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Abstract. We propose a model for event-oriented programming under
shared memory based on access permissions with explicit parallelism.
In order to obtain safe parallelism, programmers need to specify the
variable permissions of functions. Blocking operations are non existent,
and callback-based APIs are used instead, which can be called in parallel
for different events as long as the access permissions are guaranteed. This
model scales for both IO and CPU-bounded programs.
We have implemented this model in the Eve language, which includes
a compiler that generates parallel tasks with synchronization on top of
variables, and a work-stealing runtime that uses the epoll interface to
manage the event loop.
We have also evaluated that model in micro-benchmarks in programs
that are either CPU-intensive or IO-intensive with and without shared
data. In CPU-intensive programs, it achieved results very close to mul-
tithreaded approaches. In the share-nothing IO-intensive benchmark it
outperformed all other solutions. In shared-memory IO-intensive bench-
mark it outperformed other solutions with a more or equal value of writes
than read operations.
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1 Introduction

The high-performance of IO applications has become more important in the last
decades as the Internet applications are required to handle a large number of
clients with a high throughput and low latency. More recently, event-loop based
models have become popular for high-performance applications.

However, it is not possible to assert whether event-loop models are better
or worse than shared-memory multithreaded models. Event-loops have become
popular because several applications using that model have shown to have a lower
memory consumption, better performance and better scalability than equivalent
programs written in a threaded model [1] [2]. The event-based model is also
considered simpler than using threads, since threading requires proper synchro-
nization and it is more difficult to debug[3]. A counter-argument against events is
that reasoning about the control flow is difficult and with careful reengineering,
threaded approaches can achieve similar performance values[4].
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The actor model has been a popular approach to unify both models, with
each actor running on its own thread, each with its own event-loop [5]. This
approach allows for an event-loop approach to scale across multiple processor
cores with a composable interface. However, the actor model limits the memory
access to the actor, which has less flexibility that threaded models for some
applications.

The Eve language introduces a new model that supports the event-loop and
task-based parallelism to allow for both IO and CPU bounded programs to
achieve high concurrency. Unlike the actor model, the eve language is shared
memory and any task can access data from any other task. But in order to reduce
the complexity of handling all the synchronization necessary to avoid deadlocks
and to guarantee data consistency, the language makes use of access permissions,
which have to be specified in the program. From these access permissions, the
program is automatically parallelized, and monitors are added when necessary
to guarantee consistency. This works across the event loop, allowing for shared-
memory task-based parallelism inside the event loop.

The main contributions of this paper are: A new model for shared-memory
task parallelism within the event-loop; The definition of a language that supports
that model; The implementation of a compiler for that language and a runtime
library to support the execution; and an evaluation and comparison of that
language against popular languages.

The rest of the paper is organized as follows: Section 2 explains the new pro-
gramming model proposed; Section 3 details the implementation of the compiler
and runtime; Section 5 compares our model to other state of the art approaches;
finally Section 6 concludes the document and presents some future work.

2 Approach

We propose a model that combines the event loop and the shared-memory aspect
of threaded programming. We will focus firstly on the programming model, and
then on the execution aspect.

The three main differences between the programming model of Eve and those
of mainstream object-oriented languages is the usage of tasks, permissions and
event callbacks.

Eve allows programmers to execute methods and blocks of code as parallel
tasks. This is expressed using the @ symbol. Program 1 is a parallel implementa-
tion of the Fibonacci function. Since the a and b assignment statement is prefixed
with the @ symbol, they are executed in parallel. After the @, the programmer
has to write the access permissions required to execute that block of code. As
long as the access permissions are correct, tasks can be introduced in any part
of the code.

Permissions only apply to objects that are shared among different parts of the
code. Local objects do not require access permissions since they are guaranteed
to execute in the same thread without the need for synchronization.
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fib: (n: int) int:
if n < 2:

return n

a, b : int@
finish:

@ [+a, =n]: a = fib(n - 1)
@ [+b, =n]: b = fib(n - 2)

return a + b

Program 1: Parallel computation of the nth Fibonacci number using the finish
block for synchronization. int@ defines a shared object of base type int.

Objects can have three different permissions on a method of code block:
If no special annotation is added, the default permission is Read permission,
which allows function to access a certain object, but an attempt to modify it
will result in a compile-time error. If the programmer wants the shared object
to be modified, then a Full permission is required and the variable should be
prepended with a + sign. Finally, if only the reference is needed, without any
read or write, a Null permission can be annotated by using the - sign. The main
usage for this permission is to bind a reference to the object to the local context.

