identifica-
tion of what styles are being used in the architecture is a
requirement for a faithful translation from the architecture
to the mathematical model.

B. Stochastic Model Generation

In this step we take as input a system described in the ADL
format and we parse it into an intermediate representation,
allowing any ADL that complies with the ISO/IEC/IEEE
42010 [17] standard to be parsed and analyzed. After parsing
the ADL file, we build the stochastic model which represents
the availability behavior of the system. Cheung in 1980
modeled reliability through Markov processes [12] and since
then several studies have extended this concept to apply new
methods and techniques [5], [18]. Thus, we used the com-
posite model through the generation of an absorbing DTMC
(Discrete-Time Markov Chain), where we add two absorbing
states C and F, which represent the correct output and the
failed one, respectively. Our approach acts in accordance to
the following assumptions:

• Every software component can fail. Each module that is
mapped from the architecture to the mathematical model
has a direct edge to the absorbing state F, which is
weighted by its probability of failing.

• The failures are independent between software compo-
nents. Components in a software system can be viewed as
logically independent modules, which can be developed
and tested independently from each other [13], [19].

• The transfer of control among modules follows a Markov
Process. The transition probability from one component
to another is determined through the product of the
probability of failure of that component with the esti-
mated usage profile of the system. Therefore, the control
transition is independent of the past history of the system
and depends only upon the current state, following the
memoryless property of a Markov chain [20].

• System availability is the probability of reaching the
state C. The computation of the system reliability is
performed through the probability of transit between all
the components in the system and reaching the absorbing

state C, which exhibits the correct behavior of the system
or the probability of failure-free of every component in
the system.

After the stochastic model has been generated, we load it into
the probabilistic model checking tool, Prism [21], in order to
perform prediction and analysis on the system availability.

C. Availability Evaluation

In literature exists several availability classifications [22]
that may be considered in our approach, depending on the soft-
ware development phase in which the evaluation takes place.
Instantaneous, average up-time and steady-state availability
classifications require the current state of system availability
at run-time, so they are more suitable to be applied when
a system is already deployed. We do not plan to consider
achieved and operational availability, because their formulas
target more maintenance availability values than the architec-
ture itself, making it not suitable for this thesis.
Thus, inherent availability is the most suitable classification
to assess the system availability; however, the architects must
estimate MTTR, MTBF and usage profile values by consulting
with experts or stakeholders, or by providing an availability
range for each architectural element.

D. Sensitivity Analysis

An availability analysis of a software architecture helps to
identify architectural elements that are influencing the overall
system availability the most. This analysis gives support
for different phases of the software development life-cycle.
Specifically in the design phase, an analysis provides useful
information to address uncertainties about availability and us-
age profile values that are assigned prior to the deployment of
the system, allowing architects to reason about early decisions.

In the evolution phase of an architecture, our approach
supports comparison between the original architecture and
the evolved one, informing the architect about the trade-offs
between them. Also in this phase, the architect may enrich
the stochastic model, making it more accurate by obtaining
the real values of usage profile and failure data for each
component from the system in production.

Therefore, we developed a sensitivity analysis able to solve
these uncertainties and support early and future decisions
about different architectural alternatives by addressing the
following issues:

• Identify component bottlenecks - We study the effect of
changes of components’ failure data on the overall system
availability.

• Analyze usage profile variation - We vary the transition
probabilities between components in order to identify
which are the usage profiles that have the highest impact
on the system availability.

• Analysis ranking - Our approach establishes a ranking
system to inform the architect about the impact of the
variation on the overall system availability.

To conclude, we intend to apply our method to a real case-
study in order to prove the applicability and validity of our



approach. In this case-study we intend to obtain run-time
information about the usage profile of the system and the
failure data about architectural elements, allowing to assess the
real system availability. With this information, we are able to
compare the prediction performed in design time with the ac-
tual availability obtained from the system, allowing to validate
our approach. In addition, we support architectural comparison
which allows architects to perform structural changes and
identify at real-time the consequences of those changes.

V. PAST WORK

Methods for reliability prediction and analysis from soft-
ware architectures have been widely considered and several
research studies have focused their attentions on this quality
attribute. Although our work targets availability and both non-
functional requirements are close topics, we decided to explore
the methodology presented in Section IV to the reliability one,
since there are more studies to compare and public available
case-studies we could analyze, test and confirm our results.
With this in mind, following we present the work done so far
regarding this PhD thesis.

