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Abstract. The use of Evolutionary Computation approaches to generate images has 

reached a great popularity. This led to the emergence of a new art form – Evolutionary 

Art – and to the proliferation of Evolutionary Art Tools. In this paper, we present an 

Evolutionary Art Tool, NEvAr, the experimental results achieved, and the work 

methodology used to generate images. In NEvAr, useful individuals are stored in a 

database in order to allow their reuse. This database is playing an increasingly important 

role in the creation of new images, which led us to the development of automatic 

seeding procedures, also described. The automation of fitness assignment is one of our 

present research interests. We will, therefore, describe some preliminary results 

achieved with our current approach to automatic evaluation. 
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1 Introduction 

Creativity is often regarded as one of the most impressive features of the human mind, 

which may explain the current interest of the Artificial Intelligence community in the 

study of computational creativity. Several other factors, however, contribute to this 

rising interest: artificial creative systems may prove useful in a wide range of artistic, 

architectural and engineering domains where conventional problem solving techniques 

have failed; its study may bring insight to the overall understanding of human creativity; 

the study of artificial creativity can be viewed as the logical next step in AI research, i.e. 

if we can already build systems capable of performing tasks requiring intelligence, can 

we build systems able to perform tasks requiring creativity? 

The development of artificial creative systems is often inspired in models of the 

human creative process (e.g. [1, 2, 3, 4]). There are, however, other possible sources of 

inspiration. Evolution is responsible for the development of an incredible amount and 

variety of solutions, species, to a specific problem, survival. It is, therefore, 

unquestionable that this process can give rise to innovative solutions [5].  

In the past few years two Evolutionary Computation (EC) techniques, namely 

Genetic Algorithms [6] (GA) and Genetic Programming [7] (GP), have been used as 

means to implement computational creativity, resulting in the development of several 

applications in fields such as music and image generation, architecture and design. 

GA are the most common EC approach in the musical field (e.g. [8, 9,10, 11]). 

However, according to [12], and in spite of the numerous applications, GA are not ideal 

for the simulation of human musical thought. 

In the image generation field, GP is the most used EC approach, some examples 

being [13, 14, 15, 16], which evolve images, and [17], where GP is used to evolve 



human faces. GP has also been successfully applied in the fields of design [18, 19] and 

animation [14, 16, 20]. 

The main difficulty in the application of EC approaches to fields such as image and 

music generation is the development of an appropriate fitness function. As a result, most 

systems rely on Interactive Evolution (IE), i.e. the user evaluates the individuals and 

thus guides evolution. There are several systems in the musical field that perform 

automatic evaluation (e.g. [21, 22, 23, 24, 25]). In the field of image generation, 

however, there was only one attempt to fully automate fitness assignment [26]. 

The use of IE for image generation has achieved a great popularity. The roots of 

these applications can be found in Richard Dawkins book “The Blind Watchmaker” 

[13], in which the author suggests the use of a GA to evolve the morphology of virtual 

organisms, biomorphs. This work was, apparently, the source of inspiration for the 

systems developed by K. Sims [14] and W. Latham [27], which can be considered as 

the first applications of IE in the field of the visual arts, and which are usually 

considered as the most influential works in this area. The success of these approaches 

has led to the emergence of a new art form, “Evolutionary Art”, and also to the 

proliferation of IE applications in this field, usually called Evolutionary Art Tools. 

In this paper we will make an in-depth description of an Evolutionary Art Tool, 

NEvAr (Neuro Evolutionary Art). Our objective is twofold: provide useful information 

on the development of an Evolutionary Art Tool; present our current research ideas, 

which we consider that can enrich nowadays systems. 

The paper is structured as follows: in section 2 we make an overview of the system, 

which comprises the description of NEvAr’s evolutionary model, used representation 

(2.1), and genetic operators (2.2); we proceed by presenting experimental results 

(section 3) and the process used to produce them (3.2); in section 4 we describe our 



current research efforts, which are related with the development of seeding procedures 

(4.1) and automatic evaluation (4.2), and present some preliminary experimental results; 

finally, we draw some conclusions and point directions for future research. 

2 Overview of the System 

Fitness assignment plays a key role on EC algorithms since it guides the evolutionary 

process. Consequently, the quality of the results is deeply connected with the quality of 

the evaluation. In its present form, NEvAr is mainly an IE system, therefore, the user 

plays a key role in the process. 

The interaction between human and computer has some advantages, but also poses 

some problems. It is, for instance, virtually impossible to use large population sizes or 

to perform extended runs. It was clear from the beginning of its development that if 

NEvAr were to succeed, i.e. produce appealing images, it would have to do it in few 

evolutionary steps and with a low number of individuals’ evaluations. On the other 

hand, a skilled user can guide the evolutionary process in an extremely efficient way. 

She/he can predict which images are compatible, detect when the evolutionary process 

is stuck in a local optimum, etc. In other words, the user can change its evaluation 

criteria according to the specific context in which the evaluation is taking place. 

It is crucial to consider these idiosyncrasies in the development of an Evolutionary 

Art Tool. In Figure 1 we show the evolutionary model of NEvAr. From now on, we will 

designate by experiment the set of all populations of a particular GP run. 
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Figure 1 - Evolutionary model of NEvAr. The active experiment is depicted in grey. 

