
Master in Informatics Engineering
Dissertation
Final Report

Evolutionary Computation
for Assessing and Improving
Classifier Performance

João Nuno Gonçalves Costa Cavaleiro Correia
jncor@student.dei.uc.pt

Advisor:
Penousal Machado
Date: September 1, 2011

Abstract

In this dissertation we explore the use of Evolutionary Computation for as-
sessing and improving the performance of classifier systems, focusing on image
classification tasks. A boosting framework for classifier improvement is pro-
posed. The approach relies on the use of an evolutionary computation engine to
exploit the potential weaknesses of the classifiers, evolving instances that pro-
duce classification errors. Subsequently these instances are become part of the
training sets in order to circumvent the identified weaknesses. The framework
was instantiated and tested in two image classification scenarios and several
validation experiments were conducted. The experimental results attained are
described and analyzed. Overall the results show the viability of the proposed
approach and indicate future research.

Contents

1 Introduction 8
1.1 Motivation . 8

2 State of the Art 11
2.1 Evolutionary Computation . 11

2.1.1 Sub-areas of Evolutionary Algorithms 12
2.1.2 Evolutionary Computation for Image Generation 14

2.2 Image Classification . 15
2.3 Face Detection . 16

3 Proof of Concept and Experimentation 20
3.1 Evolving Faces . 20
3.2 Conclusions and Insights . 29

4 Framework 30

5 Style-Based Image Classification 33
5.1 Introduction . 33
5.2 The Approach . 34
5.3 Experimental Setup . 38
5.4 Experimental Results . 40
5.5 Assessing Classifier Performance 49
5.6 Summary . 54

6 Improving Face Detection 56
6.1 Introduction . 56
6.2 The Approach . 58
6.3 Experimental Setup . 59
6.4 Experimental Results . 62
6.5 Assessing Classifier Performance 65
6.6 Summary . 69

7 Conclusions and Future Work 71

A Feature Extractor 73
A.1 Overview . 74
A.2 Pre-Processing . 75
A.3 Image Filters . 78
A.4 Metrics . 83

1

CONTENTS 2

A.5 Feature’s Building . 91

B Populations 92
B.1 Style-Based Image Classification 92
B.2 Improving Face Detection . 92

List of Figures

2.1 Generic Evolutionary Algorithm [80] 12

3.1 Haar features [86]. 21
3.2 Extended Haar features [51]. 22
3.3 Cascade of classifiers with N stages [51]. 23
3.4 Overview of the system. 23
3.5 Evolution of the average and maximum fitness when using the

C1 classifier to assign fitness. Results are averages of 10 runs. . . 25
3.6 Evolution of the average and maximum fitness when using the

C2 classifier to assign fitness. Results are averages of 10 runs. . . 25
3.7 Evolution of the average and maximum fitness when using the

C3 classifier to assign fitness. Results are averages of 10 runs. . . 26
3.8 Fittest individual per generation from last to first generation in

reading roder. 26
3.9 Examples of individuals evolved using c1 and the classification

assigned by the FD algorithm. 27
3.10 Examples of individuals evolved using c2 and the classification

assigned by the FD algorithm. 28
3.11 Examples of individuals evolved using c3 and the classification

assigned by the FD algorithm. 28

4.1 Overview of the framework. 30

5.1 System overview. 35
5.2 Features available for each partition. 36
5.3 Image partitions. 36
5.4 Samples of external data set. 39
5.5 Samples of internal data set. 40
5.6 Fittest individual of each generation of the FULL experiment in

the first iteration. 41
5.7 Fittest individual of each generation of the FW experiment in the

first iteration. 41
5.8 Fittest individual of each generation of the BW experiment in

the first iteration. 42
5.9 Fittest individual of each generation of the FULL experiment in

the 4th iteration, the last were FP were found. 47
5.10 Fittest individual of each generation of the FW experiment in the

last iteration. 48

3

LIST OF FIGURES 4

5.11 Fittest individual of each generation of the BW experiment in
the last iteration. 48

5.12 Samples from Paintings validation set. 50
5.13 Samples from Jornadas validation set. 51
5.14 Samples from Compilation validation set. 51
5.15 Samples from Fractal validation set. 51
5.16 Examples of misclassified images from Paintings set. 54
5.17 Examples of misclassified images from Fractals set. 55
5.18 Examples of misclassified images from Jornadas set. 55
5.19 Examples of misclassified images from Compilation set. 55

6.1 Sample of False positives retrieved via Google Image search using
the “computer” and the google “faces” filter. 57

6.2 False alarms while using Picasa (Unnamed groups of people). . . 57
6.3 False positives detected while using “Self Photo” application for

IPhone. 57
6.4 System overview. 58
6.5 Example of cropped positive images. 61
6.6 Example of cropped positive images. 62
6.7 Samples of images evolved by NEvAr during the first iteration of

the Balanced experiment and classified as faces by the internal
classifier. 64

6.8 Samples of images evolved by NEvAr during the first iteration of
the Unbalanced experiment and classified as faces by the internal
classifier. 64

6.9 Samples of images evolved by NEvAr during the second iteration
of the Balanced Addneg and classified as faces by the internal
classifier. 64

6.10 Samples of images evolved by NEvAr during the second iteration
of the Balanced Classif and classified as faces by the internal
classifier. 64

6.11 Samples of images evolved by NEvAr during the second iteration
of the Unbalanced Addneg and classified as faces by the internal
classifier. 65

6.12 Samples of images evolved by NEvAr during the second iteration
of the Unbalanced Classif and classified as faces by the internal
classifier. 65

6.13 Feret dataset samples. 66
6.14 Flickr Images dataset samples. 67
6.15 Frequently misclassified images of the Feret Image set. 69
6.16 Frequently misclassified images of the Flickr image set. 70

A.1 Lenna original. 74
A.2 Feature Extractor Overview. 74
A.3 Application of the rule of thirds and highlighting of the focal

points (in red). 76
A.4 Resulting images from image partitioning and rule of thirds. . . . 77
A.5 HSV color space cone. 77
A.6 The resulting color channels used in the FE. 78
A.7 An example of the median cut algorithm. 81

LIST OF FIGURES 5

A.8 Saliency map. 83
A.9 Filter operations aplication. 84
A.10 Original Image . 88
A.11 Similarity . 88
A.12 Lenna (V channel) . 90
A.13 Lenna Box-Counting . 90

B.1 NEvAr 2007 starting population 93
B.2 NEvAr Faces starting population from 0− 51. 93
B.3 NEvAr Faces starting population from 51− 99. 93

List of Tables

2.1 Features for face/object detection [95]. 17
2.2 Schemes to address challenges in boosting learning [95]. 18
2.3 Other schemes for face detection [95]. 19

5.1 NEvAr’s parameters. 38
5.2 FE’s parameters. 38
5.3 CS’s parameters. 39
5.4 Performance in the first iteration. 41
5.5 FULL’s performance during training. 43
5.6 FW’s performance during training. 44
5.7 BW’s performance during training. 44
5.8 FULL’s performance during test. 45
5.9 FW’s performance during test. 45
5.10 BW’s performance during test. 46
5.11 False positives generated in the experiments per iteration. Note

that the Fw experimnt stops after 10 iterations while the BW
experiment stops after 11. 46

5.12 Number of features selected per iteration. 47
5.13 Performance in the last iteration. 48
5.14 Percentage of images correctly classified during training and test

in a models versus Data sets test. 49
5.15 Percentage of correctly classified images of the validation sets. . . 52
5.16 Average percentage of correctly classified images per validation

set. Results grouped by the features used by the models. 54
5.17 Average percentage of correctly classified images per validation

set. Results grouped by dataset used to train the model. 54

6.2 Haar Training parameters. 59
6.1 NEvAr parameters. 59
6.3 Internal classifier parameters. 60
6.4 Parameters used by the performance tool. 61
6.5 Training performance when using the balanced training set. . . . 63
6.6 Training performance when using the unbalanced training set . . 63
6.7 Number of evolved images classified as faces by the internal clas-

sifier during the evolutionary run of the first iteration (initial)
and during the evolutionary run of the second iteration using the
Addneg and Classif models (Addneg and Cassif, respectively). . . 63

6.8 Balanced test performance . 68

6

LIST OF TABLES 7

6.9 Unbalanced test performance . 68
6.10 External classifier (FDlib) performance. 69

A.1 Parameters used in fractal compression 87

Chapter 1

Introduction

1.1 Motivation

Computer Vision is the science that gives the machines the capability to see,
where see is the ability to extract information from an image, process and ana-
lyze it in order to solve vision related tasks. From a technological point of view,
Computer Vision seeks to apply its theories and models to the construction of
bio-inspired computer vision systems [4].

Computer vision systems have evolved from the typical pattern recognition
applications and image processing techniques to advanced applications of image
understanding, model-based vision, knowledge based vision, and systems that
exhibit learning capability. The ability to reason and to learn are the two major
capabilities associated with these systems. Through all these years, hypothesis,
theories, algorithms and practical applications have been created in the field
of Computer Vision and Pattern Recognition, resulting in new techniques of
representation, adaptation and learning. However, these processes of general-
ization, abstraction and learning, represent a challenging frontier for Computer
Vision. In order to attend for this fact, a synergy between Computer Vision
(CV) and Machine Learning (ML) emerged. The majority of Computer Vi-
sion systems include (in some part or in some way) a process of understanding
and learning from information, using it to complete the objective of the system
[72, 76, 86, 69, 11].

As the research on these areas advances the problems tackled become more
complex and so do state of the art approaches, which currently often involve
several layers of decision and control parameters. The fine-tuning of the ap-
proaches becomes crucial for attaining competitive results. Additionally, in
example-based learning approaches, the quality (e.g. completeness, representa-
tiveness) of the employed datasets is crucial not only for attaining competitive
performances but also for correctly assessing the strengths and shortcomings of
the approaches. As Such, developing adequate datasets for training, testing and
validation is a complex and time-consuming process, but also a crucial one.

Evolutionary Computation (EC) has been introduced in recent works, imbu-
ing optimization and learning power to the methods utilized, through its main
characteristic, evolution. EC is a branch of Artificial Intelligence inspired by
the natural process of evolution described by Darwin [10], which attempts to

8

CHAPTER 1. INTRODUCTION 9

solve problems by evolving solutions to them. The key concept of the Evolu-
tionary Algorithms (EAs) are: (i) Selection – individuals that are better suited
to their environment have higher probabilities of surviving and reproducing; (ii)
Inheritance – the descendants inherit characteristics from the progenitors; (iii)
Variation – The descendants are not exact copies of the parents. Inheritance and
variation occur at the genotype level. By inheriting parts of the genetic code of
the progenitors the descendants also tend to inherit some of their characteristics.
Variation is attained by the recombination of the genetic code of the progen-
itors, which is thought to promote the exploitation of characteristics that are
already present in the population, and by the introduction of random changes
in the genetic code (i.e. mutations) which have the potential to introduce new
genetic code, and hence are thought to promote exploration.

EAs have been used in various contexts in CV and ML. In the CV context
some examples of its usage are digital filters tuning, parameter optimization and
image generation. In ML, EAs have been used to evolve solutions for classifiers
parameters, thresholds, feature selection for classification, the classifier itself,
among others. Works such as [84, 42, 7, 73] combine EC, CV and ML aspects.

In preliminary experiments, conducted in the course of this dissertation, we
combined an evolutionary expression-based image generation system [54] and a
state of the art face detection system [86], with the goal of evolving images that
resembled human faces. The experiment was a success, in the sense that the
evolutionary engine easily evolved hundreds of images that were identified as
faces by the classifier. It was a failure, in the sense that most of these images,
albeit classified as faces, did not resemble faces to the human eye. Although
the results were both unexpected and disappointing they gave us interesting
insights.

The EA was able to find and exploit shortcomings of the classifier to “arti-
ficially” increase fitness. The propensity of EAs to find “shortcuts” that exploit
weaknesses of the fitness assignment scheme is well-known (see, e.g., [81, 84, 59]).
This open two possibilities: (i) Using EA approaches to test the robustness of
face detector systems; (ii) use the misclassified instances to improve the datasets
used in their training, hence improving the face detection system. These ideas
can, potentially, be generalized to other classification and identification tasks.

Following these ideas, the present dissertation concerns the use of EC to
assess and improve classifier performance through the synthesis of new training,
testing and validation examples.

In order to fulfil these goals, we will attend to several objectives:

• Create a framework for classifier assessment and improvement through
evolutionary techniques;

• Perform tests with the framework in different classification scenarios and
classifiers;

• Study and develop appropriate fitness assignment schemes for each sce-
nario;

• Retrieve and analyze the individuals resulting from the evolutionary runs
for the purpose of identifying the shortcomings of the classifiers and im-
prove their performance.

• Assess the viability and utility of the proposed framework;

CHAPTER 1. INTRODUCTION 10

The creation of novel CV algorithms, ML approaches and evolutionary paradigms
is outside the scope of this thesis. Additionally, we will focus exclusively on
image classification tasks. We will resort, to a well established evolutionary
expression-based image generation engine [54], which will be integrated with
image classifiers and adapted, namely in terms of fitness assignment, in order
to to suit our goals. To promote the generalization of the attained experimental
results we will resort to state of the art classification techniques.

The reminder of the document is divided in seven chapters.
Chapter 2 gives a overview of the research that as been done so far in terms

of evolutionary algorithms, classification tasks and face detection.
In Chapter 3 the explanation of the preliminary work is performed. This

chapter Covers an evolutionary approach to evolve faces (3.1) and its contribu-
tion as the first step for the proposed framework.

A description of the framework is given (4).
The first test to the framework is described in Chapter 5 and refers to a

work inspired by Machado et. al.[59] to improve a Style-Based Image classifier.
Chapter 6 describes the second test to the framework by exploring an experiment
with a Face detection classifier.

Chapter 7 describes the conclusions drawn from the research done for this
dissertation and indicates future research.

Chapter 2

State of the Art

This dissertation is an interdisciplinary work that combines areas such as CV,
ML and EC. The current chapter covers theoretical and practical aspects of some
disciplines within the mentioned areas, which contribute for the objectives of the
dissertation. First, in section 2.1, an introduction to Evolutionary Computation
and its sub-areas is presented. The application of EC to the field of image
generation is discussed in section 2.1.2. Section 2.2 makes an overview the
classifier system employed in image classification tasks. Finally, in section 2.3,
a survey of face detection algorithms is presented.

2.1 Evolutionary Computation

EC is a field of Artificial Intelligence that makes use of a variety of evolutionary
computational models inspired by the Darwinian [10] principles of the natu-
ral process of evolution for problem solving. These computational models are
usually referred to as EAs.

Over the decades, and with the advances in computer technology, a growing
demand for problem-solving automation has been created. In order to attend to
that matter, EAs have been frequently used as problem solving tools. The ex-
tension of EAs application reach areas outside the traditional Computer Science
scope. Examples of their application include: data-mining [3], communications
[39], robotics [93], games [65], medicine [91] and finance [82].

Despite the differences between EA approaches they share common concepts
and methods. Their basis for problem solving is a stochastic population-based
optimization algorithm.

Figure 2.1 presents a generic EA. The population is usually initialized by a
stochastic method. Evaluation is the process of fitness assignment of the indi-
viduals, that is context and problem dependent. Selection picks the parents for
the next population. By exchanging information between the selected parents
(recombination) new children are created and then can be further perturbed
by mutation. Finally the survive step determines who persists for the next
population.

11

CHAPTER 2. STATE OF THE ART 12

procedure EA; {
t = 0 ;
i n i t i a l i z e populat ion P(t) ;
eva luate P(t) ;
u n t i l (done) {

t = t + 1 ;
p a r e n t s e l e c t i o n P(t) ;
recombine P(t) ;
mutate P(t) ;
eva luate P(t) ;
su rv iv e P(t) ;

}
}

Figure 2.1: Generic Evolutionary Algorithm [80]

2.1.1 Sub-areas of Evolutionary Algorithms

Four different EA sub-areas are acknowledged: Genetic Algorithms (GA), Evo-
lution Strategies (ES), Genetic Programming (GP) and Evolutionary Program-
ming (EP) [88]. Although similar at the highest level, there are differences in
aspects such as: representation of individuals, selection mechanisms, genetic
operators and performance measure.

Although the focus of the current dissertation proposal is GP (section 2.1.1),
the different sub-areas of Evolutionary Algorithms, GA (section 2.1.1), ES (sec-
tion 2.1.1) and EP (section 2.1.1), are briefly described in the reminder of this
subsection.

Evolutionary Strategies

ESs were developed in Germany, in the late 1960’s and 1970’s by Ingo Rechen-
berg and Hans-Paul Schwefel [88]. ESs have historically been used in real-valued
representations of optimization problems. This approach emphasizes mutation
over recombination. Another particular aspect of this approach is the different
ways of manipulating parents and offsprings. Considering µ the size of the par-
ents population and λ to the number of descendants of the current generation,
the strategies for manipulation of the population usually used are ([88]):

• (µ, λ) – parents are replaced by the offspring.

• (µ+λ) – offspring is added to the population, selecting µ individuals from
(µ+ λ).

• (µ + 1) – the parents generate a single offspring that replaces the worst
parent of the population if it performs better.

• (1 + 1) – a single parent produces a single offspring generated through
mutation in an elitist manner.

CHAPTER 2. STATE OF THE ART 13

Evolutionary Programming

EP was first applied to the evolution of finite state machines in the 1960’s by L.
Fogel [44]. In the following years EP research has strained only to be resurrected
in the 1990’s by the work of D. Fogel [18]. Fogel renewed the whole concept of
EP but it became similar with ES in various aspects.

The role of Mutation is fairly equal to that seen in ES and the selection
process is only slightly different, a form of Tournament Selection is used. One
main difference is the absence of recombination, meaning that, all changes are
applied via the mutation. Another difference is in the formation of individuals,
that do not have a fixed structure or representation.

Genetic Algorithms

GA is the most widely known form of EAs. It was originally developed by John
Holland and his students in the 1960’s, altought their work extends until 1980’s.
The interest in GA is arguably related to the explosion of research in Artificial
Neural Networks, since both are inspired in biological systems [88].

This approach is centered in the use of a genotype that is decoded and evalu-
ated. The genotypes are, traditionally, simple data structures such as bit strings
or real-value arrays that are evolved through recombination and mutation. An
interesting aspect of this type of algorithm is identified by Holland [31] and
DeJong [37] by describing GAs as a search process rather than an optimization
process by focusing in the concept of competition. Recombination is the most
emphasized operator in GAs and is traditionally done through a crossover oper-
ator which consists on exchanging parts of genotype between parents. In GAs,
mutation is usually used with lower probability, in order to cause small disrup-
tions at the gene level. Another key component of GAs is selection. Selection
can be done by using various methods, the most usual being: roulette wheel,
tournament and rank selection.

Genetic Programming

Unlike the other EAs, GP is not a parameter optimization method but rather fits
in the scope automated programming. This approach was preceded by studies
that can be seen as a form of genetic programming such as evolving finite state
machines or classifier systems. However, GP introduced a major change in
paradigm [41].

GP systems are often implemented in prefix notation, similarly to Lisp pro-
grams, i.e. the expression ((+(∗− 2x))4) represents the function −2x+ 4. Tree
structures are typically used to represent syntactically correct expressions such
as the one presented. Expressions are composed of functions and terminals that
match, respectively, internal nodes and leaf nodes. The terminal set and the
function set are human-defined and specify the components available in order
to create individuals. In simple examples the function set may consist only of
arithmetic operators and terminals of constants and external inputs. For more
complex problems functions representing external tasks may be included.

The initialization of the population is usually done by the following meth-
ods: full or grow. The maximum tree size is usually specified. In the case of
full initialization, nodes from the function set are used until the tree reaches

CHAPTER 2. STATE OF THE ART 14

the maximum size and after that, only terminals can be used. In the grow ini-
tialization method nodes from both the function and terminal sets can be used
until the maximum depth is reached. Another method for initialization is the
ramped-half-and-half method where the full method is used to generate half of
the individuals and the grow is applied to the other half.

Koza[41] defines the following genetic operators:

• reproduction – copy certain individuals into the new population;

• crossover – random pick a crossover point in each parent tree and swap
the sub-trees associated;

• mutation – substitute a random sub-tree with a randomly generated one,
sometimes implemented as a crossover between the individual and one
randomly generated;

• architecture-altering – choose an operation from a one of the available sets
and apply it on a given individual to generate an offspring;

Unlike GA, where mutation is applied after crossover, in traditional GP these
operators are applied in exclusion, meaning that a selected individual will have
a probability of indulging reproduction, crossover, mutation or architecture-
altering operations. Genetic operators are usually applied until the offspring
population is the same size as the parents’ one.