Using the same syntax as C++ a variable can be captured by copy or by
reference using the = and & prefixes respectively.

Since it is frequent for sub-tasks to require access to the same objects, those
operations must be executed inside a special finish block. When the execution
reaches the finish special block, it releases all shared object, so that they can be
used by the subtasks. This approach allows for a consistent view of the objects.
Inside a finish block tasks can only require a subset of the parent’s permission
set, which prevents deadlocks between parent and child tasks.

Tasks have further restrictions in order to guarantee the corrected of concur-
rent programs: Tasks may not have infinite loops or blocking operations, as this
could lead to live-locks. Instead, eve programs use a event-based non-blocking
asynchronous API to interact with the Operating System.

The event-based callback system is another of the core features in eve. Any
type in the language can enumerate the set of events if can trigger. Events are
named types and they can contain objects of any type. Objects that can emit
events can be used with the on construct to define a event callback. Program 2
shows an implementation of a simple socket-based chat showing the use of the on
keyword to define callbacks and the @ keyword for parallel execution of tasks.
When the socket object receives data, the on client data callback is executed,
for instance. While the buffer reading is done in the current task, the writes to
each client buffer is done in parallel tasks.

The execution model is based on the same task-oriented work-stealing sched-
uler present in Cilk[6] and many other frameworks. This approach has been
proved to support several CPU-bounded operations with a good occupation of
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import io.socket.*
import util.timeout

main: () void:
clients: set<socket@>@

tcp_socket.listen(8080):
connection = [+clients] (c: connection&) bool:

client: socket@ = c()
clients.insert(client)

on client data [clients]:
message : vector<char>@ = client.read_buffer()
@ for (c: socket@ in clients) [message, +c]:

c.write_buffer(message)

on client close [+clients]:
clients.remove(client)

return true

error = [+stderr] (e: error&) bool:
stderr.write("Failed to start server: %s", error)
return true

Program 2: A TCP broadcast server that accepts connections on port 8080.

multiple processors. A fixed number of POSIX threads are created, each with
its own queue. Worker threads process the tasks in their queue and, when the
queue is empty, they steal tasks from other queues.

Whenever a new task is being scheduled, the required permissions are verified
that they are available. If they are not, the task is moved to the end of the queue,
for a later execution. Since this adds an unwanted overhead, tasks should require
as few permissions as possible.

New tasks can also be scheduled by the kernel, when a new kernel event is
generated. These tasks will have to be executed in the right order and they cannot
conflict on the shared objects that they required. In order to execute in the right
order, the first callback should execute completely. If there are some operations
pending because of other IO operations (such as writes), the remaining callbacks
for the first event will only be called when the callback for this new event is
completed.

3 Implementation

The implementation of the Eve language is divided in two main components:
the compiler and the runtime. The compiler follows a traditional approach, with
the code-generator phase emitting C++ code instead of machine code, thus
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being, in fact, a transpiler. Further compilation with GCC is performed to obtain
binary files. The generated code makes heavy use of the Eve runtime to obtain
parallelism and to enforce proper synchronization of data.

Linux Kernel

socket timer proc

epoll() API

Core

...

epoll

EVE
Libraries

io util event

Fig. 1. Architecture of the
Eve runtime, and its connec-
tion with the Linux kernel us-
ing the epoll interface.

The Eve runtime architecture (in Figure 1) has
a task management core, which is responsible for
task handling. This includes creating and manag-
ing the worker POSIX threads, the management
of tasks, load balancing of tasks using a work-
stealing approach and also to guarantee proper
access to shared objects. Additionally, the core of
the runtime is also responsible for wrapping the
epoll system calls, enabling the transition from
kernel callbacks to events in Eve. The Libraries
package exposes common system tasks, such as
socket operations, using event handling for call-
back registration.

The work-stealing approach was heavily based
on the THE algorithm[7] from Cilk[6], with the
suspend-steal method[8] for avoiding overheads
of double stealing. Since the runtime integrates
tightly with epool, workers call epoll wait() in-
stead of sleeping when it has no available tasks
for running.

While events in Eve are instances of any class,
event emitters have to extend the emitter<T>
class, indicating that it can emit events of type T.
Each instance of the class stores callbacks for this event on this object. This al-
lows for a distributed callback table, effectively avoiding unnecessary contention
with global table locks.

