
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3211

Straight-line programs for fast sparse matrix-vector multiplication

Samuel Neves*,† and Filipe Araujo

CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

SUMMARY

Sparse matrix-vector multiplication dominates the performance of many scientific and industrial problems.
For example, iterative methods for solving linear systems often rely on the performance of this critical
operation. The particular case of binary matrices shows up in several important areas of computing, such
as graph theory and cryptography. Unfortunately, irregular memory access patterns cause poor memory
throughput, slowing down this operation. To maximize memory throughput, we translate the matrix into a
straight-line program that takes advantage of the CPU’s instruction cache and hardware prefetchers. The
regular loopless pattern of the program reduces cache misses, thus decreasing the latency for most instruc-
tions. We focus on the widely used x86_64 architecture and on binary matrices, to explore several possible
tradeoffs regarding memory access policies and code size. We also consider matrices with elements over
various mathematical structures, such as floating-point reals and integers modulo m. When compared to a
Compressed Row Storage implementation, we obtain significant speedups. Copyright © 2014 John Wiley &
Sons, Ltd.

Received 21 March 2013; Revised 31 October 2013; Accepted 23 December 2013

KEY WORDS: large-scale scientific computing; instruction-level parallelism; thread-level parallelism;
memory-level parallelism; multi-core architectures and support

1. INTRODUCTION

Linear algebra is at the heart of modern scientific computing. Be it information retrieval, computa-
tional physics, graph theory, or cryptography, many problems are often expressible as linear systems,
and their solution is often a bottleneck. Thus, the time it takes to solve linear systems has deep
repercussions across many areas.

One very common pattern that we find in real-world matrices is sparsity, which occurs when most
of the matrix coefficients are 0. Sparsity changes the way in which systems can be efficiently solved:
typical dense methods, like Gaussian elimination, transform the matrix, adding many nonzeros; this
phenomenon is often called fill-in. To avoid fill-in, a different class of methods is usually employed,
namely Krylov subspace methods [1]. Krylov subspace methods treat the action of the matrix on
a vector (i.e., b D Ax) as a black box; indeed, these are often called black box methods. These
methods are particularly suited for sparse matrices, as matrix multiplication can be performed in less
than the usual O.n2/ arithmetic operations: an n � n sparse matrix with � nonzero entries per row
can be multiplied by a vector in O.n�/. In the real and complex fields, the most common Krylov
methods are the CG, Lanczos, and similar subspace correction methods; in finite fields, such as the
ones involved in the number field sieve for integer factorization and discrete logarithms [2], the
block Lanczos [3] and (block) Wiedemann [4, 5] are the most common.

*Correspondence to: Samuel Neves, CISUC, Department of Informatics Engineering University of Coimbra, Coimbra,
Portugal

†E-mail: sneves@dei.uc.pt

Copyright © 2014 John Wiley & Sons, Ltd.

S. NEVES AND F. ARAUJO

In this paper, we study sparse matrices whose coefficients lie in the set ¹0; 1º—these are often
called ‘binary matrices’. This special case is common in spectral graph theory [6] and integer fac-
torization [7–9]. Integer factorization algorithms, such as the number field sieve [2], are able to find
factors of large integers after computing solutions to a linear system of the form Ax D 0, where A is
a very large binary matrix. For large n�nmatrices, the block Lanczos [3] and block Wiedemann [5],
which require O.n/ matrix-vector multiplications, are the most popular algorithms. In a recent fac-
torization record [8, 9], the dimension of the matrix solved was 192; 796; 550� 192; 795; 550, with
27; 797; 115; 920 nonzero entries, totaling about 105 GB in disk space. It was solved using the block
Wiedemann method, in roughly 119 days—85% of it spent on sparse matrix-vector multiplications.

Sparse binary matrices also show up in commutative algebra, as part of multivariate equation
system solvers. The XL algorithm [10] and its variants solve systems of multivariate equations over
some finite field‡ by considering each appearing monomial as a new variable and finding the solution
to a large sparse linear system. Fast linear algebra is often the deciding factor in the success of such
algorithms [11, 12], which along with Gröbner basis computation algorithms and SAT solvers are
the principal tool to break multivariate equation-based cryptography.

Although we focus on the number field sieve application, where the binary matrix is defined over
the F2 field, that is, the integers modulo 2, it is straightforward to alter the underlying operations to
work on the boolean semiring, the integers, or floating-point reals.

The most common bottleneck in sparse matrix-vector multiplication, and thus in linear system
solving, is often poor memory access locality, causing suboptimal memory bandwidth [13]. Many
different representations try to push memory accesses closer together, to improve locality [14, 15].
One common characteristic of most, if not all, is that they only improve data cache accesses, while
instruction cache remains largely unused.

In most modern CPUs, however, like Intel’s Core 2 and i7 processor lines, as well as in AMD’s
Phenom and Opteron processors, the instruction cache amounts to half of the total L1 cache. To
explore this resource, we propose a machine code representation of binary sparse matrices. Conver-
sion cost from common formats (e.g., Compressed Row Storage) to our format is proportional to
the number of nonzero entries of the matrix. In this representation, we can keep the L1 data cache
almost exclusively for the input vector, while keeping the matrix itself in the L1 instruction cache;
the output vector never resides in cache.

The approach we took in our work was to write a translator to convert the sparse matrix, which
represents an Fn2 ! Fn2 linear map y D Ax, into an x86_64 straight-line program implementing
that very map. This has a number of advantages:

Better L1d cache usage: Regardless of the quality of the representation and ordering used for sparse
matrices, they are still using only about 1=2 of the available L1 cache, the fastest memory
available in the processor. Additionally, the matrix’s nonzero entries replace entries of the input
vector from L1 data cache (L1d), despite the former being used only once.

Flexibility: There is a large volume of published research on reordering, partitioning, and blocking
techniques (e.g., [16, 17]). Most of these improvements require changing the representation of
the matrix, which also requires new code to use it. Using a straight-line program allows us to
freely integrate such techniques without having to change any extra matrix handling function-
ality. For example, a matrix in the Compressed Row Storage (CRS) format, when converted to,
say, Compressed Sparse Block [15] format, will require new code to deal with the new repre-
sentation. When one adds a new technique to our code representation, only the matrix translator
changes, while everything else (i.e., the code that performs the matrix-vector multiplication)
remains unchanged (cf. Figure 1).