Selection is done based on the fitness of each individual, with all methods of
selection described previously being valid.

2.1.2 Evolutionary Computation for Image Generation

In the field of Evolutionary Computation for image generation, there is a need
for a viable, scalable, expandable representation of the individuals, in this case,
images [47].

Karl Sims in 1991, introduced the expression-based approach for evolving
images [78]. This was done by using a GP algorithm and mathematical expres-
sions as the genotype. An expression like abs(max(x, 2∗cos(y))+cos(y∗π)) can
be represented as a tree graph structure, made up of mathematical functions
and operators at internal nodes, and constants or variables at the leaves. When
the expression represented by the tree is evaluated at each pixel in an image by
plugging in the pixel’s coordinates, the resulting value can be used to determine
the color of a pixel. The resulting image is the phenotype. Images or forms can
then be created and selected by using the usual recombination and mutation
operators of a GP approach. There are still many different techniques for rep-
resenting this genetic information. Choices about what functions to use, how to
map values, originate different types of phenotypes, and can also influence the
likelihood of finding interesting results.

The majority of these expression-based image generation systems use a re-
duced set of mathematical functions and often only local information for deter-
mining pixel color. There are systems that rely on specific techniques such as
fractals, polar coordinate mappings, noise functions, texture applications, etc.
Notice that specific additions to the function set or other system extensions can
push system results in specific directions.

CHAPTER 2. STATE OF THE ART 15

One pitfall of the majority of these image generation methods is the fact of
being an interactive processes, that rely on the presence of an user to do the
aesthetic judgement of the image in order to continue the process of evolution
[24, 29, 22].

Other researchers have explored automatically evolving expressions using
target images. This is the case of Ibrahim [35] which made some of the earliest
attempts at replicating textures by using image analysis functions that evaluate
rudimentary image features such as color, luminosity, and shape. Ross’s initial
work in this area with Wiens [89] sought to match simple test textures. Ross’s
more recent work attempts to generate expressions matching arbitrary artistic
imagery.

Some hybrid systems using expression-based images were created, such as
Baluja’s [5] system that used neural networks previously trained with image
examples to assign fitness and Machado’s NEvAr system [59] that combines a
evolutionary process, a classifier and a feature extractor to assign fitness. The
work of Machado et al. has inspired the work of Atkins et al. [2] that uses a
similar approach but use a different set of features.

In this section we made a brief overview of the state of the art in the areas
that are foundations for this dissertation. The following sections cover concepts
of other areas, which are necessary to understand the direction and focus of the
developed work.

2.2 Image Classification

Considering the scope of this dissertation and the relation to the work presented
in the chapter 3 this part of the state of the art is directed towards image
classification, with an emphasis in aesthetics classification. A survey of classifier
systems and a reflection about the used classification systems is presented.

Image classification is generally used to distinguish two or more classes,
depending on the problem in hand. As a particular case, automatic image
classification based on aesthetic criteria has multiple applications. It would
allow image browsers to consider the aesthetic preferences of the user, enable
online shops of artistic works, designs, or photographs to recommend works that
are consistent with previous purchases, preferences or trends, etc. A system of
this type could, for instance, be used to automatically classify artistic databases
and then generate images of a given style or aesthetic current. This could
be achieved by integrating the classifier as the evaluator of an evolutionary
image generation system [5, 59]. In the referred works, Neural Networks were
employed.

This is an area of continuous work and the rest of the section will present
some examples of the classification tasks, the data sets involved and its classifi-
cation performance.

Tong et al. [85] used a large set of low level features to distinguish be-
tween 12897 amateur photographs, taken by workers at Microsoft Asia, and
a set of 16643 professional photographs, obtained from Corel Image Database
and Microsoft Office Online. By using different classification methods, such
as AdaBoost, Real-AdaBoost, Support Vector Machine (SVM), Bayesian and
performing a 5-fold cross-validation on all 29540 images they have obtained a
success rates above 91.1%.

CHAPTER 2. STATE OF THE ART 16

Datta et al. [69] used high level ad-hoc features, based on color, texture
and shape and Support Vector Machines to classify images gathered from a
photography portal (“photo.net”). They considered two image categories: the
most valued images (average aesthetic value ≥ 5.8, a total of 832 images) and
least valued ones (≤ 4.2, a total of 760 images), according to the ratings given
by the users of the portal. The system attains 70.12% classification accuracy.

Wang et al. [87] worked in high level features of the color histogram and
tested its effectiveness in distinguishing between erotic and benign images. For
that purpose SVM’s and AdaBoost were used, attaining respectively, 85.32%
and 87.91% performance.

In the work of Li an Chen [48], they have defined a group of high and low
level features, such has color features, contrasts, image segmentation, contrast
between shapes, in order to distinguish between high quality paintings and low
quality. The classifier used was Ada-Boost. In their work, they have done
a questionnaire to a group of people, in order to obtain subjective aesthetics
scores from a dataset of 100 paintings (50 high and 50 low) and then confronted
the results with their classification algorithm, which had a success rate of 74%.

In recent work, Wu et al. [92] have used low level features, inspired by the
work of Datta [69]. The objective of the work consisted in a multi-class problem:
distinguish between “beatiful”, “divine” and “wonderful”; from “awful”, “terrible”
and “ugly”. By using a dataset of 10800 images from flickr in a classification
system that uses a variation of SVMs they attained an average success rate of
83.1% and 84.2%.

From the described state of the art work in image classification methods,
it is suggested that the classifiers used, in spite of possible optimizations and
different parameters choices, are mainly: Support Vector Machines [13], Neural
Networks [21], Bayesian classifiers [45], AdaBoost [20].

2.3 Face Detection
In the field of Computer Vision, Face Detection has become a topic of great
interest for the community. A Face Detection algorithm is a specific case of
object-class detection, that attempts to identify the locations and sizes of human
faces in an image. While this appears as a trivial task for humans, it is a
challenging task for computers.

Many research projects and commercial products have demonstrated the ca-
pability for a computer to interact with human in a natural way by looking at
people through cameras, listening to people through microphones, understand-
ing these inputs, and reacting to people in a friendly manner. Furthermore,
almost every photographic camera, every photo organizer application and even
social networks has his own implementation of a face detection algorithm.

Face detection can be viewed as the stepping stone to all facial analysis
algorithms, including face alignment, face modelling, face relighting, face recog-
nition, face verification/authentication, head pose tracking, facial expression
tracking/recognition, gender/age recognition, and many many more that are
not listed here. The difficulty associated with face detection can be attributed
to many factors about the images in evaluation. These include scale variations,
location, orientation, pose, facial expression, lighting conditions and occlusions,
among others.

In consequence of this demand and the general interest of the topic, there

CHAPTER 2. STATE OF THE ART 17

Table 2.1: Features for face/object detection [95].

Feature type Features

Haar-like features

Haar like features
Rotated Haar-like features
Rectangular features with structure
On motion filtered image

Pixel Based features
Pixel pairs
Control point set

Binarized features
Modified census transform
Local binary pattern (LBP) features
locally assembled binary feature

Generic linear features

Anisotropic Gaussian filters
Local non-negative matrix factorization
Boosting Generic linear features
Recursive nonparametric discriminant analysis

Statistics-based features

Edge orientation histograms
Spectral histogram
Spatial histogram
Histogram of oriented gradients and LBP
Region covariance

Composite features
Joint Haar-like features
Sparse feature set

Shape features
Boundary/contour fragments
Edgelet
Shapelet

have been numerous approaches to face detection [43, 30]. Before the year
2000, Yang et al. [43] have divided the various solutions into four distinct
categories: knowledge-based methods, feature invariant approaches, template
matching methods, and appearance-based methods. Knowledge-based methods
determine the detection of a face based purely on human experience and knowl-
edge; feature invariant approaches aim to find face structure features; template
matching methods use pre-stored face templates to judge if an image is, in fact,
a face; appearance-based methods learn face models from a set of representa-
tive training face images to perform detection. In general, the most successful
were the appearance-based methods that showed superior performance when
confronted with other approaches.

Although the field of face detection has made significant progress in the past
decade, the work by Viola and Jones [86] has made face detection feasible in
real world applications such as digital cameras and photo organization software.
Their work on boosting-based face detection schemes, has become the de-facto
standard of face detection in real-world applications since then. In a recent
survey of Zhang et al. [95] it is referred that if one were asked to name a single
face detection algorithm that has the most impact in the 2000’s, it will most
likely be the work made by Viola and Jones.

Nowadays there are three key issues that need the attention in a face detec-
tion system: what features to extract; which learning algorithm to apply; how
to build or chose a dataset for training and testing purposes.

In table 2.1 there is a summary of the features usually extracted from images
in order to perform the detection. In what concerns the type of classifier and
learning algorithm to use, a considerable number of variations to the approach
of Viola and Jones have been made and several other approaches exist. Table
2.2 summarizes algorithms that rely on boosting while table 2.3 displays other

CHAPTER 2. STATE OF THE ART 18

Table 2.2: Schemes to address challenges in boosting learning [95].

Challenges Proposed slutions

General boosting schemes

Adaboost
Realboost
Gentleboost
Floatboost

Reuse previous node’s results
Boosting chain
Nested cascade

Introduce asymmetry
Asymmetric boosting
Linear asymmetric classifier

Set intermediate thresholdsduring training

Fixed node performance
WaldBoost
Based on validation data
Exponental curve

Set intermediate thresholds after training
Greedy search
Soft cascade
Multiple instance pruning

Speed up training

Greedy search in feature space
Random feature subset
Forward feature selection
Use feature statistics

Speed up testing
Reduce number of weak classifiers
Feature centric evaluation
Caching/selective attention

Multiview face detection

Parallel cascade
Pyramid structure
Decision tree
Vector valued boosting

Learn without subcategory labels

Cluster and then train
Exemplar-based learning
Probabilistic boosting tree
Cluster with selected features
Multiple category boosting

noticeable approaches for face detection. These include the traditional neural
networks, support vector machines, bayesian classifiers, regression and templates
obtained through constrained optimization.

These facts can lead to conclude that there is already a lot of work done in
face detection and that investigation has been continuously evolving until today.
The future direction, consists in further improvement of the learning algorithm
and features. For instance, the Haar features used in the work by Viola and
Jones are very simple and effective for frontal face detection cases, but they
seem to fail when detecting faces at arbitrary poses.

The modern face detectors are mostly appearance-based methods, which
means that they need training data to learn the to perform the classification
task. Creating an adequate dataset is a complex and time consuming task,
involving the collection and classification, often by hand, of large amounts of
training data, which certainly demands more research. Schemes such as mul-
tiple instance learning boosting and multiple category boosting are helpful in
reducing the accuracy needed for the labeled data, though ideally one would
like to leverage unlabeled data to facilitate learning. An unsupervised or semi-
supervised learning schemes would be possible solution for this issue. Addition-
ally, promoting the representativeness and completeness of the dataset is, to a
large extent, an open research question.

CHAPTER 2. STATE OF THE ART 19

Table 2.3: Other schemes for face detection [95].

General Approach Representative Works
Template matching Antiface
Bayesian Bayesian discriminating features

SVM–speed up
Reduced set vectors and approximation
Resolution based SVM cascade

SVM– multiview face detection

SVR based pose estimator
SVR fusion of multiple SVM’s
Cascade and bagging
Local and global kernels

Neural networks
Constrained generative model
Convolutional neural network

Part-based approaches
Wavelet localized parts
SVM component detectors adaptively trained
Overlapping part detectors

Chapter 3

Proof of Concept and
Experimentation

In this chapter the preliminary research and experiments that inspired and mo-
tivated the current dissertation, making us abandon the original proposal, is
presented. The purpose of this work was to generate images that resembled
human faces by means of an EC engine. It involves EC, CV and ML techniques.
The difficulties encountered, and the unexpected results of the task, led to in-
teresting insights and observations, creating the desire to address the identified
issues.

The approach followed here is informed by previous research where a clas-
sifier is used to guide evolution, namely the work of Machado et al.[59]. While
in Machado et al. the employed classifier was developed by the team, in this
case we use a pre-existent classifier, developed by other researchers. The orig-
inal motivation for using a classifier developed by others was to highlight the
generality of the proposed technique by demonstrating that it did not require a
special-purpose classifier specifically tailored for the task.

In the remainder of the Chapter we describe this preliminary work, present-
ing results and drawing conclusions.

3.1 Evolving Faces

As previously stated, the goal was to evolve images resembling human faces. To
attain this goal an evolutionary image generation engine and a face recognition
algorithm are required.

The EC engine used was, NEvAr, developed by Machado et al.[54], an Evolu-
tionary Art tool, inspired by the work of Karl Sims[78] and Richard Dawkins[14].
NEvAr employs Genetic Programming. The genotype of an individual is a tree,
built with a lexicon of functions and terminals, while the phenotype is an image,
resulting from the interpretation of the genotype over the pixel value coordi-
nates. In the initial versions of NEvAr, the evolutionary engine followed this
steps of execution:

1. Random initialization of the population.

2. User assisted fitness assignment.

20

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 21

3. Generate a new population with the application of the chosen genetic
operators, where the population individuals with higher fitness values have
higher probabilities of being selected.

4. Repeat 2 until some stop criterion is met.

Later the system expanded to automatic methods of fitness assignment (see,
e.g, [54, 59]) using both heuristics and ML approaches to assign fitness. NEvAr
was chosen because of its potential for image generatio, for its well-established
role in the research community [58, 54, 60, 55] and for being easy to adapt for the
problem in hand. It is important to notice that, from a theoretical standpoint,
NEvAr has the potential to generate any image. In other words, it is possible to
represent any image using the representation scheme employed in NEvAr and,
as such, any image is theoretical evolvable [54].

The face detection algorithm used was the one from Viola et al.[86] to detect
frontal faces. The code and executables are included in the OpenCV API.
This algorithm was chosen because of its state of the art relevance, for its fast
classification and by the simple methodology behind the method. This algorithm
uses a set of small features in combination with a variant of the Ada-boost [20],
in order to attain extremely efficient classifiers. To accomplish this objective,
the approach makes use of a cascade of small classifiers and use Haar features
[67], i.e., rectangular features, that are calculated through the integral image
method. An example of the integral image method is presented in figure 3.1.

Figure 3.1: Haar features [86].

In this case, two-rectangular features were used. By subtracting the pixels
of the black zone with the white zone we obtain the feature result. If this result
is superior to a given threshold, then the tested feature is present on the image.
Initially, only vertical and horizontal were used, but the work of Lienhart [51]
introduced several extensions to the used features (see figure 3.2).

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 22

Figure 3.2: Extended Haar features [51].

The face detection process can be summarized in these steps (parameters
from Viola et al. work [86]):

1. Define a window of size w (20× 20).

2. Define a scale factor s greater than 1. For instance 1.2 means that the
window will be enlarged by 20%.

3. Define W and H has the size of the input image.

4. From (0, 0) to (W,H) define a sub-window with a starting size of w for
calculation.

5. For each of these sub-windows apply the cascade classifier. The cascade
has a group of stage classifiers, as represented in figure 3.3. Each stage
is constituted at its lower level for a group of Haar features. Apply each
feature of each stage to the sub-window. If the resulting value is lower than
the stage threshold the sub-window does not have a face and the search
terminates for the sub-window. If it is higher continue to next stage. If
all stages are passed, the sub-window has a face.

6. Apply the scale factor s to the window size w and repeat 5 until window
size exceeds the image in at least in one dimension.

In order to conduct this experiment, three classifiers were used. These were
obtained from Lienhart’s[51] website1 and will be named C1, which uses the
“alt.xml” file; C2 (“alt2.xml”); C3(’default.xml”).

Figure 3.4 presents an overview of our system, which is composed of two
main modules, the GP engine and the face detection algorithm (FD).

1Haar Cascades [51]- http://alereimondo.no-ip.org/OpenCV/34

http://alereimondo.no-ip.org/OpenCV/34

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 23

Figure 3.3: Cascade of classifiers with N stages [51].

Figure 3.4: Overview of the system.

Execution proceeds as follows:

1. Random initialization of the population;

2. Rendering of the individuals, i.e., genotype-phenotype mapping;

3. Apply the face detection (FD) to each individual;

4. Use classification values from FD to build the fitness (se formula 3.1);

5. Select progenitors; apply genetic operators, creating descendants; Apply
he replacement operator resulting in a new population;

6. Repeat 2 until some stop criterion is met.

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 24

The process of fitness assignment is crucial from a evolutionary point of
view, and therefore it holds a lot of importance for the success of the described
system.

In our case, we wish to use the outputs of the face detection algorithm are
used to assign fitness. However, the FD algorithms employed produce a boolean
output, which is inappropriate to guide evolution. A binary function gives no
information of how close an individual is to being a valid solution to the problem
and, as such, with a binary function the EA would be as effective as random
search.

Ideally, the fitness function should provide a smooth fitness landscape that
promotes evolution. It is, therefore, necessary to extract additional information
from the FD in order to build a suitable fitness function.

In several informal experiments, we focused on developing an appropriate
fitness function by analyzing the results of several runs, trial and error, incre-
mental improvements and refinements, etc. This implied studying and changing
the source code of the classifiers in order to collect the necessary information.
However, these changes have no influence regarding what is and is not classified
as a face. Eventually we settled with the following fitness function:

fitness(x) =

countstagesx∑
i

beststagesumx(i) ∗ i+ countstagesx ∗ 10 (3.1)

The variables countstagesx and beststagesumx(i) are extracted from the
FD algorithm. Variable countstagesx,holds the number of stages the image has
successfully passed in the cascade of classifiers. The rationale is the following,
an image that passes several stages is likely to be closer to being recognized as
having a face than one that passes very few stages. In other words, passing
several stages is a pre-condition to being identified as a face image. Variable
beststagesumx(i) holds the maximum difference between the threshold and the
integral image ofthe ith stage. The rationale is the following, we consider that
images that are clearly above the thresholds necessary to pass each stage should
be valued over ones that are just above it.

Using this fitness function we conducted several experiments. The experi-
mental setup comprised the usage of one classifier for fitness assignment, while
observing the behavior of the others. For each classifier, 10 different runs were
created and, for each run, the evolutionary algorithm performed 100 iterations.
Due to the experimental nature of this work, this setup was thought in order to
perform fast and relevant tests.

Figures 3.5, 3.6 and 3.7 summarize the results attained using this approach
in terms of mean fitness and maximum fitness per run. In each of the charts,
the bold lines indicate the classifier used to guide fitness while the other lines
pertain classifiers that did not influence the evolutionary run. Note that the
data is normalized based on the mean maximum achieved in each classifier’s
test. The fitness values attained using different classifiers cannot be directly
compared.

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 25

Figure 3.5: Evolution of the average and maximum fitness when using the C1
classifier to assign fitness. Results are averages of 10 runs.

Figure 3.6: Evolution of the average and maximum fitness when using the C2
classifier to assign fitness. Results are averages of 10 runs.

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 26

Figure 3.7: Evolution of the average and maximum fitness when using the C3
classifier to assign fitness. Results are averages of 10 runs.

Figure 3.8: Fittest individual per generation from last to first generation in
reading roder.

The results indicate interesting aspects of the experimental process. In terms
of maximum fitness, it suggests that when c1 fitness increases, c2 seems to in-
crease almost at the same rate. They also indicate that c3 achieves the lowest
performance, except when it is guiding the evolutionary process. The c2 classi-
fier seems to promote the c3 performance more than c1 does. These experimental
results also suggests that, similar to the findings of Viola and Jones [86], c3 is
the more robust of the classifiers.

Figure 3.8 shows the evolution of the best individual, per generation, during
the course of the run that we consider to be best in terms of evolving images
that actually resemble faces. This is, obviously a subjective evaluation and this

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 27

image is included only for illustrating evolution.
This run is atypical since it actually evolved mages that, in our subjective

opinion, actually resemble faces. The typical results is the following: the runs
evolve images that the classifiers identifies as faces but that, a human would
probably never classify as possessing a face. In other words, in most runs what
the EA found were images that are false positives. It is interesting to notice that,
most of this false positives are misclassified not only by the classifier guiding
evolution but also by the other classifiers considered.

