
Taking an Electronic Ticketing System to the
Cloud: Design and Discussion

Filipe Araujo, Marilia Curado, Pedro Furtado, Raul Barbosa
CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal

filipius@uc.pt, {marilia, pnf, rbarbosa}@dei.uc.pt

Abstract—In this paper we address the challenge of creating
an electronic ticketing system for transportation systems that
can partially or completely run on the cloud. This challenge is
defined within the scope of an industrial project. The resulting
system should be able to reach a large spectrum of customers
and should provide two key advantages: lower operational costs,
especially for small clients without IT departments, and faster
execution of queries for monthly or other sorts of analysis, using
the elasticity of cloud-based resources.

To fulfill the goals of the project, we propose very standard
technologies and procedures: a three-tiered architecture; a sep-
aration of the online and analysis databases; and an Enterprise
Service Bus to get the input from very diverse hardware
and software stacks. In this paper we discuss several options
regarding the location of these facilities on the cloud and we also
evaluate the costs involved.

While this work already defines many features of the system, it
must be considered as preliminary, as some open details remain
for future work.

Index Terms—Transportation systems, Electronic ticketing sys-
tems, Cloud computing

I. INTRODUCTION

In this paper we address the challenge of taking the whole or
part of the electronic ticketing service of the Octal company to
the cloud. This effort involved the University of Coimbra and
was financed by Portuguese and European public institutions
under a project called “Electronic Ticketing as a Service”. The
movement to the cloud can offer two potential advantages:
by reducing upfront investment and management costs, Octal
should be able to reach a wider range of customers, namely
small ones without their own IT resources; and exploring the
elasticity of the cloud can speed up analysis operations that
take a large computational effort.

Building a ticketing system is a really daunting task, due to
the huge diversity of scenarios in real existing transportation
systems and due to the myriad of subproblems to solve. For
example, a major source of complexity comes from the need
to share revenues. Since carrier companies may sell combined
transportation titles allowing users to travel in multiple carriers
in different segments of the same trip, the revenues of such
trip must be divided. Another problem concerns the interaction
with a wide range of access points for customers, vendors,
managers, validation points, etc. I.e., ticketing systems must
interact with a fairly large number of different hardware and
software stacks. Our challenge is, therefore, to create a simple
and elegant architecture that accommodates differences in

software stacks and hardware using standard well-understood
technologies.

For these reasons, we resort to a three-tiered architecture [2],
with separate online and analysis databases. To accommodate
customer’s requests and needs, all parts of the system may run
on the cloud or on-premises. For example, while running the
application server(s) on the cloud may easily offer transparent
elasticity, customers may prefer to keep their data on premises,
and manually tune the application servers. To support all the
legacy hardware of the carrier companies and enable reading
and writing data to their own terminals we use an Enterprise
Service Bus1, as these offer a rich set of pull and push-based
interfaces and transformation tools.

One of our significant efforts in this paper is to determine
where and how to deploy the analysis database along with its
functions. We evaluate a number of possibilities regarding data
management, like, how to divide the data in the database, or
how to deal with old data. We also discuss the best options
to keep the data on the cloud (e.g., key-value storage versus
a relational database), and how to move data from the online
to the analysis database. This discussion is followed by an
evaluation of the costs involved in cloud solutions, as this
is a crucial point for the cloud adoption (or non-adoption).
This comparison focuses on Infrastructure-as-a-Service (IaaS)
versus Platform-as-a-Service (PaaS) costs, but also considers
the possibility of using private resources.

We think that the architecture we are proposing is flexible
enough to run either on-premises or on the cloud. Indeed,
depending on the particular needs of the transport operators,
we may outsource different components of the architecture.
To ensure this property, and to avoid vendor lock-in, we
propose using an IaaS. Our price comparisons demonstrate the
feasibility of this option for a cloud-based ticketing system.

In the remainder of this paper we start by enumerating in
Section II the most important ticketing solutions that use the
cloud. In Section III, we propose a simple three-tier archi-
tecture for Octal. In Section IV we provide details regarding
the management of the ticketing data. Then, in Section V, we
approximately calculate the costs inherent to IaaS and PaaS
solutions in some of the larger cloud players in the market. In
Section VI, we conclude the paper and point out pending tasks
that we must tackle for a successful closure of this project.

1See for example http://www.mulesoft.org or http://jbossesb.jboss.org.



II. OVERVIEW OF RELATED SOLUTIONS

This section presents a selection of the cloud based ticketing
solutions available on the Internet.

A. Atlas System for Cloud Ticketing

Xerox has developed a cloud based ticketing platform, the
Atlas system2, which is being used by over 300 transportation
operators, with different dimensions and characteristics. For
instance, this platform can cover a small dimension system
with around 32 buses as in the urban area of Chalons-en-
Champagne as well as the large transportation system in the
Quebec metropolitan region, including 3000 buses, 5 railway
lines and 4 metro lines. The Atlas system is also used in Riga
and Peru.

The Atlas platform supports multimodal systems under
multiple operators, in a flexible way and through a web
interface. Data is organized in a database according to the
different functionalities of the system, namely, accounting,
marketing and fraud detection. Security is provided through
access control and secure communication between the servers.
The Simple Network Management Protocol (SNMP) [4] is
extended with an additional level of authentication between
hubs and devices. In addition, the data exchange with the
systems located inside the transportation systems is protected
with authentication through a double Virtual Private Network
(VPN).

