
Dependency-Based Automatic Parallelization of
Java Applications

João Rafael, Ivo Correia, Alcides Fonseca, and Bruno Cabral

University of Coimbra, Portugal
{jprafael,icorreia}@student.dei.uc.pt, {amaf,bcabral}@dei.uc.pt

Abstract. There are billions of lines of sequential code inside nowadays
software which do not benefit from the parallelism available in modern
multicore architectures. Transforming legacy sequential code into a par-
allel version of the same programs is a complex and cumbersome task.
Trying to perform such transformation automatically and without the
intervention of a developer has been a striking research objective for a
long time. This work proposes an elegant way of achieving such a goal.
By targeting a task-based runtime which manages execution using a task
dependency graph, we developed a translator for sequential JAVA code
which generates a highly parallel version of the same program. The trans-
lation process interprets the AST nodes for signatures such as read-write
access, execution-flow modifications, among others and generates a set
of dependencies between executable tasks. This process has been applied
to well known problems, such as the recursive Fibonacci and FFT algo-
rithms, resulting in versions capable of maximizing resource usage. For
the case of two CPU bounded applications we were able to obtain 10.97x
and 9.0x speedup on a 12 core machine.

Keywords: Automatic programming, automatic parallelization, task-
based runtime, symbolic analysis, recursive procedures

1 Introduction

Developing software capable of extracting the most out of a multicore machine
usually requires the usage of threads or other language provided constructs for
introducing parallelism [1, 2]. This process is often cumbersome and error prone,
often leading to the occurrence of problems such as deadlocks and race condi-
tions. Furthermore, as the code base increases it becomes increasingly harder to
detect interferences between executing threads. Thus, one can understand why
sequential legacy applications are still the most common kind and, in some cases,
preferred as they provide a more reliable execution.

Automatic parallelization of existing software has been a prominent research
subject [3]. Most available research focuses on the analysis and transformation of
loops as the main source of parallelism [4, 5]. Other models have also been stud-
ied, such as the parallelization of recursive methods [6], and of sub-expressions
in functional languages.



2

Our contribution is both a framework and a tool for performing the auto-
matic parallelization of sequential JAVA code. Our solution extracts instruction
signatures (read from memory, write to memory, control flow, etc.) from the
application’s AST and infers data dependencies between instructions. Using this
information we create a set of tasks containing the same operations as the origi-
nal version. The execution of these tasks is conducted by the Æminium Runtime
which schedules the workload to all available cores using a work-stealing al-
gorithm [7]. This approach supports a different number of processor cores by
adjusting the number of worker threads and generated tasks, as long as there is
enough latent parallelism in the program. With a simple runtime optimization,
our experiments show a 9.0 speedup on a 12-core machine for the naive recursive
Fibonacci implementation.

The remainder of this paper is organized as follows: in Section 2 we discuss the
related work. Section 3 specifies the methodology used by the Æminium compiler
throughout the entire process, from signature analysis to code generation. In
Section 4 we conduct benchmarking tests and analyze the results. Finally, in
Section 5 we present a summary of this paper’s contributions and discuss future
work.

2 Related Work

Extracting performance from a multicore processor requires the development of
tailored, concurrent applications. A concurrent application, is composed by a
collection of execution paths that may run in parallel. The definition of such
paths can be done explicitly by the programmer with the aid of language sup-
ported constructs and libraries. An example of this approach is Cilk [8]. In the
Cilk language, the programmer can introduce a division on the current execu-
tion path through the use of the spawn keyword. The opposite is achieved with
the sync statement. When this statement is reached, the processor is forced to
wait for all previously spawned tasks. A similar approach is used by OpenMP
[9] where the programmer annotates a C/C++ program using pre-compiler di-
rectives to identify code apt for parallelism. Parallelism can also be hidden from
the programmer. This is the case of paralleled libraries such as ArBB [8]. These
libraries provide a less bug-prone design by offering a black-box implementation,
where the programmer doesn’t need to ponder concurrency issues but, still has
no control over the amount of threads spawned for each library invocation.