NEvAr implements a parallel evolutionary algorithm, in the sense that we can have 

several different and independent experiments running at the same time. It is also 

asynchronous, meaning that one experiment can be in its first population, while another 

can be in its hundredth. Additionally, we can transfer individuals between experiments 

(migration). 

The use of migration allows the construction of image databases. We can, for 

instance, create an empty experiment and transfer to it individuals that we find 

interesting or useful. The images belonging to this database can be used to initialise new 

experiments, or added to the current population of an experiment when the user finds 

that this addition may improve the evolutionary process. 

NEvAr also allows the migration within the same experiment. This feature is 

important due to the limited size of the populations, allowing the revival of images from 

previous ones. It is also possible to go to a previous population and change the 



evaluation of the individuals, which is extremely useful since it allows the exploration 

of different evolutionary paths. 

Through time, we have constructed a large database of individuals. Nowadays, the 

extensive use of this database plays a key role in NEvAr, as will be shown in section 3. 

Through the use of the databases and migration, we try to overcome one of the main 

weaknesses of EC approaches: the lack of long term memory mechanisms (although 

multiploidy can be viewed as a limited memory mechanism). Although the use of 

migration and databases is not particular to NEvAr (e.g. systems like [14, 15] also 

possess these features), the emphasis we give to its use is. Additionally, we have also 

developed automatic seeding mechanisms, which will be explained in section 4.1.  

A final word goes to our efforts to automate fitness assignment. Automatic 

Evaluation is still under development; in section 3 we will present our current approach 

and the experimental results achieved so far. The filtering module is linked with the idea 

of automatic evaluation and will be explained in section 4.2. 

2.1 Representation 

In NEvAr, like in most GP applications, the individuals are represented by trees. Thus, 

the genotype of an individual is a symbolic expression, which can be represented by a 

tree. The trees are constructed from a lexicon of functions and terminals. The internal 

nodes are functions and the leafs terminals. We use a function set composed, mainly, by 

simple functions such as arithmetic, trigonometric and logic operations. The terminal set 

is composed by the variables x and y, and by constants which can be scalar values or 3d-

vectors1. 

                                                           
1 There also is a “special” type of terminal node that returns the pixel values of an 

image loaded from disk. This type of node is used to evolve “special effects” which can 



The interpretation of a genotype (an individual) results on a phenotype, which in 

NEvAr’s case is an image. To generate an image, we evaluate the corresponding 

expression for each pixel coordinate and the output is interpreted as the greyscale value 

of the pixel. In Figure 2 we present some examples of genotypes and their 

corresponding phenotypes. 
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Figure 2  - Some simple functions and the corresponding images. 

NEvAr allows the evolution of true-colour images, which is achieved by the use of 

the 3d-vector terminals. Each of the components of these vectors correspond to a 

different colour channel (Red, Green and Blue or, alternatively, Hue, Saturation and 

Value). We will resort to an example in order to explain how the calculations are 

performed. Consider the following expression: sin(([0, 1, 0.5]×[1, 0.5, 0.5])+X). The 

first operation to execute is the multiplication of the two vectors; the multiplication is 

not performed in the standard way. Instead, each of the components of the first vector is 

multiplied by the corresponding component of the second, i.e. [0×1, 1×0.5, 0.5×0.5] = 

[0, 0.5, 0.25]. Next we add the variable X to this vector, which yields [0+X, 0.5+X, 

0.25+X]. Finally, we apply the sin operator to each of the components, thus obtaining: 

[sin(0+X), sin(0.5+X), sin(0.25+X)]. By using this approach, we avoid having to 

                                                                                                                                                                          
be applied to any image. Although this feature wasn’t thoroughly explored we will 

present some experimental results in section 3.1. 



develop special operators designed to manipulate vectors; instead each operator is 

applied to a scalar value that represents a colour component of the image2. 

2.2 Genetic Operators 

We use two kinds of genetic operators: recombination and mutation. For the 

recombination, we use the standard GP crossover operator [7], which exchanges sub-

trees between individuals. In GP mutation is, usually, considered less important than 

recombination [7]. In NEvAr, however, the picture is quite different. Conventional GP 

systems use a small function set and large population sizes. In NEvAr this situation is 

inverted. Therefore, mutation becomes necessary, in order to allow the reintroduction of 

genetic material that would be otherwise lost. 

We resort to five mutation operators (see Figure 3): 

� Sub-tree swap – randomly select two mutation points and exchange the 

corresponding sub-trees. 

� Sub-tree replacement – randomly select a mutation point and replace the 

corresponding sub-tree by a randomly created one. 

� Node insertion – randomly select an insertion point for a new, randomly chosen, 

node. If necessary, create the required arguments randomly. 

� Node deletion – the dual of node insertion. 

� Node mutation – randomly select a node and change its value. 

                                                           
2 This method is similar, at least apparently, to the one used in [14] 
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Figure 3 Examples of the application of the mutation operators on individual A. The 

individual A’ was generated by sub-tree swap, B’ by sub-tree replacement, C’ by node 

insertion, D’ by node deletion and E’ by node mutation. 