Equipment and workstations are controlled by a central
server, which has a global view of the whole network. Each
device has an individual access code that grants access to its
physical and operational status. The Atlas platform supports
the emission of alerts in real time, diagnostic and preventive
measures, as well as remote management of applications.
Operation continuity in emergency situations is guaranteed by
a recovery plan that is triggered when such situations occur.
However, the information provided on the Atlas website lacks
details on the specific mechanisms used for recovery.

Rates can be defined according to multiple criteria, combin-
ing for instance transportation pass owners and special events.
The rates are stored in the central system and sent to all the
devices in a single operation, while the system is working.

The Atlas platform consists of a multiple layer architecture,
using Oracle databases, Extract/Transform/Load (ETL) tools,
and Oracle Warehouse Builder.

B. Accenture - Ticketing as a Service

Accenture presents a solution of Ticketing as a Service
based on cloud services3. This platform supports multimodal
systems under multiple operators. The interface is based on
the web and it allows remote configuration and installation
of devices as well as the remote configuration of rates in

2http://www.acs-inc.com/public-transport/central-mgmt-systems/altas-
public-transport-ticketing-system.aspx

3http://www.accenture.com/us-en/Pages/service-ticketing-new-generation-
public-transport.aspx, http://www.accenture.com/us-en/Pages/insight-mobile-
ticketing-public-transportation.aspx

the devices. This product is being used in the Finish railway
system.

The Accenture platform relies on a Microsoft system, but
other popular systems in the mobile market such as Windows
Mobile, iOS e Android are also supported.

C. Gemalto - transport transaction: e-ticketing, access con-
trol, data storage, and authentication

Gemalto targets ticketing systems with a strong emphasis on
security issues4. However, the type of usage of cloud based
services is not clearly addressed on the information available
online. This system is deployed worldwide, including countries
such as Belgium, Brazil, China, France, Italy, Netherlands,
England and United States.

D. Siemens - eTicketing systems

The ticketing solution developed by Siemens is being used
in the railway systems in Portugal, Belgium, as well as in
Wiener Linien, Berliner Verkehrsbetriebe and Basler Verkehrs-
betrieb, covering over 175000 users5. Ongoing projects will
also deploy this system in Swiss Federal Railways and Swiss
Association of Public Transport. As most of the solutions
presented before, this platform supports multimodal systems
under multiple operators. The information available online is
however limited in which concerns the use of cloud based
services.

One of the key security aspects is the fact that the platform
aims to minimize the amount of data stored. Privacy is
enhanced as the users are allowed to travel anonymously. Rate
calculation can be done explicitly by the passenger in a hop-
by-hop way, or end-to-end in an automatic fashion through the
use of smartcards.

The Siemens platform comprises a central back office based
on SAP for sales management. In addition, it provides mobile
applications that the end-user can use to by tickets.

E. Rail Settlement Plan

Rail Settlement Plan (RSP) has developed a cloud based
ticketing system for the English railway system6. The mo-
tivation for a cloud based approach was triggered by the
need to satisfy requests in rush periods and also to reduce
the infrastructure costs. This system is used in the following
railway systems: Eurostar, Chiltern railways, East Coast, First
Great Western, Virgin Trains, South West Trains and Scot Rail.

The RSP technical solution relies on Amazon Web Services
(AWS), including Amazon Elastic Compute Cloud (Amazon
EC2), Amazon Simple Storage Service (Amazon S3) and
Amazon Elastic Map Reduce (EMR). In addition the database
and reporting servers are based on Infobright and Jaspersoft.

4http://www.gemalto.com/press/Pages/news 1011.aspx
5http://www.mobility.siemens.com/mobility/global/en/complete-

mobility/Pages/complete-mobility.aspx
6http://www.betterez.com/, http://www.computerweekly.com/news/

2240172855/UK-rail-ticketing-services-get-next-generation-facelift-
with-AWS-cloud, http://www.atoc.org/about-atoc/rail-settlement-plan,
http://www.railway-technology.com/news/newssmart421-provide-live-sales-
management-system-rail-settlement-plan



Security issues comprise different levels, from the security
AWS mechanisms to access and identity management based
on ForgeRock.

F. click1VIETNAM

The inter-city bus system in Vietnam relies on a cloud
based ticketing system7. This system supports different bus
operators, comprising functionalities for the bus operator,
tourism agents and passengers. Bus operators can manage
routes, employees, reservations, access control and financial
reports. Tourism agents can access reservations and sales,
while passengers can perform reservations, electronic pay-
ments and access their traveling history.

G. redBus

redBus is an Indican company that provides a Software-as-
a-Service (SaaS) application to over 200 bus operators8. The
redBus system relies on the following technologies: Amazon
EC2, Elastic Load Balancing, Amazon RDS, Amazon S3,
Amazon EBS, and Amazon CloudWatch.

Security and resiliency issues are supported by the native
capabilities of AWS, including adaptive load balancing, redun-
dant infrastructure and automatic recovery.

H. Additional Cloud Based Systems

This section presents could based solutions which are not
specifically devoted to transportation systems and ticketing.
The cases described aim to highlight the flexibility of cloud
based systems, and their added value in the context of services
supported on the Internet.