For existing sequential program, these solutions require at least a partial
modification of the application’s source code. This may impose high rework
costs, specially in the case of large applications, and may inadvertently result in
the introduction of new bugs.

Automatic parallelization is an optimization technique commonly performed
by compilers which target multicore architectures. By translating the original
single threaded source code into a multi-threaded version of the same program,
these compilers optimize resource usage and achieve lower execution times. Like
all compiler optimizations, the semantics of the original source code must be



3

preserved. As such, compilers must ensure the correct execution order between
operations on multiple threads, taking into account their precedence in the orig-
inal program.

One of the primary targets for automatic parallelization are loops. Numeri-
cal and scientific applications often contain loops consisting mostly of arithmetic
operations. These loops provide a good source of parallelism due to the lack of
complex control structures and can be parallelized with techniques such as doall,
doacross and dopipe [10]. When dependencies between iterations are found the
compiler may attempt to remove them by applying transformations such as vari-
able privatization, loop distribution, skewing and reversal. These modifications
are extensively described in [4].

Many algorithms however, are best implemented using a recursive definition
as this is often the nature of the problem itself. The parallel resolution of each
of the sub-problems has also been analyzed. In [11] this method is applied to
the functional language LISP by the introduction of the letpar construct. This
model can be used with success because the semantics of functional programming
imply that there is no interference between sub-expressions. For non-functional
languages, a technique known as thread-level speculation executes the operations
optimistically assuming no interference. If such speculation is wrong, specialized
hardware is used to rollback the faulty threads into a previous checkpoint [12].
In [13] recursion-based parallelism is applied to the JAVA language. In order to
avoid interference between sub-expressions, a static analysis of read and write
signatures is performed and the resulting data stored. At runtime, this informa-
tion is used to check which methods can be executed in parallel by replacing the
parameters with the actual variables in the stored method signatures. However,
this runtime verification inadvertently introduces overhead. Our approach, on
the other hand, does not resort to runtime support for dealing with this prob-
lem. By adding two new signatures, merge and control, we are able to solve
this problem without a runtime penalty.

3 Methodology

.java

AST Creation
Signature
Extraction

Dependency
Processing

Optimization Code
Generation

JVM

Æminium
runtime

tasks

Java Compiler

Fig. 1: Parallelization process used in the Æminium framework. Filled stages
identify the source-to-source compilation described in this paper.



4

In order to extract parallelism from sequential programs, our framework de-
composes a program into tasks to be scheduled at runtime using a work-stealing
algorithm [7]. The entire process is depicted in figure 1. The first stage of the
compilation process is the generation of the application’s AST. This task is ac-
complished using Eclipse’s JDT Core component which provides an API to read,
manipulate and rewrite JAVA code. Each AST node is augmented with semantic
information in the form of signatures. Signatures are a low-level description of
what an instruction does, such as a read from a variable or a jump in the flow
of the application. By transversing the AST in the same order as it would be
executed, data dependencies and control dependencies are extracted and stored.
Data dependencies identify mandatory precedence of operations due to concur-
rent access of the same variables whereas control dependencies indicate that the
first operation designates whether or not the second executes. After this analysis,
an optional phase of optimization takes place where redundant dependencies are
removed and nodes are assigned into tasks. This optimization is repeated until
no improvement is observed or a predefined threshold is achieved. Finally, this
information is used to produce JAVA code for each task respecting the data and
control dependencies in the program.