The genetic operators induce changes at the phenotype level. In Figure 4, we show 

examples of the application of the crossover operator. As can be seen, the crossover 

between two images can produce interesting and unexpected results. Additionally, there 

are cases in which the images seem to be incompatible, i.e. images that, when 

combined, result in “bad” images. 

      

Figure 4 On the left, the progenitor images. On the right, some images resulting from 

their crossover. 

In Figure 5 we give examples of images generated through mutation. Once again, 

the results of this operation can give quite unexpected results. 
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Figure 5 On the left, the original image. On the right, several mutations of this image. 

Image a was generated through node mutation, b through node insertion, c through node 

deletion, d through sub-tree swap and e by sub-tree replacement. 

3 Experimental Results 

As an Evolutionary Art Tool, the main goal of NEvAr is the production of artworks. Its 

analysis must be performed with this in mind. A strictly objective analysis of the results 

achieved with NEvAr is impossible, due to the nature of the results (images). The most 

obvious way to assess the performance of the system is to ask to a set of people to rate 

the images generated by the system. This type of analysis has a certain appeal and 

appears to be a valid way to evaluate the system’s results. However, this idea 

encompasses a fundamental error. 

NEvAr is guided by a user. Therefore, its goal is to produce images compatible with 

the aesthetic and/or artistic principles of the user. As such, the evaluation by third 

parties is secondary. Thus, the really important issue is the level of user satisfaction.  

It is important to notice that the fact that a tool can generate “interesting” images is 

irrelevant from the artistic point of view. What is really important is that the produced 

artworks convey the artistic ideas of the artist using the tool. In other words, the artist 

must be able to express her/himself through the use of the tool. 

The images generated with NEvAr during the early stages of experimentation were 

clearly disappointing. This failure didn’t result from the lack of power of the tool, but 

from our lack of expertise in its use. Like any other tool, NEvAr requires a learning 



period. To explore all the potential of a tool, the user must know it in detail and develop 

or learn an appropriate work methodology. The results, and user satisfaction, depend not 

only on the tool but also on its mastering. In other words, the evaluation of a piano as a 

tool can only be made by someone that knows how to play it well. This rises a problem: 

unfortunately few people know how to play NEvAr.  

Due to these factors, instead of presenting charts evaluating the performance of 

NEvAr, we will present some results, i.e. images. Our intention is to show the type of 

artwork that can be produced by the system. Additionally, we will describe the work 

methodology that we currently use to generate images with NEvAr. 

3.1 The Results 

Next we will present several examples of images generated with NEvAr. The images 

presented in Figure 6 are a subset of the ones presented at the “Art and Aesthetics of 

Artificial Life” exhibit, that took place at the Centre for the Digital Arts of the UCLA, 

during 1998. 



 

         
Figure 6 Some of the images presented at the “Art and Aesthetics of Artificial Life” 

exhibit, curator: Nicholas Gesseler, 1998. Further images can be found in the CD-ROM 

accompanying [19]. 

From the presented examples, it is clear that the images generated with NEvAr are 

typically of abstract nature. From the theoretical3 point of view, it is possible to 

construct pictorial images, but in practice that is hard to achieve. 

                                                           
3 In fact, it is possible to show that NEvAr can generate any image. This can be 

trivially demonstrated resorting to the standard GP if operator, which belongs to the 

function set of our system. Through the use of this operator the image can be partitioned 

in increasingly smaller blocks. The image corresponding to each block is the result of a 

different symbolic expression. We can, therefore, divide the image until we have a 

different symbolic expression for each of its pixels. By making each of the expressions 



3.2 The process 

The creation of an artwork encompasses several stages, such as: genesis of the idea, 

elaboration of sketches, exploration of the idea, refinement, and artwork execution. The 

methodology that we propose can be considered, in some way, analogous. It is 

composed by four main stages: Discovery, Exploration, Selection and Refinement. 

These stages can be described, concisely, as follows: the stage of Discovery consists 

on finding a promising evolutionary path, which, typically, corresponds to evolving a 

promising set of images from an initial random population (generation of the ideas); in 

the second stage, Exploration, the “ideas” evolved on the previous stage are used to 

generate images of high aesthetic value (exploration of the ideas); the Selection stage 

involves choosing the best produced images; the selected images, when necessary, will 

be subjected to a process of Refinement, whose goal is the alteration of small details 

(i.e. it corresponds to the final execution of the artwork). 

Next, we will describe how we use NEvAr in each of the mentioned stages, referring 

the most important issues to take into account in each of them and the skills involved. In 

this description we will consider that we start with a randomly generated population. 

The use of the image database will be described afterwards. 

3.2.1 Discovery 

Our empirical experience allows us to classify the Discovery stage as the most crucial of 

the process, and, together with the Exploration stage, the one in which the faculties of 

the user are more important. 

                                                                                                                                                                          
equal to the 3d-vector representing the value of the corresponding pixel, the image is 

generated. It is also possible to show that any image can be generated without relying 

on partitioning,  but this isn’t so easy. 



Discovery corresponds to the genesis of the idea, and is therefore inappropriate to 

approach this stage with pre-conceived ideas regarding the final aspect of the artwork. 