• TICKETLEAP: online ticketing service with mobile ser-
vice support for shows.

• ERICSSON: solutions based on SaaS in areas such
as telecommunications, intelligent transportation systems
and mobile sales systems.

• GOL: South America airline that has developed onboard
entertainment systems based on cloud services.

• FLAVOURS: online ticketing system for shows with the
support of mobile services.

I. Link Consulting Solution

The ticketing solution developed by Link Consulting and
Lisbon Polytechnic Institute [3] is based on the cloud and
follows a SaaS approach. Therefore, different transport op-
erators can subscribe this product. The end-system ticketing
devices are integrated within the cloud following a thin client
approach.

Cloud based services include data access, business, and
business processing services. Data access is used in internal
services that require information about clients, cards and sales.
Business services are available on the cloud and support tasks
such as the registration of new clients and sales authorization.
Business processing services support the integration of the
business services to provide the different system functionalities

7http://www.click1vietnam.com
8http://aws.amazon.com/pt/solutions/case-studies/redbus/

to the end-users, including card reading, ticket search, ticket
selection, payment, card charging and sale registration.

On the client side, two possible approaches are possible,
namely thin and fat clients. Thin clients have a limited set
of functionalities, comprising the interface with the user and
the communication of requests and replies with the cloud. Fat
clients also support offline operations when Internet access is
not available. When compared with traditional solutions, the
integration of the clients in the cloud improves flexibility, scal-
ability, availability and allows the support of heterogeneous
clients. There are however security and privacy issues that
require additional access control mechanisms.

J. Summary

The main characteristics of the systems analyzed in the
previous sections are the following:

• Cloud based services.
• Resiliency mechanisms, alert triggering, automatic recov-

ery upon failure.
• Booking, online sales, reporting.
• Security in communications and data storage.
• Privacy guarantees.
• Centralized management through a back office and appli-

cations for mobile devices.
• Dynamic definition of rates taking into account trans-

portation and user type, date, rate plan, promotions, etc.
• End-to-end accounting in multi-modal systems based on

routes, user and transportation operators involved.
• Remote configuration of devices and rates.
• Near Field Communication with the possibility to per-

form automatic detection of users in control points.
The analysis of the previous solutions has shown that

while some of the ticketing solutions are standalone, others
are integrated in intelligent transportation systems. It should
also be highlighted that several of the analyzed systems use
Amazon Web Services on the cloud, relying on its resiliency,
security and scalability capabilities.

As a final remark, it has been noticed that most of the
approaches used for the description of the solutions target
potential clients, focusing on functionalities and with a very
limited technical depth. Moreover, each of the products as-
sessed is presented according to the profiles of such clients,
which results in a rather heterogeneous source of information.
Hence, we must say that the set of characteristics identified in
this section provide only a limited input for our own work.

III. ARCHITECTURE

A. The Intermodal Transport System of Oporto

Any ticketing solution of a reasonable size, comprising mul-
tiple companies with integrated sales must include an analysis
system on top of the online processing system. Besides giving
precious market information to the administrators, this analysis
is necessary to divide the income among the carriers. Since
clients may use a single transportation title in two different
carriers, they may buy a title in one carrier that is valid in



CCB TIP_RR report

data to carriers

carrier views
Validations

Sales

Fig. 1. TIP Ticketing System

another. In the end, each carrier must get its own fair share of
the income, based on data of the actual trip.

The importance of the analysis was eventually recognized
on the Intermodal Transport System of Oporto (TIP). While
the initial design of the system foresaw and used a single
database (DB), as this database grew in size over time, the
revenue sharing operation consumed an increasing amount
of time. At some point, and according to the TIP system
administrators, the evaluation of a month worth of revenues
was taking 20 days, thus bringing the entire system close to
an outright collapse. This unique DB was clearly overloaded,
because it supported the analysis of validations concurrently
with their usual actions in line, such as receiving sales data
and validation, calculation of income from sales of tickets,
update and query information to passengers with passes etc.
To overcome this problem, the maintenance team ended up
dividing the database in two parts, comprising an online
Database (CCB) and an analysis database (TIP RR), as we
depict in Figure 1.

The system maintenance team progressively duplicated data
onto this second database, which is a simple copy of the first
one. This sliced the analysis time from 20 to only 2 days, a 10-
fold improvement. Once it calculates the sharing of revenues,
the system generates a report for the company managers. This
architecture includes restricted data views, where carriers can
see their own data, e.g., sales, but have no access to their peers
contents.

The main conclusion we achieved by overviewing the
running system with the Octal team was perhaps the need
to separate the daily processing from the analysis database.

B. The New Architecture

Having a separate analysis database is one of the fundamen-
tal design options we considered for the architecture:

• A standard three-tier web-based interface.
• Support for all the existing hardware in buses, trains,

ticket vending machines, etc.
• A separate analysis database.
Based on these constraints, we illustrate a high-level view

of our system in Figure 2, with the presentation layer, which
generates HTML for the browser, the application server (busi-
ness layer) and the data layer, represented by the operational
database. We also depict the analysis database, together with a

Operational 
DB

Analysis DB

Carriers'
data

Enterprise 
Service Bus

Client Interface

Management

Application 
Server
Cluster
Application 

Server
Cluster
Application 

Server
Cluster

Ticket Sales 
Points

Fraud 
Detection

Staging Area

Application 
Server
Cluster
Application 

Server
Cluster
Application 

Server
Cluster

Revenue share

Fig. 2. Three-layer architecture

staging area, which we shall discuss in Section IV. However,
there is more to this system than the “three layers”, because a
significant and very important part concerns the connection to
the ticketing hardware. This can be seen on the left side of the
figure. The “carriers’ data” rectangle represents the relevant
sources of data, like validation or sales points.