3.1 Signature Extraction

The analysis of the source program starts with the extraction of signatures
for each node in the AST. Formally, signatures can be defined as predicates
S : A × D+ → {true, false}, where A is a set of AST nodes and D+ is a set
of ordered datagroup tuples. A datagroup is a hierarchical abstraction of mem-
ory sections whose purpose is to facilitate static analysis of the application’s
memory (i.e.: function scopes, variables). A single datagroup, φ ∈ D, encom-
passes the entire application. This datagroup is broken down by classes, meth-
ods, fields, scopes, statements, expressions and variables forming sub-datagroups
τ := (φ, ϕ0, · · · , ϕn). As an example, a local variable v inside a method m of
a class c is identified by τvar := (φ, ϕc, ϕm, ϕvar). An additional datagroup
ψ ∈ D describes all memory sections unknown to the code submitted for analysis
(i.e.: external libraries or native calls). Furthermore, two special datagroups τthis
and τret are used as placeholders and are, in later stages, replaced by the actual
datagroups that represent the object identified by the this keyword and the
object returned by the containing method. A current limitation of the compiler,
which we are currently working on, is the lack of array subdivision. As such, an
entire array and each of its inner values are only modeled as a single datagroup.

Signatures are grouped into five categories. The read(α, τ) predicate indi-
cates that operations in the sub-tree with root α can read memory belonging to
datagroup τ . Likewise, write(α, τ) expresses that operations in the same sub-
tree can write to datagroup τ . A more complex signature is merge(α, τa, τb).
This signature implies that after operations in α, τa is accessible through τb. In
other words, τb contains a reference to τa (i.e.: τb is an alias for τa), and an op-
eration to one of these datagroups might access or modify the other. The fourth
predicate, control(α, τ), denotes the possibility of operations in α to alter the



5

execution flow of other operations inside the scope marked by the datagroup
τ . The last predicate callm(α, τo, τr, τp0

, · · · , τpn
) is used as a placeholder for

method calls; τo is the datagroup of the object that owns the method, τr is the
datagroup where the return value is saved and τpx is the datagroup for each
of the invocation arguments. In program 1 the reader can observe an example
of signatures extracted by the compiler. Also note that a merge(αret1 , τn, τret)
signature is detected as well. However, since n and ret are both integers this
signature can be omitted.

int f(int n) {

if (n < 2) { // read(αcond, τn)
return n; // write(αret1 , τret), control(αret1 , τf )

}

return f(n - 1) + f(n - 2); // callf (αinv1 ,∅, τinv1 , τp0)
}

Program 1: The Fibonacci function with a excerpt of the extracted signatures
indicated in comments. inv stands for function invocation, ret for return value,
f for the current function f and p0 is the first argument of the invocation.

Signature extraction is executed as a 2-pass mechanism. In the first pass,
signatures for each node are collected and stored. In the second pass, the transi-
tive closure is computed by iteratively adding each sub-node signature set with
the one from its parent. In this step, callm signatures are replaced with the full
signature set of the corresponding method. The set is trimmed down by ignor-
ing irrelevant signatures such as modifications to local variables, and modified
so that the signatures have meaning in the new context: (1) formal parameter
datagroups are replaced by the argument datagroups τpx

(2) the τthis datagroup
is replaced by τo and (3) the τret datagroup is replaced by τr. During this same
step, merge signatures are also removed in a pessimistic manner by adding all
the read and write signatures as required to preserve the same semantics.

Regarding external functions, the compiler assumes they read and write to
the ψ datagroup (ensuring sequential execution). For a more realistic (and better
performing) analysis, the programmer can explicitly indicate the signature set
for these functions in a configuration file (e.g.: to indicate that Math.cos(x)

only reads from its first parameter τp0 and writes to τret).

3.2 Dependency processing

In a sequential program, operation ordering is used to ensure the desired behav-
ior. Line ordering, operator precedence, and language specific constructs (i.e.:
conditional branches, loops, etc.) define an execution order σt on the set of
AST nodes. Our compiler starts by assigning each executable node to a separate
æminium task. As such, the same total order can be applied to the set of tasks.
Dependencies between tasks are used to define a partial order σp, obtained by an
arbitrary relaxation of σt. The operator α ≺x β is used to indicate precedence
of α over β on the σx order. Therefor, when σx is the partial order of tasks σp,