Implicit prefetching: Modern processors have very elaborate predictive mechanisms to avoid
pipeline stalls due to branching mispredictions, false dependencies, and so on [18]. As a
result, processors load and decode instructions much before they actually execute them. Our
representation is able to take advantage of this quite aggressive instruction prefetching.

‡The original XL algorithm was proposed for the F2 field only; it has been generalized to arbitrary finite fields since.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

Figure 1. Prototypical C code employed to run a straight-line matrix-vector multiplication program.

We organize the rest of this article as follows. Section 2 describes x86_64, the architecture
we targeted with our techniques. Section 3 describes our techniques to convert a CRS matrix
into code. Section 4 expands the technique to additional mathematical rings beyond the integers
modulo 2. Section 5 describes and discusses our experimental results. Section 6 concludes the
article, giving some future directions.

2. TARGET ARCHITECTURE

In this article, we target the x86_64 architecture, as seen in the Intel Sandy Bridge processor line.
Nevertheless, we must emphasize that our idea is not restricted to Sandy Bridge. To create machine
code for other microarchitectures, such as the Core 2 and AMD’s K10, we just need to slightly tune
the compiler.

2.1. Pipeline

When executing long runs of non-branching code, there are three things that influence speed:
instruction fetch and decoding, instruction dispatch into execution units, and memory bandwidth.
The Sandy Bridge pipeline can be split into several main stages: instruction fetching, decoding,
dispatching, execution, and retirement.

The instruction fetching in the Sandy Bridge has a total bandwidth of 16 bytes per clock, after
which it passes through the predecoder, a mechanism that detects where instructions begin (because
of the variable-sized instruction set). The combined throughput of the fetching and (pre)decoding
is 16 bytes or four instructions per clock, whichever is smaller [18]. For the best possible fetching
throughput§, the instruction length must average less than 4 bytes.

The instruction decoder in the Sandy Bridge is able to convert up to 32 bytes of code, stored in the
decoder queue from the predecoder, into at most 7 �ops per cycle. �ops are RISC-style instructions
actually executed by the execution units in the next stages.

After decoding, instructions are renamed, if needed, and sent to a reservation station. Here, the
Sandy Bridge implements dynamic scheduling with six execution units: 3 arithmetic logic units, 2
memory read and address generation units, and 1 memory write unit. Thus, at any given time, it is
possible to dispatch at most 6 �ops per cycle, two more than the instruction fetcher, the bottleneck,
is able to output.

2.2. Memory system

The Sandy Bridge, like most recent CPUs, spends most of its area on caches. It contains two 32KB
8-way set associative L1 caches, and a larger (usually) 256KB 8-way set associative L2 cache for
each core. There is also an 12-way associative L3 cache shared between all the cores (cf. Figure 2).
Each access to the L1 caches costs 4 cycles, the L2 has a latency of 12 cycles and the L3 about� 20
cycles. In each cycle, the L1 caches are able to pull 32 bytes from the L2 caches. The Sandy Bridge
also contains an 8-way associative �op cache, which stores up to 1536 decoded �ops.

§This only applies for large streams of code that cannot make use of the �op cache.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S. NEVES AND F. ARAUJO

Figure 2. Sandy Bridge memory layout.

Figure 3. High-level x86 instruction encoding.

There are three hardware L1 prefetchers (per core) and two L2 prefetchers in the Sandy Bridge.
The three L1 prefetchers are divided into one instruction prefetcher and two data prefetchers. These
prefetchers detect access patterns and preload the caches with data likely to be used.

2.3. Instruction encoding

In typical CISC fashion, x86 and x86_64 have variable-sized instructions. The encoding rules
are still mostly backwards compatible with the 1978 8086 processor and have grown to be quite
complex [19]. For the scope of this article, however, the reader just needs to know a few basic facts
about instruction encoding. Figure 3 describes the basic format of an x86 instruction, which can
range from 1 to 15 bytes.

Prefixes allow instructions to modify the behavior of certain instructions. The REX.W prefix
(0x48), for instance, allows instructions to access the full x86_64 register set and width; the 0x2E
prefix is a hint to the CPU not to take a branch and so on. There may be multiple prefixes for a single
instruction, and some instructions require mandatory prefixes to be accessible.

Opcodes may be 1, 2, or 3 bytes in length. Most common instructions (e.g., integer arithmetic)
have 1-byte opcodes, which makes them fairly short.

After the opcodes come the ModR/M and the Scale Index Base (SIB) bytes. These allow an
instruction to define source and destination operands flexibly, with one of them possibly being either
a register or a memory location. In the latter case, the addressing can be one out of 24 possible
modes. The SIB and Displacement bytes are necessary for some of these modes, and the imme-
diate bytes are required for opcodes that require immediates, that is, most arithmetic and move
instructions.

For example, an xor of the EAX register with the contents of a 32-bit word located at the memory
pointed to by RSI can be encoded in several different ways:

33 06: Simple indirect addressing;
33 46 00: Indirect addressing, 8-bit displacement;
33 86 00 00 00 00: Indirect addressing, 32-bit displacement.

Assemblers generally choose the shortest possible representation.

3. FAST SPARSE MATRIX-VECTOR MULTIPLICATION

Compressed Row Storage is one of the most common ways to represent (binary) sparse matrices.
In this representation, there are three arrays. One array contains the indices for the columns of
all nonzero entries in succession. Another one contains the starting positions of each row in the
previous array. The last one contains the values of the nonzero entries; in a binary matrix, this array is
not required.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

Figure 4. A typical Compressed Row Storage (CRS) matrix-vector multiplication implementation in C.

Figure 4 illustrates a simple implementation of sparse matrix-vector multiplication. Because
accesses to the in vector may be highly irregular, memory latency is often the bottleneck [13].
Many techniques have been proposed over the years, most notably register blocking, cache block-
ing, software pipelining, software prefetching, translation lookaside buffer caching, among others
[14, 20–22].

Our basic idea is to fully unroll a typical CRS implementation, for example, the one from Figure 4
and use the resulting straight-line code sequence as a representation for the matrix itself (when
applied to a vector).