This system thus have two important points of access to the
database: one is the web server, the other is the transportation
hardware through the Enterprise Service Bus (ESB). The uti-
lization of the ESB provides a great flexibility on the number
of systems it may support. Indeed, typical technologies, such
as JBoss ESB 9 or Mule ESB 10 can access data in many
different formats and using many different protocols. For
example, they may read a binary file from a remote FTP server
and apply the necessary transformation to the data, but they
may also receive data in a client-driven push-based interaction
using the HTTP protocol. The ESB is, therefore, at the heart
of a smart connector architecture that transparently handles a
large range of systems and equipments.

The operational database also interacts with the analysis
database through a staging area. Besides revenue share, the
analysis database (warehouse) can serve for other important
tasks, like market analysis or fraud detection.

C. Utilization of the Cloud

A fundamental point of this project is to enable the utiliza-
tion of the cloud to run as much as possible of the ticketing
system. Following a very conservative approach, one may rent
virtual machines in an IaaS approach, to remotely run pretty
much any component of the architecture. This possibility
might be particularly interesting for small carrier companies
that want to off-load their own systems (which they use, for
example, to collect data from buses).

A second, quite popular, possibility is to deploy the web
server on the cloud, to transparently get the elasticity benefits
from the cloud. This possibility is also very appealing because
pretty much the same code might run on-premises or on the
cloud, and, in the latter case, the web site might easily scale
during load surges.

9http://jbossesb.jboss.org
10http://www.mulesoft.org



A final and more complex utilization of the cloud concerns
the analysis part of the system. We devote the entire Section IV
to discuss this topic.

IV. DATA MANAGEMENT

A. Data Partition

One of the main problems in implementing a ticketing
system and that has to be considered with particular care
is the management of data. Without a proper partitioning of
the data, it will not be possible to scale to large numbers
of customers. The information generated by the ticketing and
validation services is quite large and needs to be stored in a
repository that must be efficient and capable of supporting fast
computation. The central repository is a database. One of the
tasks it supports is the revenue-sharing computation among the
carriers involved in the transportation. It can also serve other
objectives that should be added in the form of computations
specified as executables for machines. From the point of view
of the stakeholders, data are collected in a central repository
that accumulates information over the useful life of that data.

From the central repository, the data are incrementally added
to a twin repository, a data warehouse, with more or less
transformations in between. “Data warehouse” is the usual
nickname for a well structured repository of historical data for
data analysis operations and computations in batch. Adding
data into a data warehouse requires a set of more or less
complex transformations of the source data, while a twin
repository will be way less elaborate, similar to that found
in Figure 1. Whatever the choice between the two options, the
aim is that heavy computations, such as calculating revenue
sharing, may be performed on this repository without weighing
on the main repository, which serves operational applications.
It is the classic question of processing decision support and
calculations in batch, versus operational processing. Separation
of concerns, with incremental data migration for decision sup-
port and calculations in “batch” is essential to avoid problems
of efficiency in operational systems.

Managing the lifecycle of the data is important, since
the accumulation of too much data over such a repository
increases its size progressively. There are two possible options
to appropriately limit the size of the data for the sake of effi-
ciency. The first possible solution involves the identification of
a period of validity for the data and passing data whose validity
period has been exceeded to some archives. By keeping only
fresh information in the master repository, a size suitable for
efficiency is achieved. A second simpler solution uses the table
partitioning mechanisms that some database engines offer.
Instead of archiving old data, the idea is to do a partition of the
data in the main repository into temporal intervals, specifying
the creation of the main table partitioning by intervals of one
or more temporal attributes. It will be necessary to choose
a database engine that supports these mechanisms and that
does so efficiently. Queries carried out on the system should
specify a time interval, for example the last two years, and
the database engine should be able to automatically do what
is dubbed “prunning”, consisting of accessing only the portion

of data that is in the specified range, thus saving a considerable
amount of processing. Computations that require access to all
the data in addition to the recent one should be considered
with care if the data size is very big, as some queries can take
too much time.

In summary, there are solutions that can be used to ensure
efficiency in the presence of voluminous data, requiring some
care in the organization of data and computing.

B. Data Organization in Key-Value Stores and Cloud

When using cloud services, one must choose the type of
engine for the database. While in Infrastructure-as-a-Service
(IaaS) solutions, one can install the database engine he wants
(or resort to those that are sold by the cloud vendor), in
Platform-as-a-Service (PaaS) one will typically use integrated
data management services on the platform. Usually, there will
still exist the option of using relational databases with avail-
ability guarantees (ACID - atomicity, consistency, integrity,
durability). In this case, it should be ensured that the server
machine offers features appropriate to the amount of data and
characteristics for the required query performance. Basically,
one must ensure that the settings that a database administrator
must take into account to ensure efficiency, are available in the
cloud environment, and that the offered database engine can
deal efficiently with the amounts of data that are predicted.

