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Abstract. Fault-tolerance is vital for dependable distributed applications that can deliver
service, even in the presence of faults. Over the last few decades, above all protocols proposed
to offer reliability and fault-tolerance, TCP grew to become one of the cornerstones of the
Internet. However, despite emulating reliable communication in distributed environments,
TCP does not handle connection failures when the connectivity is lost for some time, even
if both endpoints are still running. When this occurs, developers must rollback the peers
to some coherent state, many times with error-prone, ad hoc, or custom application-level
solutions.
In this report, we refine the Acceptor-Connector design pattern to tackle the TCP unreli-
ability problem. The pattern decouples the failure-related processing from the connection
and service processing, efficiently handling different connections and their possible crashes
concurrently, thereby yielding more reusable, extensible, and efficient distributed communi-
cation. The solution we propose incorporates proven multi-threaded solutions and a buffering
scheme that discards the need for an application-layer acknowledgment scheme. This simpli-
fies the development of reliable connection-oriented applications using the ubiquitous TCP
protocol.

1 Introduction

The growing importance of the Internet in people’s life and businesses, including e-commerce,
financial services, health care, government, and entertainment, increases the need for large-scale
dependable distributed applications. At the heart of most distributed applications, especially of
those requiring reliability, we find the Transmission Control Protocol (TCP) [1]. The popularity
of TCP is unquestionable: any major operating system provides a TCP/IP communication stack
with Application Programming Interfaces (APIs) for a large number of programming languages.
At first glance, TCP looks as a simple and powerful solution to overcome network unreliability,
which is true to a certain point. However, if connectivity is lost for a period of time, the TCP
connection breaks, making any kind of recovery very difficult for the endpoints. In many programs
and protocols, such as FTP [2], SSH [3], TLS [4] or the X Windows System [5], it would be
worthwhile to keep the interaction alive.

Although many solutions for reliable communication over faulty channels exist in the literature,
most of them focus on replication schemes resorting to additional configuration and hardware.
The problem with all these solutions is that they either try to replace TCP or require special
software or hardware that may not be readily available or mature for deployment in all platforms
and languages. In fact, the number of solutions available demonstrates the difficulty of ensuring
reliable communication using TCP. The asynchrony and unreliability of the network concur to
complicate a timely detection of message losses. For example, one peer application may send
many messages unwitting that they are not reaching the peer endpoint. If the API ever returns
an error notification, the application will be unable to tell which write operations did or did not
get through the channel.

One possible approach would be to use a session layer to buffer TCP messages and retransmit
them as necessary [6]. This however, incurs in traffic and delay overheads, besides forcing the
programmer to resort to a non-TCP API. Other middleware approaches may also serve a similar
purpose, by providing extra layers over TCP, but they share the same overhead and non-TCP



API shortcomings. Some solutions try to keep the TCP API, by using special hardware or soft-
ware layers that somehow intercept the TCP communication. But, besides requiring additional
components and/or configurations, these have the questionable side-effect of changing the TCP
semantics for oblivious applications.

In this report we specifically aim to tolerate TCP connection crashes using the standard TCP
API. We argue that TCP might be the protocol of choice for many developers, because it is deeply
well-known, it exists in nearly all platforms, and it can ensure high performance, when compared
to higher-level solutions.

To deal with the complexity of this task, we propose a design pattern called “Fault-Tolerant
Multi-Threaded Acceptor-Connector” (ftmtac) that tolerates TCP connection crashes in large-
scale connection-based applications. Over the years, several reusable design patterns, including
the Acceptor-Connector, the Publisher-Subscriber, the Leader-Follower, the Reactor, the Proac-
tor, and so on [7] emerged to simplify distributed programming. For example, to provide multi-
threading to the “Acceptor-Connector” design pattern (ac), we may combine it with the Leader-
Follower, to create the “Multi-Threaded Acceptor-Connector” (mtac) design pattern. However,
neither this, nor any other pattern we are aware of, manages to provide the fault-tolerance we seek
on top of the TCP transport layer, despite the important merits of such option.

A crucial piece of our solution is the Stream Buffer, a circular buffer that is simple to im-
plement and replaces a layer of acknowledgments and retransmissions over TCP [8]. Apart from
reconnections, this buffer discards retransmissions, because it manages to store all the data po-
tentially in transit between the peers. With the help of Stream Buffer, the ftmtac pattern lets
developers write their own fault-tolerant large-scale client-server applications from scratch, using
standard approaches like multi-threading and Java NIO or C selects. The ftmtac extends the
Acceptor-Connector [9] with a few additional components, including the Connection Handler, the
Stream Buffer, the Connection Set, and the Thread Set. A Connection Handler implements
the actions to take once the connection crashes. Each Connection Handler owns one Stream
Buffer. The Connection Set keeps the existing connections and enables their replacement if nec-
essary. The Thread Set provides a pool of threads to the application to be used whenever a new
event occurs (e.g., a new request).

We experimentally demonstrate the validity of our approach. Adding fault-tolerance to the
client-server communication requires twice the buffering space, but has negligible overhead in
performance, requiring little more than memory copies at send time. This, we believe, is a low
price to pay for fault-tolerance. To lower the barrier for developers, we wrote the multi-threaded
acceptor-connector design pattern in Java and made it publicly available for download [10].

We organize the report as follows: in Section 2 we review the related literature. In Section 3,
we describe the Multi-Threaded Acceptor-Connector design pattern, then we proceed to present
our own fault-tolerant solution. Section 4 demonstrate the implementation of the pattern. In the
Section 5 we demonstrate the performance of the pattern. Finally we conclude the report.

2 Background

Tolerating network faults is of paramount importance for large-scale highly available distributed
systems. If it is true that TCP overcomes problems like packet losses, corruption or reordering,
many other problems lack general solutions to this day, partially because they are outside the
scope of the transport layer. Given the importance of the problem, many researchers have came
up with different types of fault-tolerant solutions. Here, we review a number of these approaches
and divide them into transport-layer, session-layer and application-layer. Our own proposal fits in
the last category.

Starting from the transport layer, one of the many protocols that emerged in the last decades
was the Stream Control Transmission Protocol (SCTP) [11]. SCTP explores multiple network
interfaces and alternative paths between peers to provide redundancy, thus tolerating network
faults and increasing throughput, namely in wireless environments. However, since SCTP is not
compatible with TCP, Barre et al. proposed Multipath TCP [12], a protocol that works with the
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standard TCP sockets API. However, since transport level connections may still fail in both SCTP
and Multipath TCP, the problem of resuming connections after a failure persists. This makes us
believe that these approaches are orthogonal to the solution we propose in this report, as we may
use a similar principle for SCTP or Multipath TCP.

Other researchers propose session-layer solutions, with an extra layer of buffering and retrans-
missions invisible to the application. Usually authors strongly subscribe to the point of view that
TCP cannot be changed and try to insert this layer between the sockets API and TCP itself, for
the sake of compatibility. This is the case of Robust Socket (RSocket) [13], which leaves the stan-
dard Java TCP interface untouched and uses a UDP connection for acknowledgement. A slightly
different case is the work [14], but again, no changes are required on the client side or server’s
source code, as all additional layers are hidden from the application. Rocks [8] also leaves the API
untouched, but intercepts calls to keep data sent in a buffer. This buffer is only necessary when
connections fail. We borrow this idea for our Stream Buffer. This buffer lets us achieve reliability,
without using any additional layer of acknowledgment, nor hidden in some session layer, neither
explicit in the application layer. Senders just need to keep a copy of their data in the buffer, to
enable connection recovery after crashes. The difference between these solutions and our pattern
is that we do not hide the buffers, but make them explicit to the application layer. Hence, our
solution works with any TCP/IP stack.