In figures 3.9, 3.10 and 3.11 we present, for each classifier, six images evolved
using it to assign fitness. The images are labeled with the classification assigned
by the classifier. These images were chosen to illustrate the strengths and weak-
ens of the classifiers,

Looking, for instance, at 3.9a and 3.9f it is easy to understand, and even
agree, with the classification made by c1. However, it is surprising to see image
3.9c and 3.9d classified as faces. The same applies to 3.10a; 3.10a may be
evocative of a human face, however for images 3.10b to 3.10d we find it difficult
to believe a human would classify them as such. Surprisingly, in our eyes, 3.10e is
more evocative of a human face than the previous ones. Likewise, and although
it is always subjective to say it, it appears reasonable to state that a human
would not identify images 3.11a, 3.11b and 3.11c as being human faces.

In the next section the conclusions of this work and the insights about this
approach, are described.

(a) c1 – Face (b) c1 – Face (c) c1 – Face

(d) c1 – Face (e) c1 – Face (f) c1 – Not Face

Figure 3.9: Examples of individuals evolved using c1 and the classification as-
signed by the FD algorithm.

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 28

(a) c2 – Face (b) c2 – Face (c) c2 – Face

(d) c2 – Face (e) c2 – Not face (f) c2 – Not face

Figure 3.10: Examples of individuals evolved using c2 and the classification
assigned by the FD algorithm.

(a) c3 – Face (b) c3 – Face (c) c3 – Face

(d) c3 – Face (e) c3 – Not face (f) c3 – Not face

Figure 3.11: Examples of individuals evolved using c3 and the classification
assigned by the FD algorithm.

CHAPTER 3. PROOF OF CONCEPT AND EXPERIMENTATION 29

3.2 Conclusions and Insights

The preliminary experiments conducted led to some relevant conclusions. The
presented approach indicates that a ML method can guide and EC algorithm.
As a proof of concept, it was possible for a EC image generator to create images
that were classified as faces by a FD. Additionally, the proposed formula used
to assign fitness showed to be valid, providing a fitness landscape that enables
the EA algorithm to maximize fitness.

These results also showed that most of the evolved images classified as faces
by the FD would probably not be classified as faces by a human observer. It
is important to notice that this tendency for false positives does not reflect a
weakness of the proposed fitness formula. For better and for worst, fitness can
be maximized by generating false positives, but this is not a deficiency of the
proposed formula, it is a weakness of the used classifiers.

In a nutshell, the tendency of the EA to evolve false positives highlights both
the shortcomings of the FD algorithm and the ability of the EA to exploit these
shortcomings.

From the attempts to solve these limitations, a new idea has emerged. The
EA is in fact synthesizing examples, that may, arguably, be used to assess and
improve the classifier performance.

In Machado et al. work [59] a related approach was used in order to con-
struct an Artificial Artist. The results indicated that the approach is capable
of improving the classifiers based on Neural Networks. The preliminary experi-
ments presented herein indicate that it is possible to adapt an Ada-boost binary
classifier to guide evolution and that, in this case, the EA also appears to have
a tendency to use “shortcomings” to maximize fitness. Recent work, were a
Support Vector Machine based classifiers [52] was used to assign fitness in the
context of an evolutionary image generation engine, indicates that the overall
concept may also be applicable in that case. These results leads to conclude
that it may prove valuable to develop a framework for assessing and improving
classifier performance by using EAs to synthesize training and test instances.
As far as we know this proposal is novel. With the exception of the work of
[59] EA were never used for this purpose and the scope of [59] was smaller and
the goals different, namely attaining style variation instead of improvement and
assessment of classifier performance.

Chapter 4

Framework

This chapter makes a brief outline of the framework we propose for the improve-
ment and assessment of classifier performance. This framework relies on the use
of EC for the the synthesis of new examples for training and testing purposes,
which constitutes, to the best of our knowledge a novel approach.

We focus on CV tasks and hence on the generation of new testing and train-
ing images. Nevertheless, the presented framework is not specific to CV and
can be applied in other domains.

Figure 4.1: Overview of the framework.

Figure 4.1 presents an overview of the proposed framework. Which is com-
posed of three main modules: Evolutionary Engine, Classification System and
Supervisor System. The role of the evolutionary engine is to evolve new ex-
amples; the role of the Classifier is to classify those examples; and the role of
the supervisor, is to determine which examples are correctly and incorrectly
classified.

The overall methodology shares many similarities with the boosting ap-
proach proposed by Machado et al.[59]. Considering that a Classifier System,
CS, exists and that the system was trained with a given dataset, the approach

30

CHAPTER 4. FRAMEWORK 31

consists in the the following steps:

1. A new evolutionary run is started – a initial random population is created,
and evolution proceeds as regularly, CS is used to classify each individual
and the returned values (which may include internal values of the classifier
as we have seen in the previous Chapter) are employed to assign fitness.

2. The EC run stops when a given termination criterion is met (e.g. after
a predetermined number of populations, upon reaching a solution, upon
finding n examples of a given class or classes, etc.);

3. The supervision system determines which individuals have been misclas-
sified by the CS, these individuals are added to the current dataset.

4. The CS system is retrained using the expanded dataset.

5. Unless a termination criteria is met, a new boosting iteration is started
by repeating the process from step 1.

The entire approach relies on promoting a competition between the evolu-
tionary engine and the classifier system. In each iteration the evolutionary en-
gine must evolve images that are misclassified by the CS, otherwise no progress
is achieved.

Implicitly, this implies that the evolutionary engine should be more likely
to produce images of a particular class. For instance, in normal circumstances
NEvAr is unlikely to produce images resembling faces. By assigning fitness
using a face detection classifier, like we did in the previous Chapter, and valuing
images that are classified as faces, we were able to evolve several misclassified
images. These misclassified images are the ones that can be useful for improving
the performance of the classifier.

To assign fitness it is necessary to develop a fitness function that can suc-
cessfully guide evolution; This can imply having access to internal variables and
calculations of the classifier.

The supervision system may be an human observer or a different classifier
system. Using a human classifier can be time-consuming and humans are prone
to errors. Nevertheless, in some scenarios, human supervision is required since
no competitive classifiers exist. Moreover, if one is only interested in the addition
of misclassified examples of a given class (e.g. images wrongly classified as
faces) the number of examples that the human needs to inspect is far less than
the total number of individuals, which makes the task tractable. Using an
external classifier implies that the approach is, at least partially, limited by the
performance of the supervisor system. However, it is important notice that
the weaknesses of the supervisor system cannot be directly exploited by the
evolutionary process, as such this may be a case were the whole is greater than
the some of its parts. Like in the human supervisor scenario, the number of
individuals that need to be classified by the supervisor may be a lot smaller
than the number of individuals, which opens the door to the use of supervision
classifiers that are more complex than the ones being used to assign fitness and
to the use of sets of classifiers in supervision.

Finally, it is necessary to determine an appropriate termination criterion.
This depends, mainly, on the task at hand and on the existent computational
resources.

CHAPTER 4. FRAMEWORK 32

In the Following chapters we describe the application of this generic frame-
work to two different image classification problems, presenting and analysing
the experimental results attained and drawing conclusions.

Chapter 5

Style-Based Image
Classification

The work presented in this chapter is inspired by the work of Machado et al.[59].
The similarities and differences, the experimental setup employed, the results at-
tained are described and analyzed. The chapter starts with a brief introduction
to the work, explaining the work of Machado et al. and presenting an outline
of the experiments (section 5.1). In section 5.2 we instantiate the framework
proposed in the previous chapter to the current problem. The experimental
setup is described in section section 5.3 and the experimental results presented
and analyzed in section 5.4. Finally, the results attained in several validation
experiments are presented, section 5.5, and conclusions are drawn (section 5.6).

5.1 Introduction

The work of Machado et al. describes the creation of an Artificial Artist, capable
of aesthetic and/or artistic judgements. Its architecture comprised two modules:
the Creator and the Artificial Art Critic (AAC). The Creator module consist in
an EC engine and the AAC is composed by a Feature Extractor (FE) and an
Artificial Neural Network (ANN). The system has two characteristics [59]:

1. The use of an ANN to distinguish between internal images (generated
by the EC engine) and a selected set of external images (e.g., famous
paintings, artworks of a given style, landscape photographs, portraits,
etc.).

2. The iterative execution of the following steps:

• The EC engine attempts to find images that are classified as external
ones; the ANN’s output is constructed in function of the individual’s
fitness.

• In each EC run, the created images are added to the training set of
the ANN as instances of internal images.

• The ANN is trained to distinguish between the sets.

33

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 34

The experiments results showed that the AAC was capable of discriminating
between the two sets and guide the EC algorithm. It has also indicated that the
EC algorithm was able to find internal examples that were classified as external.

The purpose of remaking this experiment is to further explore the above
conclusions and to understand if it is possible to assess and improve a classifier
performance, through the use of the framework presented in the previous chap-
ter, which exploits the vulnerability of the classifier to false positives, generated
by an EC algorithm, and the evolution of the classifier performance when using
these examples in a new training stage.

Although the overall approach is similar to the one presented by Machado
et al. [59] there are important differences both in terms of objectives and im-
plementation. The goal of Machado et al. was to promote stylistic change from
one evolutionary run to the other, here, although stylistic change may occur,
we are primarily interested in improving the performance of the classifier. In
terms of architecture, the main difference is the existence of a supervisor mod-
ule, which was not present in the work of Machado et al. The differences in
objectives implied several changes at the implementation level. The most no-
table ones are: (i) The FE extractor was augmented and some of the features
re-implemented; (ii) Several classifier feature selection methods were employed;
(iii) New, and significantly larger, initial datasets were constructed; (iv) Several
dataset update strategies are considered.

These and other important issues will be covered further in the following
sections were we describe the approach, section 5.2, and the experimental setup,
section 5.3.

5.2 The Approach

The boosting algorithm employed is an instantiation of the framework presented
earlier. It consists of the following steps:

1. An external set of images is provided to the algorithm;

2. The EC engine creates, randomly, an internal image set.

3. A Classifier System (CS) is built and trained to distinguish between in-
ternal and external image sets.

4. A new EC run is started. The output of the CS is used to assign fitness.

5. The EC run stops when a termination criterion is met (e.g., a pre-established
number of generations, attaining a fitness value).

6. The set of internal images is updated by the Supervisor which determines
which images should be added.

7. The process is repeated from step 3 until the boosting criterion is met.

As previously mentioned, the external image set is composed of images that
were not generated by the EC engine and that, in this case, are considered of
high aesthetic value, the internal image set contains images generated by the
EC engine. In this case we have two clearly defined classes, either the image

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 35

Figure 5.1: System overview.

was generated by the EC engine or it wasn’t, so there is no subjectivity in the
classification.

However, since NEvAr has the potential to create any image, the image sets
may eventually overlap. Additionally, the external image set is composed of
paintings and, as such, in a best case scenario it is representative of paintings.
Thus if the classifier is confronted with an image that was not generated by the
EC engine but that also is not a painting – e.g. the photo of a car, a chart – the
correct classification for this image is somewhat subjective: it is not a painting
but it was also not created by th EC engine.

The overview of the system is shown in figure 5.1.
The EC engine used is the same has NEvAr’s [54]. As previously mentioned,

NEvAr is an expression based Evolutionary Algorithm system that allows the
evolution of populations of images. It is a system that employs GP.The geno-
types are trees composed from a lexicon of functions and terminals. The func-
tions include mathematical and logical operations; the terminals are composed
by two variables, x and y, and random constant values. The phenotype is the
image and it is generated by evaluating the genotype along the x and y coordi-
nate of the image. Genetic operators, such as recombination and mutation, are
performed at the genotype level.

The Artificial Art Critic suffered several modifications. It is still composed
by an FE and an Evaluator but is also connected to a Supervisor, a new part of
the system. The Feature Extractor was rebuilt and greatly modified from the
one used in [59]. Its purpose is to analyze the image, collecting characteristics
that maybe useful for classification. The features extracted are, mainly, related
with the estimation of image complexity. A full description of the FE can be
found in Appendix A.

Figure 5.2 presents a grid of existent features distinguishing between the
features used in [59], features that were re-implemented during this dissertation,
and features that were developed in the scope of this dissertation.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 36

Figure 5.2: Features available for each partition.

Figure 5.3: Image partitions.

The feature extraction process allows the partition of the image and the
calculation of the features for each of the partitions (see Appendix A). The
existent partitioning schemes and the novel one are presented summarized in
figure 5.3. In the current experiments we did not employ image partitioning,
the features are only calculated for the entire image. Even in this scenario the
FE collects a total of 804 feature values which are then used by the CS for
classification.

The CS is composed by an ANN and a feature selection (FS) method.
The ANN is a feed-forward network, with one hidden layer and one output

neuron. It is trained with standard backpropagation. The classifier was built
using WEKA’s1 FastNeuralNetwork. WEKA is a workbench for machine learn-
ing with a significant number of algorithms and tools available, used in a vast
number of experiments [32, 26, 96, 83]. The choice of an ANN based classifier

1WEKA 3: Data Mining Software in Java - http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 37

is justified by the success of this approach in [59].
A FS method is typically composed by an evaluation criteria and a search

method. In what concerns evaluation criteria there are three main choices:
Filter – selects a set of features based on the predictability of the available
features, which is usually assessed by a statistical method (e.g., chi-squared,
ANOVA, correlation); Wrapper – selects a set of features to train and test a
classifier, and scores the group of features based on the classifier performance;
Hybrid – uses a combination of the methods filter and wrapper methods. The
search methods can be adapted from generic search algorithm and they are
grouped in either optimal or sub-optimal. Among the optimal search methods
exhaustive search and branch and bound can be considered. The first one has
a complexity of 2#features, which, in most of the cases, makes it unfeasible
to apply. Branch and bound optimality requires that increasing the number
of features never degrades performance. In practice this happens often. Sub-
optimal search methods include deterministic and stochastic approaches.

From the above description it becomes evident that a vast number of com-
binations of evaluation and search methods exists. We chose to use a filter
evaluation method with a sub-optimal sequential search algorithm. The ne-
cessity of adopting a cost effective approach, due to the lack of computational
resources, made us adopt filter evaluation and sub-optimal search. The choice
of deterministic search approach makes the analysis of the results less complex.
Considering these issues, we employ CfsSubsetEval [27] for evaluation and best
first search. The CfsSubsetEval evaluates the worth of a subset of features, by
statistically process each feature, in terms of information redundancy and corre-
lation with the class. Resulting subsets of features tend to be highly correlated
with the class and low intercorrelated. The best first algorithm, defines the
CsfSubsetEval as its heuristic function and scores nodes near its starting point,
then it expands to the available node of features with highest score. The search
stops when a pre-determined number of non improving nodes are encountered.
Both of these algorithms are provided by the WEKA tool and were integrated
in the system. FS is used in step 3 of the algorithm before the training phase
of the classifier.

Another new part of the system is the Supervisor. It has the purpose of
choosing the individuals that will added to the image datasets. In this partic-
ular experiment, it picks individuals from the EC run that are not present in
the internal set and sequentially substitutes the existing ones. The Supervisor
compares individual by comparing the feature values. This means that the Su-
pervisor modifies the internal set, by eliminating the old examples iteratively
and including unique individuals in their place, generated during the EC run,
until the boosting process finishes.

The integration of the CS and EC systems involves a series of steps: (i)
rendering the individuals; (ii) applying the FE to extract the features; (iii)
filtering the resulting features using the feature subset previously calculated
by the FS selection method; (iv) feeding the resulting feature subset to the
ANN; (iv) calculating the ANN output for each image, i.e., the classification;
(v) mapping the outputs of the ANN to fitness values.

Like in the previous experiment, there is a tolerance threshold to avoid binary
output predictions and consequently a non suitable fitness landscape. This
means that during the backpropagation of the error, if the difference between the
output of the network and the desired output is bellow the maximum tolerated

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 38

Table 5.1: NEvAr’s parameters.

Parameter Setting
Population Size 50
Number of generations 50
Crossover probability 0.8
Mutation operators sub-tree swap, sub-tree replacement,

node insertion, node deletion, node mutation
Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, *, /, min, max, abs, sin,

cos, if, pow, mdist, warp, sqrt, sign, neg
Terminal set X, Y, scalar and vector random constants

Table 5.2: FE’s parameters.

Parameter Setting
fractal compresion 2 , 4 , 2 , 5 , 3 , 6
jpeg quality (low, normal, high) 20 , 40 , 60
filters ALL
metrics ALL
channels ALL
#colors from quantization 16
subject salience #kernels 30
subject salience neighbouring window 3

threshold, then the error is propagated back as zero (no error). As it will be
shown in section 5.4 this enables us to guide the EC engine to promising areas
of the search space.

5.3 Experimental Setup

This section describes the experimental settings, regarding the EC system, the
FE, the CS composed by an ANN and a FS method and the datasets in use. In
the end of the section the experiments conducted are described.

NEvAr’s settings are presented in table 5.1 and based in previous works
conducted by Machado et al. [54, 59]. The individuals are rendered to a size of
128× 128. Since the population size is 50 and the number of generations is 50
a total of 2500 individuals is generated in each evolutionary run. The random
number seed in all stochastic methods is always restarted, meaning, for instance,
that the initial population of each EC run is always the same in all iterations.
The initial population can be viewed in B.1.

The FE processes all images in a format 128 × 128 and 8 bits per channel
(pixel values between 0 and 255), so each input image will be converted to that
same size. The configuration of the FE is described in table 5.2 and further
information on the FE is presented in section A.

The parameters of the ANN and FS can are described in table 5.3.
The ANN is composed by 15 neurons in the hidden layer, was trained during

500 iterations, with a momentum of 0.2 which is applied to the weights during
the update, a learning rate of 0.3, the input attributes are normalized between
0 and 1 and the tolerance threshold is of 0.3. The percentage of negatives and
positives is in one to one ratio and the training is made with 90% of the input

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 39

Table 5.3: CS’s parameters.

Parameter Setting
% train 0.9
% test 0.1
% positives 0.5
% negatives 0.5
#neurons hidden layers 15
learning rate 0.3
momentum 0.2
epochs 500
normalize attributes yes
tolerance 0.3
FS evaluator CfsSubsetEval
FS search Method BestFirst
FS #N max nodes 10

data sets. Regarding the FS, the chosen maximum number of nodes without
improvement was 10.

The external data set holds 25000 paintings from different authors, styles
and periods (figure 5.4). Among others, it includes paintings of: Michelangelo,
Picasso, Monet, Gaugin, Daĺı, Cézanne, Da Vinci, Manet, Matisse, Chagall;
among others. The internal data set is a randomly generation population of
25000 individuals (figure 5.5).

The ANN parameters imply that hat 45000 images will be used for training
and 5000 for testing putposes, 22500 internal and 22500 external images for
training and 2250 of each for testing. The boosting algorithm stops when 22500
of the internal image set is replaced by novel images.

The desired output for external images is 1 while the desired output for
internal images is 0. The fitness of an individual is equal to the value return by
the output neuron of the classifier.

Figure 5.4: Samples of external data set.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 40

Figure 5.5: Samples of internal data set.

We conducted three independent experiments with different feature selection
methods:

1. FULL – No feature selection method is used and, therefore, the CS uses
the entire set of features;

2. FW – uses CfsSubsetEval with forward selection best first search;

3. BW – uses CfsSubsetEval with backward selection best first search;

When forward selection is used the selection algorithm starts with an empty
set of features and it incrementally adds features until a termination criterion
is met. Backward selection starts with the full set and removes features until
the criterion is reached. From here on, we will use the terms FULL, FW, BW
to refer to the each of the experiments.

5.4 Experimental Results

In this section the experimental results are presented and discussed. First we
focus on the initial iteration of each experiment. Subsequently, we analyze
each experiment regarding performance, features used and false positives across
iterations. Then we focus on the final iteration of each experiment. Finally, we
analyze the performance attained by several classifiers in validation experiments
and summarize the experimental findings.

In the first iteration the datasets used to train the CS system are equal for
all experiments. As previously mentioned, a total of 45000 images is used for
training while 5000 are used for testing purposes. Table 5.4 summarizes the
results attained. The performance in training is close to perfection for the three
experiments, FULL misclassifies 2 out of 45000 training instances, FW 1 and
BW 0 (a perfect score). In the test instances all classifiers performed flawlessly,
indicating that they generalized correctly. In this iteration the BW classifier
uses 45 features while the FW classifier uses 30. Indicating that a small number
of features is sufficient to correctly identify all training and test instances.

The obtained classifiers are used to guide the evolutionary runs of each exper-
iment. In all experiments, in during the first iteration of the boosting algorithm,
the EC system was able to generate individuals that were classified as external.
Figures 5.6, 5.7 and 5.8 present the fittest individual of each generation of the
GP engine during the first iteration for each of the experiments. The first num-
ber indicates the generation number of the individual and “val” indicates its
fitness.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 41

Table 5.4: Performance in the first iteration.