Example 3.1
Consider, for example, the following 5 � 5 matrix:

A D

0
BBB@

0 0 1 0 1

1 0 1 1 0

0 0 0 0 1

1 0 0 0 0

0 1 1 1 0

1
CCCA :

The same linear map represented by A can alternatively be implemented as

A

0
BBB@

a

b

c

d

e

1
CCCA D

0
BBB@

c C e
aC c C d

e

a

b C c C d

1
CCCA :

One could simply convert the mapping into, say, C code, and let an optimizing compiler choose
the best combination of instructions and memory access patterns. As matrices grow, however, com-
pilers are unable to generate that volume of code in reasonable time (cf. [23]). As such, we must
do the compilation and optimization of the matrix ourselves. This section describes the various
approaches and improvements possible on the target (x86_64) architecture.

3.1. Approach A: baseline

Our initial approach converts this mapping to x86_64 code in the most straightforward way possi-
ble: convert the arithmetic operations of a regular CRS matrix-vector multiplication (cf. Figure 4) to
a straight-line function, callable from a compiled language such as C or FORTRAN. We use 32-bit
registers whenever possible, to avoid the REX.W prefix of full 64-bit operations, which would cost
1 extra byte per instruction. Additionally, we use the STOSD instruction, only 1 byte long, to store
the result of each row into the output vector.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S. NEVES AND F. ARAUJO

Figure 5. Straight-line program implementing the linear mapping represented by matrix A.

For an n�nmatrix with ! nonzero entries, this approach requires at most nC6! bytes of storage;
the standard CRS format with 32-bit indices requires 4nC 4! bytes. Figure 5 shows the x86_64
assembly code¶ of our initial approach.

3.2. Approach B: reducing code size

One observation we made was that there are three different instruction sizes for different displace-
ments. When there is no displacement (e.g., MOV EAX, [RSI]), the instruction requires 2 bytes.
When the displacement is between �128 and 127 (e.g., MOV EAX, [RSI+32]), the instruction
requires 3 bytes. Finally, for 32-bit displacements (e.g., MOV EAX, [RSI+12345678]), the
instruction requires 6 bytes. For example, in Figure 5, all but one access need 3 bytes, because the
associated input and output vectors fit perfectly within 256 bytes.

Our first improvement is to take advantage of the smaller encoding for Œ�128I 127� displacements
and try to create as many of them as possible. We do this by moving the RSI register forward
whenever there is a ‘burst’ of nonzero entries close together. Moving RSI costs 6 bytes—the savings
are 3 bytes per entry. Thus, we only advance RSI when there are at least three nonzero entries in a
256-byte interval. Because we are changing RSI, we must reset to its original value in the beginning
of each row: we do this using the 1-byte PUSH and POP instructions, to store and recover RSI,
respectively.

In the worst case, this improvement does not improve anything at all, leaving the code size at
nC 6! bytes. In the best case, where every nonzero entry is in a 256-byte neighborhood, we obtain
3nC 3! C 6

64
! bytes.

3.3. Approach C: register blocking

Register blocking is a technique already known from sparse linear algebra optimization [14] that
we employ quite literally. Instead of using simply one register and traversing the matrix row by
row, we use a number of registers B and traverse the matrix B rows at a time. Whenever two
elements of vector x are accessed by two or more rows in the same register block, only one memory
load is issued. This saves memory bandwidth, decreases code size, and increases instruction-level
parallelism. Plus, unlike register blocking in usual data formats (e.g., [14]), code register blocking
does not add fill overhead due to storing extra 0s to make the blocks dense.

¶Our converter outputs actual machine code, not assembly mnemonics; we show instead the commented assembly code
for readability purposes.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

Figure 6. Straight-line program for A using basic register blocking (B D 4).

We have implemented two variants of register blocking: one with block size 4 and another with
block size 12. The former only uses the registers available in the IA-32 instruction set (EAX, EBX,
ECX, and EDX—ESI and EDI are used for addressing, ESP for stack and EBP as a temporary vari-
able), guaranteeing that no REX prefix bytes are used. The latter uses all available general-purpose
registers in the x86_64 architecture (RAX–R15 except {RSI,RDI,RBP}), minus four registers used
for the vector addresses, stack, and a temporary variable. Figure 6 shows the assembly code for
matrix A with register blocking (B D 4).

To store row results, we still prefer to use the STOSD instruction. Because STOSD has the implicit
argument EAX for the value to save, we use the XCHG instruction, only 1 byte long, to load values
onto EAX, and STOSD to save them to the output vector (cf. Figure 6). Using XCHG coupled with
STOSD seems to be the shortest possible method to store the output vector elements, with every
other approach being at least 3 bytes long.

In the worst case, the B D 4 variant (applied to the base method of Section 3.1) uses 2n C 6!
bytes, and the B D 12 variant uses 2�4C3�9

13
nC 4�6C9�7

13
! bytes. In the best case, that is, when every

row has the same entries, we obtain 4nC 3nC 2! and 4nC 3nC 2�4C3�9
13

! bytes, for B D 4 and
B D 12, respectively.

3.4. Approach D: sorted register blocking

From the example in Figure 6, it is easy to see that the basic register blocking method of Section 3.3
is not performing optimally. There are needless duplicate loads of both [RSI + 16] and
[RSI + 8], because their column indexes do not coincide.

Instead of blindly converting the matrix operations as they appear on its CRS representation, one
can instead sort the order of operations by memory accesses. Because the CRS rows are sorted to
begin with, this is a very fast merge operation. This has no negative influence on code size, as it
is simply a reordering of instructions, but has several speed advantages: memory accesses become
optimal (up to block size), and there is an increased likelihood of entries within the same block
being less than 256 bytes apart. Figure 7 shows the assembly listing for the sorted register blocking
output of matrix A.

3.5. Approach E: uncached stores

Up until now, we have been employing the STOSD instruction to perform the memory stores of the
result of each row’s inner product with the input vector. STOSD, however, brings the whole cache
line corresponding to that memory location to cache and modifies it, possibly evicting input vector
values from cache.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S. NEVES AND F. ARAUJO

Figure 7. Straight-line program for A using sorted register blocking (B D 4).

Figure 8. Straight-line program implementing the linear mapping represented by matrix A, with nontemporal
stores.

To avoid cache pollution, we employ the SSE2 instruction MOVNTI. This instruction is one of sev-
eral nontemporal store operations provided by the SSE2 instruction set. Nontemporal instructions
give a hint to the processor that the stored data are not going to be used anytime soon and therefore
do not need to be brought to cache memory. When applied to the base code from Section 3.1, this
tweak slightly increases the code size to at most 4nC 6

64
nC 6! bytes. Figure 8 displays the code

for A when using MOVNTI.