A. Automated Reliability Prediction from Architectural De-
scriptions

The methodology presented in subsections IV-A, IV-B, IV-C
has been compiled into an article where we demonstrated pos-
sible to automate the reliability prediction from software archi-
tectural descriptions, depicted through Figure 2 [23]. In more

Translator
Input

Prism
File

Generate

ADL File

Annotations

Architectural
Constituents

Prism
Tool

Load into

ReportProduce

Fig. 2: Translation Process Workflow

detail, our approach parses the ADL file into an intermediate
representation of the constituents of the system along with
the proper annotations. The intermediate representation allows
any ADL that complies with the ISO/IEC/IEEE 42010 [17]
standard to be parsed and analyzed. We have successfully
used Acme [15], although other ADLs may be target of
future work. After the file has been parsed, our application
translates the architecture by building a mathematical model
into a high-level formal language, which can be loaded into the
probabilistic model checking tool, Prism [26]. In turn, Prism
allows testing the correctness of the model, checks for the
absence of deadlocks and provides the reliability value of the

generated model. This work has been validated by comparing
our automated procedure against manual predictions carried by
other studies and, as a result we obtained 0.0% of difference
in every comparison with assessments based on the composite
model and 0.22% on the hierarchical model and also 0.0% in
every comparison considering architecture styles. As a result,
we can conclude that our work has automated the manual
assessment architects have been performing until today. This
work was published in the joint Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA) and the European
Conference on Software Architecture (ECSA) in 2012 [23].

B. Support Software Architecture Evolution

S1

S2

S3

S4

S5 S6

S7

S9 S8

S10C

0.6
0.2

0.2

0.5

0.7

0.3

1
0.4 0.6

0.3

0.10.3

0.3

0.6

0.4

0.5

0.1

0.9
0.75

0.25

F

From any 
other state

Fig. 3: Example architecture

We addressed the method presented in Section IV-D by
proposing an approach to evaluate the reliability impact in the
evolution of a software architecture. To this end, we perform
a sensitivity analysis to determine how the reliability function
changes as its input varies, allowing to identify reliability
bottlenecks or system paths that are more prone to error.
We presented this work in the Latin-American Symposium
on Dependable-Computing in 2013 [24] where we showed
the effectiveness of our approach by performing a sensitivity
analysis in the architecture illustrated in Figure 3.

The results are depicted in Figure 4, showing the impact
results on the overall system reliability by varying both re-
liability (a) and usage profile (b) (also known as operational



profile and it is defined as how the system is used). Figure 4(a)

(a) Reliability

(b) Usage Profile

Fig. 4: Sensitivity Analysis

depicts the variation of 10% of the reliability for each compo-
nent in the system with respect to the overall system reliability.
This graph allows to understand which are the components that
influence the system the most. More specifically, components
C8 and C5 are on the top of the list, since they have a higher
impact in the overall system reliability. Thus, the architect
should perform improvements to these components in order
to increase the overall system reliability.

The analysis on the variation of the system usage profile
is presented in Figure 4(b). Hence, we can conclude that the
inter-component transition from C8 to C10 is the one that
has a higher impact on the overall system reliability. On the
other hand, increasing the usage of the connection between
component C8 to C4 will have a negative impact on the system
reliability.

C. Affidavit Tool

The two above works have been compiled into a tool
targeting system architects and accessible from an architecture
development framework. This tool allows architects to reason
about the designed architecture, helping to avoid architectural
arrangements that might have a negative impact on the overall
system reliability, at the same time that it indicates the most
suitable arrangement for specific contexts. This paper has
been published in INForum a Portuguese Computer Science
Symposium in 2013 [25].