Some extremely popular solutions work on the application layer, like our own. This is the case of
Sun’s Remote Procedure Calls [15], Java Remote Method Invocation (RMI) [16], CORBA [17], or
even HTTP [18]. However, they fundamentally differ from our proposal in two aspects: they expose
the server as a set of remote functions and they create a layer over TCP (or UDP), thus narrowing
their scope to specific languages or platforms. Hence, despite being widely used, they cannot reach
the same level of availability and adoption that standard TCP sockets still enjoy to this day. The
settings where developers can apply our solution are different from the ones we find for the former
approaches, not only in the technology, as we do not add another layer, but also because these
serve for applications with strict request-response interactions. Our design pattern also applies
to cases where interaction is absent for long periods: e.g., to transfer large contents, such as a
file, screen contents, or other multimedia streams. In fact, our design pattern leaves the flexibility
and ubiquity of sockets untouched. Other less well-known solutions like ZeroMQ [19] provide an
approach based on standard distributed interaction patterns that go beyond the request-response,
but these solutions are still far less popular than plain TCP.

One should notice that our work also differs in a fundamental way from application-level so-
lutions that aim to tolerate endpoint crashes. This is not our goal, as we only tolerate network
crashes. Such solutions are more complicated, often requiring replication of components, typically
on the server. For example, HydraNet-FT [20] replicates services across an internetwork and pro-
vides the view of a single, fault-tolerant service. It uses TCP with a few modifications on the server
side. We can also find related solutions in ST-TCP [21], an extension of TCP to tolerate server
faults. In MI_TCP [22] servers of a cluster write a checkpoint of the TCP connection state, to
enable the TCP connection to migrate to another server in the cluster.

We are not aware of any other design pattern that recovers from TCP crashes, because previous
patterns simply try to provide client-server communication in fault-less scenarios. Nevertheless,
we base our work on some of these patterns, namely on the Acceptor-Connector [9], which tries to
decrease the design complexity of connection-oriented distributed applications, by decoupling event
dispatching from connection set up and service handling. Technologies like the C I/O multiplexing
(as in the select() function call) or the Java NIO API [23] directly support this design option.
Multi-threaded designs, such as [24] emerged to respond to the needs of servers with many clients.
In our solution we adopt the Leader-Follower design pattern [25] that further refines Acceptor-
Connector by dispatching events to a fixed number of threads.

3 Multi-Threaded Fault-Tolerant Acceptor-Connector Pattern

The Acceptor-Connector design pattern (refer to Figure 1) includes an Acceptor, a Connector, a
Transport Handle, a Service Handler, and a Dispatcher. In this pattern, the client asks the
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Fig. 1. Acceptor-Connector design pattern

Connector to set up a connection to the remote server, which accepts it using the Acceptor. To
process data exchanged, both, Connector and Acceptor, initialize Service Handlers. The actual
operations of reading and writing data are in charge of the Transport Handle. Since writing to
and reading from the Transport Handle might block a process with more than one connection, the
Dispatcher multiplexes several connections, thus providing a single blocking point for the client
or server application, while waiting for operations on several Transport Handles, Acceptors, or
Connectors to complete. When the resource is ready, the Dispatcher notifies the appropriate
component.

Despite being extremely common, this design pattern has a number of drawbacks from the
scalability and reliability points of view. However, many applications nowadays are not low-scale,
and need to handle a large number of concurrent connections. For example, in a multi-tier sys-
tem, the front-end communication servers receive requests (maybe arriving simultaneously from
hundreds or thousands of remote clients) and forward them for processing to back-end application
servers. These, in turn, may forward some requests to the back-end database (or file) servers. To
take advantage of this decoupled multi-tier design, receiving requests could be done simultaneously
while processing other requests. Moreover, the requests received from different connections could
also be handled concurrently. In addition, in the case of TCP/IP, the Transport Handle, which
is a TCP socket, may fail, leaving both endpoints in the middle of their interaction.

We added several components to the original Acceptor-Connector design, which allow: 1) ef-
ficient multi-threading for large-scale applications, and 2) recovery from connection crashes. In
the proposed design, the failure handling is decoupled from the main functionalities of connection
establishment and service handling. Our design should include the following features:

– it should keep the possibility of adding new types of services, new service implementations,
and new communication protocols, without affecting the existing connection establishment
and service initialization;
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– it should efficiently handle a large number of connections;
– it should decouple failure handling from service handling;
– it should enable to decouple the failure handling processes of different connections.

To achieve these objectives, we resort in part to existing multi-threading solutions, but propose
our own approach for fault-tolerance. In this section we start by refining the Acceptor-Connector
design pattern, to address the scalability issues.

3.1 Support of Multi-threading in Acceptor-Connector Design Pattern

A common strategy to support concurrency is to use multiple threads, assigning one thread for each
incoming connection. The shortcoming of this option emerges when the number of connections is
very high, thus requiring a large number of threads and a considerable consumption of resources.
To limit the number of threads, one may use a thread set. The idea is to assign threads from the
set to new connections, instead of creating new ones. When the connection terminates, the thread
returns to the set and waits for another connection assignment. The association between threads
and connections in this design solution is bounded. With this form of association, new connections
may have to stay on hold until older connections finish. Furthermore, some of the threads may not
have events to process for some periods of time, thus contributing to degrade the performance of
the server.

The Leader-Follower design pattern [25] does not present these disadvantages. In this pattern,
the service handlers are assigned to the threads only when an event occurs on their transport han-
dle. When the event processing finishes, the thread rejoins the set. We have refined the Acceptor-
Connector design pattern by adding this design solution (refer to Figure 2). In this design, only
one thread from the Thread Set (the leader), is allowed to wait for an event. Meanwhile, other
threads (the followers) can queue up waiting their turn to become the leader. As soon as the
Dispatcher assigns a leader thread to an event, it promotes a follower thread to become the new
leader. At this point, the former leader and the new leader thread can execute concurrently. In this
design, association of threads to services is unbounded, which means that any thread can process
any event that occurs on any Transport Handle.

Component Interaction Figure 3 shows the interactions between the different Multi-Threaded
Acceptor-Connector components. To simplify the description of this interaction, we divide it into
three steps: from the initialization to the connection, from the connection to the data exchange,
and, finally, the data exchange.

Phase 1: Initialization of the Connection
The server owns one Dispatcher and initiates it by calling the method open(). It also owns one
Thread Set with a limited number of threads. To receive connections, the server can create one
(or more) Acceptor(s) that will listen to one (or more) port(s). When an Acceptor is initialized,
a passive-mode Transport Handle is created and bound to a network address. The Acceptor
registers this handle in the Dispatcher and attaches itself to the passive handle using the meth-
ods register() and attach() respectively. Then, the Dispatcher waits for new events on the
previously registered passive handles, by calling the method select(). On the other end of the
channel, a client starts a connection by calling the Connector’s connect() method. This method
blocks the thread of control, until the connection completes synchronously. When a new connec-
tion event arrives, the Dispatcher does a non-blocking invocation of the accept() method on the
appropriate Acceptor (non-blocking invocations are shown in the figures by arrows with white
head).