3.6. Approach F: extended register blocking

In Section 3.3, we have introduced register blocking to improve memory locality and software par-
allelism of the multiplication, limiting ourselves to general-purpose registers. This need not be so:
using the SSE4.1 instruction set, one can use the PINSRD and PEXTRQ instructions to effectively
turn the 16 XMM registers into an addressable fast memory space to store a register block. This
increases the register block size by 64, to a maximum of 76 possible registers. Additionally, using the
MMX registers increases the potential block size to 92. Figure 9 illustrates the workings of extended
register blocking.

In Sandy Bridge processors, one can take register blocking even further. The AVX instruction set
extension introduces the 256-bit YMM registers, which are in reality an extension of XMM registers.
In fact, XMM registers in AVX are simply an alias to the lower 128 bits of YMM registers. This allows
us to duplicate the amount of registers, although it is less straightforward than in XMM registers: YMM

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

Figure 9. How to use the XMM register set as an array of addressable 32-bit integers.

registers do not permit easy extraction of words from their upper half. To get around this limitation,
we can use the VPERM2F128 instruction to swap the lower and upper halves of a YMM register, thus
enabling all words to be accessible via the PEXTRD and PINSRD instructions. This requires some
bookkeeping from the translator side.

This method has, however, a big disadvantage: code size. While (general-purpose) register block-
ing has no overhead and often even saves space, extended register blocking requires 12 bytes per
register block access, which is unacceptable. Applying this technique to the base case of Section 3.1
would put the best case scenario of the code size at nC18! and the worst case at nC21!; the YMM
trick may increase this figure to up to nC 27!. Thus, we do not use this method for large matrices.
In comparison, using the stack memory to store temporary elements would cost nC 12! bytes.

3.7. Approach G: memory prefetching

When one converts a sparse matrix into code, it becomes essentially unnecessary to try and prefetch
the matrix itself, as the processor’s hardware prefetcher (cf. Section 2) already takes care of code
prefetching. There is, however, still room for software prefetching when it comes to the input vector.
In particular, because we have exact knowledge of all memory accesses, we are able to prefetch
values that are far away and to prefetch the first value of a new row before the current one is finished.
The prefetching instructions (PREFETCHT0 for Intel and PREFETCH for AMD) are not short;
however, each useful prefetch instruction costs 7 bytes.

For such a prefetch instruction to be useful, it must necessarily avoid, or decrease the chance, of
an input vector cache miss. A simple policy, often used in CRS and CRS-variants, is to prefetch
input vector elements and indices that are to be used in future rows; there is no need to prefetch
indices in our case, as they’re embedded in code. Placing a prefetch instruction on every addition
operation, as is typical in many implementations (e.g., [24]), is clearly not practical: 7 extra bytes
per operation results in a matrix with possibly more than double the size, which would displace
more bandwidth from vector accesses to code fetching. We opted not to insert prefetch instructions.
With that said, depending on the target matrix structure, with some additional analysis of matrix
memory accesses, and coupled with a cache model approximating that of the host CPU, it may be
possible to insert a relatively small amount of prefetch instructions that have a significant impact in
overall performance.

3.8. Approach H: combinatorial optimization

Although algebraic methods to reduce operation count in (dense) binary matrices are an open prob-
lem and likely impossible [25], combinatorial approaches are known and are quite common [26, 27].
This raises the question: can we use such combinatorial methods to improve arithmetic operation
and memory access counts in sparse matrices?

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S. NEVES AND F. ARAUJO

In Section 3.3, we have already performed a simple form of combinatorial optimization, by omit-
ting the loading of repeated column entries within the same block. One could continue through this
route and search for common subexpressions that would reduce the operation count and code size.
The problem with this approach is threefold:

Combinatorial algorithms are slow: All combinatorial algorithms currently in use require at least
n2Co.1/ operations to improve operation counts by at most a .logn/2 factor [25–27]. In sparse
matrices, however, n2Co.1/ is the expected complexity to solve a full linear system!

Most combinatorial algorithms require temporary space: Most combinatorial algorithms, with the
exception of the fully in place method of Bernstein [27]||, require storing many temporary vari-
ables during runtime. Input partitioning**, for example, requires the computation of n2= log2 n
temporary sums; even adjusting for the sparsity of the target matrix, this is a prohibitive amount
of space.

Combinatorial algorithms exploit redundancy: Combinatorial ‘non-algebraic’ approaches to
matrix-vector multiplication exploit certain redundancies when matrices are understood as
graphs. In sparse matrices, redundancies are already partially eliminated by the representation:
only the useful nonzeros are stored. Further redundancies are few and far between, as there are
simply less possible combinations to explore.

Combinatorial methods may nevertheless be useful for matrices that have small dense subsets,
by minimizing the arithmetic operation count in those areas. In general, however, there seems to be
little benefit of such techniques on large sparse matrices.

3.9. Parallelization

Working on scientific problems, it is expected that we need to deal with very large matrices; this
exacerbates the need for parallel and distributed algorithms. Typical methods to parallelize sparse
matrix-vector multiplication divide the matrix into blocks, and process each block individually, with
minimal synchronization between them. There are many known heuristics to choose blocks in sparse
matrices, so as to minimize the total runtime [7]. These heuristics are compiler-agnostic: one can
divide the matrix in any desired way, before converting it to x86_64 code.

Synchronization between threads, in any of the partitioning schemes, can be improved by
using atomic instructions. In the case of the integers, F2, and the boolean semiring, one can
use the LOCK prefix to perform atomic additions to destination vectors, thus avoiding explicit
locks and their respective issues. For example, {add,xor,or}-ing a 32-bit register to a memory
location (say, the output vector) can be performed simply with the 3-byte instruction LOCK
{ADD,XOR,OR} [EDI], EAX. Note that, while the same instructions without the LOCK pre-
fix would have a � 6-cycle latency†† on Sandy Bridge, the latency grows to about 25 cycles
when the LOCK prefix is added. Furthermore, the LOCK prefix does prevent other cores from
accessing memory during its execution. Thus, although hardware support for atomic operations
is an asset, the usual contention considerations must be taken into account to achieve good
performance.