There is still another option, which can be used for some
types of processing. Cloud key-value repositories are adver-
tised as offering very good scalability and easy adding and
removing of nodes, since reorganization involves only ex-
changing pairs of key-values automatically for load balancing.
A simplified abstract view of these systems would be as an
elastic hashtable or HashMap11. These systems do not attempt
to replace traditional database engines, since they exchange
ACID support for more flexibility and efficiency, and do not
implement more complex computations such as aggregations
or joins. The most basic primitive offered very efficiently on
these systems are the get (search data indexed by the key
specified by the user in the request), and the put (storage of
data indexed by a key, indicated by the user). Such systems
could be used for a number of features, especially for the
calculation of revenue sharing by carriers. One might think
about indexing the information given by validations using as
key the transportation title identifier, adding validations to
the corresponding title in a scalable manner. This data also
grows considerably over time, particularly with a constant rate
of addition of new tickets. Consequently, the computations
also would increase considerably over time, once again being
recommended the ability to archive older information, possibly
on a twin scheme or other form of organization that may be
wished.

11In the present context the word elasticity refers to the ability of a system
to adapt to changes in computational load, making available more computer
resources or removing them to the extent they are needed.



Operational 
DB Analysis DBStaging Area

Fig. 3. All on-premises

Operational 
DB Analysis DBStaging Area

Fig. 4. All in the cloud

C. Data Movement

As mentioned, and also as used in the Oporto Intermodal
Transportation system that was analyzed, it seems essential
that the processes that require large amounts of data reside
outside of the operational database. It will be totally impracti-
cal to lock access to a large amount of records in a particular
database for calculating for instance revenue sharing, thus
preventing or delaying normal daily routine transactions. The
solution to this problem will normally go through a doubling of
the data. Figure 2 already represents this, through the existence
of a movement area (staging area), which serves to transport
the data from the operational database to an analysis database.

The staging area allows one to apply a much more complex
data transformation, inline with traditional ETL. For example,
one can let the data grow for some time, say a week, such that
validations of transport titles on all vehicles become available,
or some faulty system recovers. Once the data is complete,
one may then load all the data at once in a format compatible
with the warehouse. The staging area also makes a preliminary
analysis of the data possible. For example, one can group the
data according to the company and compress it in order to min-
imize the information that follows for analysis. This possibility
is particularly important if the analysis features reside in the
cloud, as the cost of storage is typically proportional to the
data size. There are other possible reasons for using a staging
area. For example, it may be necessary or useful to use other
existing data in the online database, to manipulate the data
on the staging area. Linthicum [5] provides additional insight
into this topic, pointing some more reasons, such as using
less computing resources or networks to transfer data by parts
instead of bulk. We also believe that using a batch treatment
as opposed to a load dispersed over time is not particularly
complex and may offer high performance.

D. Locating Architecture Components

With regard to the location of resources, there are eco-
nomic and scalability considerations that should be taken into

account. To do this analysis we consider the existence of
four main components: the operational database, the analysis
database, the staging area, and the data processing. Each of
the four components may be on-premises or in the cloud. As
some of the combinations do not make sense, in this section
we focus on the possibilities that seem more important (for
example, it would be difficult to understand a solution in
which the staging area was placed in the cloud and everything
else on-premises or the other way around). Also, we are not
particularly interested in the case where everything is on-
premises (Figure 3) or everything in the cloud (Figure 4). The
first, because it involves no costs with the cloud, the second
because it does not involve costs of data transfer, despite being
relevant to our study. This latter case is also partially addressed
in Section V.

In addition, the location of each component raises specific
problems. For example, consider that the operational database
resides in the cloud. This solution raises a potential problem of
latency and costs of transferring and storing data. Regarding
latency, we point to a study of games based in the cloud, by
Chen et al. [1]. The authors of this study conclude that it
is possible to play some games in the cloud, and given that
few activities are so demanding from the point of view of
interaction as the games, we think that the latency by itself,
may not prevent resources from being on the cloud. Regarding
storage, we discuss issues related to costs in Section V.

Keeping the operational database on-premises also raises
questions, because it requires creating and maintaining all
computer support that ensures performance and availability.
In addition, there is a need to keep a copy of the data12.

We will not consider the case where the online database runs
in the cloud and the analysis database runs on-premises, for
two important reasons: the data transfer tends to be cheaper (if
not free) from outside to inside the cloud; the most prolonged
computations take place over the analysis databases. Thus, we
consider the cases where the analysis database resides in the
cloud, including combinations in which the staging area can
be inside or outside the cloud. We will not further analyze this
last case, but it is easy to understand that, if this area stays out,
there may be some savings in data storage, especially when
there is a large data compression within the staging area, i.e.,
whenever it may be possible to create a much smaller summary
of the original data size.