6

if • return • 

• + •

f(•) f(•)

f(•)

return • 

n 

• > • 

2 2 2 n 
• > • 

2 2 2 n 

• > • 

2 2 2 n 

Fig. 2: Tasks generated for program 1 without optimization. Dotted arrows iden-
tify child scheduling. Solid arrows are used to represent strong dependencies
while dashed arrows indicate weak dependencies. Filled tasks is the function
root task

then α ≺p β indicates the existence of a dependency from task β to task α. For
the dependency set to be correct, any possible scheduling that satisfies σp has
to have the exact same semantics has the one obtained with σt. The following
rules are used to ensure this property:

1. A task that may read from a datagroup must wait for the termination of the
last task that writes to it;

α ≺t β, ∀α, β ∈ A write(α, τ), read(β, τ)

∴ α ≺p β

2. A task that may write to a datagroup must wait for the conclusion of all
tasks that read from it since the last write;

α ≺t β ≺t γ, ∀α, β, γ ∈ A write(α, τ), read(β, τ), write(γ, τ)

∴ β ≺p γ

If two tasks may write to the same datagroup and there is no intermediary
task that reads from it, then the latter task must wait for the former to
complete; 1

α ≺t β, ∀α, β ∈ A write(α, τ), write(β, τ)

∴ α ≺p β

3. After a datagroup merge, the three previous restrictions must be ensured
across all datagroups;

α ≺t β ≺t γ, ∀α, β, γ ∈ A
write(α, τa), merge(β, τa, τb), read(γ, τb)

∴ α ≺p γ

1 This rule applies when operations require both read and write access (such as the
increment operator), or when tasks span more than a single operation.



7

α ≺t β ≺t γ, ∀α, β, γ ∈ A
read(α, τa), merge(β, τa, τb), write(γ, τb)

∴ α ≺p γ

α ≺t β ≺t γ, ∀α, β, γ ∈ A
write(α, τa), merge(β, τa, τb), write(γ, τb)

∴ α ≺p γ

4. Control signatures enforce dependencies from all the tasks of the scope whose
execution path can be altered.

α ≺t β, ∀α ∈ A, β ∈ τscope control(α, τscope),

∴ α ≺p β

The set of dependencies is generated by transversing the AST tree using
order σt and processing the signatures obtained in Section 3.1. A lookup table
is used to store the set of tasks that access each datagroup. Furthermore, the
information regarding which datagroups are merged is also stored. For each task,
all of its signatures are parsed and dependencies are created to ensure properties
1 to 4. These data structures are updated dynamically to reflect the changes
introduced. If a conditional jump is encountered, duplicates of the structures
are created and each branch is analyzed independently. When the execution
paths converge, both data structures are merged: 1) disparities between tasks
are identified and replaced with the task that encloses the divergent paths. 2)
datagroup merge sets are created by the pair-wise reunion of sets from both
branches.

In Figure 2 we can observe the set of tasks generated from the AST for
Program 1. Dotted arrows identify the optional child scheduling that occurs
when the parent task is executing. Dashed arrows indicate a weak dependency
relationship meaning the source task must wait for completion of the target task.
Solid arrows denote a strong dependency, one where in addition to the property
of weak dependency also signifies that the source task must create and schedule
the target task before its execution.

3.3 Optimization

Optimization is an optional step present in most compilers. The Æminium java to
java compiler, in its current shape, is capable of performing minor modifications
to the generated code in order to minimize runtime overhead. This overhead is
closely related to task granularity and the number of dependencies generated.
As such, the optimization step focuses on these two properties. Nevertheless,
on the post-compilation of the generated code, all the expected optimizations
performed by the native JAVA compiler still occur.



8

This step solves the optimization problem using an iterative approach by
finding small patterns that can be locally improved. The transformations de-
scribed in the following sections are applied until no pattern is matched or a
maximum number of optimizations is reached.