Training Test
model #features #Correct #Incorrect #Correct #Incorrect
FULL 804 44998 2 5000 0
FW 30 44999 1 5000 0
BW 45 45000 0 5000 0

Figure 5.6: Fittest individual of each generation of the FULL experiment in the
first iteration.

Figure 5.7: Fittest individual of each generation of the FW experiment in the
first iteration.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 42

Figure 5.8: Fittest individual of each generation of the BW experiment in the
first iteration.

As would be expected, the different experiments converged to different types
of imagery. The FULL experiment converged to greyscale images while the FW
experiment converged colored ones. In spite of this superficial difference, there is
a common trend between these experiments: they both converged to highly com-
plex, “noisy” images. This is an expected result. With the used function set it is
unlikely that NEvAr produces, randomly, complex, noisy images. Consequently
initial internal set is composed, mainly, of simplistic images, which makes the
evolution of complex ones an obvious way to misguide the CS system. The BW
experiment appears to have converged to images that are characterized simul-
taneously by (i) a complex and noisy “background” and by (ii) low contrast and
high luminosity. The converge to this type of imagery can also be explained by
the unlikelihood of randomly creating NEvAr images with these properties, and
hence their absence from the initial internal set.

In a nutshell, like in Machado et al. [59] more than evolving images that
resemble painting the system is, apparently, evolving images that are atypical
of NEvAr and hence cause classification errors.

It is also visible from the presented figures that, in the first iteration, all
experiments were able to find images classified as external in relatively few
generations, 6 or less, and that all experiments converged to images considered
false positives.

We could present charts showing the evolution of fitness during the course
of the runs, however these charts would be (i) pointless, because our focus is the
analysis of the performance of the classifier, not the analysis of the evolutionary
process; (ii) meaningless, because they would lack statistical validity since only
one run is performed for each iteration. We could make 30 different repetitions
of each experiment, but we lack the resources to do it and – unless we wished
to focus on the evolutionary aspect – there is very little to gain from this.

The individuals evolved during the first iteration are added to the internal set
images, replacing the randomly generated ones, and a new iteration is started.
Since we only add images that are unique and that the number of unique images

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 43

Table 5.5: FULL’s performance during training.

Iteration %Correct TP FN FP TN Recall Precision
0 99.99556 22498 2 0 22500 0.99991 1.00000
1 99.99333 22498 2 1 22499 0.99991 0.99996
2 99.99778 22499 1 0 22500 0.99996 1.00000
3 99.99556 22498 2 0 22500 0.99991 1.00000
4 99.99778 22499 1 0 22500 0.99996 1.00000
5 99.99778 22499 1 0 22500 0.99996 1.00000
6 99.98222 22493 7 1 22499 0.99969 0.99996
7 99.99333 22497 3 0 22500 0.99987 1.00000
8 99.99556 22498 2 0 22500 0.99991 1.00000
9 99.99333 22498 2 1 22499 0.99991 0.99996
10 99.99333 22498 2 1 22499 0.99991 0.99996
11 99.98444 22493 7 0 22500 0.99969 1.00000
12 99.98889 22495 5 0 22500 0.99978 1.00000
13 99.99333 22497 3 0 22500 0.99987 1.00000

varies from experiment to experiment, the number of iterations varies from
experiment to experiment. FULL performed 12 iterations, FW 10 and BW 11
before reaching the termination criterion of replacing 22500 individuals of the
internal set.

It would tedious and space consuming to present snapshots of all iterations
performed. A such, since our primary interest is classifier performance, we chose
to focus on the performance of the classifiers, the variations in the number
of selected features and the number of misclassified images generated in each
evolutionary run.

First we present the performance in training and test in terms of percent-
age of correctly classified examples and its confusion matrix values: TP – true
positives, TN - true negatives , FP – false positives and FN – false negatives.
In this context we consider external images as belonging to the positive class
and internal images as belonging to the negative class. Thus, a FP is a internal
image that is classified as external.

Additionally, to evaluate the performance of the experiments throughot the
iterations two statistical measures are used: precision and recall. The precision
consists in the capability of a classifier to recognize real positive examples and
its measure by TP/TP + FP . Recall measures the ability of the classifier
in detecting all positives by computing TP/TP + FN . These measures were
selected because both reflect how the classifier responds towards the positive
examples that these experiments pretended to exploit by creating false positives.

Tables 5.5, 5.6 and 5.7 show the performance of the classifiers across itera-
tions during in the training set.

These training results show that, in training, the FULL approach has the
best performance in terms of FP and FN. BW has the second best performance,
while FW has the worst performance. The percision and recall measures follow
the same overall trend. The performance of the classifier in the FULL approach
is consistent across iterations, while the performance of FW and BW suffers
several fluctuations. This result can be explained by the strategies adopted in
these two experiments so select features, which does not ensure optimality. The
performance in the test sets is displayed in tables 5.8, 5.9 and 5.10. Overall,
the results attained in training are similar to those attained in the test sets,
both in terms of overall trend and in terms of percentage of errors. Across all

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 44

Table 5.6: FW’s performance during training.

Iteration %Correct TP FN FP TN Recall Precision
0 99.998 22499 1 0 22500 0.999956 1.0000
1 99.891 22469 31 18 22482 0.998623 0.9992
2 99.704 22442 58 75 22425 0.99742 0.9967
3 99.949 22497 3 20 22480 0.999867 0.9991
4 99.000 22246 254 196 22304 0.98874 0.9913
5 98.687 22088 412 179 22321 0.981877 0.9920
6 99.567 22369 131 64 22436 0.994195 0.9972
7 98.898 22151 349 147 22353 0.984627 0.9935
8 99.562 22317 183 14 22486 0.991927 0.9994
9 99.851 22452 48 19 22481 0.997869 0.9992
10 99.958 22481 19 0 22500 0.999156 1.0000
11 99.973 22494 6 6 22494 0.999733 0.9997

Table 5.7: BW’s performance during training.

Iteration %Correct TP FN FP TN Recall Precision
0 100.00000 22500 0 0 22500 1.00000 1.00000
1 100.00000 22500 0 0 22500 1.00000 1.00000
2 99.97556 22489 11 0 22500 0.99951 1.00000
3 99.90222 22461 39 5 22495 0.99827 0.99978
4 99.62222 22447 53 117 22383 0.99764 0.99480
5 99.96667 22497 3 12 22488 0.99987 0.99947
6 99.95556 22486 14 6 22494 0.99938 0.99973
7 99.94889 22487 13 10 22490 0.99942 0.99956
8 99.96222 22494 6 11 22489 0.99973 0.99951
9 99.98000 22494 6 3 22497 0.99973 0.99987
10 99.99333 22497 3 0 22500 0.99987 1.00000
11 99.97111 22492 8 5 22495 0.99964 0.99978
12 99.97556 22492 8 3 22497 0.99964 0.99987

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 45

Table 5.8: FULL’s performance during test.

Iteration %Correct TP FN FP TN Recall Precision
0 100.00000 2500 0 0 2500 1.00000 1.00000
1 100.00000 2500 0 0 2500 1.00000 1.00000
2 100.00000 2500 0 0 2500 1.00000 1.00000
3 100.00000 2500 0 0 2500 1.00000 1.00000
4 100.00000 2500 0 0 2500 1.00000 1.00000
5 100.00000 2500 0 0 2500 1.00000 1.00000
6 100.00000 2500 0 0 2500 1.00000 1.00000
7 100.00000 2500 0 0 2500 1.00000 1.00000
8 100.00000 2500 0 0 2500 1.00000 1.00000
9 100.00000 2500 0 0 2500 1.00000 1.00000
10 100.00000 2500 0 0 2500 1.00000 1.00000
11 100.00000 2500 0 0 2500 1.00000 1.00000
12 100.00000 2500 0 0 2500 1.00000 1.00000

Table 5.9: FW’s performance during test.

Iteration %Correct TP FN FP TN Recall Precision
0 100.00000 2500 0 0 2500 1.00000 1.00000
1 99.90000 2498 2 3 2497 0.99920 0.99880
2 99.70000 2496 4 11 2489 0.99840 0.99560
3 99.94000 2500 0 3 2497 1.00000 0.99880
4 99.04000 2476 24 24 2476 0.99040 0.99040
5 98.38000 2448 52 29 2471 0.97939 0.98840
6 99.62000 2487 13 6 2494 0.99481 0.99760
7 99.02000 2465 35 14 2486 0.98612 0.99440
8 99.58000 2481 19 2 2498 0.99245 0.99920
9 99.82000 2493 7 2 2498 0.99721 0.99920
10 100.00000 2500 0 0 2500 1.00000 1.00000
11 100.00000 2500 0 0 2500 1.00000 1.00000

iteration and and experiments precision and recall values above 0.99 were always
attained.

Table 5.11 displays the number of FP generated by the evolutionary engine
across iterations for each experiment. As it can be observed in the FW and BW
experiments the evolutionary engine was able to find FP in all iterations. In the
FULL experiment the EC engine was unable to find FP from the 5th iteration
onwards and was also unable to find FP in the 2nd iteration. This inability to
find FP has consequences in terms of analysis and requires explanation.

One of the obvious consequences is the following, in the FW and BW exper-
iments the task of the classifier becomes, arguably, harder from iteration from
iteration. The same does not happen for the FULL experiment since no FP, i.e.
hard to classify images, are added to the internal set. This can contribute, to
the the better performance of the FULL approach in test and training across
iteration. Nevertheless, as we will se later, it does not appear to be the only
reason why the performance is better.

It is also important to understand why the evolutionary engine does not find
FP. As previously mentioned NEvAr can generate any image, so it is theoreti-
cally possible to generate FP. Additionally, as we will show in the next section,
not only it is theoretically possible, images that are classified as FP by these
classifiers have been evolved with NEvAr in the scope of other experiments.

Thus, all evidence points to the following explanation, the fitness landscape
resulting from the use of this classifiers makes evolution difficult. An analysis of

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 46

Table 5.10: BW’s performance during test.

Iteration %Correct TP FN FP TN Recall Precision
0 100.00000 2500 0 0 2500 1.00000 1.00000
1 100.00000 2500 0 0 2500 1.00000 1.00000
2 100.00000 2500 0 0 2500 1.00000 1.00000
3 99.94000 2499 1 2 2498 0.99960 0.99920
4 99.60000 2495 5 15 2485 0.99799 0.99400
5 99.96000 2500 0 2 2498 1.00000 0.99920
6 99.96000 2499 1 1 2499 0.99960 0.99960
7 99.90000 2499 1 4 2496 0.99960 0.99840
8 99.96000 2500 0 2 2498 1.00000 0.99920
9 99.98000 2500 0 1 2499 1.00000 0.99960
10 99.98000 2499 1 0 2500 0.99960 1.00000
11 99.94000 2499 1 2 2498 0.99960 0.99920
12 99.98000 2499 1 0 2500 0.99960 1.00000

Table 5.11: False positives generated in the experiments per iteration. Note
that the Fw experimnt stops after 10 iterations while the BW experiment stops
after 11.

Iterations FULL FW BW
0 1616 1165 1451
1 0 1081 1091
2 598 1575 1074
3 393 840 1261
4 73 832 409
5 0 1755 441
6 0 1110 613
7 0 651 499
8 0 271 292
9 0 70 484
10 0 1184 1458
11 0 - 995
12 0 - -

Total 2680 10534 10068

the values returned by the fitness function reinforces this explanation: there are
no intermediate values, only values above 0.7 or bellow 0.3 were returned, even
when the classifier is tested with external imagery. In most cases, and although
the tolerance threshold is set to 0.3, the values are bellow 0.1 or above 0.9. As
a consequence, the evolutionary algorithm would only be able to find a FP by
chance, and this appears to be the main reason for the lack of FP. The BW and
FW classifiers behave differently, returning intermediate values. This appears
to indicate that in the considered experimental conditions a high number of
features tends to result in a discontinuous output, which hinders evolution.
The confirmation of this interpretation requires further experimentation that is
beyond the scope of this dissertation.

Table 5.12 shows the number of features used by the classifiers in each iter-
ation for the FW and BW experiments. Although variations occur the number
of features used is significantly lower than the total number of features avail-
able (804) indicating that good performance is attainable with a relatively low
number of features. As would be expected, FW tends to use a smaller number
of features than BW selection. Correlating these results with the performance
across experiments in training and test sets, the experiments indicate that there

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 47

Table 5.12: Number of features selected per iteration.

Iterations FW BW
0 30 45
1 22 138
2 19 98
3 37 97
4 11 105
5 11 48
6 11 55
7 7 53
8 15 53
9 8 58
10 25 43
11 35 34
12 - 34

Average 19.25 66.23077

Figure 5.9: Fittest individual of each generation of the FULL experiment in the
4th iteration, the last were FP were found.

is a positive correlation between the number of features used by the classifier
and the performance of the classifier.

Figures 5.10, 5.10 and 5.11 present the fittest individual of each generation
of the GP engine during the last iteration where FP were found for each of the
experiments. As would be expected these images differ, stylistically, from the
ones evolved in the first iteration (and also from the ones evolved in intermediate
ones). It is interesting to notice that, even at this stage, and in spite of the high
classifier performance, the EC engine is still able to find relatively simple images
that are misclassified.

Once the FULL, FW and BW experiments were finished we trained classifiers
using the images that were added to the initial set in the last run (note that
these classifiers were trained but not used to guide an evolutionary run, since the
experiments were finished). Table, the table 5.13 summarizes the performance
attained by these classifiers. As it can be observed the number of incorrectly
classified instances is residual for all experiments.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 48

Figure 5.10: Fittest individual of each generation of the FW experiment in the
last iteration.

Figure 5.11: Fittest individual of each generation of the BW experiment in the
last iteration.

Table 5.13: Performance in the last iteration.

Training Test
model #features #Correct #Incorrect #Correct #Incorrect
FULL 804 44997 3 5000 0
FW 35 44988 12 5000 0
BW 34 44989 11 4999 1

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 49

Table 5.14: Percentage of images correctly classified during training and test in
a models versus Data sets test.

initial last BW last FW last FULL
Model Train Test Train Test Train Test Train Test
BWi 100 100 99.99 100 99.99 100 99.99 100
BWl 99.98 100 99.97 99.99 99.92 99.94 98.87 98.80
FWi 99.99 100 99.99 100 99.99 100 99.99 100
FWl 100 100 99.99 100 99.97 100 99.43 99.44

FULL 99.99 100 99.99 100 99.99 100 99.99 100

5.5 Assessing Classifier Performance

In order to analyze the influence of the selected features and of the selected
training sets we create several different classifiers varying these parameters. We
consider 5 sets of features:

BWi – The set of features selected by the BW experiment in the initial itera-
tion;

BWl – The set of features selected by the BW experiment in the final iteration;

FWi – The set of features selected by the FW experiment in the initial iteration;

FWl – The set of features selected by the FW experiment in the final iteration;

FULL – The full set of features 804 features;

Four training and test datasets are considered:

Initial – The initial dataset of internal and external images which is used in
all experiments;

Last BW – The final dataset of internal and external images resulting from
the BW experiment;

Last FW – The final dataset of internal and external images resulting from
the FW experiment;

Last FULL – The final dataset of internal and external images resulting from
the FULL experiment;

Considering all combinations results in 20 distinct models. Table 5.14 present
the results attained in testing and training by each of them.

The experimental results presented so far concern the performance of the
classifiers with training sets closely related with their training. As such they
do not offer much information regarding which classifiers perform better nor
regarding how the boosting process affected classifier performance. The goal of
the approach is to improve classifier performance by synthesizing images that
are misclassified and including these images in the training set.

To assess classifier performance we compiled four independent validation
sets, which are not directly related with the images used in training, as follows:

1. Paintings – 2408 images retrieved from Flickr using the keyword “paint-
ing”;

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 50

Figure 5.12: Samples from Paintings validation set.

2. Jornadas – 2096 images generated using user-guided evolution on NEvAr
by a group of users;

3. Compilation - 8320 images generated from user-guided evolution runs of
NEvAr used by Machado et al. in previous works [57, 58, 59];

4. Fractals – 2836 images retrieved from Flickr using the keyword “fractal”;

The first validation dataset is intend to assess the performance of the models
in the evaluation of external imagery, in this case paintings. It is important to
notice that the retrieved files are not related with the ones using in the training
and testing of the CS models. They come from a different source and the
considered paintings are different from the ones using in training and testing.
Figure 5.12 presents some instances of this dataset.

The second and third validation datasets are intended to assess the perfor-
mance of the models in the classification of internal image. Both are composed
of images created with NEvAr in interactive evolution runs that were valued
by the users (i.e. that had fitness scores above the default score of zero). The
difference between them is that the images that belong to “Jornadas” were cre-
ated in a single afternoon by a group of users that were not familiar with the
tool, while the images of “Compilation” were evolved by Penousal Machado over
several years of experimentation with NEvAr. Figures 5.13 and 5.14 present
samples of these validation datasets.

The last dataset is composed of computer generated images, mainly fractal
art. These image fall between the considered categories. They are external in the
sense that they were not created with NEvAr, although they could have been,
however they are not paintings. Does, deciding which is the correct classification
in this case is debatable. The inclusion of this validation dataset was motivated
by our curiosity and also because the variations in performance could possibly
give us interesting insights.

Table 5.15 displays the results attained by the different models. For the
purpose of this and the following tables we consider that the correct classification
of fractal images is “external”, but we present average results with and without
considering the fractal validation set to avoid biasing the results.

Table 5.16 summarizes these results presenting the average percentage of
correctly classified images for the five different feature sets used by the models.
Underlined numbers indicate the lowes performance while bold entries indicate

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 51

Figure 5.13: Samples from Jornadas validation set.

Figure 5.14: Samples from Compilation validation set.

Figure 5.15: Samples from Fractal validation set.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 52

Table 5.15: Percentage of correctly classified images of the validation sets.

Features Dataset Paintings Compilation Jornadas Avg. Fractals Avg.

BWi

Initial 98.28 51.55 74.58 74.80 93.07 79.37
Last BW 97.73 68.47 80.41 82.21 86.74 83.34
Last FW 98.11 59.35 79.65 79.03 90.95 82.01

Last FULL 99.50 38.30 66.32 68.04 96.71 75.20

BWl

Initial 98.49 52.78 77.21 76.16 92.65 80.28
Last BW 97.14 69.59 86.62 84.45 83.70 84.27
Last FW 95.97 71.76 88.58 85.43 87.06 85.84

Last FULL 92.82 78.91 93.07 88.27 75.47 85.07

FWi

Initial 98.82 44.79 72.96 72.19 94.13 77.68
Last BW 98.53 49.46 72.43 73.48 94.24 78.67
Last FW 98.49 53.58 74.53 75.53 93.00 79.90

Last FULL 99.29 34.81 64.74 66.28 97.70 74.13

FWl

Initial 98.78 51.06 77.88 75.91 93.25 80.24
Last BW 97.86 68.38 84.95 83.73 82.26 83.36
Last FW 96.60 78.73 90.11 88.48 85.47 87.73

Last FULL 94.37 81.00 91.97 89.12 77.24 86.15

FULL

Initial 99.08 60.17 78.69 79.31 93.78 82.93
Last BW 99.20 62.08 80.60 80.63 94.06 83.99
Last FW 99.03 66.03 81.99 82.35 93.50 85.14

Last FULL 99.62 24.98 58.48 61.03 97.95 70.26
Average 97.88 58.29 78.79 78.32 90.15 81.28

the highest performance. The average success rates in the classification of the
Paintings dataset vary between 96.10 and 99.23. The success rates in the clas-
sification of the Compilation and Jornadas datasets are significantly lower and
more variable. Two striking observations should be made:

• Correctly classifying Compilation images appears to be more difficult than
correctly classifying Jornadas images. This result was expected and is eas-
ily explainable, several of the images included in the compilation dataset
result from long and time consuming runs, as such they deviate from typ-
ical NEvAr imagery a lot more than the Jornadas images that result from
relatively short runs.

• BWl and FWl consistently perform better than BWi and FWi in these
validation datasets. This indicates that the features selected in the final
iterations are more suitable to correctly identify internal generated im-
agery without large losses of performance in the classification of external
imagery. Additionally, BWl and FWl also perform better than FULL in
these datasets.

Taking into account the results attained in the fractal dataset does no sig-
nificantly change these conclusions. Nevertheless, it is interesting to notice that
the initial sets of features, BWi and FWi, tend to classify more Fractal images
as external than BWl and FWl. Like the previous results, this was expectable.
In some sense, BWl and FWl, are more prune to classify images as internal than
BWi, FWi or FULL.