In other words, it is impossible in practice (yet tempting) to think on an image and use 

NEvAr to evolve it. This is probably the most important aspect to retain, because it 

contrasts with what is usually expected in a tool, i.e. that it allows the implementation of 

an idea. This aspect can be viewed as a weakness, but it is also the distinguishing 

feature and strength of NEvAr (and other evolutionary art tools). A conventional tool 

only plays an important role in the artistic process in stages posterior to the generation 

of the idea. NEvAr, however, plays a key role in the generation of the idea itself. Its 

influence is noticeable throughout all the artistic process and in its main creative stage. 

The artist is no longer responsible for the creation of the idea; instead, she/he is 

responsible for the recognition of promising concepts. More precisely, the idea results 

from an evolutionary process, and is created by the artist and the tool, in a (hopefully) 

symbiotic interaction. 

The most important principle that we have identified is the prevalence of the form in 

relation with the colour. Thus, during the initial stages of the evolutionary process the 

user should concentrate in the evolved forms and “forget”, for the time being, hers/his 

chromatic preferences. One way to achieve independence from colour is to use, 

exclusively, greyscale images during the first populations, until appropriate forms are 

found, and only allow the generation of full colour images afterwards. This 

methodology proved to be extremely efficient, allowing a greater systematisation of the 

evolutionary process. The way NEvAr handles colour is adequate to this form of 

operation, since it typically allows the alteration and incorporation of colour without 

significantly changing the images’ form. 



The images belonging to the first populations usually fall in one of two extremes, 

being either too simple or too complex. The discovery stage is characterised by the 

combination of simple images, in order to gradually increase image complexity until 

reaching an appropriate level. It is advisable to avoid “noisy” images, since the removal 

of noise is usually difficult. In Figure 7 we present the first populations of an 

experiment. 

 

 

 
Figure 7 Populations 0,1 and 6 of an experiment. The numbers bellow the images 

correspond to the fitness given by the user. The increase in the complexity of the images 

is evident. From the 6th population on the user gave preference to organic and fluid 

forms in detriment of geometric ones. 

In which concerns fitness assignment, the images have by default a fitness value of 

0, and we usually give a classification greater than 0 to a very restrict set of images 

(typically 1 to 3). The next population will be, therefore, composed by the combination 

of these images. We use roulette wheel instead of tournament selection. Although 



tournament selection is usually preferred in GP systems, in our opinion roulette 

selection is more adequate to IE systems, since it is more intuitive and allows a greater 

degree of control by the user. 

During the exploration stage, we use high crossover and mutation rates (e.g. 90% 

crossover and 20% mutation probabilities). The objective is to increase population 

diversity, thus avoiding the loss of interest by the user. In Figure 8, we present the best 

images from population 7 to 30. Colour was introduced in the 10th population. By the 

21st population, the images were sufficiently interesting to allow a transition to the 

Exploration stage. 

 
Figure 8 The best images, according to the fitness assignment, of populations 7 to 30 

(from left to right and top to bottom).  

3.2.2 Exploration 

The goal of this stage is to explore the ideas present in the current population in order to 

produce something close to an artwork. When we reach this stage, we are already 

dealing with images of high aesthetic value. Through the recombination of these 

images, we explore a space of forms smaller than the one explored in the discovery 

stage, and which may be, therefore, more thoroughly searched.  

Ideally, the quality of the populations should increase steadily. In practice this is 

unachievable. The Exploration stage can prolong itself conducting the artist to a point 



that, at least apparently, has nothing to do with the original one. Sometimes, the path to 

this point is relatively direct. There are cases, however, in which a dead end is reached. 

In these cases, it is necessary to descend the hill, which usually implies a deliberate 

action by the user. This descent may cause a return to the Discovery stage.  

Apparently, the discovery of new interesting images, even when they have a 

completely different aspect from the previously generated ones, is usually faster than 

the first discovery process. This may indicate that some type of learning occurs during 

the evolutionary process, i.e. that, during evolution, useful combinations of primitives 

are built, and that these sub-trees can be recombined allowing the generation of 

interesting images in few populations. 

Additionally, the high plasticity inherent to the used representation method allows 

the evolution of radically different phenotypes from resembling genotypes. 

It is important to notice that an individual is more than its phenotype. During 

evolution there is an accumulation of genetic material that is not expressed in the 

phenotype. This genetic material can become active at any time due to crossover or 

mutation. A striking evidence of this fact is the reappearance of images that where 

already abandoned by the evolutionary process (e.g. the reappearance in population 30 

of an image from population 5). 

Like in the Discovery stage, the expertise of the user is determinant to the success of 

the Exploration stage. With the accumulation of experience, the user learns how to 

distinguish between promising paths and the ones that lead nowhere, to predict which 

combinations of images produce best results, how to manipulate crossover and mutation 

rates in order to produce best results, etc. 

In Figures 10 to 12 we present some populations belonging to this stage. 



 
Figure 9 The user is exploring images generated during Discovery. The connection 

between the images of population 32 and the best images of populations 29 and 30 is 

evident (see Figure 8) 

 
Figure 10 At this stage the user chooses to abandon the idea that she/he was 

exploring. The circular images that dominated previous populations where neglected, 

with the objective of introducing a change of path.  

 
Figure 11 As can be seen there was a significant increase in population diversity. 