Redundant Dependency Removal The algorithm for identifying task de-
pendencies performs an exhaustive identification of all the data and control
dependencies between tasks. And, although these dependencies are fundamental
for guaranteeing the correct execution of the parallel program, they are often
redundant. The omission of such dependencies from the final code will not help
to increase parallelism but will lower the runtime overhead. We identify two
patterns of redundancy. The first instance follows directly from the transitivity
relation of dependencies: given three tasks α, β and γ, if α ≺p β and β ≺p γ then
α ≺p γ. If the former is present it can be omitted from the dependencies set.
The second instance takes into account the definition of child tasks. If α ≺p β,
α ≺p γ and, simultaneously, β is a child task of γ, then the former dependency
can be omitted. This is possible because the runtime only moves a task to the
COMPLETED state when it and all it’s children tasks have finished.

Task Aggregation The first pass is to create one task per each node of the AST.
However, the execution of a parallel program with one task for each AST node is
several times slower than the sequential program, which makes task aggregation
mandatory. By coarsening the tasks, we are able to lower the scheduling overhead
and the memory usage. This optimization step attempts to reduce the number
of generated tasks by merging the code of several tasks together in one task.
The aggregate(α, β) operation has the following semantics: given two tasks
α, β ∈ A, such that α is a strong dependency of β, we merge α into β by
transferring all the dependencies of α into β, and placing the instructions of α
before the instructions of β or a place of equal execution semantics (such as the
right-hand side of an assignment expression).

Given that the code inside each task executes sequentially, by over-aggregating
tasks the parallelism of the program is reduced. As such, we identify two types of
task aggregation. Soft aggregation reduces tasks without hindering parallelism:
if task β depends on α, and there is no other task γ that also depends on α,
then α can be merged into β without loss of parallelism.

soft , α ≺p β ∧ @α ≺p γ ⇒ aggregate(α, β) α, β, γ ∈ A

Hard aggregation on the other hand attempts to merge tasks even in other scenar-
ios, such as lightweight arithmetic operations. Currently the optimizer aggregates
all expressions with the exception of method invocations (including constructor
calls). Also, statements where execution must be sequential (e.g.: the then block
of an if statement) and their aggregation does not violate dependency con-
straints are also aggregated. Optionally full sequentialization of cycles can also
take place. Using this feature disables parallelization of loops, but generates a
lower runtime memory footprint.



9

3.4 Code generation

The Æminium runtime executes and handles dependencies between Task’s. These
objects contain information about their state, and their dependencies. The ac-
tual code executed by each task exists in a execute() method of a class that
implements the Body interface. This factorization allows for reuse of the same
body object for multiple tasks. Bodies are constructed with a single parameter:
a reference to the parent body if it exists and null otherwise. This allows ac-
cess to fields of upper tasks where local variables and method parameters will
be stored. Inside the constructor of the body, its task is created by calling the
Aeminium.createTask() function which receives the body as it first parameter.
The second parameter defines a hints object used by the runtime to optimize
scheduling. This functionality is not used by the compiler and the default value
of NO HINTS is used. Strong dependencies of the task are instantiated in the con-
structor of the task body. This operation must take place after the creation of
the task object (since it must be available as the parent task when scheduling
those dependencies), and before the schedule of the task itself (since those tasks
will be used inside the task dependency list).

Methods In real-life applications, the same method is invoked many times in
different places. This makes the already mentioned approach of accessing parent’s
fields unsatisfactory for translating method tasks as it would require replicating
the same method based on it where it is invoked. Instead, in addition to the
parent object, these tasks receive the invocation arguments as arguments to the
constructor of the task body. However, this requires those values to be known
when the task is created. Therefore, its instantiation must take place inside
the execute() method of corresponding method invocation expressions, where
the tasks that compute each argument have already completed. Nonetheless,
method invocation expressions, as well as all other expressions, must save their
value in a special field ret before they reach the COMPLETED state. In order to
do so, the return task of the invoked method places the value in ret upon its
own execution. Furthermore, as a consequence of having all values computed
prior to the construction of a method task, it is possible to conduct a runtime
optimization. By checking if enough parallelism is already achieved – by checking
if enough tasks are queued and all threads are currently working – it is possible
to invoke the sequential (original) method. This optimization allows us to almost
entirely remove the overhead of the runtime once enough parallelism has been
reached.