3.10. Summary

Table I summarizes the code sizes of the techniques we proposed in this section. To recap, n
is the number of rows in the matrix, and ! is its weight. All sizes after Approach A from
Section 3.1 refer to each technique implemented individually on top of this base case and not
cumulatively.

||The [27] method, however, destroys the input vector; this can be seen as a special kind of temporary storage.
**Also known as ‘Method of Four Russians’, following the names of its original authors [26]; it also has been attributed

to earlier work of Lupanov [28].
††This assumes the memory address in question already is loaded into L1 cache.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

Table I. Code sizes of the various approaches described
in Section 3.

Approach Best case Worst case

CRS 4nC 4! 4nC 4!
A nC 6! nC 6!
B 3nC 3:09! 5nC 6!
C .B D 4/ 4nC 2nC 2! 2nC 6!
C .B D 12/ 4nC 2:69nC 2! 2:69nC 6:69!
D .B D 4/ 4nC 2nC 2! 2nC 6!
D .B D 12/ 4nC 2:69nC 2! 2:69nC 6:69!
E 4:09nC 6! 4:09nC 6!
F nC 18! nC 21!

4. MATRICES IN OTHER RINGS

Up to this point, we focused on the ring of integers modulo 2, where addition is performed with
bitwise xor, and multiplication with bitwise and. This section describes some other rings where one
may also transform sparse matrix-vector multiplication into code.

4.1. Boolean semiring

The boolean semiring, where addition is a bitwise or, and multiplication is a bitwise and, is
extremely similar to the modulo 2 case, and every aspect of Section 3 applies here. The only dif-
ference is that one uses the or instruction in place of the xor; every size and performance aspect
remains unchanged (cf. Figure 10).

4.2. Floating-point reals

Floating-point is possibly the most common ring associated with matrix operations. Maintaining the
assumption of a binary matrix, we can use the x87 FLD, FADD, and FST instructions in place of the
MOV, XOR, and STOSD/MOVNTI instructions, as exemplified in Figure 11(a). Note that although
we focus on single-precision floating-point instructions here, every aspect carries over to double
precision trivially.

The code size of the x87 variant is similar to its modulo 2 counterpart but has a significant draw-
back: because of the stack-based nature of the x87 floating-point registers, it is required to use an
additional 2-byte instruction, FXCH, to be able to treat the 8 FPU registers as a register file (as
opposed to a stack). This limits the effectiveness of register blocking. Furthermore, because of the
lack of nontemporal store instructions on these registers, stores are always cached.

The alternative is to use the XMM register set and its associated instructions: MOVSS, ADDSS,
and so on. The drawback is that such instructions are longer, requiring 2 extra bytes per instruction

Figure 10. Straight-line program implementing the linear mapping represented by matrix A over the boolean
semiring.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S. NEVES AND F. ARAUJO

Figure 11. Straight-line program implementing the linear mapping represented by matrix A over single-
precision floating-point: (a)x87 instruction set and (b)SSE instruction set.

Figure 12. Sample reduction of ECX modulo 113 using three alternative techniques: (a) using a loop; (b)
using a DIV; and (c) using multiplication.

as mandatory prefixes (cf. Figure 11(b). Using XMM registers seems, however, preferable, because
x87 requires the use of the 2-byte FXCH instruction for all but the most basic of code generation
approaches.

Note that in the floating-point case, we still assume that the coefficients are in the ¹�1; 0; 1º
set. It is not practical to allow arbitrary floating-point coefficients, because the instruction set does
not allow immediate operands, and therefore, the coefficients would have to be stored in a similar
fashion as in CRS.

4.3. Integers modulo m

Matrices with coefficients in the ring of integers modulo some small prime, resulting from discrete
logarithm computations or multivariate equation system solvers such as XL are also fairly common.
Replacing the XOR instruction by ADD changes the ring to the integers modulo 232, while preserving
the size of the code. Reducing modulo any smaller power of 2 is trivially achieved by adding an
AND instruction at the end of each row.

However, when the modulus is not a power of 2, reducing the sums in each row is trickier. What
is the best way to reduce an integer modulo m? There are three options‡‡ (cf. Figure 12):

� Use a loop: subtract the modulus from the partial sum until it is smaller than the modulus;
� Use the DIV instruction;
� Use multiplication and shifting to perform division, as described by Granlund and

Montgomery [29].

Neither of these options is very attractive: looping can waste many cycles if the sum is much larger
than the modulus, DIV is a very slow and non-pipelined instruction, and clobbers RAX and RDX, and
dividing using multiplication requires a fairly large sequence of instructions, which involves tens of
bytes and also clobbers RAX and RDX.

‡‡For simplicity, we assume that non-power-of-2 moduli are odd and prime.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

The choice of what to do depends on the relative size of the modulus compared to the register
size. For example, if the modulus ism D 113 (7 bits), it is possible to perform around 225 additions
without having to reduce modulo m; in this case, we may prefer DIV or Granlund’s method once at
the end of each row. On the other hand, if the modulus is close to the register size (e.g. 28 bits), it
may be best to reduce the partial sum every 232�dlog2me � 1 additions using a loop. Alternatively,
one can instead increase the register size to 64 bits (at the cost of 1 extra byte per operation) and
reduce once per row as described earlier.

Let � be the average number of elements per row, and � D 232�dlog2me � 1 be the maximum
number of additions one can safely perform before an overflow. The overhead of modular reduction
per row for each of the three above methods is bounded by the following:

� 5 bytes when m is a power of 2;
� d4�=�e bytes for the loop;
� d6�=�e bytes for DIV;
� d16�=�e bytes for division using multiplication, when m < 128 and registers are 32 bits;
� d19�=�e bytes for division using multiplication, when m > 128 and registers are 32 bits.

Note that while the division by multiplication approach does have a large size footprint, it is the
fastest approach, and it is recommended for cases when reduction is only performed very few times.
The critical factor here is �=�, which acts as an overhead multiplier.

For example, a matrix where � D 60 and m D 113 has an effective overhead of d60=.232�7 �
1/e D 1, in which case an overhead of 16 bytes per row is acceptable. On the other hand, if m D
231 � 1, we have d60=.232�31 � 1/e D 60 extra reductions per row, which may end up dominating
code size. In this case, it is preferable to minimize overhead, by either using the loop approach,
or by increasing register size to 64 bits. The latter option increases every arithmetic operation by
1 byte, because of the REX prefix, but it is still shorter than performing all the necessary modular
reductions on a 32-bit register.