Population size was increase in order to allow a greater search width. The user 

continues to force a change of evolutionary path through hers/his choices, which will 

result in a decrease of the average quality of the images, and a transition to the 

Discovery stage. There where several other transitions between this stages, and the 

exploration stage was ended in the 57th population. 



3.2.3 Selection 

The Selection stage can be divided in two different ones: one that is concurrent with the 

evolutionary process, and one that is posterior. During the stage of Exploration the best 

images (according to the user criteria) are added to a different experiment, which works 

as a gallery. As stated before, NEvAr stores all populations, which allows the review of 

the evolutionary process and the addition to the gallery of images that were previously 

neglected. This revision is highly recommended, and a substantial amount of time 

should separate the generation of the images and its review in order to allow the 

necessary distance between generation and criticism. In Figure 12, we show the image 

gallery resulting from the experiment that we have been using to illustrate our 

description. 

 
Figure 12 Image gallery. 

The images belonging to the gallery will be subjected to a process of analysis, which 

will lead to their division in four groups: 

• Discard – Images that are considered irrelevant. 

• Useful – Images that, at least apparently, represent good ideas and that should be 

stored in the databases of NEvAr. 



• Refine – Images that still need some work to achieve the status of artworks. 

• Artworks – Composed, ideally, by images that fully satisfy the aesthetic and/or 

artistic criteria of the user. 

In Figure 13 we present the results of the classification of the images of Figure 12 in 

the above mentioned groups. 

 

  
Figure 13 The Useful, Refine and Artwork groups. Am image can belong to several 

groups. 

3.2.4 Refinement 

The Refinement process usually occurs separately from the experiment that generated 

the image. The common procedure is to initialise a new experiment with the image we 

want to refine (i.e. the initial population of this experiment will be composed by the 

image and, in some cases, similar ones). The generation of new populations, from this 

initial one, allows the exploration of a search space in the vicinity of the image that we 

want to refine. 

It is important to notice that there is a difference between the refinement of an idea 

and the retouching of an image. Inducing specific changes in an image (e.g. in order to 



correct an imperfection) may prove difficult, and NEvAr doesn’t seem to be the right 

tool for that kind of job. 

3.2.5 Image Database 

The database has been used mainly in two situations to initialise new experiments and to 

add individuals to the current population of an experiment. 

The goal of the first form of use is to shorten, or even avoid, the initial stages of the 

evolutionary process (Discovery and Exploration). In Figure 14 we present an example 

of this type of operation, and in Figure 15 the best individuals of the first 20 populations 

of this experiment. We are currently working on the development of automatic seeding 

methods. Our current approach is CBR inspired and will be described in section 4.1. 

 

 
Figure 14 On the top, the initial population, composed by five individuals 

belonging to the database, and eleven randomly created ones. On the bottom, population 

number 1. 



 
Figure 15 The best individuals of populations 2 to 20 (from left to right and top to 

bottom). 

The addition of previously generated individuals to the current population usually 

follows an opportunistic reasoning. There are several situations in which this may be 

useful, for instance to avoid a local optimum, or when we find an image whose 

combination with a previously created one is previewed as promising. In Figure 16, we 

present an example of this operation. 

 

 
Figure 16 In the top row the 63rd population of the experiment used to illustrate the 

different stages of the evolutionary process.  The first image (left upper corner) belongs 

to NEvAr’s image database and was added to the population. In the bottom row we can 

observe the outcome of this operation, which allowed a shift in the evolutionary path 

and the generation of interesting images. 



The image database is playing an increasingly important role in the process of image 

generation, and is currently a priceless feature of the system. 

One of the misconceptions about Evolutionary Art Tools is that the quality of the 

generated images is deeply connected with the used primitives, hence the emphasis on 

the development of “high level” functions (e.g. fractals) that are able to generate 

interesting images on their own. The experimental results achieved with NEvAr, i.e. the 

generated images, show that a set of “basic” primitives, which can be combined in 

powerful ways, is enough to produce high quality results. 

Introducing “high level” primitives can be seen as a way to incorporate knowledge 

into the system. By resorting to these primitives, interesting images can be generated 

from compact genotypes. Consequently, the number of populations needed to produce 

interesting images is decreased. However, the price to pay may be too high, since it may 

lead to the generation of stereotyped images. 

Any EC system has its points of attraction. In other words, some images are easier 

to generate than others; some of them can even be considered recurrent. The points of 

attraction depend, obviously, on the set of used primitives. 

High level primitives tend to introduce points of attraction of average, or even high, 

quality (i.e. images of high aesthetic value). In a seemingly paradoxical way, this can be 

undesirable. The system has a natural tendency to converge to these points. 

Additionally, the user also tends to prefer these images due to their high aesthetic value. 

Therefore, the convergence to these points of attraction is almost unavoidable; hence the 

production of stereotyped images. 

When the points of attraction of the system are images of low aesthetic value, which 

is usually the situation when low level primitives are used, the user evaluation of the 



images is enough to overcome the tendency of the system to these points, provided that 

this tendency is not too high and that the primitives can be combined in ways that allow 

the generation of interesting images. 

It’s important to notice that sets of high level primitives that don’t have these 

shortcomings may exist. However, according to our empirical experience, their 

construction is extremely difficult. 