Consider now that the operational database is on-premises
(Figures 5 and 6). If the analysis database is in the cloud,
we must consider, in addition to the cost of storing data and
transfers, the appropriate choice of the database technology
(relational vs. key-value). We must also take into account
characteristics scalability, to make it possible to execute the
necessary calculations, e.g. revenue sharing, efficiently. An

12One should note that there are cases in which some clouds are known
to have lost data including clouds of well known suppliers, hence we should
change our perspective and put the question as follows: when the data is
controlled by the customer company, it can know exactly the risks involved;
when consigned to a cloud provider, it becomes subject to a Service Level
Agreement, which by itself will not allow data recovery, if the cloud vendor
makes a serious mistake or has an accident with the data.



Operational 
DB Analysis DBStaging Area

Fig. 5. Staging area on-premises

Operational 
DB Analysis DBStaging Area

Fig. 6. staging area in the cloud

important factor, usually pointed in favor of the cloud, is
the lower Total Cost of Ownership, although the truth of this
statement is questionable and might depend on the particular
cases.

The location of processing is also important, although it
this can never be completely orthogonal to the location of the
data. If data are stored in the cloud, it hardly makes sense to
process them on-premises and vice versa. The question that
arises is to know how one can achieve automatic elasticity
for an application. One possibility is to use a PaaS approach
with vendor-specific APIs (e.g., Google Application Engine).
This approach has, however, two disadvantages: the use of an
API of this kind may require a very specific set of skills not
very common among IT professionals available in the market;
secondly, it creates lock-in to the seller adopted, because it
becomes difficult to switch to another cloud provider or to an
on-premises solution afterwards.

On the other hand, the great advantage of the IaaS approach
is to not involve any lock-in, being very flexible. The short-
coming of this option is that elasticity is usually not automatic
in this case.

V. COST ANALYSIS

In this section, we focus on studying the different architec-
ture alternatives with regards to the cost of using the cloud to
deploy the ticketing system.

A. Introduction

Placing a ticketing service in the cloud, with the goal
of fulfilling operational requirements as well as analytical
processing, is in itself a challenge. In the present case, that
challenge is subject to a technical constraint which requires

the ticketing service to be provided by means of a public cloud
or a private cloud, depending on customer preference.

On the one hand, we consider a scenario in which the
transport operator acquires only terminal devices (such as
vending terminals) that connect directly to a public cloud.
On the other hand, some transport operators are interested
in administrating the entire system, becoming responsible for
managing the infrastructure in a private cloud (that is, a local
datacenter).

In between the two extremes we consider intermediate
options, in which the ticketing service is divided among a
private cloud and a public cloud. Such a hybrid cloud scenario
allows one to deal with sporadic heavy tasks (allocated to
a public cloud capable of offering a greater elasticity) and
maintain some features and sensitive data in private datacenters
(thereby respecting confidentiality requirements).

B. Existing Cloud Solutions

There are numerous public cloud operators in the market, as
well as several solutions for creating private clouds. However,
the possibility of creating a single implementation capable of
functioning in a public cloud as well as in a private datacenter
is intrinsically dependent on the service model adopted.

According to the PaaS (Platform as a Service) model, the
cloud consists of a service with a given operating system,
storage and data management solutions, fundamental services,
and one or a few frameworks for application execution.
Applications are developed and placed in the cloud without
the need to build and maintain the underlying platform. The
PaaS model is adopted by several cloud providers, such
as Microsoft Azure, Google App Engine, JoyentCloud and
SoftLayer (IBM).

Another service model that offers interesting possibilities for
the ticketing service is the IaaS (Infrastructure as a Service)
model. Under this model, a cloud operator provides virtual
machines in which a customer may install different operating
systems (with some limitations), as well as the applications. In
this model, customers manage the service much like physical
machines in a remote datacenter. Some examples of IaaS
providers are Microsoft Azure Virtual Machines, Amazon
EC2, JoyentCloud, HP Cloud, Rackspace Cloud and Google
Compute Engine.

C. The Ticketing Service

Regarding the ticketing service, the IaaS differs the PaaS
model in three key aspects: the flexibility of the software de-
velopment process, vendor lock-in, and total cost of ownership.

The first aspect is the flexibility offered to the software
development team. In the IaaS model, the software (including
the operating systems) are managed by that team. There are,
consequently, less technical restrictions limiting the devel-
opment. This possibility offers the ability to reuse software
components. However, this flexibility leads, in the long run,
to a higher operational cost.

The second aspect is vendor lock-in. Regarding this issue,
it is more favorable to use IaaS, as the development team may



choose (practically without limitations) any operating systems,
platforms for executing applications, databases, etc. Unlike the
IaaS model, the PaaS model leads to a greater vendor lock-
in associated to the choice of cloud operator and respective
components belonging to the software stack.

The third aspect is the total cost of ownership associated
to choosing among PaaS and IaaS, which includes the devel-
opment cost and the operational costs. The operational costs
break down into a monthly price established by the cloud
operator, and the cost of maintaining and administrating the
application. With this in mind, we focus on the cost of using
the cloud for the ticketing service.

D. Cost Simulation

In spite of the complexity of modelling the cost of running
an application under the PaaS model (the computational needs
are not always simple to estimate) it is possible to make a fair
comparison using the Microsoft and Amazon cost simulation
tools.