5. RESULTS AND DISCUSSION

To benchmark our code, we used a matrix obtained from a 512-bit number field sieve factoriza-
tion job. This matrix, large.crs, is 5; 426; 753 � 5; 426; 928 in size, with 370; 909; 586 nonzero
entries. Because of size concerns, we did not test the extended register blocking of Section 3.6,
because we did not have enough memory. The test machine contained an Intel Core i7 2630QM
CPU, using DDR3 RAM clocked at 1333 MHz.

We tested our CRS implementation in F2 (based on [24]) against five combinations of the
techniques of Section 3:

Combination 1: Approach A
Combination 2: Approach A + B
Combination 3: Approach A + B + D .B D 4/
Combination 4: Approach A + B + D .B D 12/
Combination 5: Approach A + B + D .B D 12/ + E

Our first test concerns our key performance figures: time (measured in clock cycles) and code
size. Code size is measured in bytes per nonzero matrix entry.

Table II lists those performance figures when measured for the large.crs matrix, roughly
1:5 GB in size when stored in CRS format. This matrix puts much pressure into every part of the
memory subsystem, and our simpler implementations fall very close to the CRS implementation.
As our methods improve, so does the performance of our code: register blocking reveals to be a
real asset, even when it increases the code size. It is also worth to point out that, while the regis-
ter blocked code is indeed slightly larger, it is made up of much smaller instructions than the naïve
(cf. Figure 7)—in average, the register blocked code (with RSI updates) generates 2 and 3 byte

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S. NEVES AND F. ARAUJO

Table II. Speeds (in clock cycles) and bytes per nonzero entry for the large.crs matrix.

Method CRS 1 2 3 4 5

Cycles / 1000 8,583,385 7,453,025 5,476,997 5,107,850 4,794,578 4,681,212
Bytes/nonzero 4.0245 6.0146 5.88905 5.63507 6.09096 6.13851

Table III. Comparison of cache misses between the CRS implementation and
Combination 5.

Method L1d L1i L2 L3

CRS 378,853,972 12,038 373,698,765 283,165,339
Combination 5 306,808,927 35,678,176 326,558,944 246,930,244

CRS, Compressed Row Storage.

Table IV. Speedup (over) and size increase (under) observed with Combination 5
against CRS, for varying dimension n and density d .

d

n 10�1 10�2 10�3 10�4 10�5 10�6

103
2.74 3.85 4.11 — — —
0.99 1.26 1.71 — — —

104
2.02 2.22 2.79 3.97 — —
0.98 1.14 1.73 1.91 — —

105
— 3.26 2.97 2.25 3.52 3.51
— 1.13 1.64 1.78 1.88 1.89

106
— — — 2.73 1.31 1.35
— — — 1.68 1.77 1.85

CRS, Compressed Row Storage.

instructions, the optimal size on the target architecture (cf Section 2.1). Further, it also provided
much more instruction-level parallelism, by running several independent rows, allowing the execu-
tion units to work while waiting for memory loads. Our best implementation runs in about 54% less
cycles than CRS, despite being 52% larger.

Another point of interest to us was the behavior of the cache memory. To measure it, we employed
the hardware counters available in most common processors and made easily available to us by the
Performance Application Programming Interface library [30]. Table III shows the cache behavior of
our best-behaving implementation and of the CRS stored implementation. The first thing we noticed
is how the CRS has almost no instruction cache misses. This is natural, because even an optimized
CRS implementation will generally have a small enough loop to fit within the processors’s loopback
buffer [18]. Our implementation has a relatively high number of instruction cache misses, which is
to be expected because of the large code size. Its other (L1d, L2, and L3) cache misses, however, are
all lower than CRS; the total sum of misses of our method saves roughly 120 million cache misses
overall, which results in its higher performance.

We have performed additional experiments, now with randomly generated matrices of various
dimensions and density. Table IV shows the speedup and the size increase, in relation to CRS, of
Combination 5.

The results obtained in Table IV are coherent with the previous measurements, and show that the
real-world matrix originally employed—with very large dimension and extremely high sparsity—is
actually the worst-case scenario for our method.

We have also performed experiments where we partitioned the matrix and ran it in all four cores
of our processor and measured the observed speedup. To minimize noise in the measurements, both
the hyper-threading and turbo boost CPU features were disabled. The results are in Table V. The

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

Table V. Speedup observed with Combination 5 against
itself when using four threads, for varying matrix dimen-

sions (n) and densities (d).

d

n 10�1 10�2 10�3 10�4 10�5 10�6

103 3.59 2.26 1.21 — — —
104 2.16 3.32 3.93 3.69 — —
105 — 1.99 2.32 2.36 2.83 3.53
106 — — — 3.23 3.44 3.30

Table VI. Matrix translation and execution timings for the
small.crs matrix.

Method CRS 1 2 3 4 5

Translation time — 0.461 0.450 0.920 0.950 0.995
Execution time 0.028 0.030 0.029 0.026 0.024 0.024

Table VII. Matrix translation and execution timings for the
large.crs matrix.

Method CRS 1 2 3 4 5

Translation time — 28.75 28.59 44.19 51.35 51.69
Execution time 4.291 3.726 2.738 2.553 2.397 2.340

partitioning scheme was naïve row partitioning—we are not benchmarking partitioning schemes
here—so there is room for improvement. We also did not employ the LOCK-based synchronization
described in Section 3.9 but used simple locking primitives instead. That said, the results, par-
ticularly for large matrices, are encouraging and suggest parallelization of our straight-line code
deserves further study.

Finally, it is important that the translation from CRS to straight-line program be reasonably fast—
if the translation takes longer than solving the linear system, it is hardly worth it—therefore, we
also measured the time required to translate the matrix into x86_64 code. For this test, we use
both the previous large.crsmatrix, and a smaller NFS-generated matrix, small.crs, which is
150; 615�150; 802 and has weight 14; 599; 768. The results are shown in Tables VI and VII. While
the translation time is higher than the execution time, it is worthwhile to preprocess the matrix for,
say, an iterative solver, where the expected number of matrix-vector multiplications is proportional
to the number of rows §§.