Table 5.16 summarizes the results by presenting the average percentage of
correctly classified images per dataset used in training the models. The most
striking observation is that the last FULL training dataset yields the worst
average performance for all scenarios, except fractal imagery.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 53

Using the FULL feature set, the FWi feature set and the BWi feature set
in conjunction with the Last FULL training set yields bad performance in all
sets, most notably in Compilation and Jornadas. Surprisingly using the FWl
feature set or the BWl and Last Full for training yields the best performances
in Jornadas and Compilation.

The results attained with the Last FULL training set require explaining.
Although conclusive it is impossible to draw decisive conclusions without further
testing we advance a tentative explanation.

From the 5th iteration onwards the FULL experiment was unable to find
FP. Therefore, from that iteration on, the initial internal images, that had been
randomly generated with NEvAr, were replaced by internal imagery generated
during the course of the run. Although the runs were unsuccessful in finding false
positive, they did converge to suboptimal solutions. Consequently, by replacing
the randomly generated imagery with the images created during the experiment
one lost diversity and the internal dataset became less representative of what
NEvAr could achieve than the initial internal dataset. Oddly this explains both
the bad and performances attained in the internal datasets, Compilation and
Jornadas.

When the Last Full training set is used in conjunction with the FULL fea-
ture set it results in the highest overall performance in the paintings dataset,
and also in the lowest overall performance in Jornadas and Compilation, the
set is less of what NEvAr can achieve and hence when confronted with new
images the classifier “assumes” they were not generated with NEvAr. In other
words the classifier is biased towards identifying the images as external, this is
can be partially confirmed by the high performance attained in the Paintings
and Fractal validation sets for this combination. The results attained BY us-
ing BWi and FWi in conjunction with Last Full can be explained in a similar
way. When combining FWl and BWl with Last Full we have the inverse sce-
nario, best performance in Compilation and Jornadas and Worst performance
in Paintings and Fractals. Thus, it appears that the classifier is now balanced
towards the classification of images as Internal. Our explanation for this ten-
dency is that having a set that is not representative of what can be attained is,
in some way, similar to having a set that is not representative of what cannot
be /easily) attainable, and as such may result in biased classifiers. The reason
why the Full and BWi and FWi feature sets yield behaviors that are opposite
to those displayed by BWl and FWl appears to be the following, as previously
mentioned BWl and FWl promote correct classification of internal imagery, in
the presence of representative training sets they are able to increase the perfor-
mance in the classification of internal imagery without significantly hindering
the performance in the recognition of external imagery. When the internal im-
age training set becomes less representative a tendency to classify images as
internal is developed.

As it can be observed, all training datasets result in high success rates in
the recognition of paintings. However, the same is not true for the remaining
validation sets. In the Jornadas and Compilation validation set one can observe
increases of performance when comparing the initial training set with last BW
and last FW experiments. By using Last BW for training one attains an average
performance in the paintings dataset of 98.09% which is only .6% lower than the
one attained when using the Initial set, however the performance in Comilation is
11.53% higher and in Jornadas 4.74% higher. Using Last FW for training yields

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 54

Table 5.16: Average percentage of correctly classified images per validation set.
Results grouped by the features used by the models.

Experiment Paintings Compilation Jornadas Average Fractals Average
BWi 98.40 54.42 75.24 76.02 91.87 79.98
BWl 96.10 68.26 86.37 83.58 84.72 83.86
FWi 98.78 45.66 71.17 71.87 94.77 77.59
FWl 96.90 69.79 86.23 84.31 84.55 84.37

FULL 99.23 53.32 74.94 75.83 94.82 80.58

Table 5.17: Average percentage of correctly classified images per validation set.
Results grouped by dataset used to train the model.

Data set Paintings Compilation Jornadas Average Fractals Average
Initial 98.69 52.07 76.26 75.67 93.38 80.10

Last BW 98.09 63.60 81.00 80.90 88.20 82.72
Last FW 97.64 65.89 82.97 82.17 90.00 84.12

Last FULL 97.12 51.60 74.92 74.54 89.01 78.16

an average performance that is 0.95% lower in the Paintings validation set, but
13.82% higher in Compilation and 6.71% higher in Jornadas. These results
indicate that our framework was able to produce training sets that increase
the performance in the recognition of internal imagery without significantly
hindering the performance in the recognition of external imagery.

In figures 5.16 to 5.19 we present some of the images that are most often
misclassified. It is particularly interesting to observe that some of the most
frequently misclassified paintings are either not paintings at al, or are, to say
the least, atypical ones. In what concerns the frequently misclassified Fractal
images, it is easy to understand why they could be confused with NEvAr images.
In fact, as previously discussed considering this images as external or internal
is highly subjective. In what regards the frequently misclassified Jornadas and
Compilation images, the common characteristic is that they are atypical in
relation with the imagery usually produced by NEvAr.

5.6 Summary

The conducted experiments indicate that it is possible to improve classifier per-
formance using the boosting approach proposed in this thesis. Overall the ex-
perimental results suggest that in the considered experimental settings this is
accomplishable in two different ways:

• By changing the training datasets by synthesizing new instances, in par-

Figure 5.16: Examples of misclassified images from Paintings set.

CHAPTER 5. STYLE-BASED IMAGE CLASSIFICATION 55

Figure 5.17: Examples of misclassified images from Fractals set.

Figure 5.18: Examples of misclassified images from Jornadas set.

ticular false positives, created during the course of the runs;

• By using the boosting framework to select new combinations of features;

Although the results are not entirely conclusive, they can be considering
promising and demonstrate the potential of the proposed framework. Further
experimentation is required and is already taking place. We are particularly
interested in: (i) Confirming the experimental findings via further testing and
analysis (ii) testing alternative image replacement schemes (e.g. only adding im-
ages that were misclassified) (iii) Producing experiments with an higher number
of iterations (iv) Testing alternative feature selection schemes.

Figure 5.19: Examples of misclassified images from Compilation set.

Chapter 6

Improving Face Detection

The current Chapter describes the second test to the framework presented in
Chapter 4. This framework was explored in an attempt to lessen the face detec-
tion shortcomings identified in the preliminary experiment described in (section
3.1).

We begin by making an introduction, stating the problems encountered and
the experiment’s context. Next, in section 6.2, the approach is defined and the
experimental setup described in section 6.3. Then the experimental results are
presented and analyzed in section 6.4. Finally we perform validation tests, in
section 6.5, and we summarize the results.

6.1 Introduction

Object detection systems, in particular face detection, have become a topic of
interest and research. Nowadays applications that employ these kind of sys-
tems are also becoming very popular. For instance, they can be found in search
engines, social networks, incorporated in cameras, or in applications for smart
phones. Most, if not all, of these systems have shortcomings which may result in
false alarms, the detection of faces in images were they are absent. For illustra-
tion purposes, some examples are presented in figures 6.1, 6.2 and 6.3. Figure
6.1 presents false positives “faces” filter in Google image search. While some of
the false positives are acceptable, other are hard to understand. While cata-
loguing some images with Picasa, figure 6.2, similar results were attained. Tests
with the iPhone and the“Self photo”application revealed the same behavior (see
figure 6.3). In summary, although most of the images are catalogued correctly
is trivial to find several false positives, it was trivial to find false positives for
all face detection applications we tested.

In the experiment described in section 3.1 an attempt to evolve images that
could resemble human was made. Some of the results were arguably reasonable
but most of the generated images were false positives that hardly resemble
a human face. The research described in this chapter intends to explore the
framework proposed in chapter 4 in order to improve the performance of a face
detection algorithm.

56

CHAPTER 6. IMPROVING FACE DETECTION 57

Figure 6.1: Sample of False positives retrieved via Google Image search using
the “computer” and the google “faces” filter.

Figure 6.2: False alarms while using Picasa (Unnamed groups of people).

(a) (b) (c)

Figure 6.3: False positives detected while using “Self Photo” application for
IPhone.

CHAPTER 6. IMPROVING FACE DETECTION 58

Figure 6.4: System overview.

6.2 The Approach

The approach is similar to the one described in chapter 5 with a few modifica-
tions. It can be define by these steps:

1. Selection of a positive and negative image set; In this context positives
are images that contain faces while negatives are images were no face is
present;

2. The Classifier System (CS) is built to distinguish these initial sets;

3. A new EC run is started. Output values from the CS are used to assign
fitness;

4. The EC run stops when a termination criterion is met (e.g., a pre-established
number of generations, attaining a fitness value);

5. The set of negative images is updated by the Supervisor which uses the
generated images from the EC run to chose individuals to add;

6. The process is repeated from step 3 until the boosting criterion is met;

As it can be observed in figure 6.4 the changes to the conceptual model are
few, and only concern the Supervisor module,

As previously we use NEvAr’s genetic engine, already mentioned in Chapters
3 and 5, for evolution purposes. As previously the goal is of the evolutionary runs
is to evolve images that are classified as containing faces and fitness is assigned

CHAPTER 6. IMPROVING FACE DETECTION 59

Table 6.2: Haar Training parameters.

Parameter Setting
features ALL
Input width 20
Input height 20
Number of stages 20
Number of splits 2
Min Hitrate 0.99
Max False Alarm 0.5
Adaboost Algorithm GentleAdaboost

according to the outputs of the CS system valuing images that resemble faces.
The formula used is similar to the one presented in section 3.1.

The CS system consists in a Haar Cascade classifier [86].
The Supervisor for this experiment can operate in two modes: addneg or

classif. The addneg mode consists in adding all images created during the EC
runs that were classified as faces to the negative set. The classif mode uses
an external classifier to filter the images that are added to the negative set.
The image is only added if the external classifier does not identify a face in the
image. Thus if the classifiers disagree. The chosen external classifier is from
fdlib 1 that is based on a cascade of Reduced Support Vectors[40]. Its fast
computation and easy integration with the experiment were the determinant
aspects for this choice. As in previous experiments, the fitness depends on the
outputs of the CS.

6.3 Experimental Setup

NEvAr’s settings are presented in table 6.1 and are similar to those used in
Chapter 5, the difference is that here we use a population size of 100 resulting
in 5000 individuals at the end of the EC run. The random number seed in all
stochastic methods is always restarted, for example, at the start of the EC run
the start population is always the same for all boosting iterations. The starting
population are presented in figures B.2 and B.3.

Table 6.1: NEvAr parameters.

Parameter Setting
Population Size 100
Number of generations 50
Crossover probability 0.8
Mutation operators sub-tree swap, sub-tree replacement,

node insertion, node deletion, node mutation
Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, *, /, min, max, abs, sin,

cos, if, pow, mdist, warp, sqrt, sign, neg
Terminal set X, Y, scalar and vector random constants

An overview of the Haar cascade classifier approach was made in section 3.1.
For training purposes we used the OpenCV “opencv haartraining” tool. The

1fdlib – http://people.kyb.tuebingen.mpg.de/kienzle/fdlib/fdlib.htm

http://people.kyb.tuebingen.mpg.de/kienzle/fdlib/fdlib.htm

CHAPTER 6. IMPROVING FACE DETECTION 60

Table 6.3: Internal classifier parameters.

Parameter Setting
Window width 20
Window height 20
Scale factor 1.1
Min face width 0.75 × inputwidth
Min face height 0.75 × inputheight

relevant classifier parameters can be consulted in table 6.2 and are were chosen
based on the work of Lienhart [50] and Viola [86]. According to Lienhart work,
the minimum hit rate and maximum false alarm rate expected, while using
the parameters described on table 6.2 are, approximately, of 0.9920 ' 0.818
and 0.5020 ' 9 × 10−7, respectively. Although while using this training, the
classifier may reach those values, the training time may take days, weeks or
months. Another set of parameters addresses this issue, providing faster training
and similar performance. For instance, one can define the maximum number
of stages to be trained. Other influential parameters are the input pattern
size (Inputwidth × Inputheight) and the number splits, that define the stage
classifier maximum number of feature splits that allow combinations of features
inside of the stage creating a tree of features. In the experiments conducted
in this Chapter the input pattern chosen had a size of 20 × 20 pixels and the
number of splits was 2. The selected Ada-boost was GentleAdaboost. This
combination of parameters had good hit and false alarm rates according to the
study conducted by Lienhart et al.[49].

In addition to the training parameters, there are other classifier settings
that need to be established. All parameters used are based on OpenCV default
parameters, except the minimum face width and height, scale factor and win-
dow size, which are presented in table 6.3. The same parameter settings were
employed in Chapter 3.1.

The external FDlib classifier, used for supervision, only has a tolerance
threshold and the default value was kept.

In order to test the different classifiers a performance evaluation tool was
implemented. It allows loading an image test set, with a ground truth file
associated, and a classifier configuration file. The performance is measured in
terms of hit (H), miss (M), false alarm(FA), correct and incorrect. In order
to do this, it loads the parameters and classifier of the configuration file, and
perform the face detection. Then it compares with the ground truth file, if
the result match or lays in the tolerance area defined by the performance tool
parameters, it is a hit. If it lays outside the tolerance area it is counted as a
false alarm. In case of not detecting a face, if it exists, it is counted has a miss.
The parameters are defined in table 6.4 and are based on the default parameters
of OpenCV’s “opencv performance” tool. This tool was implemented because
the performance tool of OpenCV only calculates the performance of positive
examples and accepts only cascade classifiers.

The quality of the positive and negative datasets used in training influences
significantly the performance of a classifier. It is important to have good positive
examples of object that we are training in order to attain good success rates.
For this experiments part of two referenced image datasets were used: “The
Yale Face Database B” ([23]) and “BioID Face Database”([36]). “The Yale Face

CHAPTER 6. IMPROVING FACE DETECTION 61

Table 6.4: Parameters used by the performance tool.

Parameter Setting
Window width 20
Window height 20
Scale factor 1.1
Maximum size difference factor 1.5
Maximum position difference factor 0.5

Figure 6.5: Example of cropped positive images.

Database B” consist in a dataset with a total 5850 grayscale images with the
subjects in diverse positions and light variations. The Bio-ID Face Database
dataset consists of 1521 frontal grayscale images. Each one shows the frontal
view of a face of one out of 23 different test persons with various expressions.

Since adding different poses would not serve the scope and goals of this dis-
sertation we decided to use exclusively frontal faces, in an attempt to simplify
development and analysis. Because of this constraint, the total number of avail-
able positive examples is 2172. In order to build the ground truth file, the images
have to be manually selected and cropped. In order to crop images and create
positive samples a tool named image clipper was used 2. These cropped images,
see figure 6.5, are the objects that the Haar classifier attempts to discriminate
from negative samples. After manually filtering out images that were too dark
or although being frontal poses only part of the face was illuminated a total of
1905 positive examples, and corresponding cropped versions, was attained.

The negative dataset influences both the training time and test performance.
The harder and bigger the negative examples are the more training cycles will
consume, but performance will tend to be better than when using than simple
and small ones. The images selected were gather from the web 3 and consist
of a total of 3019 examples of landscapes, objects, drawings, among others. A
sample can be viewed in figure 6.6.

In the conducted experiments we consider two dataset ratios and two super-
visor modes, which yields four experiments. The two datasets can be described
as follows:

• Balanced – consisting in 1905 positive and 1905 negative examples.

• Unbalanced – consisting in 500 positive and 1000 negative examples.

2Image clipper — http://code.google.com/p/imageclipper/
3Tutorial haartraining — http://tutorial-haartraining.googlecode.com/svn/trunk/

data/negatives/

http://code.google.com/p/imageclipper/
http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/
http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/

CHAPTER 6. IMPROVING FACE DETECTION 62

Figure 6.6: Example of cropped positive images.

The Unbalanced scheme was created based on the study of Lienhart [49] that
suggests the ideal ratio for a good classification is around 1:2 ratio between
positive and negative sets .

In what concerns supervision modes we consider the previously mentioned
modes:

• Addneg – At the end of each evolutionary run, the supervisor it adds all
individuals classified as positive by the internal classifier to the negative
dataset;

• Classif — It uses an external classifier to test the instances classified as
positives during the evolutionary run. If the external classifier does not
detect a face, adds the “false positive” to the negative dataset.

The external classifier, as stated before, is the one implemented by the FDlib.
We planned to make 5 boosting iterations for each experiment. Unfortu-

nately, due to lack of computational resources, it became impossible to go
beyond the first iteration. The training procedure the models of the second
iteration was run during more than 200 hours, for each model, without reaching
completion. Training time grew exponentially as new instances were added.This
increase in time may be explained by two possibilities: (i) the growth of nega-
tive examples to process; (ii) difficulties to correctly perform classification after
adding the individuals generated in the EC runs.

6.4 Experimental Results

The results from the experiments are analyzed by evaluating classifiers of the
initial iteration, and after one boosting iteration. In table 6.5 it is noticeable
that, in the Balanced experiments, the Addneg model attained a better perfor-
mance in comparison with the other schemes, in terms of average percentage
of correctly classified examples during training. Its false alarm rate is lower
than the one attained by the initial model. On the downside, it has the highest
number of misses. Classif attained the lowest results with the exception of Hits
and Misses, where Addneg registered the lowest values.

In the Unbalanced experiments, table 6.6, we verify that the initial model
has the best overall result. Although it has the highest percentage of correctly

CHAPTER 6. IMPROVING FACE DETECTION 63

Table 6.5: Training performance when using the balanced training set.

Positive Negative Average
Model H M FA %C H M FA %C %C
Initial 1732 173 175 0.842 0 0 105 0.951 0.896

Addneg 1677 228 41 0.861 0 0 25 0.987 0.924
Classif 1698 207 159 0.8331 0 0 125 0.945 0.889

Table 6.6: Training performance when using the unbalanced training set

Positive Negative Average
Model H M FA %C H M FA %C %C
Initial 406 94 13 0.788 0 0 29 0.971 0.880

Addneg 371 129 7 0.732 0 0 26 0.976 0.854
Classif 390 110 21 0.752 0 0 21 0.980 0.866

classified examples and hit rates, it has more FP’s than the Addneg model. The
Classif performed better than the others in what concerns the classification of
Negative examples.

Table 6.7 presents, the number of evolved individual that are classified as
faces per iteration. The Balanced scheme has registered a growth in the number
of individuals classified as faces from the initial iteration to the first iteration.
On the opposite side, Unbalanced started with the highest values of all the
schemes, but its first iterations, Addneg and Classif, fewer images classified
as faces are evolved. Obviously, since these are results from a single run, no
definitive conclusions can be drawn.

In figures 6.7 and 6.8 examples from the first iteration of images classified
containing faces are presented, to illustrate the different patterns that emerge
from the experiments.

As for the second iteration of the Balanced experiment, the imagery produced
by the two models, Addneg and Classif, presented in figures 6.9 and 6.10, shares
some similarities. The same can be said regarding the imagery evolved by both
models in the first iteration of the Unbalanced experiment, which is presented
in figures 6.11 and 6.12.

It’s important to notice that even after one boosting run the EC engine
was always able to find images that are misclassified not only by the internal
classifier but also by the external one.

Table 6.7: Number of evolved images classified as faces by the internal classi-
fier during the evolutionary run of the first iteration (initial) and during the
evolutionary run of the second iteration using the Addneg and Classif models
(Addneg and Cassif, respectively).

Balanced Unbalanced
Model #Faces #Faces
Initial 692 1324

Addneg 1081 584
Classif 1237 1007

CHAPTER 6. IMPROVING FACE DETECTION 64

Figure 6.7: Samples of images evolved by NEvAr during the first iteration of
the Balanced experiment and classified as faces by the internal classifier.

Figure 6.8: Samples of images evolved by NEvAr during the first iteration of
the Unbalanced experiment and classified as faces by the internal classifier.

Figure 6.9: Samples of images evolved by NEvAr during the second iteration of
the Balanced Addneg and classified as faces by the internal classifier.

Figure 6.10: Samples of images evolved by NEvAr during the second iteration
of the Balanced Classif and classified as faces by the internal classifier.

CHAPTER 6. IMPROVING FACE DETECTION 65

Figure 6.11: Samples of images evolved by NEvAr during the second iteration
of the Unbalanced Addneg and classified as faces by the internal classifier.

Figure 6.12: Samples of images evolved by NEvAr during the second iteration
of the Unbalanced Classif and classified as faces by the internal classifier.