We begin by comparing two installations (a small setup and
a medium setup) with regards to the monthly prices under the
PaaS and the IaaS models. The two setups are characterised
as follows:

• Small infrastructure. This installation would be appropri-
ate for a small transport operator (for example, anywhere
between 5 and 10 vehicles). We assume that the operator
manages only terminal equipment and, consequently,
the remainder of the infrastructure is in the cloud. We
consider that the computational needs demanded by this
system correspond to 2 virtual cores at 1.6GHz with
4GB of memory and 500GB of storage, using 100GB
in monthly outbound network traffic.

• Medium infrastructure. This installation corresponds to
the needs of a transport operator for a city with 100 000
habitants. In this installation we equally assume that the
infrastructure is entirely placed in the cloud. We consider
that the computational needs to run this system corre-
sponds to 4 virtual cores at 1.6GHz, 8GB of memory and
1TB of storage, with 1TB in monthly outbound network
traffic.

Comparing the two setups (small and medium) with regards
to their cost under the IaaS model and the PaaS model, we
obtain the results in Table I.

TABLE I
PRICE COMPARISON FOR SIMILAR CONFIGURATIONS UNDER THE

PLATFORM AS A SERVICE MODEL AND INFRASTRUCTURE AS A SERVICE
MODEL.

Small Size Medium Size

IaaS PaaS IaaS PaaS
Computation 100 89 199 177

Storage 27 - 59 -
Network 9 9 91 91
Database - 94 - 132

Total 136 e/mês 192 e/mês 349 e/mês 400 e/mês

The prices of the PaaS versions correspond to the described

installations simulated in the Microsoft Azure tool. The IaaS
versions correspond to Microsoft Azure as well, but the Ama-
zon EC2 prices were equally analysed, without any significant
differences between the two providers. Therefore, the monthly
price for renting virtual machines (in the IaaS version) is
representative of the market. It should be noted that, in the
PaaS model, the storage cost is included in the computation
cost, and that in the IaaS model the database is managed along
with the remainder of the storage.

We can observe that the small differences between IaaS
and PaaS are owed essentially to the pre-installed database
managed by the cloud operator. Given that the database will
certainly require maintenance, the IaaS and the PaaS models
are similar regarding the monthly prices. The reason for this is
that, in the IaaS model here analysed, the database is managed
by the team responsible for the ticketing service (rather than
the cloud provider).

With regards to computation, the table was constructed
assuming a usage close to 100% of the resources in the
PaaS model. This assumption may be too high, since PaaS
applications tend to benefit from optimisations carried out by
the cloud provider. Taking this into account, the PaaS model
may actually be the most economical.

In any case, it is important to notice that the monthly price to
pay the cloud operator may be relatively low when compared
to the total cost, including development, maintenance, and
operation of the ticketing service. In the development phase,
the IaaS has a lower cost, since the development team can
maintain the same technologies with which it is used to. In
the PaaS model there are specific APIs that have a learning
curve, and that may lead to a greater development cost and
cause delays, depending on the chosen platform.

However, this initially higher cost of the PaaS model is
amortised during maintenance and operation, since the cloud
operator is responsible for a significant part of the tasks.
Many of the operational costs are therefore transferred to the
cloud operation, who divides them among a great number of
customers. Therefore, when considering the total cost of an
application, in the long term, the PaaS model is the most
attractive.

Having compared the costs of two installations (small and
medium) in the IaaS model and in the PaaS model, it is now
important to analyse the costs of a very large installation. We
consider such an installation in a public cloud and in a hybrid
cloud:

• Very large installation in a public cloud. This installation
would be appropriate for a very large transport operator
(for example, in a very large city). We assume that the
transport operator choses to deploy most services in a
public cloud. We consider that the computing system re-
quires 24 virtual cores at 1.6GHz, 150GB of memory and
6TB of storage, and requires 2TB in monthly outbound
network traffic.

• Very large installation in a hybrid cloud. The size of the
installation is the same as the previous one, for a very
large transport operator. Unlike the previous scenario, the



installation is carried out in a hybrid cloud model, in
which the on-line processing components are managed
by the transport operator, but the analytical database
(concerning sporadic processing, reporting, and account-
ing) is placed in a public cloud. The requirements for
handling the sporadic processing consist of 8 virtual cores
at 1.6GHz, 50GB of memory and 2TB of storage. We
consider that this configuration executes 2 days in each
month, to compute reports. There is very little outbound
traffic, since the vast majority of the network traffic
corresponds to loading data into the cloud operator’s
network. We therefore consider only 50GB of outbound
traffic and that inbound traffic is not charged by the
operator.

TABLE II
MONTHLY PRICE COMPARISON FOR A VERY LARGE TRANSPORT
OPERATOR IN A PUBLIC CLOUD AND HYBRID CLOUD SETTING.

Very Large Operator

Public Cloud Hybrid Cloud
Computation and Storage 2344 50

Traffic 178 4
Database 1178 393

Total 3700 e/mês 447 e/mês

From Table II we conclude that the monthly costs may be
reduced by using the cloud’s elasticity to execute sporadically
heavy tasks. One should note that the table only shows the
cloud operator’s costs. In a hybrid cloud, only sporadic tasks
are executed in the cloud. Assuming a usage of 2 days per
month, the price involves only those 2 days. The network
traffic, accordingly, has a very low cost in both cases, and
is almost null in a hybrid cloud setting.