Phase 2: Initialization of Connection and Service Handler
On the client side, the Connector completes the initialization phase, by calling the complete()
method. This method activates the Service Handler by passing the Transport Handle as a pa-
rameter of the method activate(). On the server side, after a connection request is accepted, the
Acceptor initializes and activates the Service Handler which registers the Transport Handle
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Fig. 2. Multi-Threaded Acceptor-Connector design pattern

in the Dispatcher and attaches itself to the handle, again, through the method register() and
attach() respectively.

At this point, a new handle (identified by h in the figure) exists on both sides.
Phase 3: Service Processing

Then the client and the server start to exchange data. To perform the write() and read()
operations, the client’s Service Handler will typically use the Transport Handle directly, in-
stead of using the Dispatcher1. On the other hand, the server’s Service Handler waits for the
Dispatcher to call it back for new events. To receive these events, the Dispatcher invokes the
read() method of the selected Transport Handle in a non-blocking manner. Then, the event is
given to the appropriate Service Handler, and the leader thread is assigned to handle the event
and process the request. A new thread in the thread set is promoted as the leader, to wait for the
next event. The write() operation is accomplished directly through the Transport Handle.

3.2 Fault-Tolerant Multi-Threaded Acceptor-Connector Design Pattern

To create a fault-tolerant multi-threaded design, we refined the Multi-Threaded Acceptor-Connector
pattern explained in Section 3.1, by adding the following extra components, which enable recov-
ery from connection failures: the Stream Buffer, the Connection Handler, and the Connection

1 Although it could work as the server, the client may allow itself to block in read() and write()

operations, because it is usually much simpler.
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Set (refer to Figure 4). In this section, we explain these components, as well as the collaborations
between them.

Stream Buffer When a Transport Handle, like a TCP socket, fails, the connection state, including
the sequence number and the number of bytes sent or received, is lost, because operating systems
usually lack standard means to provide the contents or number of bytes available in internal TCP
buffers. Therefore, to recover this information, we need to implement our own layer of buffering
over TCP. To avoid duplicate retransmissions and acknowledgments, we resort to the Stream
Buffer, which is based on an idea of Zandy and Miller [8]. To explain how this works, we depict
three buffers in Figure 5: sender application, sender TCP and receiver TCP. The receiver got m

bytes so far, whereas the sender has a total of n bytes in the buffer. Since the contents of both
TCP buffers disappear on reconnection, the receiver needs to send the value m, whereas the sender
must resend the last n � m bytes it has in the buffer (the blue and red parts in the figure, the
green part is already on the receiver side).

We could limit the size of the application send buffer if we knew that, say, k bytes were read by
the receiver, to delete these k bytes from the sender buffer. Assume that the size of the underlying
TCP send buffer is s bytes, whereas the TCP receive buffer of the receiver has r bytes. Let b = s+r.
If the sender writes w > b bytes to the TCP socket, we know that the receiver got at least w � b

bytes2. This means that the sender only needs to keep the last b = s + r sent bytes in a circular
buffer, and may overwrite its data older than b bytes. Interestingly, we can avoid any modulus

2 For example, assume that b = 20 bytes. If the sender wrote 21 bytes to the TCP socket, at least 1 byte
got through to the receiver application.
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Fig. 4. Fault-Tolerant Multi-Threaded Acceptor-Connector design pattern

operation, by using two’s complement arithmetic over standard 32 or 64-bit counters that keep the
sent and received bytes on each side, for buffer sizes strictly smaller than 232 and 264 respectively3.

Connection Handler To accomplish the recovery-purpose operations transparently from the
Service Handler, we added the Connection Handler component to our design. Each Connection
Handler owns one Stream Buffer and implements the actions necessary to establish a connection
for the first time and also after a failure, including reconnecting and resending the lost data. The
connection establishment process is different on the client and server sides. Even when a connec-
tion crashes, the initiative to reconnect always belongs to the client’s Connection Handler, due
to NAT schemes or firewalls. Thus, the operations of the Connection Handler need to be done
differently on the Connector (or client) and Acceptor sides (or server). For this reason, we added
two concrete Connection Handlers in the design: a Client Connection Handler and a Server
Connection Handler.

To simplify the reconnection, each fault-tolerant connection has a unique identifier. Refer to
Figure 6. Once a reconnection occurs, the client sends this identifier and the number of bytes it
received up to the disconnection. The server replies with a similar message. Finally, the client and
server send the buffered data that the other peer did not receive due to the connection failure.
Setting up a new connection is slightly simpler, because peers do not exchange buffered data,
only of the sizes of the send and receive buffers of the Transport Handle. In this case, the client
sets the identifier to 0, and the server generates a new immutable identifier for the fault-tolerant
connection in the response.

3 Note that apart from these limits, the buffers can have arbitrary sizes, according to the sender plus
receiver TCP buffer sizes.
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Connection Set On the server side, we use a new component, named Connection Set, to replace
a failed connection with a new one. To do so, we need to keep the information (i.e., the identifiers)
of the connections. Thus, once a new connection is established and a new Connection Handler is
created, its identifier is inserted into the Connection Set. This information is removed from the
set when the connection is closed.

This Connection Set allows a Connection Handler, whose connection is failed, to wait for a
new one by invoking the method takeNewConnection(). Once this method is invoked, the calling
thread blocks until a new handle is inserted, or a timer goes off. Once this thread is released,
information of the failed handle is removed from the set.

The method releaseFailedConnection() of the Connection Set allows new Connection
Handlers, which are created for a failed connection during the recovery process, to deliver the new
handle to the older Connection Handlers still waiting for reconnection. Hence, the main purpose
of the Connection Set is to synchronize threads upon connection failures and reconnections.

Interactions between the New Fault-Tolerant Components As we did in the previous
section, we divide the interactions between the new components into different phases, considering
two main scenarios: a failure-free scenario (Figure 7) and a faulty scenario (Figure 8).

Phase 1: Initialization of the Connection
In general, each server owns one Dispatcher, one Thread Set and one Connection Set. When-
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ever a server starts running, it creates a Thread Set, with a given size. Next, it initializes the
Dispatcher, by calling its method open(). Figure 7 shows these early steps as well as all inter-
actions between the components. We omit the description of the first phase, because it does not
change.

Phase 2: Connection and Service Handler Initialization
Since FTMTAC uses a few more components, like the Connection Handler, to tolerate connec-
tion failures, this phase must change accordingly. The client Connector completes the connection
process, by creating a Connection Handler and passing it to the Service Handler, by calling
the method activate(). On the server side, when the connection is ready, the Acceptor creates a
new Connection Handler, which inserts its own unique identifier into the Connection Set. This
identifier is only removed from the Connection Set when the Service Handler is stopped and
the Connection Handler is closed, i.e., when the server considers the interaction to be definitely
finished. Once the Connection Handlers are initialized, they engage in the handshake as we de-
scribed before (the gray part of the figure). During the handshake, a Stream Buffer with the
necessary size is created in both Connection Handlers.

Phase 3: Service Processing
A major difference in this phase comes from the need to keep track of the data exchanged so far.
Both sides save the sent data in the Stream Buffer through the Connection Handlers, by calling
the method safeSend(). They also keep the number of bytes read in the Connection Handler,
by calling the method addNumOfReadBytes(). The methods safeSend() and safeReceive() take
care of most operations involved here: together they send and receive the data, they save the data
sent, and keep the number of bytes sent and received. Thus the Service Handlers use safeSend()
and safeReceive() methods to safely write and read data through the Transport Handles.