6.5 Assessing Classifier Performance

The results showed so far concern the performance in training in each of the
experiments and iterations. Alone, this does not give a good assessment of
classifier performance. In order to evaluate all the classifiers, internals and
external, two independent validation sets were compiled:

• Feret – 902 images from the Facial Recognition Tecnology Database4;

• Flickr images – 2166 negative images gathered from Flickr using the key-
word “images”;

Samples from the validation sets can be viewed in figures 6.13 and 6.14. The
Feret validation set is composed by grayscale frontal faces, one face per image
with a simple background. The images were manually selected and cropped.
The purpose of using this validation dataset is to test the ability of the clas-
sifiers in detecting a clear frontal face. The Flickr image dataset consists in
images retrieved from a search in Flickr and excluding from the resulting set,
images that contain a frontal human face. These images consist in, landscapes,
buildings, animals, computer screenshots, various objects, etc.

Table 6.8 presents the validation results attained in by the models of the
balanced experiment. In what concerns the performance in the Feret set, Clas-
sif attains the highest performance with more Hits and less Misses than any
other model and with a number of FA lower than the initial model. In the
Flickr images dataset, Addneg attains the best overall performance, followed

4The Feret Database – http://face.nist.gov/colorferet/colorferet.html

http://face.nist.gov/colorferet/colorferet.html

CHAPTER 6. IMPROVING FACE DETECTION 66

Figure 6.13: Feret dataset samples.

CHAPTER 6. IMPROVING FACE DETECTION 67

Figure 6.14: Flickr Images dataset samples.

CHAPTER 6. IMPROVING FACE DETECTION 68

Table 6.8: Balanced test performance

Feret Flickr Images Average
Model H M FA %C H M FA %C %C
Initial 749 153 26 0.807 0 0 297 0.890 0.849

Addneg 720 182 8 0.796 0 0 70 0.970 0.883
Classif 777 125 15 0.850 0 0 246 0.903 0.877

Table 6.9: Unbalanced test performance

Feret Flickr Images Average
Model H M FA %C H M FA %C %C
Initial 313 589 4 0.345 0 0 93 0.962 0.653

Addneg 265 637 13 0.288 0 0 83 0.968 0.628
Classif 499 403 18 0.544 0 0 89 0.961 0.753

by Classif. The number of FA generated by Addneg is significantly lower than
the number FA generated by the other models. In summary, Classif attains
better performance tha the initial model in both datasets, while Addneg attains
a worse performance than the initial model on the Feret dataset (a difference
of 1.1%) but significantly better performance on the Flicker validation dataset.
In terms of average performance across the two considered validation datasets
Addneg and Classif surpass the initial classifier.

In what concerns the Unbalaced experiment, whose results are presented in
table 6.9, it is important to notice that the results attained in the Feret valida-
tion set are significantly lower than those attained by the Balanced experiment
models. In spite of this, Classif attains the best performance on this dataset.
In what concerns the Flickr images, all models attain high classification rates,
with Addneg attaining the best performance for this set. Taking into account
both datasets, the best performance is attained by Classif, and this is mainly
achieved by the increase of performance in the Feret dataset.

The external classifier was tested for all the datasets available. Table 6.10
summarizes the results attained by this classifier. Surprisingly, FDlib only at-
tains good results in the Feret dataset. In all other considered datasets it dis-
plays a performance that is worse than all considered models. Additionally, the
performance on the Feret dataset is lower than those attained by all models of
the Balanced experiment.

This indicates that it is possible to use a weak classifier as Supervisor and yet
attain performance improvements. The evolutionary runs exploit shortcomings
of the classifiers used to assign fitness, they are unable to identify and exploit
the shortcomings of the Supervisor, since it isn’t used to assign fitness. Thus,
provided that the shortcomings of the supervisor are not the same as the short-
comings of the Classifier used to guide evolution, performance increases can be
attained, as the experimental results indicate.

An example may help clarifying the above statement. Let’s assume we have
an internal classifier with a performance in the classification of negative instances
of 99% and an supervisor with a performance of 90% and that the errors of these
classifiers are unrelated. In each generation 100 individuals are created by the
EC algorithm, meaning that the EC algorithm is likely to find a negative that
is classified as a positive by the internal classifier in very few runs (the internal
classifier misclassifies, on average 1 out of 100 negative individuals). Once this

CHAPTER 6. IMPROVING FACE DETECTION 69

Table 6.10: External classifier (FDlib) performance.

Data set H M FA %C Average (%C)
Unbalance positive 346 154 44 0.634 0.634
Unbalance negative 0 0 538 0.675 0.675

Balance positive 1193 712 344 0.524 0.524
Balance negative 0 0 671 0.772 0.772

Feret 747 155 63 0.775 0.775
Flickr Images 0 0 1322 0.636 0.636

Figure 6.15: Frequently misclassified images of the Feret Image set.

false positive is found the EC will exploit this weakness and converge to similar
images, which will be systematically misclassified by the internal classifier as
FP. Quickly we will have hundreds of misclassified images. However, since the
errors of the supervisor are not related with the errors of the internal classifier,
the supervisor will only tend to fail on 10% of these images. Allowing us to
identify them as FP and adding them to the training dataset, thus mending a
shortcoming of the internal classifier.

Images of both validation datasets that are frequently misclassified by all
models are presented in figures 6.16 and 6.15. As it can be observed the fre-
quently misclassified positives appear to be characterized by bad lighting and
tilted facial poses. In what concerns the negatives that are most frequently
misclassified, it is harder to detect a common trend.

6.6 Summary

The conducted experiments indicate that the proposed boosting approach can
be used to improve the performance of classifiers. In this particular case, the
results suggest that it can be done in two ways:

• By adding individuals that were classified has positives by the classifier as
negative examples

• By using an external classifier to filter what negatives should be really
added.

CHAPTER 6. IMPROVING FACE DETECTION 70

Figure 6.16: Frequently misclassified images of the Flickr image set.

Further study and experimentation will be required. The points of interest
are mainly: (i) do more iterations (ii) understand further the cause of the expo-
nential training time (iii) study other training and classifying parameters (iv)
repeat the Classif experiment with other external classifiers.

Chapter 7

Conclusions and Future
Work

In this dissertation we explored the use of EC to assess and improve classifier
performance through the synthesis of new training instances. The approach
relies on the ability of EAs to exploit weakness of the fitness assignment schemes
used to guide evolution.

The proposed framework composed of three main modules – CS, EC engine,
and Supervisor – with different roles:

CS The classifier system that is undergoing testing and improvement. Its out-
puts are used to guide the evolutionary engine;

EC The evolutionary engine is used to evolve instances that are misclassified
by the CS;

Supervisor The module that determines which instances generated by the EC
engine will be added to the new training sets;

The proposed framework is a boosting approach that promotes a competition
between the EC engine and the CS, which across several boosting iterations is
thought to lead to performance improvements.

In the course of this dissertation the framework was instantiated and tested
in two image classification scenarios. The first scenario was inspired in the
work of Machado et al.[59], and comprises the study of a boosting algorithm for
a Style-Based Image classifier. A second scenario was tested by applying the
framework to a Face Detection classifier.

The experimental results attained in these scenarios are presented and an-
alyzed. Overall the results attained in the several validation tests performed
indicate the viability of the proposed approach and its ability to improve the
performance of the classifier in both settings.

The initial goal of this thesis was the development and refinement of a feature
extractor for style-based image classification. However, the results attained in a
preliminary experiment, conducted in the curse of this dissertation, which had
the goal of evolving images evocative of human faces led us to shift the focus
and goals.

71

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 72

It is important to notice, however, that the original goal was still accom-
plished. In the curse of this thesis several additions and refinements were made
to the existent Feature Extractor. These changes are summarized in Chapter 5
and the feature extractor is described in A. These developments made possible
the submission of a book chapter entitled “Computing Aesthetics with Image
Judgement Systems” which has been recently accepted for publication as part
of the book “Computers and Creativity”, edited by Jon McCormack and Mark
d’Inverno, to be published by Springer. [71].

It was not so far possible to publish the research described in the present
document since the submission deadlines were not compatible with our research
schedule and agenda. We have, nevertheless, plans to publish the presented
work and continue research on this topic.

In terms of future work the most pressing issues are, in our opinion, (i)
Performing a higher number of iterations, particularly for the experiments de-
scribed in Chapter 6; (ii) Testing different supervisor modules, namely different
classifiers and different image replacement/addition schemes; (iii) Performing
additional validation experiments and analyzes to increase the reliability of the
results and of their interpretation; (iv) Study alternative feature assignment
schemes, in particular for the experiments described in chapter 5; (v) apply the
framework to different problems, possibly outside the realm of computer vision
tasks.

Appendix A

Feature Extractor

In this chapter the process of extraction of image characteristics that will be
used in the system is covered and explained.

A feature or characteristic can be defined as a measurable property, physical
or abstract, that is shared by all the entities of an entity category. Using this
concept, it is possible to compare two works of art using just the palette of
colors that exist in each one of them. These features are evaluated by means
of metrics, quantifying each one of them. The development of metrics allows to
identify a set of attributes that characterizes the object to be measured.

While in several previous works [69, 38, 90] metrics used are ad-hoc designed
for a specific problem, this work uses metrics based in edge detection and in the
complexity of the image. Some of these metric have been used previously by
the group of investigation in other classification tasks, as the detection of one’s
author work of art or the resolution of psychological test of aesthetics [25].

For the realization of the described works a tool has been developed by
Machado, a feature extractor, that from now on will be referred to as FE. This
preliminary version contained some metrics for estimating of image complexity,
implemented with the graphic library“IMAGEMAGICK”1. But there were some
problems with portability and stability of the program, which led to different
behaviours and results across platforms or by using different libraries versions.

For all the reasons mentioned, there was a need for a reconstruction of
the FE, in an attempt to provide a stable and enhanced version to solve the
pointed issues. The new solution was developed in C++ and using the Open
Source Computer Vision library (OPENCV), a popular API for Computer Vi-
sion, multi-platform, portable, stable and with constant work, corrections and
new features since its first release.2. This work has been made with the interna-
tional collaboration of the Artificial Neural Network and Adaptive System Lab
from the University of A Coruña, Spain.

For the next sections the FE system will be explained along with the theory
behind the implemented algorithms and features. The image used to demon-
strate most of the following algorithm was the famous Lenna image (fig A.1.

1ImageMagick: Convert, Edit, and Compose Images -
http://www.imagemagick.org/script/index.php

2OpenCV (Open Source Computer Vision)- http://opencv.willowgarage.com/wiki/

73

http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php
http://opencv.willowgarage.com/wiki/

APPENDIX A. FEATURE EXTRACTOR 74

Figure A.1: Lenna original.

Figure A.2: Feature Extractor Overview.

A.1 Overview

The general design of the application, in terms of work flow, it is structured in
(i) color channels, (ii) filters and (iii) metrics. This organization of the workflow
allows to add a channel, or a filter with relative ease without affecting the design
of the rest of the application. By means of configuration, each one of these
elements can be activated or disabled independently through a configuration
file, for instance, it is possible to turn off one of color channels available in the
whole FE, excluding it from analysis and feature extraction. This configuration
file allows the setup of each channel, filter, metric along with other parameters
that the FE will use during it execution. This way, instead of calculating all the
implemented features, it is possible to choose the features we want to extract,
adapting to different context and situations. For instance, it is possible to skip
the calculation of some available filters, reducing the program execution time
greatly, gaining performance at the cost of skipping some unwanted or irrelevant
features.

The feature extraction can be summarized to the following steps (fig. A.2):

1. Pre-processing the images, include all the transformation operations, par-
titioning and normalization to be applied to the input image.

APPENDIX A. FEATURE EXTRACTOR 75

2. Filters Application, is based on the application of different image filters
and their respective variants to the resulting pre-processed images.

3. Metrics Application, the usage of certain methods based in measurements
and statistical estimates of the filtered image.

4. Features Building, the extraction of the resulting metrics, with the purpose
of obtaining the group of values characteristic of the input image.

A.2 Pre-Processing

Each input image, is loaded as a RGB color image (3 color channels), so that
all the images have the same format at the entrance. As for the size, each
image is resized to some dimensions of width ∗ height pixels, specified by the
configuration file (default is 192 ∗ 192). A square size was selected because the
most of the images have distinct width and height and for that reason, it was
sought a neutral value for this matter in order to give the same size to all of
the input images. We are aware that this adaptation in a ratio 1 to 1 between
width and height may constitute a loss of information and, in the most cases, a
deformation of the image, but in previous experiments and in other domains was
proven that this transformation would not affect to the ability of the system to
carry out the classification. This method as some advantage when confronting
with other possible methods, for instance, there are some works which maintain
the width and height relationship and use a background filler color to generate
a square image, filling the image with irrelevant information, in contrast with
the method employed, that attempts to maximize the relevant information. As
for the chosen size, it was sought a compromise between the weight of the
image, concerning the execution time, and the quality of the resized image. The
size affects the calculation time of the extraction of each image metric almost
exponentially. In previous experiments, the group used a size of 128 ∗ 128 but
decided to increase this size to allow a higher quality of representation. Another
constraint is that the size of each side should be a power of 2 or dividable by
4, because of the fractal compression algorithm. The value also needs to be
divisible by 3, while maintaining the previous constrain because of one pre-
processing operation named the rule of thirds, which will be explained later in
this chapter. One advantage of this method is that by decreasing the image
resolution, it will minimize the distortion caused by JPEG compression, present
in many images in datasets used for experiments.

In addition to the analysis and exploration of the original image, it is also
important to analyse its parts[59]. This partitioning process consists in seg-
menting the image in 5 equal parts: top left, top right, bottom left, bottom
right, top left and center; store them and extract their features in the same way
as the original image. In addition to this process a new region of the interest
is extracted based on a classic rule of thumb in photography, the rule of thirds.
This method has been used in similar works, revealing interesting features in
the usage of this approach in image aesthetics [69].The rule of thirds is a way
of describing where to place focal points in an image (fig. A.3).

Focal points are normally used to define areas of interest in an image. The-
oretically this rule specifies that the main element, or the region of interest, in

APPENDIX A. FEATURE EXTRACTOR 76

Figure A.3: Application of the rule of thirds and highlighting of the focal points
(in red).

an image should lie at one of the four focal points. This fact leads to the con-
clusion that a most of the main object of an image often lies on the periphery
or even inside of the described region of interest. In order to obtain such region
of interest, the image is divided in 9 equal sized regions and the center region is
retained for later processing. The figure A.4 shows the process of image parti-
tioning, including the rule of thirds, and the resulting images that can be used
by the FE.

Regarding color, the image is be loaded as a RGB color image, 8-bit per
channel, consequently the pixel values will be in range [0...255]. Afterwards the
scaled image is converted to HSV color space (hue, value saturation). Each
of these channels is stored as a individual grayscale image. From here on we
will refer these auxiliary images as H, S and V. The complete picture, with the
information of the three RGB channels, is stored and referred as ALL (from
all channels) and is meant to be used only for the JPEG compression. By
using the HSV color space model, it is important to take into account certain
deficiencies which can cause random results when using this model. Figure A.5)
shows a representation of HSV in a cone model. When pixel value of V = 0
the resulting color always black. In the case of S = 0 then the resulting color is
always grayscale. Another problem occurs when V = 255 and S = 0, in which
the color will be white. In any of these situations, it can not be assured that data
from H will be correct as it depends directly from the transformation algorithm
to HSV format. There are some ways to deal with these situations, the value
of H is determined at random or assigned by a given constant. But this can
be translated into noise when making a correct image classification using that
information. In an attempt to address this deficiency it was created another
grayscale channel, which is composed by a pixel by pixel multiplication of the
S and V channels scaled to the range [0, 255]. From now on we will refer to it
as CS, the colorfulness channel (see fig. A.5).

Jointly using the information of the H channel angle with CS we obtain a
new value associated with the H channel in which the referred deficiencies are
minimized. This also aims to increase the amount of information to be used by
the classifiers themselves. The four auxiliary images obtained from the original,
allow for a maximum of five different values associated with the channels used:
ALL, S, V, H and the alternative of calculating H CS . Also keep in mind
that not all calculations will be made always but only in those cases where it is
considered appropriate. In the same way that the calculation of ALL, consisting

APPENDIX A. FEATURE EXTRACTOR 77

Figure A.4: Resulting images from image partitioning and rule of thirds.

Figure A.5: HSV color space cone.

APPENDIX A. FEATURE EXTRACTOR 78

Figure A.6: The resulting color channels used in the FE.

of all channels, it is only used in the calculation of the JPEG compression, the
calculation of HCS is used only in the calculations of the Zipf law, pixels mean
value and standard deviation.

In figure A.6, we can visualize the results of described pre-processing phase
for the whole resized image. Note that every region of the image resulting from
the partitioning phase is treated in the same way.

A.3 Image Filters

After pre-processing the image, each channel is treated as an individual image
and each one is submitted to some image operations. These operations are
referred as filters because its purpose is to select useful information from the
whole image and use it for later analysis. With this objective in mind, the im-
age operations included are constituted by edge detection operations, Sobel[79]
and Canny[12], an image transform operation, the distance transform[1, 16], a
quantization algorithm[28] and a salience algorithm, the subject salience[53, 46].

The edge detection algorithms, Canny and Sobel, were chosen due to the
fact they are classic robust algorithms that have been used in similar works, as
well in other areas[8, 77, 68, 19, 94, 33].

Distance transform algorithm is also a well known image processing algo-
rithm, known by it’s simplicity, adaptability and scalability and as also a wide
range of applications[75, 15, 70, 9].

APPENDIX A. FEATURE EXTRACTOR 79

G =
√
G2
x +G2

y (A.1) Θ = arctan(
Gy
Gx

) (A.2)

The above algorithms are included in the OpenCV library and only needed
integration with the FE.

As for the quantization algorithm, it was integrated and adapted from giflib
library 3, a Graphics Interchange Format (GIF) image format library. The GIF
compression is one of the possible next possible features to be implemented in
the FE and studied. Since it includes a quantization algorithm, it was found
useful to use it as the FE quantization algorithm.

Lastly the salience algorithm chosen to be implemented was the subject
salience algorithm. Although this algorithm was created to extract the subject
of a given photograph, the reason to include it in the FE was to explore the
concept of the image subject in any image as well study its usefulness in an
image complexity analysis. This algorithm was totally implemented based on
the Luo et al. work[53].

The following subsections describe these filters in detail.

Edge Detection

In terms of edge detection, the operators in use calculate the value of the first
order derivatives in the horizontal (Gy) and vertical (Gx) directions. With these
derivatives it is possible to calculate the gradient of the edges(equation A.1) and
its direction (equation A.2).

More into detail, the Canny’s algorithm[12] focuses on reducing noise by find-
ing the gradient of image intensity. The designed method applies the following
steps:

1. Filtering noise filter using gaussian smoothing or blur (filtering).

2. Find the most salient edge of the smoothed image by using the magnitude
of the gradient.

3. Refining edges detected in the previous step using upper and lower thresh-
olds that allow to constraint the magnitude of the intensities of the edges
(hysteresis).

This filter, in the matters of the FE is applied vertically(fig.A.9b) and hori-
zontally(fig.A.9a), by using Gx and Gy respectively.

The Sobel filter[79] is based on a discrete differentiation operator, computing
an approximation to the slope of the function of image intensity at each point of
it. The result of the Sobel operator is either the corresponding gradient vector
or the norm of this vector. Mathematically, this operator uses two 3×3 matrices
that are convoluted with the original image to calculate approximations of the
derivatives - for horizontal and vertical variations. The Sobel filter calculates
the gradient of the image intensity at each point, giving the direction of the
greater variation from light to dark and the amount of variation in that same
direction. This gives an idea of the variation of the brightness at each point,
more smoothly or abruptly. With this filter it is estimated the presence of

3GifLib for Windows - http://gnuwin32.sourceforge.net/packages/giflib.htm

http://gnuwin32.sourceforge.net/packages/giflib.htm

APPENDIX A. FEATURE EXTRACTOR 80

the light-dark transitions and what are it’s orientations. With these light-dark
variations corresponding to the intense and well-defined boundaries between
objects, it is possible to obtain an edge detection.

Likewise the Canny filter, while concerning the FE, this filter is applied
vertically and horizontally (fig.A.9e and fig.A.9d).

With the resulting images from horizontal(H) an vertical(V) edge detection,
the an image with both edges can be computed in the following matter:

Txyi =
√

(Hxyi)
2 + (Vxyi)

2 (A.3)

Where Hxyi and Vxyi are the pixel intensity values of the ith-pixel of the hor-
izontal and vertical edge detection results, respectively (fig.A.9f and fig.A.9c).