4 Ongoing Research 

Our current research efforts can be divided into two different areas: development of 

seeding procedures and automatic evaluation. In this section, we will make a description 

of our ongoing research concerning seeding and automation of evaluation, and present 

the experimental results achieved so far. 

4.1 Seeding 

As we have already stated, seeding is an important part of NEvAr. Until recently, the 

user was responsible for the seeding process, i.e. she/he can choose individuals from the 

image database and transfer them to the initial population. In the beginning, this 

procedure was adequate. However, the growth of the image database made it an arduous 

task. Hence, the idea of automating the seeding procedure. 

Our current approach is CBR inspired. The idea can be described as follows: The 

user chooses an image, and the seeding procedure selects similar individuals, belonging 

to the image database, to initialise the GP experiment. 

In order the implement such an approach we must be able to compare images, in 

other words, we need to develop a similarity metric. Unfortunately, comparing images 

is not an easy task. Our first idea was to use the root mean square error (rmse) among 



two images as similarity metric (when the error is zero the similarity is maximal). The 

similarity between two images, a and b, was given by the following formula: 
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This measure is usually used to evaluate the error involved in the compression of 

images. However, our experiments show that the rmse is not appropriate for our task. In 

fact, it is easy to create two images, which are indistinguishable to the eye, and which 

have maximum dissimilarity according to this measure (e.g. consider two images 

composed by alternate vertical black and white stripes of one pixel width, the first 

image starts with a black stripe the second with a white one, these images will be 

similar to the eye and the rmse will be maximum). 

The failure of this approach made us realise that the goal was not to find 

“mathematically” similar images, but images that resemble each other and that possess 

similar characteristics. 

It is a well-known fact that some compression methods work better with some types 

of images than others. The jpeg format, for instance, is more appropriate for the 

compression of natural images than for computer generated images; fractal image 

compression takes advantage of the self-similarities present on the images and will, 

therefore, perform better when these similarities are big. Additionally, the quality of the 

compression is usually connected with the complexity of the image (i.e. with the 

predictability of its pixels) and can therefore be used as an estimate of image 

complexity. 

Our previous experience with image compression methods led us to believe that we 

could use the quality of the compression to develop a similarity metric. For the scope of 

this paper we will define compression quality as: 



 compression ratio
rmse

, (2) 

and compression complexity as the inverse. 

We use two different compression methods: jpeg and fractal based. The fractal 

image compression algorithm makes a quad-tree partitioning of the image [20]. By 

changing the maximum depth of the tree, we can specify, indirectly, the limits for the 

error involved in the compression. During compression, the colour information is 

discarded, the images are converted to greyscale and then compressed. 

Let’s define: “Image Complexity”, IC, as the compression complexity resulting 

from the use of the jpeg method; “Processing Complexity”, PC, as the compression 

complexity resulting from the application of the fractal based approach. We use two 

different maximum tree depths, N and N-1. Therefore we have two different 

“Processing Complexity” estimates, PC1 and PC2. 

In order to compare two images, a and b, we start by calculating IC, PC1 and PC2, 

for each of them. The similarity between images a and b is given by the following 

formula: 
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In Figure 17 we present a subset of the images belonging to the database. In Table 1, 

we present the IC, PC1 and PC2, measures for each of them as well as the similarity of 

these individuals with images 9 and 14 of the population. 



 
Figure 17 In the image above we present a subset of the images belonging to the 

database. The numbers bellow the image are presented as a curiosity, and indicate the 

rmse similarity to image 14. According to this metric the closest image is image 15, 

which is good, and the second closest is image 9, which is bad. 

By ordering the individuals according to their similarity to image 14, we obtain the 

following list: {14, 8, 13, 12, 15, 4, 5, 7, 0, 11, 10, 6, 3, 1, 2, 9}. This ordering seems to 

be correct, the major deficiency being that individual 7 is considered less similar than 

individuals 4 and 5. When comparing to image 9, we get the ordered list: {9, 2, 1, 3, 6, 

10, 11, 0, 7, 5, 4, 15, 12, 13, 14, 8}, which also appears to be approximately correct; 

image 9 is characterised its fluid and organic forms, and so are individuals 2, 3, 6 and 0, 

and, although in a lesser degree, individuals 10 and 11. 

Table 1 - The IC, PC1 and PC2, measures for each of the images presented in Figure 17, 

and the similarity among these images and images 14 and 9 of the same figure. 

Image CI CP1 CP2 Similarity 
to 14 

Similarity 
to 9 

0 5.053 19.228 5.957 10.397 17.500
1 4.455 10.503 4.646 9.790 22.703
2 2.926 5.518 2.403 9.365 37.261
3 4.085 11.256 5.957 9.879 21.529
4 6.401 21.357 7.057 10.697 16.189
5 5.965 21.663 6.504 10.650 16.365
6 4.694 13.395 4.988 9.976 20.486
7 5.744 19.373 6.795 10.503 16.981
8 12.125 91.074 25.331 16.948 8.349
9 2.399 3.413 2.200 9.239 100.000

10 4.593 12.839 5.883 9.989 20.359
11 5.113 14.434 6.244 10.129 19.170
12 8.736 42.895 13.636 13.765 11.673



13 7.978 45.669 13.523 14.062 11.506
14 11.518 71.164 21.835 100.000 9.239
15 6.891 34.791 10.861 12.181 13.032

Although the experimental results are still preliminary, the seeding procedure based 

on the above described similarity metric seems to produce good results. We use the 

similarity as fitness for the seeding process, and roulette wheel selection for choosing 

which images will become part of the initial population. We do not allow the repetition 

of images. 