As before, client and server usually work asymmetrically. While the client’s Service Handler
reads the data messages, by invoking the method read() of the Transport Handle, the server’s
Service Handler waits to receive Dispatcher events.

Phase 4: Failure Handling
Figure 8 presents failure handling details (dashed arrows represent the return of the invoca-

tions). Upon failure, the client’s Service Handler invokes the Connection Handler for recon-
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Fig. 8. Interactions between the components of Fault-Tolerant Multi-Threaded Acceptor-Connector design
pattern after a failure occurs

nection. The client repeatedly tries to reconnect during a limited, but configurable time (i.e
MAX_RECONN_TIME). The server checks the Connection Set for a new handle, and sets a time-
out to wait if there is no new handle in the set4. If the timeout expires, an exception (i.e.
ReconnectionException) is returned, allowing the server to delete all connection resources, turn-
ing reconnection impossible past this point.

In case the client’s request for reconnection comes after the server’s reconnection timeout, the
handshake is never completed, and, after the client’s own timeout a ReconnectionException is
raised on the client. Both client and server timeouts might be determined by developers using the
method setMaxReconnTime().

If the reconnection is successful, the Connector returns the new handle to the Connection
Handler. Then, the Connection Handler performs a new handshake with the server. On the
server side, when the connection is accepted, a new Connection Handler is created. When the
Connection Handler receives the control messages from the client, it identifies the connection as
a reconnection, and invokes the releaseFailedConnection() of the Connection Set giving it
the new handler. The Connection Set returns the new handle to the Connection Handler (that
was waiting for this handle after the failure), which updates it and finishes the handshake. Then
the new handle is returned to the Service Handler, who registers it in the Dispatcher. From
this point on, the connection is set and peers can resume their interaction.

4 Implementation Of the Design Pattern

In this section we illustrate the implementation and utilization of our design pattern. We have
implemented the Fault-Tolerant Multi-Threaded Acceptor-Connector (ftmtac) design pattern for
Java TCP. We made the source code of this design pattern available for download [10]. We also
implemented the related Multi-Threaded Acceptor-Connector (mtac) and the plain Acceptor-
Connector (ac) patterns. We considered a scenario with multiple clients, each setting up one
connection to a multi-threaded server application, which uses a Dispatcher and a Thread Set to
handle these multiple connections.

4 One should notice that the server may detect the crash later than the client, which may have reconnected
already.
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4.1 Connection Establishment

To identify the server side of the connection, we need an IP address and a port number or a range
of ports. In the constructor of our example, the server creates a Thread Set with 100 threads
and a Dispatcher. The Dispatcher takes care of existing data streams and new connections,
redirecting them to the appropriate Connection Handler or Acceptor, respectively. Depending
on the number of the ports, one or more Acceptors could be initialized. In this example we use
only one port. The Server must pass the name of the class implementing the server handler to
the Acceptor, to let it know how to initialize the handler. One should notice that passing a string
with the name, easily allows the Acceptor to later initialize as many objects as it needs. Passing a
new instance of an object by doing new ServerServiceHandler() would not be an option here,
because the Acceptor needs one new ServerServiceHandler() per connection.

public class Server {
int port = 9000;
// Server Constructor
public Server() throws IOException {
new ThreadSet(100);
new Dispatcher();
new Acceptor(port, "ServerServiceHandler");

}
}

On the other endpoint, clients typically do not need a Dispatcher, because they only manage
one or two connections. For this reason, in our example, we simply invoke the static method
connect() of the Connector, by passing the network address of the server and an instance of a
Client Service Handler for further activation.

public class Client {
// Client Constructor
public Client() throws UnknownHostException, IOException {
Connector.connect(server, port, new ClientServiceHandler());

}
}

The Connector creates a new connection, by initializing the Transport Handle with a connec-
tion to the server. Then, the Connector calls the complete() method to activate the Service
Handler, by passing the Client Connection Handler created before.

public class Connector {
public static void connect(String server, int port, ServiceHandler sh) throws

UnknownHostException, IOException {
TransportHandle handle = new TransportHandle(new Socket(server, port));
complete(sh,handle);

}
// This method is used to activate the service handler.
private static void complete(ServiceHandler sh, TransportHandle handle) throws IOException{
ClientConnectionHandler ch = new ClientConnectionHandler(handle);
sh.activate(ch);

}
}

Compared to the Connector, the Acceptor is more complicated. It owns a passive handle and
a path to the service handler that is going to be initialized and activated for each connection
accepted. Upon initialization of an Acceptor, the path given is assigned to the variable dedicated
for this purpose, and a passive transport handle, bound to a network address, is created. The
handle is configured as non-blocking, and the Acceptor attaches itself to the passive handle, to
be called back by the Dispatcher. When a new connection arrives, the Dispatcher invokes the
accept() method of the Acceptor, which first creates a new Server Connection Handler, and
then checks if the incoming connection is a brand new connection or if it is replacing a failed one.
In the former case, the Acceptor initiates a Service Handler and activates it, by passing the
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Connection Handler.

public class Acceptor{
// The passive handle is to accept the requests for new connections.
private ServerSocketChannel passive_handle = null;
// This keeps the path to the Server Service Handler that implement the Service Handler abstract

class.
private String serviceHandlerImpPath = "ServiceHandlerServerImp";
// Acceptor Constructor
public Acceptor(int port, String imp) throws IOException {
this.serviceHandlerImpPath = imp;
passive_handle = ServerSocketChannel.open();
passive_handle.socket().bind(new InetSocketAddress(port));
passive_handle.configureBlocking(false);
Dispatcher.attach(passive_handle, this);

}
// This method handles a new connection.
public void accept(TransportHandle handle) throws IOException {
ServerConnectionHandler ch = new ServerConnectionHandler(handle);
if (ch.isNew()) {
try {
Class theClass = Class.forName(this.serviceHandlerImp);
ServiceHandler sh = (ServiceHandler) theClass.newInstance();
sh.activate(ch);

} catch (IOException e) {
} catch (ClassNotFoundException e) {
} catch (InstantiationException e) {
} catch (IllegalAccessException e) {
}

}
}

}

In our Java NIO (Non-blocking I/O) example, a Dispatcher owns a Selector, which allows
registering, selecting and canceling the handles, including the transport and the passive, still
unconnected, handles. The Selector is initialized by invoking the open() method. A thread from
the Thread Set is permanently assigned to the Dispatcher, to check for the occurrence of new
events on the handles that have been already registered.

The Dispatcher provides two attach() methods, which allow the Acceptor and Service
Handler to register their passive and transport handles respectively. After the registration, they
attach their own objects to the keys returned by the Selector. The type of the key is “acceptable”
for a passive handle, and “readable” for a transport handle.