4 Evaluation

In this section we compare the performance of the Eve platform with existing
popular frameworks for high-performance IO and parallel programming. The
evaluation focused on two programs: Echo Server, representative of IO-intensive
applications; and Atomic Counter, representative of concurrent programs with
synchronization.

In terms of Lines of Code, one heuristic frequently used to compare complex-
ity of programming expression, programs written in Eve are smaller than other
low-level frameworks such as libev, TBB or Fork/Join. It also performs fairly
well against higher-level frameworks such as gevent and REV despite achieving
much better performance.

Each execution was repeated 30 times from which the average values and
respective standard deviations are shown. Additionally, a first execution was
performed before the 30 repetitions to avoid interference of the JIT compilation
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Ingrid Astrid

Motherboard Dell Inc. 0CRH6C SuperMicro X9DAi

Processor 2x Intel(R) Xeon(R) X5660
2.80GHz, 24 hardware threads

2x Intel(R) Xeon(R) E5-2650
2.00GHz, 32 hardware threads

Memory 24 GB DDR3 1333 MHz 32 GB DDR3 1600 MHz

Connectivity Broadcom Corporation NetXtreme
BCM5761 Gigabit Ethernet PCIe

Intel Corporation I350 Gigabit
Network Connection

Table 1. Hardware specification of benchmark hosts.

and caching mechanisms. The information of the two machines used is presented
in Table 1. Single host benchmarks were executed on Astrid. For communication
benchmarks, Astrid was used for the server while Ingrid was used for the client.
The two hosts were directly connected using a ethernet cable, to avoid external
interference.

The following versions were used: GCC 4.7.2; Erlang R15B01 (-S16); Go
1.0.2; GHC 7.4.2; node.js 0.6.19; Ruby 1.9.3p194; Python 2.7.3; Java OpenJDK
23.7-b01; libev 1.4-2; Intel TBB 4.0+r233-1; gevent 0.13.7; REV 0.3.2.

4.1 Echo Server

Facilitating the developing high-performance web applications is one of the goals
of Eve. This benchmark compares Eve to other languages and frameworks used
for this purpose. The test consists of creating a server that accepts TCP con-
nections and re-emits the received data until the socket is closed. Although very
simple, this test enables the comparison of key features of web servers. The
first measured attribute is the request throughput. This indicates the number
of requests per second the server can handle. The second measured attribute is
latency. Low latency times are critical for soft real-time applications. Addition-
ally, even for other applications, latency higher than 100ms is noticeable and has
been linked to lower user dissatisfaction, higher bounce rates and overall lower
revenue [9].

For this benchmark, the following solutions were tested: eve, erlang, haskell,
go and Node.js are implementations of an echo server using the respective
languages, rev is an implementation using the Ruby Event Machine platform,
gevent and libev make use of the homonymous libraries (for python and C++
respectively), and finally cluster is a Node.js application that uses the cluster
library for parallelism. The source code for each application was selected from
an existing benchmark, publicly available at https://github.com/methane/
echoserver. However, this benchmark suite does contain the cluster implemen-
tation. Additionally, the client software used the thread-per-connection model
which delivered low performance. A new implementation based on this code was
created using the Eve runtime. For each test, 150 concurrent connections were
created, each sending 10000 sixteen byte messages.
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Fig. 2. Request throughput of the echo servers on the left, and reply latency on the
right.

Figure 2 indicate the performance obtained using these solutions. The gevent
implementation is the slowest of all alternatives. This is most likely because the
entire framework is executed by the python interpreter which is inherently slower
than a native implementation. This is also true for Node.js and rev, although
not to the same extent (the event loop is implemented in native code). Addi-
tionally, gevent uses the libevent library while Node.js uses libuvand rev uses a
custom implementation. According to [10], libev outperforms libevent/libevent2
which also reinforces the poor performance of gevent. The epoll implemen-
tation makes direct access to the epoll() system call using C++ while libev
uses the wrapper library around epoll() on UNIX systems. As expected, their
performance is much better than the already mentioned solutions. In fact, libev
alone is 3.88 times faster than Node.js. However, in our case, the epoll imple-
mentation is slightly worse than libev. This is because the benchmarked epoll
code is poorly optimized, making use of unnecessary memory allocations that
are not present in libev.