Loops Loop statements such as while, for, and do...while allow for multiple
iterations to execute the same lines of code. However, the actual instructions
may vary from iteration to iteration. Furthermore, the instructions on the first
iteration must wait for instructions prior to the loop (e.g. a variable declaration)
while subsequent instructions only need to wait for one on the previous iteration
(last modification). To allow this duality of dependencies two trees of tasks are



10

created for each loop. The former contains dependencies belonging to the first
iteration while the latter includes dependencies associated with the following
iterations. The parent task of this second tree contains a previous field that
points to the preceding instance, and inside the execute() method creates an-
other instance of itself. Sub-tasks make use of this field to reference tasks of the
previous iteration for their dependency list.

4 Evaluation

To validate our approach we compiled three sample applications using the Æminium
compiler and executed the resulting tasks in a machine with the following spec-
ification: 2 Intel R©Xeon R©Processor X5660 (6 cores each, with hyper-threading,
forming a total of 24 threads) and 24 GB of RAM. The applications include
the recursive implementation of the Fibonnaci program already mentioned in
Section 3, an application to numerically approximate the integral of a func-
tion given an interval, and finally a simple implementation of the Fast Fourier
Transform (FFT) on an array of 222 random complex numbers. The FFT ap-
plication requires the generation of an array of Complex objects. This step is
not considered for the benchmark time as it requires sequential invocations to
Random.nextDouble(). Also, in order to minimize runtime overhead of cycle
scheduling the option to sequentialize loops (as described in 3.3) was used. Each
experiment was repeated 30 times. The results are depicted in Table 1 and Figure
3.

Fibonacci Integrate FFT0

10

20

30

40

50

60

70

80

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

Original
Parallelized

Fig. 3: Execution time before and
after parallelization.

] 1 2 3 4 5 6 7 8 9 10 11 120

2

4

6

8

10

12

Sp
ee

du
p

Fibonacci
Integrate
FFT

Fig. 4: Scalability benchmark for
the three tests.

Application Sequential Parallel Speedup
Fibonacci 55.56 (8.90) s 6.17 (v0.59) s 09.00
Integrate 16.46 (0.56) s 1.50 (0.19) s 10.97

FFT 07.80 (0.40) s 5.33 (0.40) s 01.46

Table 1: Measured average execution time (standard deviations) and speedups
for the three benchmarks.



11

The first benchmark computes the 50th Fibonacci number. The sequential
execution of this problem took on average 55.56 seconds to complete, while the
parallel version only took 6.17 seconds. Although it consists of a 9.00x increase
in performance (p = 0.973), it is well bellow the possible 12x (linear) speedup.
The scalability test shown in Figure 4 indicates the cores/speedup relation. The
dashed line is the desired linear speedup. The dotted lines identify the the least-
squares method fitted to the Amdahl’s law [14] with the exception of the third
benchmark where an adjustment for linear ovearhead h was added.

The second benchmark computes the integral of the function f(x) = x3 + x
in the interval [−2101.0, 200.0] up to 10−14 precision. The behaviour of this
test is similar to the previous, but with a slightly higher p = 0.978. The FFT
benchmark shows the lowest speedup among the three executed benchmarks
(pamdahl = 0.311 or p = 0.972, h = 0.746,). It is also the one with highest mem-
ory usage. This suggests that memory bandwidth is the primary bottleneck of
this particular implementation. In fact, this is the case for näıve FFT imple-
mentations as indicated in [15]. As a consequence, for larger arrays the speedup
decreases as cache hits become less and less frequent due to false sharing.

5 Conclusion and Future Work

By targeting a task-based runtime, our framework is capable of automatically
parallelizing a subset of existing java code. This solution provides respectable
performance gains without human intervention. The compiler is able to detect
parallelism available in loops, recursive method calls, statements and even ex-
pressions. The benchmarks executed show near-linear speedup for a selected set
of CPU bounded applications.