E. IaaS and PaaS in a Private Cloud

Given that one naturally prefers to avoid vendor lock-in and
devise an architecture for the ticketing service that allows pub-
lic and private cloud deployment (as well as hybrid options),
the flexibility of the IaaS model, in which an application is
deployed in remote virtual machines, is the most interesting.

In fact, this flexibility makes the IaaS the most adequate
model for the ticketing service. However, there are some
important alternatives and indications that such alternatives
may grow in the near future. The Microsoft Azure platform,
for instance, accepts applications compatible with Windows
Server (written in .NET), through Microsoft System Center
and Hyper-V Server.

Therefore, it is possible to install a private cloud only using
Microsoft technologies that, not being Azure itself, assure
compatibility for the applications. This option has very high
costs and demands a very solid knowledge from the develop-
ment team, regarding the platforms and virtualisation solutions
by Microsoft. Given that such costs may be unbearable, the
ideal solution would be to base a solution on Azure for private
clouds. At the present moment, such a solution does not
exist, although Microsoft has announced that it would make

it possible to buy servers with Microsoft Azure pre-installed.
Manufacturers such as Fujitsu and HP have confirmed these
initiatives, but to our knowledge there are no concrete market
offers.

Regarding Google App Engine, it may be viable to convert
a public cloud in a private cloud, through AppScale. This
initiative aims to provide, in open source code, the same
APIs offered by the Google App Engine, and allows one to
install in a private cloud the same applications that run in a
public cloud. Several public cloud operators mentioned in this
document have announced private and hybrid cloud solutions,
being therefore reasonable so expect that such solutions will
be more frequent in the near future.

F. Final Cost Evaluation

The PaaS model has, in a general way, a total cost lower than
IaaS. We can observe that the small differences between IaaS
and PaaS are owed essentially to the inexistent of a database
pre-installed and managed by the cloud operator. Although
the monthly price is lower with IaaS, the operational cost
(including maintenance and operation) dominates and should
be lower. In other words, the monthly price is unlikely to make
a difference when compared to the operation and maintenance
costs.

To our knowledge there is no private cloud solution for
running Microsoft Azure, although several announcements
lead us to believe that this may change in the near future, with
the presentation of an Azure solution for private datacenters. It
is currently possible to configure Windows Server in a private
cloud, maintaining compatibility with Azure applications, but
the costs of such an approach can be expected to be very high.

Google’s App Engine has an open source clone that allows
one to run the same applications in a private cloud as in the
public cloud. There are also other cloud operators offering
similar solutions, and one should expect solutions supporting
private clouds to be more common in the future.

In any case, only an IaaS solution may avoid the vendor
lock-in effect at the technology level. This may often be a
less important matter, as in general companies chose to be
dependent on some vendor’s technology, and admit the vendor
lock-in from the strategic point of view.

Finally, one may observe a return on investment associated
to solutions using hybrid clouds, whenever a portion of the
processing is sporadic. If such processing is allocated in
the cloud, and corresponds to a small fraction of the total
processing, the monthly cost reduction is likely to become
attractive.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we presented a typical three-tier architecture
for a ticketing service. Central to this effort was the evaluation
of the options and costs to run all or part of this system on
the cloud. One of the most important aspects that we pointed
out in this document and that is reflected in the solution
adopted by the Intermodal Transportation System of Oporto
(TIP) is the need to separate the online and the analysis



databases. This latter database may not even be relational,
if we want to take advantage of parallelism, to exploit the
elasticity of cloud resources. Ensuring this parallelism might
be one of the biggest challenges ahead given the option for
IaaS clouds, possibly made of public and private resources,
in a hybrid configuration. The preference of Octal falls on
an Infrastructure-as-a-Service cloud, particularly in the case
where we consider a hybrid cloud.

In particular it will be crucial to have a solution that can use
more resources from the cloud, whenever that is desirable in
view of the cost/performance ratio. Small operators may resort
entirely to the cloud to free themselves from operational costs.
On the contrary, large operators may rather prefer the cloud to
accommodate sporadic loads, particularly over their analysis
database. This possibility will lead to savings in operational
costs, but it is necessary to assess whether the increased risk
of developing a hybrid solution brings any savings on a longer
term.

This paper still leaves a number of important open points

that we need to address as future work. The most interesting
one is how to create an analysis database with transportation
data that allows parallel execution of queries that can further
accelerate tasks such as sharing the revenues.

REFERENCES

[1] Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and
Chin-Laung Lei. Measuring the latency of cloud gaming systems. In
Proceedings of the 19th ACM International Conference on Multimedia,
MM ’11, pages 1269–1272, New York, NY, USA, 2011. ACM.

[2] Jeri Edwards. 3-Tier Server/Client at Work, Revised Edition. Wiley,
February 1999. Revised Edition.

[3] João Ferreira, Porfı́rio Filipe, Gonçalo Cunha, and João Silva. Cloud
terminals for ticketing systems. In The Fifth International Conferences
on Advanced Service Computing, 2013.

[4] D. Harrington, R. Presuhn, and B. Wijnen. An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management
Frameworks. RFC 3411 (Standard), December 2002. Updated by RFCs
5343, 5590.

[5] David S. Linthicum. Best practices in leveraging a staging area for
saas-to-enterprise integration. http://www.informaticacloud.com/images/
whitepapers/WP-Leveraging a Staging Server.pdf, 6 2009.