When the Dispatcher runs, it first gets the list of keys belonging to the registered handles, by
calling the select() method from the Selector. Then it checks all the keys (i.e. handles) for new
events. If the selected key is “readable” (e.g. Java NIO SocketChannel), the Dispatcher reads the
bytes and then calls the attached Service Handler, to handle the read data, if any. Otherwise,
if a selected key is “acceptable” (e.g. Java NIO ServerSocketChannel), the Dispatcher checks
the passive handle for incoming connections, by calling the accept() method. Then, if there is a
new connection (i.e. in this case a new transport handle is returned), it is given to the appropriate
Acceptor, to take care of it. Any exception occuring while the Dispatcher is reading data, will
be notified to the appropriate Service Handler through a different handleEvent() method. The
Dispatcher follows this procedure until the stop() method is invoked. All the details are shown
below.

public class Dispatcher implements Runnable {
private static Selector selector = null;
private boolean stopped = false;
// Dispatcher constructor
public Dispatcher() throws IOException {
selector = Selector.open();
ThreadSet.execute(this);

}
// This method is used to register a transport handle (e.g. SocketChannel) and attach a Service

Handler to its key
public static void attach(SocketChannel socket,

ServiceHandler serviceHandler) throws ClosedChannelException {
selector.wakeup();
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SelectionKey key = socket.register(selector, SelectionKey.OP_READ);
key.attach(serviceHandler);

}
// This method is used to register a passive handle (e.g. ServerSocketChannel) and attach a

Acceptor to its key
public static void attach(ServerSocketChannel serverSocket,

Acceptor acceptor) throws ClosedChannelException {
selector.wakeup();
SelectionKey key = serverSocket.register(selector,

SelectionKey.OP_ACCEPT);
key.attach(acceptor);

}
// Dispatcher Runs.
@Override
public void run() {
while (!stopped) {
try {
selector.select();
if (selector.selectedKeys().size() == 0)
continue;

} catch (IOException e1) {
break;

}

for (Iterator<SelectionKey> i = selector.selectedKeys().iterator(); i
.hasNext();) {

SelectionKey key = i.next();
// acceptors
try {
if (key.isAcceptable()) {
try {
SocketChannel sh = ((ServerSocketChannel) key

.channel()).accept();
if (sh != null)
((Acceptor) key.attachment())

.accept(new TransportHandle(sh));
} catch (IOException e) {
key.cancel();

}
} else if (key.isReadable()) {
ByteBuffer inputdata = ByteBuffer.allocate(1024);
try {
int read = ((ReadableByteChannel) key.channel())

.read(inputdata);
if (read == -1) {
key.cancel();
((ServiceHandler) key.attachment()).stop();

} else if (read > 0) {
byte[] event = ByteUtils.subByte(

inputdata.array(), 0, read);
((ServiceHandler) key.attachment()).handleEvent(event);

}
} catch (IOException e) {
// exception on read
((ServiceHandler) key.attachment()).handleEvent(e);
key.cancel();

}
}

} catch (CancelledKeyException e) {
}

}
}

}
// Dispatcher Stops.
public void stop() throws IOException {
stopped = true;
selector.close();
selector = null;

}
}

The Thread Set has a limited number of threads, which might be configured according to the
application and resources available. We used the Java class Executors to create a fixed thread pool
with the exact specifications defined for a Thread Set. To control the pool, the Java ThreadSet
class provides static methods that access the underlying Exectuors’ methods.
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public class ThreadSet {
private static ExecutorService executor = null;

public ThreadSet(int size) throws Exception{
if(executor == null)
executor= Executors.newFixedThreadPool(size);

else throw new Exception("The ThreadSet has been already initialized and some threads might be
running!");

}
public static void execute(Runnable th){
executor.execute(th);

}
public static void shutdown(){
executor.shutdown();
try {
executor.awaitTermination(30, TimeUnit.MINUTES);

} catch (InterruptedException e) {
}
executor=null;

}
public static void shutdownNow(){
executor.shutdownNow();
executor=null;

}

public static boolean isInitialized(){
if (executor == null)
return false;

return true;

}
}

4.2 Connection Handler and Service Initialization

A Connection Handler is identified by a unique identifier. It owns a Transport Handle and a
Stream Buffer. The Stream Buffer stands in the path of all data. The size of any data that is
read must be added to readBytes, which may wrap around as explained in Section 3.2. We keep
the number of bytes written into the Stream Buffer in sentBytes. The Connection Handler
provides the methods saveSentBytes() and addNumOfReadBytes() to the Service Handler for
these purposes.

To complete the initialization of the Connection Handler, client and server must do a hand-
shake. Since the handshake is done differently in the client and the server, the method handshake()
is defined as an abstract method that needs to be overridden in the Client Connection Handler
and the Server Connection Handler. To recover from the connection crash, the Service Handler
calls the method safeReconnect() of the Connection Handler. The reconnection and recovery
procedure is also different in both peers. Thus, we defined an abstract method that needs to be
implemented. Developers can set a maximum waiting time needed for reconnection through the
method setMaxReconnTime(). The method resend() is used to resend the lost data after recov-
ering from the crash.

public abstract class ConnectionHandler {
protected int identifier = 0;
protected TransportHandle handle = null;
protected StreamBuffer buffer = null;
protected int sentBytes = 0;
protected int readBytes = 0;
protected long MAX_RECONNECTION_TIME = 300;

public ConnectionHandler(TransportHandle h) throws IOException {
handle = h;

}
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public int getIdentifier() {
return identifier;

}
public TransportHandle getHandle() {
return handle;

}
public void saveSentBytes(byte[] data) {
sentBytes += data.length;
buffer.add(data);

}
public void addNumOfReadBytes(int read) {
readBytes += read;

}

public void close() throws IOException {
handle.close();
buffer.deleteAll();

}
public void setMaxReconnTime(long t){
MAX_RECONNECTION_TIME = t;

}
protected abstract void handshake() throws IOException;
public abstract TransportHandle safeReconnect() throws ReconnectionException;
protected void resend(int peerReceived) throws IOException {
handle.write(buffer.get(this.sentBytes - peerReceived));

}
}

The ability to resend data that was lost in the channel is crucial to our design pattern. We use
a Stream Buffer, whose size is equal to the size of the local socket send buffer plus the remote
socket’s receive buffer. Send and receive buffers in the TCP sockets are usually inaccessible, thus
providing little help when a connection crashes. Therefore, for recovery, each sender needs to keep
all bytes that are possibly in transit. The Connection Handler keeps the number of bytes sent
and received on both ends of the connection, so, when a connection crashes, the difference between
the number of bytes sent and the number of bytes received on the other side, tells the total number
of bytes to resend. The source code for the Stream Buffer is presented below. It has an array of
bytes and an index referring to the position to insert the next byte. It provides the method add()
to insert an array of bytes to the buffer, a method get() to retrieve a given number of bytes from
the buffer, and a method deleteAll() to clear the buffer.

public class StreamBuffer {
byte[] bytes = null;
int index = 0;
public StreamBuffer(int s) {
bytes = new byte[s];

}
public int getSize() {
return bytes.length;

}
public void add(byte[] bs) {
add(bs, 0, bs.length);

}
public void add(byte[] bs, int off, int len) {
for (int i = off; i < off + len; i++){
this.bytes[index] = bs[i];
index = (this.index+1) % this.bytes.length;

}
}
public byte[] get(int bytesToSend) {
if (bytesToSend == 0)
return null;

int start = (index - bytesToSend) % bytes.length;
byte[] remained = new byte[bytesToSend];
for (int i = 0; i < bytesToSend; i++)
remained[i] = bytes[(start+i) % bytes.length];

return remained;
}
public void deleteAll() {
this.bytes = null;
index=0;
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}
}

Upon creation of the Connection Handler in the client and server, a handshake, initiated
by the Client Connection Handler, is performed to exchange some information as we show in
Figure 6. The exchange starts with an immutable unique identifier, generated by the server when
the connection starts for the first time (hence the clients sends a 0 on the first connection). In
addition, the client sends the size of the send and receive buffers of the transport handles (e.g.
TCP Socket) and the number of bytes received so far (0 on the first time). The server does the
same, taking the initiative of setting the identifier when it comes as 0. Exchange of buffered data
might occur at this point, if there is any. This allows the Connection Handler to resend the lost
data after recovery from the failure.