All the remaining solutions make use of multi-threaded runtime environments
and were expected to outperform the single-threaded implementations. This is
not true for haskell and go. Regarding the first case, the haskell runtime has
known IO scalability issues. According to [11] this will be fixed in GHC version
7.8.1, which has not yet been released. The reason behind go’s poor performance
is more obscure since documentation of its runtime architecture is not available.
Both the erlang runtime and cluster implementation show good performance.
Nonetheless, the eve framework surpasses both with a 35.5% increase in through-
put on localhost, and a more modest 3% increase compared to erlang and 7%
increase compared to cluster on different hosts. One interpretation of these val-
ues is that the Eve runtime is more optimized and/or requires less operations.
In fact, the erlang language was designed for real-time systems and each actor
is scheduled using a preemptive fair algorithm. Even if no preemption occurs,
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this algorithm is more expensive than the execution of eve tasks. Regardless,
even though the Eve runtime provides less guarantees on the response time, the
obtained latency and jitter are comparable if not better than erlang’s.

Considering the libev implementation as a baseline for a single-threaded
runtime, one would expect the performance of parallel implementations to achieve
better speedups. Two reasons were found that can explain this fact. The first
is the very nature of the problem. Unlike CPU intensive tests, the echo server
test is IO intensive. In particular, read/write() operations require large mem-
ory bandwidth, which unfortunately does not scale with added worker threads.
To mitigate this bottleneck zero-copy operations could be implemented [12]. The
second has to deal with normal parallel slowdown causes. Problems such as cache
misses aggravate the memory bandwidth bottleneck and are more common in
parallel architectures due to inter-process invalidation [13]. Additionally, syn-
chronization is required to maintain a coherent application state. This synchro-
nization is employed by the Eve runtime (using spinlocks, monitors and atomic
operations), but also by the Linux kernel since spinlocks and mutexes are used
in epoll functions to prevent race-conditions. Even in the absence of concurrent
accesses, these primitives incur in additional overhead that is not present in sin-
gle threaded architectures. Additionally, this overhead may increase when used
simultaneously by more threads.

4.2 Atomic Counter
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Fig. 3. Throughput of the atomic counter servers subject to the percentage of read
operations.

The echo test described in the previous section exemplifies an embarrassingly
parallel problem. There is no shared state between clients, which allows them
to be handled separately without synchronization. The atomic counter test is a
modification to this example, where shared state is maintained. In particular, a
single variable counter is accessed by all clients. Two types of operations are
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permitted: read which allows each client to retrieve the value stored in counter
and increment which atomically reads and increases stored value by one and
returns the new value. These operations are transmitted through the network
using a single byte 00 and 01 respectively. Because both operations require a
response packet, this application has similar IO patterns to the echo server,
allowing the previous results to estimate an upper limit on performance.

Ideally, read operations can execute in parallel but each increment opera-
tion must be executed in mutual exclusion. The Eve implementation makes use
of the language’s access permissions to achieve this semantics. Erlang however,
does not have this feature. For this reason, the counter is maintained by a single
actor, using message passing for synchronization. This solution sequentializes all
accesses, including read operations. The remaining actions are still executed in
parallel (e.g.: IO, parsing). With Node.js cluster library, each worker executes
in a new process. For this reason, shared memory solutions are not possible. For
testing purposes we decided to approach this limitation with a commonly used
alternative: in-memory databases. In particular we selected mongodb which su-
ports the required atomic operations. Figure 3 shows the throughput obtained
for each server. The erlang implementation suffers from performance loss, av-
eraging at 74%. The large standard deviation observed for this test is very high,
ranging from 20.99% to 27.04%.

The proportion of read operations are key to the performance of the Eve
runtime. On one end, with 100% read operations the counter value is constant
and complete parallelization is possible. The performance obtained for this case
is around 90% of the expected value, indicating that the overhead of additional
synchronization is low. For this ratio, Eve outperforms the erlang by 25%. On
the other end, with 0% read operations, each action must wait for its predecessor
to relinquish access to the shared variable. In this case, the performance drops
to 43.5%, being slower than erlang by 35%. The other implementations do not
suffer significantly from this ratio: erlang’s implementation sequentializes every
operation and mongodb uses atomic operations instead.

5 Related Work

In this section we will focus on comparing Eve with other approaches that com-
bine the event oriented aspect with shared memory multithreading. As previously
mentioned, the Actor implementation in Scala[5]. Scala actors have two possi-
ble behaviors for processing an incoming message, one with threading semantics
and other with the same semantics of event-based programming. The second ap-
proach is based on continuations and allows for parts of the message processing
to be scheduled for a later time, without having to suspend the thread. While
this approach has good performance results on the actor model, Eve allows for
more flexible and complex programs, given that memory is fully shared, and not
partitioned by actor.