Figure 5 presents the Affidavit diagram in which our tool

Eclipse RCP

Acme 
Studio

Affidavit

ADL
Model

Analysis Plugins

Reliability
Prediction

Sensitivity
Analysis

User Interface

History View

Sensitivity View

Fig. 5: Affidavit context diagram

was developed as a plugin for AcmeStudio [26]. AcmeStudio
is an architecture development environment written as a plugin
of the Eclipse RCP Framework [27] and it is a graphical
architecture design tool that creates, modifies or iterates over
architectural descriptions in the Acme language [15]. Since
our tool is close to the architectural design, we can use
the formalisms of the Architectural Design Language where
the modeled architecture is specified to produce a stochastic
model which exhibits the behavior of the system regarding its
reliability. Thus, we provide means for architects to predict
and analyze system reliability through two different methods:
reliability prediction and sensitivity analysis. In each one of
these methods, our tool will add the proper information about
the simulation to the history view. From the history view,
the architect has at his disposal the possibility to visualize
the architecture used as input in each simulation. When a
sensitivity analysis is performed, Affidavit will also present
a graphical representation of the obtained results, as it is
illustrated by the sensitivity view in Figure 5.

VI. FUTURE WORK

The work done so far has been focusing in reliability as a
quality attribute and we prove feasible to generate and solve
stochastic models to perform prediction and analysis in an
automated fashion. Until now, the methods presented in the
scientific community have focused in manual activities which
usually are related to time-consuming and error-prone tasks.
However, we have raised the bar by building and applying to
a software architecture design framework, automated methods
to analyze reliability, supporting architects in both design and
evolution phases.

As future work, we intend to apply such automated pre-
diction and analysis methods to our target non-functional
attribute, availability. The work plan consists on perform
availability assessments at runtime to discover failing com-
ponents and suggest improvements through self-adaptation. In



addition and since formal methods are often related to time-
consuming tasks and increased overheads, we plan to show
the performance effectiveness of our approach in respect to
scalability in terms of the number of architectural elements
modeled and also, the time that each availability assessment
takes to be executed.

VII. CONCLUSIONS

This paper describes the objectives, methods and findings
achieved during the PhD period in which we have researched
towards a method to support the automated prediction and
analysis of availability from formally described software ar-
chitectures. The main goal of this PhD is to give support for
architects to assess, compare and test their designed archi-
tectures assuring that they fulfill the availability requirements
established by the stakeholders.

The defined objectives for this PhD thesis have been pre-
sented in Section III and from the work already done presented
in Section V, one can conclude that the objectives have
already been achieved regarding reliability with an additional
implementation of a tool accessible for practitioners and
architects. Future work focuses on applying the developed
methods to availability and give support for decision-making
of self-adaptive solutions in order to inform the system on
what is the best adaptation tactic to achieve a more available
system.

ACKNOWLEDGMENT

This material is based upon work supported by the
QREN “Programa Operacional Regional do Centro” un-
der Grant CENTRO-07-ST24-FEDER-002003, project ICIS -
Intelligent Computing in the Internet of Services. This re-
search was also supported by a PhD research grant from
Fundação para a Ciência e Tecnologia (FCT), Portugal
[SFRH/BD/89702/2012].

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[2] M. R. Lyu, Ed., Handbook of software reliability engineering. Hight-
stown, NJ, USA: McGraw-Hill, Inc., 1996.

[3] V. Cortellessa, H. Singh, and B. Cukic, “Early reliability assessment of
uml based software models,” in Proceedings of the 3rd International
Workshop on Software and Performance, ser. WOSP ’02. New York,
NY, USA: ACM, 2002, pp. 302–309.

[4] S. M. Yacoub, B. Cukic, and H. H. Ammar, “Scenario-based reliability
analysis of component-based software,” in Proceedings of the 10th In-
ternational Symposium on Software Reliability Engineering, ser. ISSRE
’99. Washington, DC, USA: IEEE Computer Society, 1999, p. 22.

[5] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner, “Reliability
prediction for fault-tolerant software architectures,” in Proceedings of
the Joint ACM SIGSOFT Conference – QoSA and ACM SIGSOFT
Symposium – ISARCS on Quality of Software Architectures – QoSA and
Architecting Critical Systems – ISARCS, ser. QoSA-ISARCS ’11. New
York, NY, USA: ACM, 2011, pp. 75–84.

[6] R. H. Reussner, H. W. Schmidt, and I. Poernomo, “Reliability Prediction
for Component-Based Software Architectures,” Journal of Systems and
Software – Special Issue of Software Architecture – Engineering Quality
Attributes, vol. 66, no. 3, pp. 241–252, 2003.

[7] R. C. Cheung, “A user-oriented software reliability model bell telephone
laboratories, naperville, illinois 60540,” Computer Software and Appli-
cations Conference, 1978. COMPSAC ’78., 1978.