Distance Transform

The distance transform algorithm consists in a geometrical operator that maps
each image pixel into its smallest distance to regions of interest. This algorithm
is related to many other important entities such as medial axes, Voronoi dia-
grams, shortest-path computation, and image segmentation. In this case, the
objective of the distance transform is to calculate the approximate or precise
distance from every binary image pixel to the nearest zero pixel. With this con-
cept in mind and with the help of the edge operator Canny, it is used to map
the distance between edges and use it later for analysis. In order to achieve that
objective the algorithm[9] is used, that is, for each pixel the algorithm finds
the shortest path to the nearest zero pixel consisting of basic shifts: horizontal,
vertical, diagonal or knight’s move. The overall distance is calculated as a sum
of these basic distances. Because the distance function should be symmetric, all
of the horizontal and vertical shifts must have the same cost (that is denoted as
a), all the diagonal shifts must have the same cost (denoted b), and all knight’s
moves must have the same cost (denoted c). In this case, the distance metric
in use is the Euclidean distance. The parameters used by the FE are similar to
the ones suggested in the original paper:

5× 5mask, a = 1, b = 1.4, c = 2.1969 (A.4)

By applying this 5 × 5 mask to all pixels of the image we get the distance
transform of an image (fig.A.9g). Afterwards we scale the pixel intensity values
based on local minimum an maximum to [0...255] and normalize the image,
showing a distinct result from the step before (fig.A.9h). In this approach it
is kept both images, the normalized and normal distance transform image, for
later analysis.

GIF Quantization

The quantization method behind GIF compression algorithm is the median cut
algorithm. This algorithm is characterized for being successful in identifying and
preserving important colors in the color-reduced image, with little degradation
towards the original. The median cut algorithm attempts to accomplish this
goal by successively dividing the RGB color space into regions of equal color
count, where the color count is the sum of the histogram counts enclosed by
each of its region. The algorithm follows these steps:

APPENDIX A. FEATURE EXTRACTOR 81

Figure A.7: An example of the median cut algorithm.

1. Enclose all of the colors in the image into a series of separate and smaller
cubes defined within the boundaries of the RGB colorspace

2. For each sub-cube calculate the minimum and maximum value of the red,
green, and blue components. The difference between these values is defined
as the width of that color channel, and the widest of these determines the
dominant dimension among red, green, and blue

3. The sub-cube with the largest dominant dimension is then determined,
and that sub-cube is split into two smaller cubes along the median point.

4. This procedure divides the sub-cube into two halves so that equal numbers
of colors are on each side, and the colors within the sub-cube are segregated
into two groups depending on which half of the sub-cube they fall.

5. Repeat 2 until the desired number of sub-cubes has been generated.

6. Compute the color for each sub-cube by averaging all of the colors that
are contained in the sub-cube.

The resulting set of colors constitutes the palette for the color-reduced im-
age. Figure A.7 shows an example of the described process. An example of a
quantization made by the FE is shown in figure A.9i.

Subject Saliency

Saliency can be defined by something that stands out relative to others, in
the scope of Computer Vision, it is a point or a group of points that give
more information then the surrounding ones. The saliency algorithm chosen
to implement was the subject saliency algorithm also known as subject region

APPENDIX A. FEATURE EXTRACTOR 82

extraction[53]. In this case the saliency are defined by the points that most
likely describe the subject of the picture.

In Luo et al. work, this algorithm was formulated based on an idea that
the subject in a photograph would be more clear and the background would be
blurred. Therefore the algorithm aims to extract the clear region of an image,
which theoretically holds the subject and then extract it from the background.

This algorithm uses images statistics to detect 2D blurred regions in an
image, based on a modification of Levin et al. work[46]. Next it maps the clear
points of the image has a saliency map. With the saliency points calculated the
following step is to enclose the subject in an area where most points are located.

The whole process is further described by these steps:

1. Define I as a matrix, holding the pixel intensity values of an input image.

2. Calculate vertical and horizontal first order derivatives. Ix = I ∗ dx and
Iy = I ∗ dy, where dx = [1,−1] and dy = dTx

3. Create k kernels k × k with all coefficients 1
k2

4. Apply each kernel to Ix and Iy to obtain Ixk and Iyk

5. Calculate the pixel intensity histogram of Ixk and Iyk and obtain pxk and
pyk

6. For each pixel in Ik, define the log-likelihood of the derivatives in its
neighboring window W(i,j) with a size n. The log-likelihood can be defined
by:

lk(i, j) =
∑

(i′,j′)εW(i,j)

(log(pxk(Ix(i′, j′))) + log(pyk(Iy(i′, j′)))) (A.5)

7. The maximum value of lk(i, j) will define the kernel (k) that best describes
the neighboring window statistics. If the best describing kernel of a pixel
is equal to 1 then the pixel is in the clear area, otherwise is in the blurred
area.

8. Compute the saliency map :

U(i, j) =

{
1 , bestk = 1
0 , bestk > 1

(A.6)

9. To enclose the subject, project U onto x and y axes independently. Ux(i) =∑
j U(i, j) and Uy(i) =

∑
i U(i, j)

10. Calculate x1 and x2 by adding each value of U(i, j), in [0, x1] and [x2, N]
until the total value reaches 1−α

2 of the total value of Ux, where N is the
size of the image in x direction. The variable α is a constant used to
control the total value needed to enclose the subject, the recommended
value is 0.9. Do it similarly in the y direction. The subject region is
defined by Region = [x1, x2] × [y1, y2]. The background region is obtain
by computing the pixels of I /∈ Region.

APPENDIX A. FEATURE EXTRACTOR 83

Figure A.8: Saliency map.

A result of the saliency map is depicted in figure A.8. Good reference values
for the number of kernels (k) and for the neighbouring window would be 30 and
3, respectively [46, 53]. The resulting filtered images are shown in figure A.9j
and A.9k.

In figure A.9, we can see the results, for the value (V) channel, from this
phase of the FE.

A.4 Metrics

As it was seen so far, the input image passes through a series of transformations,
standardizing and normalizing it for further analysis. After that phase, different
temporary images are retrieved from the information of the HSV color channels
and a new temporary image is created (CS). On each of these images, in a
second step of the whole process, different image filters were used, resulting in
a few more temporary image, each one of them holding unique characteristics
and information.

At this point, by using the resulting images, an application of image mea-
surements, also referred as metrics, related with:

• Mean and standard deviation

• Complexity Estimates based on JPEG

• Estimates based on Fractal compression

• Frequency of currency Zipf (Zipf Rank-Frequency)

• Size frequency Zipf (Zipf Size-Frequency)

• Estimates of fractal dimension using box-counting

Within the metrics applied, it is also present the pixels mean and standard
deviation of the image. These values are not related to measures of complexity,
but are used later as a reference model to check the other estimators. These met-
rics are explained in more detail later on this section. Concerning the complexity
estimates, there are three different families: (i) JPEG and Fractal Compression,
(ii) Zipf’s Law and (iii) Fractal Dimension.

APPENDIX A. FEATURE EXTRACTOR 84

(a) Canny Horizontal (b) Canny Vertical (c) Canny Horizontal
and Vertical

(d) Sobel Horizontal (e) Canny Vertical (f) Canny Horizontal
and Vertical

(g) Distance transform (h) Normalized dis-
tance transform

(i) GIF Quantization

(j) Subject Saliency (k) Background
Saliency

Figure A.9: Filter operations aplication.

APPENDIX A. FEATURE EXTRACTOR 85

Mean and Standard Deviation

The mean and standard deviation are simply calculated from the pixel intensity
values of each image, with an exception for the channel H (Hue) from the image.
Since Hue channel is circular, the mean and standard deviation are calculated
based on the angle values of Hue and its norm. In addition, it is performed the
multiplication of the Hue angle by the pixel intensity values of CS, and a new
value of the norm is calculated using values from H and CS.

For the channel H it is considered the circular distance. The Hue channel is
scaled to the range of [0...1] , and following formulas are used:

hxi = cos(H[xi, yi]× 2π) (A.7)

hyi = sin(H[xi, yi]× 2π) (A.8)

The above equations represent the Hue component of the ith pixel. There-
fore, it is possible to calculate:

avgangle =

{
arccos(hx) , arcsin(hy) >= 0

2π − arccos(hx) , arcsin(hy) < 0
(A.9)

avgnorm =

√
hx

2
+ hy

2
(A.10)

std =

√
s(I)∑
i

((hxi − hx)2 + (hyi − hy)2)

s(I)
(A.11)

The hx and h represent the mean values of the respective components, the
image I and s is the function of file size.

The following changes in equations A.12 and A.13 allow the calculation of
these metrics considering CS channel, generating the value it is referred to as H

CS :
hxi = cos(H[xi, yi]× 2π)× CS[xi, yi] (A.12)

hyi = sin(H[xi, yi]× 2π)× CS[xi, yi] (A.13)

These values conclude the calculation of the mean and standard deviation.

Complexity estimates

In terms of complexity estimates, as part of human perception, it is understand-
able that an image is transformed into an internal representation recognizable
by the brain. This transformation would entail loss of information, causing this
representation to be not exactly the same as the original image. According to
Machado [56], the image aesthetic value can be determined according to their
perceived complexity (hereafter CP) and complexity of the image (hereafter CI).
According to this theory there should be a way to construct estimate values to
both CP and CI complexities.

The fact that human beings do this pre-processing an image with the con-
sequent loss of information serves as basis for using compression-based models,

APPENDIX A. FEATURE EXTRACTOR 86

which obtain a compact representation of an image and have the same defi-
ciency. Machado used Fractal and JPEG compression to estimate CP and CI,
respectively.

There is no evidence that the fractal compression constitutes a model of
human perception. Nor are there any works that demonstrate a relationship
between any of the mentioned compression methods and human perception of
complexity of an image. However, these estimates have proven useful in image
classification tasks according to stylistic criteria, such as, classifying an image
according to the author of a painting or aesthetic [25]. Furthermore, these
metrics have the advantage of being general and can be easily calculated.

A brief description of the chosen complexity estimates is showed and refer-
ences to their relation with CP and CI. JPEG stands for Joint Photographic
Experts Group. It is a standard method of compressing photographic images.
The most common, viewed as default version of the JPEG is a lossy compres-
sion scheme. Although it exists a version of this compression that is lossless. By
lossy it means that it looses information while compression the image, compres-
sion error. This is controlled by the compression ratio that can be assigned to
perform the compression. This ratio affects the image quality and compression
in an inversely proportional way, this means that, much higher ratio worsens
the image quality but improves the compression value.

The JPEG implementation, makes use of the two-dimensional discrete cosine
transform, DCT for short call. This transformation is based on Fourier trans-
form (referred as DFT). Both the DFT and the DCT work through a series
of finite numbers, but while the DCT only works with the cosines, DFT uses
complex exponentials.

The whole JPEG compression is performed in four steps:

1. the original image is divided into different blocks of a certain size. Blocks
normally used 8× 8 pixels.

2. applies discrete cosine transform or DCT to each block.

3. Number of the coefficient matrix resulting from the implementation of
DCT.

4. Coding of the image (Run Length Encoding) after the compression using
the Huffman method. In fact, the format that holds a JPEG encoded
stream is called JFIF4, but it is usually called JPEG archive.

This algorithm is sensitive to changes in luminance (brightness changes)
that become more noticeable in small areas with homogeneous brightness than
in areas of greatest variation. This feature of the JPEG compression is also
present in the human eye.

This compression method is essentially local, not taking into account any re-
lationship between different elements of the image. The definition of complexity
given by Moles [66] argues that aesthetic value is directly related to the com-
plexity of the image. Proposes a measure of complexity based on the theory of
information Shannon [74], the greater the predictability of the pixels, depending
on the rest, the lower the complexity associated.

4JPEG File Interchange Format

APPENDIX A. FEATURE EXTRACTOR 87

Table A.1: Parameters used in fractal compression

Low Average Upper

Image Size 256x256 pixels
Minimum partition level 2 2 3
Maximum partition level 4 5 6
Maximum error per pixel 8 8 8

Within the relatively new methods in the field of image compression, are
included those based on fractals and wavelets. Wavelet coding is based on the
idea that the coefficients of a transformation that maps the pixels of an image
can be encoded more efficiently than the original pixels. Barnsley [6] showed
that any image can be represented through a set of fractal transformations so
this kind of compression offer capabilities that generic representations similar of
JPEG, does not.

Fractal compression method is based on the explanation of the similarities
between different areas of an image (see figures A.10 and A.11). Thus, an image
is encoded by a partitioning tree showing these similarities between different
components. In particular we have chosen the tree model system TRNB or
quadtree fractal compression, which used 4 levels of depth [17] with the set of
parameters given in Table A.1.

This compression, according to Machado [56] is characterized by:

• The resulting image fractal compression seem to have superior quality
to those obtained using JPEG compression, even when that fact is not
verified mathematically.

• These images encoded using fractal compression have no fixed size and
can be reproduced in any dimension. An image reproduced the original
dimensions than have better quality than if it is produced by conventional
methods of zoom.

• Explore the self-similarities present in an image is the idea that is based
on fractal compression.

These characteristics of fractal compression allow the possibility to establish a
logical resemblance to the way the human eye processes a picture in contrast to
other compression methods.

The complexity estimate obtained by fractal compression is based on the
same mathematical principles seen to JPEG compression, therefore expresses
itself in terms of error and compression ratio.

The JPEG compression, that is a local method that ignores any relationship
between the elements, it is used as an estimator for CP. On the other hand,
in the case of fractal compression, attempts to find the relationships between
different components of the image (such as self-similarity) in the same way that
occurs in the human visual perception system. Because of this complexity will
be used as an estimator for fractal CI.

As a practical example, when the complexity of an image increases the JPEG
compression tends to produce worse results, which translates into increased

APPENDIX A. FEATURE EXTRACTOR 88

Figure A.10: Original Image Figure A.11: Similarity

compression error estimator by increasing the value of CI. Moreover, as fractal
compression does take into account the characteristics of the image and its
possible relationship, it is reasonable to assume that its estimate for CP is
higher than JPEG compression can provide.

It is not intended to suggest that the complexity of an image is equivalent to
the estimator proposed as CI or that the human perception system specifically
uses fractal compression, but both the complexity and the Fractal JPEG can be
used as possible approximations for CI and CP, respectively.

We consider three levels of detail for metrics related to the JPEG and Fractal
Compression: low, medium and high. For each level of detail, the process is the
same, the image in analysis is encoded in a JPEG or Fractal format. Afterwards,
the estimate of complexity is calculated using the following formula:

Complexity(I) = RMSE(I, CT (I))× s(TC(i))

s(i)
(A.14)

where RMSE represents the root mean square error, CT is the JPEG or Fractal
Compression rate of the image I and s is the file size function.

Zipf Law

Zipf’s Law is the observation of phenomena generated by self-adaptive organ-
isms, like humans, also known as the principle of least effort. Once the phe-
nomenon has been selected for study, we examine the contribution of each case
to the whole and rank according to their importance or predominance [97].

Bill Manaris has used the Zipf’s Law as a criterion of beauty in music clas-
sification [62]. Since 2003, this researcher has been collaborating with the re-
search group in musical classification, mainly using metrics based on Zipf’s Law
[61, 63, 59]. Based on the knowledge and experiences of the group, it were
added several metrics based on this principle, applied to the pixel to pixel value
in monochromatic channels.

In the work of the FE the metrics implemented regard the Zipf’s law are:
rank-frequency, size-frequency.

The calculation of the Zipf’s rank-frequency is done by counting the number
of occurrences of each value of a pixel in the range [0...255]. After these values are
sorted in descending order and will be represented in a Cartesian axis according
to their value and frequency. Then it is performed the linear regression of the

APPENDIX A. FEATURE EXTRACTOR 89

data, calculating the trend line. The metrics in used are the slope (m) and the
linear correlation (R2) of the trendline.

In the case of the Hue channel, this metric is calculated in two ways. The
first was described above. In the second, instead of only counting the number of
occurrences of each value of Hue, we add also the channel values for the pixels
corresponding CS (scaling back to [0...255]). The reason of this calculation is,
the perception of tone depends on the saturation and the corresponding pixel
value.

The metric Zipf size frequency is calculated similarly to the rank-frequency.
Instead of using the value of each pixel, the difference between the value of a
pixel with each of its neighbors is calculated. Next, count the total number of
occurrences of differences in size from 1 to 255. Similar to the rank-frequency,
the data is used to calculate the trend line and extract the slope and linear
correlation.

In case of the Hue channel, a circular distance is considered. The Hue is
scaled in the range [0...1], and the following formulas are used:

dxi = cos(H[xi, yi]× 2π) (A.15)

dyi = sin(H[xi, yi]× 2π) (A.16)

distx = dxi − dxi+1 (A.17)

disty = dxi − dyi+1 (A.18)

distance =
√
distx2 + disty2 (A.19)

circulardistance = min(distance, |distance−
√

8|) (A.20)

Since H values are between [0...1] , the maximum distance is achieved when
(distx = 2) ∧ (disty = 2) that results from distance =

√
22 + 22 =

√
8. The

equation A.20 ensures that we consider the minimum distance in the angle (eg.
considering the distance clockwise and counterclockwise).

The size frequency of the hue (Hue) were also calculated using the channel
CS. This is achieved by making the following changes in equations A.21 and
A.22, respectively:

dxi = cos(H[xi, yi]× 2π)× CS[xi, yi] (A.21)

dyi = sin(H[xi, yi]× 2π)× CS[xi, yi] (A.22)

While calculating the value of the channel H through the channel CS, it is
obtained a value for the hue channel variant HCS .

APPENDIX A. FEATURE EXTRACTOR 90

Figure A.12: Lenna (V channel) Figure A.13: Lenna Box-Counting

Fractal Dimension

Fractals have been invented by the mathematician Benoit Mandelbrot to de-
scribe the geometry of nature, whose complex and irregular forms beyond clas-
sical geometry. Mandelbrot has discovered that fractals are not just abstract
objects because they exist in nature. This opened new areas of research in the
chaos theory, especially regarding the differential equations chaotic behavior of
their solutions.

Mandelbrot Fractal Dimension is mainly based on two principles:

• Hausdorff-Besicovitch dimension which generalizes the concept of the
dimension of a real vector space. That is, the Hausdorff dimension of an
n-dimensional vector space is equal to n. This means, for example, the
Hausdorff dimension of a point is zero, the Hausdorff dimension of a line
is one, and so on.

• Hausdorff distance measuring how far away from each other two com-
pact subsets of a metric space. Hausdorff distance can be used to find a
template of a given arbitrary image.

Fractal Dimension implies the existence of fractional measurements between
integer dimensions. These values are approximated by appropriate measures in
a progressively smaller scale. By representing a log vs log curve, results in a
cartesian axis we can obtain a rough measure of the fractal dimension through
its slope [64].

The last metric to be retrieved is the Fractal Dimension based on the method
Box-Counting or counting boxes, chosen for its conceptual simplicity and ease
of implementation. This method involves establishing a Cartesian coordinate
system that contains the set of image points to be analyzed to which it will now
be referred to as I. After, a count of Nn(I) of squares (or cubes, or hypercubes
depending on the size of the object to be analyzed) of size 1

2n that intersect the
total set.

The approach of the fractal dimension is given by the slope of the line ob-
tained by linear regression of points log(2n) log(Nn(I)) [34].

The calculation of this metric is performed on monochrome images. Using
a box size of 1

4 , the initial image is divided into quadrants. By using an escape
operator condition ≥ 128, that is, if the box holds only pixels whose value is less
than 128 it stops. On the other hand, if the condition occurs it is counted and

APPENDIX A. FEATURE EXTRACTOR 91

the box is re-divided to search recursively in each of the new partitions while
the condition or size of box is not 1. A possible result could be observed in
figures A.12 and A.13.

As before, once this is completed, a comparison between the size and number
of occurrences is performed and both the slope and linear correlation of the trend
line is calculated.

A.5 Feature’s Building

After the process of metric calculation and understanding, the next step is to
comprehend how they relate to each other in order to form the total number of
values that are available at the end of the FE process.

From a given image it can be analyzed up to 7 parts of the image, the whole
image and those obtained by partitioning the image, plus the rule of thirds. Each
one them can generated up to 4 auxiliary images. These images are obtained
from the color channels of the HSV model and CS. For each of these, and by
combining up to 12 different filters, results in 336 auxiliary images. This set of
images is used to calculate the described metrics: mean, standard deviation and
estimates of complexity.

The mean and standard deviation generate 15 values from the channels H,
S, V and variant HCS . These include the H and HCS average angle and norm.