After exchanging the above information, if the connection is new, a Stream Buffer with the
necessary size is created in both Connection Handlers (i.e., the size of the buffer depends on the
size of the buffers in the TCP sockets as explained in section 3.2). Otherwise both sides start to
resend the lost data. We first show the client side:

// Connection Handler initialization in Client
public class ClientConnectionHandler extends ConnectionHandler {

public ClientConnectionHandler(TransportHandle h) throws IOException {
super(h);
handshake();

}
@Override
public void handshake() throws IOException {

CtrlMessage outputControlMessage = new CtrlMessage(identifier, readBytes,
handle.getSocket().getSendBufferSize(), handle.getSocket().getReceiveBufferSize());

handle.write(ByteUtils.serialize(outputControlMessage));
byte[] inputData = new byte[1024];
int read = handle.read(inputData);

if (read == -1)
throw (new EOFException());

CtrlMessage inputControlMessage = (CtrlMessage) ByteUtils.deserialize(inputData, read);

if (identifier == 0) {
identifier = inputControlMessage.getIdentifier();
super.buffer = new StreamBuffer(handle.getSocket().getSendBufferSize()

+ inputControlMessage.getRecvBufferSize());

} else{
resend(inputControlMessage.getReceivedBytes());

}
}
...

}

And next, the server side:

// Connection Handler initialization in Server
public class ServerConnectionHandler extends ConnectionHandler {

boolean isNew = true;
int numOfBytesReceived = 0;

public ServerConnectionHandler(TransportHandle h) throws IOException {
super(h);
handshake();

}
@Override
protected void handshake() throws IOException {
byte[] inputData = new byte[1024];
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int read = handle.read(inputData);
CtrlMessage inputControlMessage = (CtrlMessage) ByteUtils.deserialize(

inputData, read);

if (inputControlMessage.getIdentifier() == 0){
this.identifier=Identifier.next();
CtrlMessage outputControlMessage = new CtrlMessage(identifier,

readBytes, handle.getSocket().getSendBufferSize(),
handle.getSocket().getReceiveBufferSize());

handle.write(ByteUtils.serialize(outputControlMessage));
buffer = new StreamBuffer(handle.getSocket().getSendBufferSize()

+ inputControlMessage.getRecvBufferSize());
ConnSet.addConnection(this.identifier);

}else {
identifier = inputControlMessage.getIdentifier();
numOfBytesReceived = inputControlMessage.getReceivedBytes();
isNew = false;
ConnSet.releaseFailedConnection(this);

}
}

public boolean isNew() {
return isNew;

}
...

}

The Service Handler implements an application service, typically playing the client role, server
role or both roles. It owns a Transport Handle and a Connection Handler, to handle possible
connection crashes. It provides a hook method (activate()) that is called by an Acceptor or
Connector to activate the application service once the connection is established.

If the Dispatcher is used in the application (typically on the server), the Service Handler
has to configure the Transport Handle as a non-blocking handle, then it registers the handle and
attaches itself through the Dispatcher. Alternatively, the programmer may assign a thread to run
the Service Handler.

We also provide two methods to read and write the data streams in the Service Handler:
safeSend() and safeReceive(). These methods allow the application to write and read harm-
lessly, as they go through the Connection Handler, thus saving data in the Stream Buffer, cor-
rectly managing the counters, and appropriately handling the failures. We already implemented
these methods, to enable their simple use by developers.

We use two separate methods for handling events that may happen in the Dispatcher: arrival
of new data, and occurrence of an IOException. To handle an exception, a new thread must be
allocated to take care of the reconnection. This method is implemented in the Service Handler
abstract class.

The abstract methods run() (i.e. from the Runnable abstract class), restart(), stop(), and
handleEvent(), to take care of the new data, should be implemented by the developers based on
the application logic.

public abstract class ServiceHandler implements Runnable {
protected ConnectionHandler connectionHandler = null;
protected TransportHandle handle = null;
protected AtomicBoolean stopped = new AtomicBoolean(false);

public void activate(ConnectionHandler ch) throws IOException {
connectionHandler = ch;
handle = connectionHandler.getHandle();
handle.getSocket().setTcpNoDelay(true);

if (Dispatcher.isOpen()) {
handle.getSocketChannel().configureBlocking(false);
Dispatcher.attach(handle.getSocketChannel(), this);

} else {
if (ThreadSet.isInitialized())
ThreadSet.execute(this);

else
(new Thread(this)).start();

}
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}
protected void safeSend(byte[] data) throws ReconnectionException {
boolean done = false;
while (!done) {
try {
handle.write(data);
connectionHandler.saveSentBytes(data);
done = true;

} catch (IOException e) {
if (handle.getSocket().isClosed())
throw new ReconnectionException(

"The connection has been already closed!");
else{
handle = connectionHandler.safeReconnect();
try {
handle.getSocket().setTcpNoDelay(true);
if (Dispatcher.isOpen()) {
handle.getSocketChannel().configureBlocking(false);
Dispatcher.attach(handle.getSocketChannel(), this);

}
} catch (SocketException e1) {
e1.printStackTrace();

} catch (IOException e1) {
e1.printStackTrace();

}

}
}

}
}

protected byte[] safeReceive() throws ReconnectionException {
byte[] inputdata = new byte[1024];
boolean done = false;
int read = 0;
while (!done) {
try {
read = handle.read(inputdata);
if (read > 0) {
done = true;
connectionHandler.addNumOfReadBytes(read);

}
} catch (IOException ioe) {

if (handle.getSocket().isClosed()) {
throw new ReconnectionException(

"The connection has been already closed!");
} else{
handle = connectionHandler.safeReconnect();
try {
handle.getSocket().setTcpNoDelay(true);

} catch (SocketException e) {
e.printStackTrace();

}
}

}
}
return ByteUtils.subByte(inputdata, 0, read);

}

protected void handleEvent(IOException event) {
ThreadSet.execute(new ExceptionHandler(this.handle,

this.connectionHandler, this));
}

protected abstract void restart();
protected abstract void stop();
protected abstract void handleEvent(byte[] event);

}

class ExceptionHandler implements Runnable {

ServiceHandler serviceHandler;
TransportHandle handle;
ConnectionHandler connectionHandler;

public ExceptionHandler(TransportHandle h, ConnectionHandler ch,
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ServiceHandler sh) {
serviceHandler = sh;
handle = h;
connectionHandler = ch;

}

@Override
public void run() {
try {
handle = connectionHandler.safeReconnect();

} catch (ReconnectionException e1) {
serviceHandler.stop();

}
try {
handle.getSocket().setTcpNoDelay(true);
handle.getSocketChannel().configureBlocking(false);
Dispatcher.attach(handle.getSocketChannel(), serviceHandler);

} catch (Exception e) {
}

}
};

4.3 Application Processing

Here, we give a very simple example of implementation of the Service Handler’s abstract meth-
ods. The Client Service Handler sends an increasing number, starting at 0 and ending at 1000,
to the server, before stopping (in the run() method). After sending each number, the Client
Service Handler waits to receive the reply from the peer’s Service Handler, and then pro-
cesses it (method handleEvent()).