For example, using Method 5 to translate the matrix is roughly 35 times slower than a single CRS
matrix multiplication, as seen in Table VI. However, on a matrix of large dimension N , this is an
acceptable cost: the total wall time will be 35 �tMCN �

tM
s

, where tM is the time to multiply a matrix
in CRS, and s is the speedup obtained from the translation. For large enough matrices, such as in
our examples, this clearly results in a net speedup. The same observations apply to large.crs,
where the disparity between translation time and CRS time favors our approach even more.

It is also worth noting that our translation method scales essentially linearly with the matrix
weight, because it processes the matrix in similar fashion as a standard CRS multiplication. We can
see from Table VII that the large.crs matrix, while around 25 times heavier than small.crs,
has a translation time roughly 50 times higher. The factor of approximately 2 between perfect linear
scaling and reality is mainly attributable to the larger matrix size, which causes worse memory
performance (i.e., cache misses and page faults) during translation.

§§This is especially true for matrices coming from factorization and discrete logarithms, over some finite field. In real,
floating-point, matrices the average number of iterations can be much smaller, often in the range of tens or hundreds.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S. NEVES AND F. ARAUJO

6. CONCLUSION

In this article, we have studied the implications and consequences of fully converting a binary sparse
matrix to code. Our method takes advantage of the L1 instruction cache, and sorted register blocking
allied with nontemporal hints and careful size-coding allowed us to produce straight-line programs
representing the same linear map in relatively small space, and up to 4 times higher performance.

While most of our focus was on the arithmetic of F2 matrices for integer factorization, our ideas
and methods have broader applications, such as graph mining. Some of those matrices, although in
principle belonging to the real numbers, only have small entries, say, in the set {0,1,-1}. One can
use our methods to convert such matrices to code, replacing the XOR instruction by FADD/FSUB
or ADDPS/SUBPS or ADDPD/SUBPD, and the MOV instruction by FLD/FST or MOVSS or
MOVSD. Matrices over the integers modulom are also possible and feasible, by performing modular
reductions only when strictly necessary.

Fast linear algebra, despite decades of intense research, is once again a flourishing area, with
the advent of (massively) multi-core processors. We have performed some preliminary work on
parallelization, showing that there is still ground to cover to fully take advantage of the processor
and memory hierarchy in the parallel setting.

ACKNOWLEDGEMENTS

This work has been partially supported by the project PTDC/EIA-EIA/102212/2008, High-Performance
Computing over the Large-Scale Internet.

REFERENCES

1. Trefethen LN, Bau D. Numerical Linear Algebra. SIAM: Society for Industrial and Applied Mathematics:
Philadelphia, PA, 1997.

2. Lenstra AK, Lenstra Jr. HW, Manasse MS, Pollard JM. The number field sieve. In The Development of the Number
Field Sieve, vol. 1554, Lenstra AK, Lenstra Jr. HW (eds)., Lecture Notes in Mathematics. Springer-Verlag: Berlin,
1993; 11–42.

3. Montgomery PL. A block Lanczos algorithm for finding dependencies over GF(2). In Advances in Cryptology—
EUROCRYPT ’95 (Saint-Malo, 1995), vol. 921, Guillou LC, Quisquater JJ (eds)., Lecture Notes in Computer
Science. Springer-Verlag: Berlin, 1995; 106–120.

4. Wiedemann DH. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory 1986;
32:54–62.

5. Coppersmith D. Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Mathematics of
Computation 1994; 62:333–350.

6. Cvetkovic DM, Doob M, Sachs H. Spectra of Graphs (3rd edn). Johann Ambrosius Barth Verlag: Heidelberg-Leipzig,
1995.

7. Aoki K, Shimoyama T, Ueda H. Experiments on the linear algebra step in the number field sieve. In IWSEC,
vol. 4752, Miyaji A, Kikuchi H, Rannenberg K (eds)., Lecture Notes in Computer Science. Springer: Okinawa, Japan,
2007; 58–73.

8. Kleinjung T, Aoki K, Franke J, Lenstra AK, Thomé E, Bos JW, Gaudry P, Kruppa A, Montgomery PL, Osvik
DA, Te Riele H, Timofeev A, Zimmermann P. Factorization of a 768-bit RSA modulus. In Proceedings of the 30th
Annual Conference on Advances in Cryptology, CRYPTO’10. Springer-Verlag: Berlin, Heidelberg, 2010; 333–350.
Available from: http://portal.acm.org/citation.cfm?id=1881412.1881436 [Accessed on 20 January 2014].

9. Kleinjung T, Nussbaum L, Thomé E. Using a grid platform for solving large sparse linear systems over GF(2). 11th
ACM/IEEE International Conference on Grid Computing (Grid 2010), Brussels Belgium, 2010; 161–168. Available
from: http://hal.archives-ouvertes.fr/inria-00502899/PDF/grid.pdf [Accessed on 20 January 2014].

10. Courtois N, Klimov A, Patarin J, Shamir A. Efficient algorithms for solving overdefined systems of multivariate
polynomial equations. In Proceedings of the 19th International Conference on Theory and Application of Crypto-
graphic Techniques, EUROCRYPT’00. Springer-Verlag: Berlin, Heidelberg, 2000; 392–407. Available from: http://
dl.acm.org/citation.cfm?id=1756169.1756206 [Accessed on 20 January 2014].

11. Yang BY, Chen OCH, Bernstein DJ, Chen JM. Fast software encryption, Biryukov A (ed.). Springer-Verlag: Berlin,
Heidelberg, 2007; 290–308. Available from: http://dx.doi.org/10.1007/978-3-540-74619-5_19 [Accessed on 20
January 2014].

12. Cheng CM, Chou T, Niederhagen R, Yang BY. Solving quadratic equations with XL on parallel architectures. In
CHES, vol. 7428, Prouff E, Schaumont P (eds)., Lecture Notes in Computer Science. Springer: Leuven, Belgium,
2012; 356–373. Available from: http://dx.doi.org/10.1007/978-3-642-33027-8_21 [Accessed on 20 January 2014].