One of the main advantages of the similarity metric is that the complexity measures 

are static. Therefore, we store the IC, PC1 and PC2 values of the images belonging to 

the database. When we want to compare these images to a new one, we only need to 

calculate the complexity measures for that image, and apply the similarity formula. 

When we used rmse similarity, we were forced to compare the images of the database to 

the new one pixel by pixel, which is, of course, a computationally expensive task. 

The experimental results achieved so far indicate that the comparison of images 

based on their characteristics, namely on their complexity, is adequate. This, of course, 

suggests that taking into consideration other types of features of the images (e.g. edges, 

colour, outline, etc.) may also prove useful. 

It is also important to notice that the compression methods described can be applied 

to any image. Therefore we can compare the database images with images that were not 

generated with NEvAr. We still haven’t explored this possibility, nevertheless we 

believe that it can produce interesting results. 

4.2 Automatic Evaluation 

In this section, we will describe our current approach to the automation of the 

evaluation stage. We are still in a very early stage of development, therefore the 

approaches and formulas presented can, and probably will, be subjected to changes as 



the research progresses. We will start by describing the filtering methods that we 

currently use. Afterwards, we will present an approach to automatic fitness assignment.  

4.2.1 Filters 

The goal of the filtering layer is to discard individuals that are unquestionably bad. We 

use two types of filters: one works at the genotype level and the other at the phenotype 

level. 

The generation of images that are either too simple or too complex, e.g. completely 

blank or noise (i.e. completely random), is frequent during the first populations of an 

experiment (see Figure 7). As the population number increases, these images become 

less frequent, but still occur (see Figure 11). 

At its current state, the phenotype filter tries to tackle this problem. To do so, we 

calculate the image complexity of the individuals belonging to the population (i.e. the 

IC measure), and discard images with IC values outside a given interval. The user can 

specify lower and upper limits for this interval and, therefore, adjust the filtering level. 

This method is quite efficient during the first populations. In Figure 18, we present a 

typical initial population and indicate which images would be discarded if the filter 

were turned on. 

 
Figure 18 The numbers bellow the images indicate if they were discarded or not: 

zero indicates insufficient complexity (in this case IC<1); two indicates excessive 



complexity (i.e. IC>10); a value of one indicates that the image complexity is within the 

specified interval. 

The main drawback of this approach is that it is time consuming, since the 

individuals must be rendered in order to calculate their IC value. To cope with this 

disadvantage we are trying to develop a filter that works at the genome level. 

The development of a genotype filter is a complex task. Currently, our filtering 

method is extremely limited. Basically, we verify if the variables x and y are both 

present (if none of them is present, the pixels of the image will all have the same value; 

if only one is present, the image will be composed by vertical or horizontal lines) and 

check if the root of the tree is an appropriate function (e.g. a noise generation operator at 

the root will result, unavoidably, in noise). 

We are unsure about the future of the genotype filter, at least as a filter. One of the 

hypothesis is using Machine Learning techniques to try to elicit useful combinations of 

expressions, and then check for the existence of such combinations. The inclusion of 

intron removal and code optimisation techniques may prove useful in this task. 

However, even if we consider that useful sub-trees can be identified, their presence 

doesn’t imply high image quality and neither does their absence imply low quality. 

Nevertheless, the elicitation of these sub-trees can be useful to other tasks, for instance, 

these trees my become part of the function set of NEvAr, i.e. they can become 

primitives of the system, thus avoiding the need to rediscover them. 

4.2.2 Automatic Fitness Assignment 

Our initial idea for automating the evaluation assignment was to train a neural network 

(NN), and use it to assign fitness. However, disappointing results from an early work 

using NN [26] refrained our enthusiasm concerning this approach.  



The success of the previously described seeding mechanism renewed our interest in 

automatic evaluation. Considering that you have a good way to compare images, which 

apparently we have; and that this comparison is based on the characteristics of the 

images and not on the images themselves, which is also true; then you can compare the 

characteristics of the images of the population with the characteristics of “good” 

images. Thus, it makes sense to use the similarity metric as a basis for fitness 

assignment. 

Consequently, we devised a formula to assign fitness based in the IC and PC 

estimates earlier described. This formula is related with our personal beliefs about 

aesthetics. Our point of view is that the aesthetic value of an image is connected with 

the sensorial and intellectual pleasure resulting from its perception. It is also our belief 

that we tend to prefer images that are, simultaneously, visually complex and that can be 

processed (by our brains) easily. We will resort to an analogy, in an attempt to clarify 

our previous statement: a fractal image is usually complex, and highly detailed; yet it 

can be compactly described by a simple mathematical formula. In the same way, there 

are images which are visually complex and that can be represented compactly by our 

brain. Returning to the fractal example, the self-similarity can make fractal images 

easier to process, which, from our point of view, gives an explanation to why we 

usually consider this type of images interesting. 