The JPEG and Fractal compression has 3 values for each of the auxiliary im-
age used, each serving a specific compression ratio (high, medium, low). JPEG
is used for channels H, S, V and ALL, while for Fractal only use the first three.
This is because only the metric related to the JPEG compression of all the
proposed works with color images. These generate 21 metric values.

Metrics related to the Zipf’s Law using the color channels H, S, V and variant
Hcs from which has 2 different values, the slope of the trend line(m) and linear
correlation(R2). In total there exists 16 values, 8 for the rank-frequency and 8
size-frequency.

Finally, the metrics of fractal dimension is calculated from the color channels
H, S and V, but as happened with Zipf, it has 2 different values in response to
the trend line and linear correlation, making a total of 8 values.

The metrics are applied to each auxiliary image, which totalizes the number
of available features as 5, 628. Notice that in experiments with FE not all the
features were used. Most experiments with the FE have been conducted with
only 371, 603 or 804.

Appendix B

Populations

B.1 Style-Based Image Classification

B.2 Improving Face Detection

92

APPENDIX B. POPULATIONS 93

Figure B.1: NEvAr 2007 starting population

Figure B.2: NEvAr Faces starting population from 0− 51.

Figure B.3: NEvAr Faces starting population from 51− 99.

Bibliography

[1] A., Rosenfeld and Pfaltz J.: Distance functions on digital pictures. Pattern
Recognition, 1(1):33–61, 1968.

[2] Atkins, D L, R Klapaukh, W N Browne, and Mengjie Zhang: Evolution of
aesthetically pleasing images without human-in-the-loop. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1–8, 2010.

[3] Au, W H, K C C Chan, and X Yao: A novel evolutionary data mining
algorithm with application to churn prediction. IEEE Transactions on Evo-
lutionary Computation, (7):532–545, 2003.

[4] Ballard, D H and C M Brown: Computer Vision. Prentice Hall, 1982.

[5] Baluja, S, D Pomerlau, and J Todd: Towards Automated Artificial Evolu-
tion for Computer-Generated Images. Connection Science, 6(2):325–354,
1994.

[6] Barnsley, M F and A D Sloan: A Better Way to Compress Images. BYTE,
January:215–223, 1988.

[7] Baro, X, S Escalera, J Vitria, O Pujol, and P Radeva: Traffic Sign Recogni-
tion Using Evolutionary Adaboost Detection and Forest-ECOC Classifica-
tion. Intelligent Transportation Systems, IEEE Transactions on, 10(1):113–
126, 2009, ISSN 1524-9050.

[8] Boehnen, Christopher Bensing: IMPROVING 3D FACE RECOGNITION
MODEL GENERATION AND BIOMETRICS, 2009.

[9] Borgefors, Gunilla: Distance transformations in digital images. Comput.
Vision Graph. Image Process., 34(3):344–371, 1986, ISSN 0734-189X.

[10] C, Darwin: The Origin of Species, 1859.

[11] Campos, T.
btxfnamespacelong E. de, B.
btxfnamespacelong R. Babu, and M Varma: Character recognition in nat-
ural images. In Proceedings of the International Conference on Computer
Vision Theory and Applications, Lisbon, Portugal, February 2009.

[12] Canny, J: A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., 8(6):679–698, 1986, ISSN 0162-8828.

94

BIBLIOGRAPHY 95

[13] Cortes, Corinna and Vladimir Vapnik: Support-vector networks. Machine
Learning, 20(3):273–297, 1995, ISSN 0885-6125.

[14] Dawkins, Richard: The blind watchmaker: why the evidence of evolution
reveals a universe without design. W.W. Norton and Company, Inc., New
York, 1987.

[15] Felzenszwalb, Pedro, David Mcallester, and Deva Ramanan: A discrimina-
tively trained, multiscale, deformable part model. In In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR-2008, 2008.

[16] Felzenszwalb, Pedro F and Daniel P Huttenlocher: Distance Transforms of
Sampled Functions. Technical report, Cornell Computing and Information
Science, September 2004.

[17] Fisher, Yuval (editor): Fractal Image Compression: Theory and Applica-
tion. Springer Verlag, London, 1995, ISBN 0-387-94211-4.

[18] Fogel, D B and J W Atmar: Comparing Genetic Operators with Gaussian
Mutation. In in Simulated Evolutionary Processes Using Linear Systems,
Biological Cybernetics, pages 11111–11114, 1990.

[19] Freeman, William T and Edward H Adelson: The Design and Use of Steer-
able Filters. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13:891–906, 1991.

[20] Freund, Yoav and Robert E Schapire: A Decision-Theoretic Generalization
of on-Line Learning and an Application to Boosting, 1995.

[21] Fukushima, K: Cognitron: a self-organizing multilayered neural network.
Biological Cybernetics, (3-4):121–136.

[22] Gatarski, Richard: Evolutionary Banners: An Experiment With Automated
Advertising Design. In Conference on Telecommunications and Information
Marketing, Providence, Rhode Island, 1999.

[23] Georghiades, A S, P N Belhumeur, and D J Kriegman: From few to many:
illumination cone models for face recognition under variable lighting and
pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,
(6):643–660, ISSN 01628828.

[24] Graf J., Banzhaf W: Interactive Evolution of Images. 1995.

[25] Graves, Maitland: Design Judgement Test. The Psychological Corporation,
New York, 1948.

[26] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian Witten: The WEKA data mining software. ACM
SIGKDD Explorations Newsletter, (1):10, ISSN 19310145.

[27] Hall, Mark A: Correlation-based Feature Selection for Machine Learning.
Methodology, (April):17.

[28] Heckbert, Paul: Color Image Quantization for Frame Buffer Display. SIG-
GRAPH 82 Proceedings of the 9th annual conference on Computer graphics
and interactive techniques, (3):297–307, ISSN 00978930.

BIBLIOGRAPHY 96

[29] Hemert J., Eiben A: Mondrian Art by Evolution. 1999.

[30] Hjelm̊a s, E: Face Detection: A Survey. Computer Vision and Image Un-
derstanding, 83(3):236–274, 2001, ISSN 10773142.

[31] Holland, John H: Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA, 1992, ISBN 0-262-58111-6.

[32] Holmes, G, A Donkin, and I H Witten: WEKA: a machine learning work-
bench. Proceedings of ANZIIS 94 Australian New Zealnd Intelligent Infor-
mation Systems Conference, (3):357–361, ISSN 19305753.

[33] Huttenlocher, Daniel P, Gregory A Klanderman, Gregory A Kl, and
William J Rucklidge: Comparing Images Using the Hausdorff Distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:850–
863, 1993.

[34] Huttenlocher, Daniel P, Gregory A Klanderman, Gregory A Kl, and
William J Rucklidge: Comparing Images Using the Hausdorff Distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:850–
863, 1993.

[35] Ibrahim, Aladin M and Donald H House: Genetic shaders: interactive and
automatic shader generation. In ACM SIGGRAPH 97 Visual Proceedings:
The art and interdisciplinary programs of SIGGRAPH ’97, page 189. ACM
Press, 1997, ISBN 0-89791-921-1.

[36] Jesorsky, Oliver, Klaus J Kirchberg, and Robert W Frischholz: Robust Face
Detection Using the Hausdorff Distance. Computer, (June):90–95.

[37] Jong, Kenneth A De: Genetic Algorithms are NOT Funtion Optimizers.
Morgan Kaufman, Los Atlos, CA, 1993.

[38] Ke, Yan, Xiaoou Tang, and Feng Jing: The Design of High-Level Features
for Photo Quality Assessment. Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on, 1:419–426, 2006.

[39] Keane, and A. J. Keane, and S M Brown: Thedesign Of Asatellite Boom
Withenhanced Vibration Performance Usinggenetic Algorithmtechniques.

[40] Kienzle, Wolf, G Bakir, and Matthias Franz: Face detection-efficient and
rank deficient. Advances in Neural.

[41] Koza, John R and Riccardo Poli: Genetic Programming. In Search Method-
ologies, pages 127–164. Springer US, 2005.

[42] Krawiec, K, D Howard, and Mengjie Zhang: Overview of Object Detection
and Image Analysis by Means of Genetic Programming Techniques. In
Frontiers in the Convergence of Bioscience and Information Technologies,
2007. FBIT 2007, pages 779–784, 2007.

[43] Kriegman, D J, David J Kriegman, and Narendra Ahuja: Detecting faces
in images: a survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(1):34–58, 2002, ISSN 01628828.

BIBLIOGRAPHY 97

[44] L J Fogel, A J Owens M J Walsh: Artificial Inteligence Through Simulated
Evolution. Wiley, New York, CA, 1966.

[45] Langley, P, W Iba, and K Thompson: An Analysis of Bayesian Classifiers.
In Proceedings Of The National Conference On Artificial Intelligence, num-
ber 415, pages 223–228. Citeseer, AAAI Press.

[46] Levin, Anat: Blind Motion Deblurring Using Image Statistics. Image
Rochester NY, (3):841, ISSN 10495258.

[47] Lewis, Matthew: Evolutionary Visual Art and Design. In Romero,
Juan and Penousal Machado (editors): The Art of Artificial Evolu-
tion, Natural Computing Series, pages 3–37. Springer Berlin Heidelberg,
ISBN 978-3-540-72877-1.

[48] Li, C and T Chen: Aesthetic Visual Quality Assessment of Paint-
ings. IEEE Journal of Selected Topics in Signal Processing, (2):236–252,
ISSN 19324553.

[49] Lienhart, R, A Kuranov, and V Pisarevsky: Empirical analysis of detection
cascades of boosted classifiers for rapid object. Lecture Notes in Computer,
pages 297–304.

[50] Lienhart, Rainer, Alexander Kuranov, and Vadim Pisarevsky: Empirical
Analysis of Detection Cascades of Boosted Classifiers for Rapid Object De-
tection. Computing, (MRL):297–304.

[51] Lienhart, Rainer and Jochen Maydt: An Extended Set of Haar-Like Fea-
tures for Rapid Object Detection. In IEEE ICIP 2002, pages 900–903, 2002.

[52] Llora, Xavier, Kumara Sastry, David E Goldberg, Abhimanyu Gupta, and
Lalitha Lakshmi: Combating user fatigue in iGAs: partial ordering, support
vector machines, and synthetic fitness. In In Genetic and Evolutionary
Computation Conference, GECCO 2005, Proceedings, pages 25–29, 2005.

[53] Luo, Yiwen and Xiaoou Tang: Photo and video quality evaluation: Focusing
on the subject. In ECCV 08 Proceedings of the 10th European Conference on
Computer Vision, pages 386–399. Springer-Verlag, ISBN 9783540886891.

[54] Machado, P and A Cardoso: All the truth about NEvAr. Applied Intelli-
gence, Special Issue on Creative Systems, 16(2):101–119, 2002.

[55] Machado, P and A Cardoso: NEvAr – System Overview. In Generative Art,
Milan, Italy, 2003.

[56] Machado, Penousal: Inteligencia Artificial e Arte. Phd Thesis. In Por-
tuguese, 2007.

[57] Machado, Penousal and Amilcar Cardoso: Generation and Evaluation of
Artworks. In First European Workshop on Cognitive Modelling, Berlin,
1996.

[58] Machado, Penousal and Amilcar Cardoso: NEvAr - The Assessment of an
Evolutionary Art Tool. In Wiggins, Geraint (editor): AISB’00 Symposium
on Creative and Cultural Aspects and Applications of AI and Cognitive
Science, Birmingham, UK, 2000.

BIBLIOGRAPHY 98

[59] Machado, Penousal, Juan Romero, and Bill Manaris: Experiments in Com-
putational Aesthetics. In The Art of Artificial Evolution. Springer, 2007.

[60] Machado, Penousal, Juan Romero, Bill Manaris, Antonino Santos, and
Am\’ilcar Cardoso: Power to the Critics - A Framework for the Devel-
opment of Artificial Art Critics. In IJCAI’2003 Workshop on Creative
Systems, Acapulco, Mexico, 2003.

[61] Machado, Penousal, Juan Romero, Bill Manaris, Antonino Santos, and
Amı̈¿ 1

2 lcar Cardoso: Power to the Critics - A Framework for the Devel-
opment of Artificial Critics. In Proceedings of 3rd Workshop on Creative
Systems, 18 th International Joint Conference on Artificial Intelligence (IJ-
CAI 2003, pages 55–64, 2003.

[62] Manaris, B, T Purewal, and C McCormick: Progress Towards Recognizing
and Classifying Beautiful Music with Computers - MIDI-Encoded Music
and the Zipf-Mandelbrot Law. In Proceedings of the IEEE SoutheastCon
2002 Conference, Columbia, 2002.

[63] Manaris, Bill, Penousal Machado, Clayton McCauley, Juan Romero,
and Dwight Krehbiel: Developing Fitness Functions for Pleasant Music:
Zipf’s Law and Interactive Evolution Systems. In Applications of Evo-
lutionary Computing, EvoWorkshops2004: {EvoBIO}, {EvoCOMNET},
{EvoHOT}, {EvoIASP}, {EvoMUSART}, {EvoSTOC}, LNCS, Lausanne,
Switzerland, 2005. Springer Verlag.

[64] Mandelbrot, Benoit B: The Fractal Geometry of Nature. W. H. Freedman
and Co., New York, 1983.

[65] Menezes, Telmo L T, Tiago R Baptista, and Ernesto J F Costa: Towards
Generation of Complex Game Worlds. In Computational Intelligence and
Games, 2006 IEEE Symposium on, pages 224–229, May 2006.

[66] Moles, Abraham: Arte e Computador. Republished by Afrontamento 1990,
1973.

[67] Papageorgiou, C P, M Oren, and T Poggio: A general framework for object
detection. In Computer Vision, 1998. Sixth International Conference on,
pages 555–562, January 1998.

[68] Perona, Pietro and Jitendra Malik: Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12:629–639, 1990.

[69] Ritendra Datta Dhiraj Joshi, Jia Li and James Z Wang: Studying Aesthetics
in Photographic Images Using a Computational Approach. Lecture Notes
in Computer Science, 3953:288–301, 2006.

[70] Romdhani, Sami and Thomas Vetter: Estimating 3d shape and texture using
pixel intensity, edges, specular highlights, texture constraints and a prior. In
Edges, Specular Highlights, Texture Constraints and a Prior, Proceedings
of Computer Vision and Pattern Recognition, pages 986–993, 2005.

BIBLIOGRAPHY 99

[71] Romero, Juan, Penousal Machado, Adrian Carballal, and Jo
btxfnamespacelong ao Correia: Computing Aesthetics with Image Judgment
Systems. In McCormack, Jon and Mark D’Inverno (editors): Computers
and Creativity, page to appear. Springer, 2011.

[72] Rowley, Henry A, Student Member, Shumeet Baluja, and Takeo Kanade:
Neural Network-Based Face Detection. IEEE Transactions On Pattern
Analysis and Machine intelligence, 20:23–38, 1998.

[73] Sha, Sha, Chen Jianer, Qin Ling, and Luo Sanding: Evolutionary mech-
anism and implemention for recognition of objects in dynamic vision. In
Computer Science Education, 2009. ICCSE ’09. 4th International Confer-
ence on, pages 178–182, 2009.

[74] Shannon, C E: Prediction and entropy of printed english. The Bell System
Technical Journal, (30):50–64, 1951.

[75] Shotton, Jamie, Andrew Blake, and Roberto Cipolla: Contour-based learn-
ing for object detection. In In Proceedings, International Conference on
Computer Vision, pages 503–510, 2005.

[76] Shyu, Brodley Kak, C Brodley, A Kak, C Shyu, J Dy, L Broderick, and
A M Aisen: Content-Based Retrieval from Medical Image Databases: A
Synergy of Human Interaction, Machine Learning and Computer Vision. In
Machine Learning and Computer Vision. In Proc. of the Sixteenth National
Conference on Artificial Intelligence (AAAI’99, pages 760–767, 1999.

[77] Siebel, Nils T, Sven Gr̈ı¿ 1
2newald, and Gerald Sommer: Creating edge detec-

tors by evolutionary reinforcement learning. In in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2008), Hong Kong, pages
3552–3559, 2008.

[78] Sims, K: Artificial Evolution for Computer Graphics. ACM Computer
Graphics, 25:319–328, 1991.

[79] Sobel, I: An isotropic 3 x 3 image gradient operator. Machine Vision for
Three-Dimensional Scenes, pages 376–379, 1990.

[80] Spears, William M, Kenneth A De Jong, Thomas Bäck, Thomas Ba, David
B Fogel, and Hugo De Garis: An Overview of Evolutionary Computation,
1993.

[81] Spector, Lee and Adam Alpern: Criticism, culture, and the automatic gen-
eration of artworks. In Proceedings of Twelfth National Conference on Arti-
ficial Intelligence, pages 3–8. AAAI Press/MIT Press, Seattle, Washington,
USA, 1994.

[82] Srinivasan, D and V Sharma: Evolutionary computation and economic time
series forecasting. In Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 188–195, 2007.

[83] Steffen, Jörg: Text Classification using Weka. Technology, 2011.

BIBLIOGRAPHY 100

[84] Teller, A and M Veloso: Algorithm evolution for face recognition: what
makes a picture difficult. In Evolutionary Computation, 1995., IEEE In-
ternational Conference on, 1995.

[85] Tong, Hanghang, Mingjing Li, HongJiang Zhang, Jingrui He, and Chang-
shui Zhang: Classification of Digital Photos Taken by Photographers or
Home Users. In Aizawa, Kiyoharu, Yuichi Nakamura, and Shin’ichi Satoh
(editors): PCM (1), volume 3332 of Lecture Notes in Computer Science,
pages 198–205. Springer, 2004, ISBN 3-540-23977-4.

[86] Viola, Paul and Michael Jones: Rapid object detection using a boosted cas-
cade of simple features. pages 511–518, 2001.

[87] Wang, S L and A W C Liew: Information-Based Color Feature Representa-
tion for Image Classification. In Image Processing, 2007. ICIP 2007. IEEE
International Conference on, 2007.

[88] Whitley, Darrell: An overview of evolutionary algorithms: practical issues
and common pitfalls. Information and Software Technology, 43(14):817–
831, 2001, ISSN 0950-5849.

[89] Wiens A.L., Ross B J: Gentropy: Evolutionary 2D texture generation. 2002.

[90] Wong, Lai kuan and Kok lim Low: Saliency-Enhanced Image Aesthetics
Class Prediction. In ICIP09, pages 997–1000, 2009.

[91] Wong, Man Leung, Wai Lam, Kwong Sak Leung, and J C Y Cheng: Apply-
ing evolutionary algorithms to discover knowledge from medical databases.
In Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Pro-
ceedings. 1999 IEEE International Conference on, 1999.

[92] Wu, Yaowen, C Bauckhage, and C Thurau: The Good, the Bad, and the
Ugly: Predicting Aesthetic Image Labels. In Pattern Recognition (ICPR),
2010 20th International Conference on, pages 1586–1589, 2010.

[93] Xiao, Jing, Zbigniew Michalewicz, and Krzysztof Trojanowski: Adaptive
Evolutionary Planner/Navigator for Mobile Robots. IEEE Transactions on
Evolutionary Computation, page 1, 1997.

[94] Yang, Ming Hsuan, David J Kriegman, and Narendra Ahuja: Detecting
faces in images: A survey. IEEE Transactions on pattern analysis and
machine intelligence, 24(1):34–58, 2002.

[95] Zhang, C and Zhengyou Zhang: A Survey of Recent Advances in Face De-
tection. Learning, (June):1–17, 2010.

[96] Ziolko, Bartosz, Suresh Manandhar, Richard C Wilson, and Mariusz Ziolko:
Logitboost weka classifier speech segmentation. 2008 IEEE International
Conference on Multimedia and Expo, (3):1297–1300.

[97] Zipf, George K: Human Behavior and the Principle of Least Effort . 1949.

	Introduction
	Motivation

	State of the Art
	Evolutionary Computation
	Sub-areas of Evolutionary Algorithms
	Evolutionary Computation for Image Generation

	Image Classification
	Face Detection

	Proof of Concept and Experimentation
	Evolving Faces
	Conclusions and Insights

	Framework
	Style-Based Image Classification
	Introduction
	The Approach
	Experimental Setup
	Experimental Results
	Assessing Classifier Performance
	Summary

	Improving Face Detection
	Introduction
	The Approach
	Experimental Setup
	Experimental Results
	Assessing Classifier Performance
	Summary

	Conclusions and Future Work
	Feature Extractor
	Overview
	Pre-Processing
	Image Filters
	Metrics
	Feature's Building

	Populations
	Style-Based Image Classification
	Improving Face Detection