Future work for this project includes testing the approach on a large suite
of Java programs. In order to do that, the full set of Java instructions needs to
be supported. This includes exception handling, reflection instructions (such as
instanceof), class inheritance, interfaces, etc. The results on a large codebase
would allows for a thorough analysis of the performance and optimizations re-
quired. One of the potential optimizations if the usage of a cost analysis approach
to efficiently conduct hard aggregation of small tasks. This analysis should also
take into account task reordering to further merge task chains. The current im-
plementation of loop tasks introduces too much overhead to be of practical use,
so the creation of tasks that work in blocks or strides should provide a better
performing model.

Acknowledgments
This work would not have been possible without the contributions to the Aem-
inium language and runtime from Sven Stork, Paulo Marques and Jonathan
Aldrich. This work was partially supported by the Portuguese Research Agency
FCT, through CISUC (R&D Unit 326/97), the CMU|Portugal program (R&D
Project Aeminium CMU-PT/SE/0038/2008), the iCIS project (CENTRO-07-
ST24-FEDER-002003), co-financed by QREN, in the scope of the Mais Centro



12

Program and European Unions FEDER and by the COST framework, under
Actions IC0804 and IC0906. The third author was also supported by the Por-
tuguese National Foundation for Science and Technology (FCT) through a Doc-
toral Grant (SFRH/BD/84448/2012).

References

1. K Arnold, J Gosling, D.H.: The Java programming language. Addison Wesley
Professional (2005)

2. Biema, M.v.: A survey of parallel programming constructs. In: Columbia University
Computer Science Technical Reports. Department of Computer Science, Columbia
University (1999)

3. Banerjee, U., Eigenmann, R., Nicolau, A., Padua, D.: Automatic program paral-
lelization. Proceedings of the IEEE 81(2) (feb 1993) 211 –243

4. Banerjee, U.: Loop Transformations for Restructuring Compilers: The Founda-
tions. Springer (1993)

5. Feautrier, P.: Automatic parallelization in the polytope model. In Perrin, G.R.,
Darte, A., eds.: The Data Parallel Programming Model. Volume 1132 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg (1996) 79–103 10.1007/3-
540-61736-1 44.

6. Bik, A.J., Gannon, D.B.: Automatically exploiting implicit parallelism in java.
Concurrency - Practice and Experience 9(6) (1997) 579–619

7. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5) (September 1999) 720–748

8. Randall, K.: Cilk: Efficient multithreaded computing. Technical report, Cambridge,
MA, USA (1998)

9. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory
programming. Computational Science Engineering, IEEE 5(1) (jan-mar 1998) 46
–55

10. Ottoni, G., Rangan, R., Stoler, A., August, D.: Automatic thread extraction with
decoupled software pipelining. In: Microarchitecture, 2005. MICRO-38. Proceed-
ings. 38th Annual IEEE/ACM International Symposium on. (nov. 2005) 12 pp.

11. Hogen, G., Kindler, A., Loogen, R.: Automatic parallelization of lazy functional
programs. In: Proc. of 4th European Symposium on Programming, ESOP’92,
LNCS 582:254-268, Springer-Verlag (1992) 254–268

12. Bhowmik, A., Franklin, M.: A general compiler framework for speculative multi-
threading. In: Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures. SPAA ’02, New York, NY, USA, ACM (2002) 99–108

13. Chan, B., Abdelrahman, T.S.: Run-time support for the automatic parallelization
of java programs. J. Supercomput. 28(1) (April 2004) 91–117

14. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18-20, 1967, spring joint com-
puter conference. AFIPS ’67 (Spring), New York, NY, USA, ACM (1967) 483–485

15. da Silva, C.P., Cupertino, L.F., Chevitarese, D., Pacheco, M.A.C., Bentes, C.: Ex-
ploring data streaming to improve 3d fft implementation on multiple gpus. In: Com-
puter Architecture and High Performance Computing Workshops (SBAC-PADW),
2010 22nd International Symposium on, IEEE (2010) 13–18