[8] A. Immonen and E. Niemel, “Survey of reliability and availability pre-
diction methods from the viewpoint of software architecture.” Software
and System Modeling, vol. 7, no. 1, pp. 49–65, 2008.

[9] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-based approach
to reliability assessment of software systems.” Perform. Eval., vol. 45,
no. 2-3, pp. 179–204, 2001.

[10] S. S. Gokhale, “Architecture-based software reliability analysis:
Overview and limitations,” IEEE Transactions on Dependable and
Secure Computing, vol. 4, no. 1, pp. 32 –40, January 2007.

[11] D. Pengoria and S. Kumar, “A Study on Software Reliability Engineer-
ing Present Paradigms and its Future Considerations,” IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE), 2009.

[12] R. Cheung, “A user-oriented software reliability model,” IEEE Trans-
actions on Software Engineering, vol. 6, no. 2, pp. 118–125, 1980.

[13] S. S. Gokhale and K. S. Trivedi, “Reliability prediction and sensitivity
analysis based on software architecture.” in IEEE International Sympo-
sium on Software Reliability Engineering (ISSRE). IEEE Computer
Society, 2002, pp. 64–78.

[14] B. Littlewood, “A software reliability model for modular program
structure,” in IEEE Trans. on Reliability (Special Issue on Software
Reliability), vol. R-28, no. 3, August 1979, pp. 241–246.

[15] D. Garlan, R. T. Monroe, and D. Wile, “Acme: Architectural description
of component-based systems,” in Foundations of Component-Based
Systems, G. T. Leavens and M. Sitaraman, Eds. Cambridge University
Press, 2000, pp. 47–68.

[16] P. Casanova, B. Schmerl, D. Garlan, and R. Abreu, “Architecture-
based run-time fault diagnosis,” in Proceedings of the 5th European
Conference on Software Architecture, ser. ECSA’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 261–277.

[17] IEEE Computer Society, “ISO/IEC standard for systems and software
engineering - recommended practice for architectural description of
software-intensive systems,” ISO/IEC 42010 IEEE Std 1471-2000 First
edition 2007-07-15, pp. c1–24, July 2007.

[18] W.-l. Wang, D. Pan, and M.-H. Chen, “Architecture-based software
reliability modeling,” Journal of Systems and Software, vol. 79, no. 1,
pp. 132–146, Jan. 2006.

[19] J.-H. Lo, C.-Y. Huang, I.-Y. Chen, S.-Y. Kuo, and M. R. Lyu, “Relia-
bility assessment and sensitivity analysis of software reliability growth
modeling based on software module structure.” Journal of Systems and
Software, vol. 76, no. 1, pp. 3–13, 2005.

[20] C. M. Grinstead and L. J. Snell, Grinstead and Snell’s Introduction to
Probability. American Mathematical Society, 2006.

[21] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Prism: probabilistic
model checking for performance and reliability analysis.” SIGMETRICS
Performance Evaluation Review, vol. 36, no. 4, pp. 40–45, 2009.

[22] E. Elsayed, Reliability Engineering, ser. Wiley Series in Systems Engi-
neering and Management. Wiley, 2012.

[23] J. M. Franco, R. Barbosa, and M. Zenha-Rela, “Automated Reliabil-
ity Prediction from Formal Architectural Descriptions,” in 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture. Helsinki, Finland: IEEE computer
society, Aug. 2012, pp. 302–309.

[24] ——, “Reliability analysis of software architecture evolution,” in Latin-
American Symposium on Dependable Computing (LADC 2013), Rio de
Janeiro, Brazil, 2013.

[25] J. M. Franco, F. Correia, R. Barbosa, and M. Zenha-Rela, “Affidavit:
Automated reliability prediction and analysis of software architectures,”
in INForum 2013. Atas do 5o Simpósio de Informática, 2013, pp.
54–65.

[26] B. Schmerl and D. Garlan, “Acmestudio: Supporting style-centered
architecture development,” in Proceedings of the 26th International
Conference on Software Engineering, ser. ICSE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 704–705.

[27] W. Beaton and J. d. Rivieres, “Eclipse platform technical overview,” The
Eclipse Foundation, Tech. Rep., 2006.