In this example, we need to allocate 0 to the number that is being sent for restarting the service
(i.e. in method restart()), and to close the Transport Handle and the Connection Handler
for stopping the service (i.e. in method stop()). The example (refer to the source code shown
below) shows how the developers can simply use the methods safeSend() and safeReceive() to
exchange data with the other peer.

public class ClientServiceHandler extends ServiceHandler {
int outputData=0;
@Override
public void run() {
while (outputData<1000) {
try {
safeSend((String.valueOf(outputData++)).getBytes());
byte[] inputdata = safeReceive();
handleEvent(inputdata);

} catch (ReconnectionException e) {
stop();

}
}
stop();

}

@Override
protected void handleEvent(byte[] event) {
System.out.println(new String((byte[])event));

}
@Override
protected void restart() {
outputData=0;

}
@Override
protected void stop(){
stopped.set(true);
try {
connectionHandler.close();

} catch (IOException e) {

}
}

}
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On the other side, the Service Handler is initialized once its method activate() is invoked
by the Acceptor. We use a queue to order the requests and use locking to ensure First-Come-
First-Served execution by a single thread (see methods run() and handleEvent()). The method
handleEvent() delivers the data read by the Dispatcher to the Service Handler. It adds the
event to the data queue and assigns a thread to this object, if no thread is assigned yet. In the
run() method, the assigned thread successively polls and processes events from the data queue,
until the queue is empty. When no more events are available, the thread joins back the Thread
Set.

public class ServerServiceHandler extends ServiceHandler {
protected Queue<byte[]> events;
Boolean activeThread = false;

@Override
public void activate(ConnectionHandler ch) throws IOException {
super.activate(ch);
events = new LinkedList<>();

}

@Override
protected synchronized void handleEvent(byte[] event) {
events.add(event);
if (activeThread == false) {
ThreadSet.execute(this);
activeThread = true;

}
}

@Override
public void run() {
byte[] event = null;
do{
synchronized (this) {
event = events.poll();
if (event == null)
activeThread = false;

}
if (event!=null)
process(event);

}while((!stopped.get() && event != null));
}

public void process(byte[] inputdata) {
try {
safeSend(inputdata);

} catch (ReconnectionException e) {
stop();

}
}

@Override
protected void restart() {

}

@Override
protected void stop() {
stopped.set(true);

}
}

4.4 Connection Failure Handling

Due to NAT schemes or firewalls, when a connection crashes, the initiative to reconnect always
belongs to the client. Thus, the server stays in a passive mode until either a new connection arrives
or a timeout occurs.
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Passive Reconnection As soon as the Service Handler detects a failure in a connection, it
calls the safeReconnect() method. The server Connection Handler calls the method takeNew-
Connection() of the Connection Set, by passing the connection identifier and MAX_RECONNECTION-
_TIME. This call is blocking, thus making the Connection Handler wait until a new handle is
returned or the timer goes off. If a new handle returns, then it completes the handshake with the
client, by entering the handshake scheme we mentioned before. Otherwise, the Reconnection-
Exception is returned to the Service Handler.

// Server Connection Handler: reconnection
@Override
public TransportHandle safeReconnect() throws ReconnectionException {

ServerConnectionHandler sch = (ServerConnectionHandler) ConnSet
.takeNewConnection(identifier, MAX_RECONNECTION_TIME);

if (sch == null)
throw new ReconnectionException("Server reconnection timeout.");

handle = sch.getHandle();
numOfBytesReceived = sch.numOfBytesReceived;

try {
CtrlMessage outputControlMessage = new CtrlMessage(identifier, readBytes,

handle.getSocket().getSendBufferSize(), handle.getSocket()
.getReceiveBufferSize());

handle.write(ByteUtils.serialize(outputControlMessage));
resend(numOfBytesReceived);

} catch (IOException e) {
safeReconnect();

}
return handle;

}

The Connection Set keeps the list of identifiers of alive and failed connections. It serves as a
synchronizing point, letting the Server Connection Handler and the Transport Handle syn-
chronize for a new connection after a failure.

public class ConnectionSet {

private static ConcurrentHashMap<Integer, Server Connection Handler> recoveredConnections = new
ConcurrentHashMap<>();

private static Set<Integer> allConnections = new HashSet<>();

public static Server Connection Handler takeNewConnection(int identifier,int t) {
long timeout = t * 60 * 1000;
Server Connection Handler fsocket = null;

synchronized (recoveredConnections) {
long start= System.currentTimeMillis();
fsocket = recoveredConnections.remove(identifier);
while (fsocket == null && timeout > 0) {
try {
recoveredConnections.wait(timeout);
fsocket = recoveredConnections.remove(identifier);
timeout = timeout - (System.currentTimeMillis()-start);

} catch (InterruptedException e) {}
}

}
return fsocket;

}

public static void releaseFailedConnection( Server Connection Handler ch)
throws IOException {

if (allConnections.contains(ch.getIdentifier()))
synchronized (recoveredConnections) {
recoveredConnections.put(ch.getIdentifier(), ch);
recoveredConnections.notifyAll();

}
}

public static void removeConnection(int identifier) {
recoveredConnections.remove(identifier);
allConnections.remove(identifier);
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}

public static void addConnection(int identifier) {
allConnections.add(identifier);

}
public static void clear(){
recoveredConnections.clear();
allConnections.clear();

}
}

Active Reconnection On the client side, the reconnection scenario is quite different. The
Connection Handler periodically tries to reconnect to the server. After successfully reconnecting,
the client starts a handshake to exchange the data needed for recovery. Then, it resends the data
that was lost due to the failure. If the client could not establish a new connection during the given
maximum reconnection time, it returns an exception to the Service Handler.

// Client Connection Handler: reconnction
@Override
public synchronized TransportHandle safeReconnect() throws ReconnectionException {
if (handle.getSocket().isConnected() && !handle.getSocket().isClosed()

&& handle.getSocket().isBound())
return handle;

boolean reconnected = false;

long start_reconnection= System.currentTimeMillis();
while (!reconnected) {

try {
handle = Connector.connect(handle.getSocket().getInetAddress(),

handle.getSocket().getPort());
handshake();
reconnected = true;

} catch (IOException e) {
if ((System.currentTimeMillis() - start_reconnection) > (this.MAX_RECONNECTION_TIME *

60000))
break;

try {
Thread.sleep(10000);

} catch (InterruptedException e1) {

}
}

}
if(!reconnected)
throw new ReconnectionException("FTClient reconnection unsucceed after several tries!");

return handle;
}

5 Experimental Evaluation

In this section we measure the performance of the Fault-Tolerant Multi-Threaded Acceptor-
Connector (ftmtac) and compare its overhead to the Multi-Threaded Acceptor-Connector (mtac)
and the plain Acceptor-Connector (ac) design patterns. In addition, we also measure the imple-
mentation complexity of the patterns, using our own Java implementation of each design pattern.