We won’t try to justify our beliefs about aesthetics, basically because we lack 

sufficient experimental evidence to support them. We will, however, present the 

formula that we currently use to automate fitness and the experimental results achieved 

so far. 

In the construction of our formula, we assume that fractal image compression is 

closer to the way humans’ process images than jpeg compression. Therefore, we will 



use IC as an estimate of visual complexity and PC1, PC2 as estimates of processing 

complexity. The act of seeing is not instantaneous, it takes a (sometimes-long) interval 

of time. Hence, it is necessary to take into consideration the way our perception of the 

image changes through time. Our fractal encoding method makes a quad-tree partition 

of the image. In PC1, the tree can have one more level than in PC2. The image is, 

therefore represented with more detail. We will consider PC1 and PC2 as estimates of 

the processing complexity in different points in time (t1 and t0, respectively). From our 

point of view, a moderate increase in the amount of detail represented should be 

accompanied by an also moderate increase in the representation size, thus PC(t1) and 

PC(t0) should be as close as possible. By combining our ideas into a formula, we obtain: 
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the exponents a, b, and c are used to change the weight of each of the factors. The 

division by PC(t1) is necessary to “normalise” the subtraction result. 

We used this formula to assign fitness, the parameters a, b and c were set to 1, 0.4 

and 0.2 respectively. Additionally, we imposed upper bounds for IC, and lower bounds 

for PC(t1), PC(t0), and for their subtraction. These lower bounds vary, from experiment 

to experiment, but were kept constant throughout each particular one. During the 

experiments, the filtering layer was inactive. The initial populations were randomly 

generated. We used two different population sizes, 20 and 40, but this didn’t seem to 

have any influence in the results. We used roulette wheel selection, a crossover rate of 

90% and a mutation rate of 10%. The evolution strategy is non elitist. 

In Figure 19, we present the best individuals, according to the automatic fitness 

procedure, from several independent runs. 



      

      
Figure 19 Best individuals from several independent runs. 

In Figure 20, we present the first population of a particular experiment and the 

fitness values assigned to the individuals. Figure 21 shows population 27 of the same 

experiment. The best individuals of populations 0 to 29 are presented in Figure 22. The 

best overall individual (of the first 30 populations) was found in population 27. 

 
Figure 20 - Population 0 of an experiment guided by the earlier described fitness 

function. The numbers bellow the images are the fitness values assigned to them. 

 
Figure 21 Population 27 of the experiment of Figure 20. The numbers bellow the 

images are the fitness values assigned to them. 

We consider the experimental results achieved through the use of formula 4 to be 

extremely promising. In fact, they widely exceeded our expectations, specially if we 



take into consideration that, when fitness is assigned randomly, the system converges to 

images that are either blank or noise. This happens even when the first population is not 

randomly generated. The major drawback of our approach is that, currently, it only 

allows the evolution of greyscale images. 

 
Figure 22 The best individuals of populations 0 to 29 (from left to right and top to 

bottom). The best individual was found in population 27. 

Before finishing this section, and in order to prevent misinterpretations we want to 

stress the following: we don’t intend to say that our perception system works by fractal 

compression, neither that the visual complexity of an image can be measured by the 

quality of jpeg compression. Instead, we suggest the use of the IC and PC as rough 

estimates for visual complexity and processing complexity. We also don’t intend to say 

that our formula can fully evaluate the aesthetic value of images, in fact we believe that 

art cannot be created nor assessed in disregard of the cultural context. In other words, 

we do believe that cultural issues affect our aesthetic judgement. However, we also 

defend that the aesthetic value is, to some extent, linked with the complexity of the 

image and with the mental work necessary to its perception. 

5 Conclusions 

We consider that NEvAr is, from the artistic point of view, a tool with great potential. 

The use of NEvAr implies a change to the artistic and creative process. The artist is no 



longer responsible for the generation of the idea. Instead, the idea emerges from an 

evolutionary process, in which artist and tool interact. In spite of these changes, the 

artworks produced still obey to the aesthetic principles of the user. Therefore, the artist 

can express her/himself through the use of the tool and review her/himself in the works 

created. 

Our experimental results (section 3) indicate that it is possible to create interesting 

images without resorting to high level primitives, showing the inaccuracy of the idea 

that the generation capabilities of an Evolutionary Art Tool depend on the use of this 

type of primitives. 

Our focus on the reuse of previously generated individuals led us to the study of 

seeding procedures. In section 4.1, we presented our current approach to automatic 

seeding. The use of a CBR based approach and the development of a similarity metric, 

which compares the characteristics of the images and not the images themselves, 

appears to be very promising as the preliminary results show (4.1). 

We also presented our current approach to automatic fitness assignment. Our 

research in this area is still on a very early stage, but the experimental results achieved 

so far (4.2.2) exceeded our expectations, and seem to indicate that our approach is 

useful. 

When we think in Evolutionary Art Tools and in automatic fitness assignment, the 

idea of performing aesthetic judgements always comes to mind. There are, however, 

other possibilities to be explored. One can, for instance, try to devise a way of 

recognising some type of image (e.g. faces, cars, flowers) and use it to guide the 

evolutionary algorithm. In the future, we intend to explore this kind of possibilities, 

since we think that they can provide interesting and useful results. 
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