Capriccio[14] has a threading implementation that takes advantage of asyn-
chronous IO. Capriccio is implemented using user-level threads on top of corou-
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tines. In terms of performance, Capriccio is always slower than epoll, something
that does not occur in our micro-benchmarks. Eve is a full programming lan-
guage, while Capriccio is a library that implements the POSIX threading API,
which allows for usage in existing applications without much work. On the other
hand, the language features of Eve allow for more information regarding shared
objects, automatically synchronizing accesses, something not possible in Capric-
cio.

Events and Threads have also been combined in GHC[15]. The main differ-
ence to Capriccio is that there was an explicit asynchronous IO API with event
handlers, like in Eve. However, the threading API, including synchronization
using mutexes, is explicit unlike in Eve. Furthermore, the GHC makes use of
Software Transactional Memory, while Eve does not. Another work on GHC[16]
has also improved the performance of asynchronous IO on multithreaded en-
vironments by improving the data structures on which the event handlers are
stored, but in multicore environments, each event source is attached to a single
thread.

Libasync-smp[17] allows event handlers to be executed in parallel, as long as
they do not share any mutable state. This is done by assigning a tag (”color”)
to events according to the shared state they use in their computations. Thus,
events of different colors can be executed in parallel without any extra synchro-
nization. This approach is more similar to Eve, but less expressive as Eve requires
information regarding the variables and automatically detects the events that
can execute in parallel. In Libasync-smp programmers must express that using
colors, and fine-grained synchronization using shared variables is not supported.
Instead all events that shared memory, even if only in a small part of the handler,
execute serially.

Mely[18] uses the same API as Libasync-smp, but uses workstealing to lower
scheduling overheads to improve performance with short-running events. The
workers steal colors instead of tasks, in order to maintain the serial execution
inside each color. Although this is close to the implementation of Eve, the same
drawbacks of using colored events instead of annotating variables applies to Mely.

Finally, Eve can be compared to Æminium[19] in the sense that Æminium also
uses access permissions on variables to automatically manage synchronization
between different running tasks. While Æminium automatically parallelizes the
whole code based on the access permissions, Eve uses programmer annotations
to mark parallelization points in the code. However Æminium is only concerned
with CPU-bounded parallelism, without any event-oriented API.

Node.Scala[20] also shares a similar approach to Eve. Programmers write
Scala applications using a single-threaded event-loop approach, with the same
API as in Node.js. Event handlers can then be executed in parallel whether or
not they are marked as exclusive or not. Compared to Node.Scala, Eve can par-
allelize more than just event callbacks, featuring a full work-stealing scheduler,
more suitable for CPU-intensive tasks, while Node.Scala is optimized only for
IO processing.
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6 Conclusions and Future Work

Event-driven architectures have been proved to work well for network-based
applications, but it has been hard to integrate asynchronous IO APIs in shared-
memory multithreaded programming. This difficulty is two-folded. The expres-
siveness of using multithreaded programming is not directly compatible with the
traditional callback-based single-threaded event-loop approach. Performance is
other field in which combining these two different programming styles is not
trivial, as event-loops are mostly bound to a single thread and require extra
synchronization, which adds an overhead.

We propose Eve as a parallel event-oriented language, in which programmers
use a event-oriented programming style and special syntax for creating new par-
allel tasks, and for access permissions on variables. This small extra annotations
on the code allow for parallel execution of different parts of the code, as well as
a guarantee of a safe parallel event callbacks execution.

Our benchmarks have shown Eve to have a similar performance as Intel
TBB and Java ForkJoin frameworks in CPU-bounded programs. Additional,
Eve outperformed other languages in IO-bounded programs by making a more
efficient use of threads in event-based programming. A Localhost share-nothing
application had a 35.5% improvement over the second best solution, and server-
only execution had a 7% increase. Another IO application with some 50% of the
requests requiring synchronization was 23% faster than the next best solution.

For future work, it would be important to improve the performance of epoll
in a multithread environment. The epoll set is currently shared by all workers,
causing synchronization to happen at the kernel level. It would be interesting
to have a epoll set per worker, in order to minimize contention, with an extra
global set for load-balancing.
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