To carry out the performance experiments, we used two machines (client and server) in the
same Local Area Network. The client machine ran the Mac OS X v10.6.7 operating system, with
a 2.4GHz Intel Core 2 Duo processor, 4GiB of RAM and 3 MiB of cache. The server ran on a
virtualized infrastructure, with Linux kernel version 2.6.34.8, a quad-core 2.8 GHz Intel processor,
12 GiB of RAM and 8 MiB of cache. The client application ran on a single process, using different
threads to emulate multiple clients.
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Fig. 9. Latency of the Fault-tolerant Multi-Threaded Acceptor-Connector and its comparison to the ac

and mtac versions

We used the following three server operations in the tests: Invoke1, Invoke2 and Invoke3. All
of these operations receive a small string and return another small string, both of 20 bytes. The
difference is that Invoke1 replies immediately, Invoke2 sleeps 1 millisecond (ms) before replying,
whereas Invoke3 sleeps 2 ms. We put the server threads to sleep because only the communication
is important to us. This way, we precisely control the server execution time.

5.1 Performance

Figure 9 and Figure 10 show the latency and throughput of the three patterns for an increasing
number of clients. The plots also show the latency and throughput degradation of the ftmtac in
comparison to the mtac. The latency is defined as the round-trip-time of a request-response inter-
action, and the latency degradation is computed as (Latencyftmtac�Latencymtac)/Latencyftmtac.
To compute the average latency, 1, 000 requests are sent and the round-trip-time is calculated for
each single request. To compute the overall throughput of the server, we set each client to send
100, 000 requests to the server, leaving the reception of responses to another thread. We then
divide the total number of requests by the time the server takes to reply to these requests. We
compute degradation of throughput as (Throughputmtac � Throughputftmtac)/Throughputmtac.
For both cases, the results are presented as the average of 30 tests.

In Figure 9 (top), we show the latency for the Acceptor-Connector pattern. One should notice
that, in this pattern, the server is single-threaded. Latency increases linearly with the number of
clients, for the Invoke2 and Invoke3 operations. As an example, for Invoke3, the latency increases
from 2.8 to 2, 051 ms, by increasing the number of clients from 1 to 1, 000. We get two plots with
different slopes for these two invocations due to the differences in their sleeping time. The slope
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Fig. 10. Throughput of the Fault-tolerant Multi-Threaded Acceptor-Connector and its comparison to the
ac and mtac versions

for the first invocation is almost equal to 0, because the single server thread manages to respond
very quickly to a very large number of clients, as it does no work.

With the mtac and ftmtac (see Figure 9 on the bottom) we get a very similar latency, as
shown in the plots. Latency degradation is negligible (below 1.88 percent). Some lines are not
visible because they almost completely overlap for the same invocations (e.g., mtac_invoke3 and
ftmtac_invoke3). The latency increases slowly and smoothly by increasing the number of the
clients in both designs. For Invoke1 the latencies of these two designs are almost equal to the ac’s
latency. This happens because the processing time (or sleeping time) of this invocation is 0 and,
as such, having several threads to process the request does not increase the performance, but may
decrease it due to thread management overheads.

The throughput tests, of Figure 10 confirm the aforementioned observations. With the Acceptor-
Connector design pattern the throughput is different for the distinct invocations, but it always
stays the same, even when the number of the clients grows. Again, this is due to the fact that the
server is single-threaded. For mtac and ftmtac, the plot lines generally increase with the num-
ber of clients. In the Invoke1 operation, throughput increases rapidly and then does not change
(until about 419, 200 requests per second). As shown in Figure 10, the throughput of mtac and
ftmtac for the Invoke1 is slightly lower than the Acceptor-Connector’s throughput, due to more
overhead caused by thread synchronization. In contrast, the throughputs of mtac and ftmtac are
much better for the other invocations (i.e., Invoke2 and Invoke1).

The throughput tests also show a small degradation for the fault-tolerant design in comparison
to the mtac. This degradation increases very slowly with the number of clients, and it results from
the overhead of copying extra bytes to the Stream Buffer. To better understand this overhead,
we measured the cost of copying bytes in the Stream Buffer, to observe the overhead for different
sizes of requests (ranging from 20 bytes to 64 KiB). Thus, by increasing the size of the strings
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Fig. 11. CPU and Memory Usage of Multi-Threaded Acceptor-Connector and Fault-Tolerant Multi-
Threaded Acceptor-Connector, and overhead of fault-Tolerance

from 20 bytes to 1 KiB, 2 KiB, 3 KiB, 4 KiB, 8 KiB, 16 KiB, 32 KiB, and 64 KiB, the cost linearly
increases from 0.001 ms to 0.58 ms.

5.2 Overhead and Complexity

In our experiments, the extra Stream Buffer required 293, 976 bytes, being the TCP send and
receive buffer sizes half of this value. One must not forget that the original TCP already consumes
this value per connection on each peer. To examine the CPU and memory overhead, we periodically
ran the ps command to read memory and CPU usage on the server. Each of the 1 to 1, 000 clients
sends 100 requests for Invoke3 during 5 minutes. Inevitably, as we show in Figure 11, the memory
and CPU usage increase by increasing the number of the clients. The overhead of ftmtac increases
smoothly with the number of clients. When we look at numerical values, the memory overhead of
ftmac is larger than the CPU overhead. This suggests that the impact of the double buffering is
more important than the impact of copying memory for the CPU.

We also measured three important complexity metrics, Lines of Code (LOC), Cyclomatic Com-
plexity, and Nested Block Depth, to compare the complexity of ac, mtac, and ftmtac. The mea-
surements show that we used 40 extra lines of code in mtac in comparison to ac, and 297 extra
lines of code in ftmtac, in comparison to the mtac. These extra lines of code, respectively, add
an average of 0.018 and 0.025 independent paths per method to the program’s source code, which
indicates that the cyclomatic complexity imposed by our design and implementation is very low.
The depth of nested blocks of code is 1.397 in ftmtac, which is very close to mtac’s 1.258 and ac’s
1.192. These results show that our design is simple and does not compromise scalability.

5.3 Network Failure and Recovery

To evaluate the recovery from failures we uploaded a file to a server through a proxy. To simulate
network crashes, we stopped this proxy for one minute and then restarted it. For 10 repetitions
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Table 1. Code Complexity

LOC Cyclomatic Complexity Nested Block Depth
ac 220 1.846 1.192
mtac 260 1.871 1.258
ftmtac 557 1.889 1.397

of the test, we first observed that the file was always transferred completely in the presence of
a network failure. Reconnection took only 26 ms, while the first connection establishment and
service activation took 300 ms, on average. This reconnection time includes a delay in the client to
reconnect and also the time of exchanging the bytes that were pending in the buffers. The former
is entirely configurable, the latter is inevitable and is not really a loss of time.

6 Conclusion

In this paper, we presented a Fault-Tolerant design pattern for connection-oriented applications
based on the Multi-Threaded Acceptor-Connector pattern. This pattern provides the following
benefits: 1) it allows the developers to handle connection failures without losing any data; 2) it
decouples the failure-related processing from the connection and service processing; 3) it efficiently
recovers the state of a failed connection by applying a circular buffer (the Stream Buffer); 4) it
provides flexible behavior, by allowing developers to configure the reconnection procedure, and 5)
it efficiently supports multi-threading, by applying the Leader-Follower pattern. We implemented
the pattern in Java and demonstrate that it is efficient. The pattern we proposed in this paper may
benefit from future improvements, namely concerning the co-existence between fault-tolerant and
non-fault-tolerant clients and the security of the reconnection procedure. We are currently working
on a session-based fault-tolerant design-pattern to hide the details of failure handling completely
from the service handlers.
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