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://portal.acm.org/citation.cfm?id=1881412.1881436
http://hal.archives-ouvertes.fr/inria-00502899/PDF/grid.pdf
http://dl.acm.org/citation.cfm?id=1756169.1756206
http://dl.acm.org/citation.cfm?id=1756169.1756206
http://dx.doi.org/10.1007/978-3-540-74619-5_19
http://dx.doi.org/10.1007/978-3-642-33027-8_21

STRAIGHT-LINE PROGRAMS FOR FAST SPARSE MATRIX-VECTOR MULTIPLICATION

13. Vuduc R, Demmel JW, Yelick KA, Kamil S, Nishtala R, Lee B. Performance optimizations and bounds for sparse
matrix-vector multiply. Proc. ACM/IEEE Conf. Supercomputing (SC), Baltimore, MD, USA, 2002; 1–35. Available
from: http://portal.acm.org/citation.cfm?id=762822 [Accessed on 20 January 2014].

14. Im EJ. Optimizing the performance of sparse matrix-vector multiplication. Ph.D. Thesis, EECS Department, Uni-
versity of California, Berkeley, 2000. Available from: http://www.eecs.berkeley.edu/Pubs/TechRpts/2000/5556.html
[Accessed on 20 January 2014].

15. Buluç A, Fineman JT, Frigo M, Gilbert JR, Leiserson CE. Parallel sparse matrix-vector and matrix-transpose-vector
multiplication using compressed sparse blocks. In Proceedings of the Twenty-First Annual Symposium on Parallelism
in Algorithms and Architectures, SPAA ’09. ACM: New York, NY, USA, 2009; 233–244. Available from: http://doi.
acm.org/10.1145/1583991.1584053 [Accessed on 20 January 2014].

16. Pothen A. Graph partitioning algorithms with applications to scientific computing. Technical Report, Old Dominion
University: Norfolk, VA, USA, 1997.

17. Im EJ, Yelick KA. Optimizing sparse matrix computations for register reuse in SPARSITY. In Proceedings of the
International Conference on Computational Sciences-Part I, ICCS ’01. Springer-Verlag: London, UK, UK, 2001;
127–136. Available from: http://portal.acm.org/citation.cfm?id=645455.653756 [Accessed on 20 January 2014].

18. Fog A. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly programmers and
compiler makers, 2012. Available from:http://www.agner.org/optimize/#manuals [Accessed on 20 January 2014].

19. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C: Instruction
Set Reference. 325383-044, 2013. Available from: http://download.intel.com/products/processor/manual/325383.pdf
[Accessed on 20 January 2014].

20. Vuduc RW. Automatic performance tuning of sparse matrix kernels. Ph.D. Thesis, University of California, Berkeley,
December 2003.

21. Im EJ, Yelick KA, Vuduc R. SPARSITY: framework for optimizing sparse matrix-vector multiply. International
Journal of High Performance Computing Applications February 2004; 18(1):135–158.

22. Vuduc R, Demmel JW, Yelick KA. OSKI: a library of automatically tuned sparse matrix kernels. In Proceedings
of SciDAC 2005, Journal of Physics: Conference Series. Institute of Physics Publishing: San Francisco, CA, USA,
2005; 521–530.

23. Boyer B, Dumas JG, Giorgi P. Exact sparse matrix-vector multiplication on GPU’s and multicore architectures.
In Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO ’10. ACM:
New York, NY, USA, 2010; 80–88. Available from: http://doi.acm.org/10.1145/1837210.1837224 [Accessed on 20
January 2014].

24. Stach P. Optimizations to NFS Linear Algebra. CADO Workshop on Integer Factorization, Villers-lès-Nancy, France,
2008. Available from: http://cado.gforge.inria.fr/workshop/abstracts.html [Accessed on 20 January 2014].

25. Williams R. Matrix-vector multiplication in sub-quadratic time: (some preprocessing required). In SODA, Bansal N,
Pruhs K, Stein C (eds). SIAM: New Orleans, Louisiana, USA, 2007; 995–1001.

26. Arlazarov VL, Dinic EA, Kronrod MA, Faradzev IA. On economical construction of the transitive closure of an
oriented graph. Soviet Mathematics Doklady 1970; 11:1209–1210.

27. Bernstein DJ. Optimizing linear maps modulo 2. Workshop Record of SPEED-CC: Software Performance Enhance-
ment for Encryption and Decryption and Cryptographic Compilers, Berlin, Germany, 2009; 3–19.

28. Lupanov OB. On rectifier and contact-rectifier circuits. Doklady Akademii Nauk SSSR 1956; 111:1171–1174.
29. Granlund T, Montgomery PL. Division by Invariant Integers using Multiplication. In PLDI, Sarkar V, Ryder BG,

Soffa ML (eds). ACM: Orlando, Florida, USA, 1994; 61–72. Available from: http://doi.acm.org/10.1145/178243.
178249 [Accessed on 20 January 2014].

30. Browne S, Dongarra J, Garner N, Ho G, Mucci P. A portable programming interface for performance evaluation on
modern processors. International Journal of High Performance Computing Applications August 2000; 14:189–204.
Available from: http://portal.acm.org/citation.cfm?id=1057150.1057156 [Accessed on 20 January 2014].

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://portal.acm.org/citation.cfm?id=762822
http://www.eecs.berkeley.edu/Pubs/TechRpts/2000/5556.html
http://doi.acm.org/10.1145/1583991.1584053
http://doi.acm.org/10.1145/1583991.1584053
http://portal.acm.org/citation.cfm?id=645455.653756
http://www.agner.org/optimize/#manuals
http://download.intel.com/products/processor/manual/325383.pdf
http://doi.acm.org/10.1145/1837210.1837224
http://cado.gforge.inria.fr/workshop/abstracts.html
http://doi.acm.org/10.1145/178243.178249
http://doi.acm.org/10.1145/178243.178249
http://portal.acm.org/citation.cfm?id=1057150.1057156

	Straight-line programs for fast sparse matrix-vector multiplication
	SUMMARY
	Introduction
	Target architecture
	Pipeline
	Memory system
	Instruction encoding

	Fast sparse matrix-vector multiplication
	Approach A: baseline
	Approach B: reducing code size
	Approach C: register blocking
	Approach D: sorted register blocking
	Approach E: uncached stores
	Approach F: extended register blocking
	Approach G: memory prefetching
	Approach H: combinatorial optimization
	Parallelization
	Summary

	Matrices in other rings
	Boolean semiring
	Floating-point reals
	Integers modulo m

	Results and discussion
	Conclusion
	REFERENCES

