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Abstract. In this paper, a new approach to design nonlinear adaptive
PI multi-controllers, for SISO systems, based on neural local linear prin-
cipal components analysis (PCA) models is proposed. The PCA neural
networks only implements the integral term of the PI multi-controller, a
proportional term is added to obtain a PI structure. A modified normal-
ized Harris performance index is used for evaluating the controller perfor-
mance. Some experimental results obtained with a nonlinear three tank
benchmark model are presented, showing the adaptive PI-PCA multi-
controller performance compared to neural linear PI controllers.
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1 Introduction

Industrial plants and processes are typically nonlinear systems, most of them
controlled by linear or nonlinear proportional-integral (PID) controllers, [1, 2,
30]. Most loops use in fact only PI control because the derivative action is not
used very often. The PID controller is used for a wide range of control prob-
lems: process control, motor drives, flight control, robotic systems in automotive
industries, etc. The PID controllers appears in different forms: as standard single-
loop hardware controllers, as software modules in programmable logic controllers
(PLC’s) and also as distributed multi-loop control systems in industrial plants.
Principal component analysis (PCA) and other multivariate statistical methods
(factor analysis, discriminant analysis, etc) can be used to develop nonpara-
metric models for process monitoring (including fault detection and diagnosis),
[4, 20, 26, 27]. PCA can also be used for controller loop monitoring, [9], as well
as for feedback control in the scores space, [8, 26, 27].
The PCA control formulation, in a reduced control scores space, is analogous
to eigenvalue-assignment control. The great advantage of the control structure
proposed in this work is the fact that only input-output process data is needed
for controller tuning, resulting in a data-based controller tuning approach using
neural networks.
In this paper, a nonlinear adaptive PI multi-controller based on linear local neu-
ral PCA models, to deal with nonlinear SISO systems in real-time applications,



is proposed. This work is based on the previous work focused on a linear neural
PCA controller, [6].

2 Control Loop Performance Analysis (CLPA) Approach
based on a Modified Normalized Harris Index

In a typical industrial plant there are dozens or even hundreds of controllers,
most of them based on the PID structure. Even if these controllers initially
perform well, various factors can contribute to their performance deterioration,
including [16, 18]: actuator/sensor or process faults, sticking valves producing
oscillations, external disturbances, to name just a few. Around 50% of all indus-
trial controllers, or more, have some kind of performance problem, [14], [28].
Traditional performance measures such as overshoot, rise time, settling time,
control error, integral error criteria, etc, have been used by some researchers for
CLPA. The most widespread criterion considered for CLPA is the variance. Most
of the reported industrial applications of control loop performance monitoring
are based on the pioneer method suggested by Harris, [15], or some algorithms in-
spired on Harris approach, such as the approaches found in the references [3, 19],
to name just a few. The great popularity of the methods based on the Harris
performance index is due to both the conceptual and computational simplicity,
as also the small amount of information required. Performance indices can be
used for control loop performance monitoring or for control structure selection,
[11].
The first indices for control loop performance assessment were proposed by Har-
ris [15], Desborough and Harris [12] and Stanfelj et al [29]. A review of the status
in control loop performance assessment (CLPA) technology and industrial ap-
plications was published in 2006, by Jelali [21]. Merits and drawbacks of each
CLPA method are highlighted. The application of fuzzy logic and neural net-
works were also investigated in the CLPA field, [10].
The modified normalized Harris index used in this work is described next, sum-
marily, [9]. In this work, the algorithms were implemented in discrete-time: at
time instant tk, the sample is k. The key variable for CLPA is the control error,
e(k) = r(k) − y(k). The control error should have no predictable component.
Let’s compute a residual signal δ(k) between the measured control error e(k)
and a forward prediction of the control error ê(k), described by

δ(k) = e(k)− ê(k) (1)

In a control loop that is performing well it is expected that the control error
contains only random noise. The normalized CLPA index used in this work
ϑ(k), computed on-line for a sliding window (time horizon), is described by (2),
where var(.) is the variance and mse(.) is the mean-squared error. For typical
data from process control loops an autoregression AR(n,b) time series model that
makes predictions b steps ahead is suitable for modeling the forward prediction
ê(k), [9]. A good performing loop has a value of the CLPA index ϑ(k) close to 0,



while for a poorly performing loop is close to 1. This CLPA index is used here
for evaluating the controllers performance in closed-loop.

ϑ(k) = 1− var(δ(k))

mse(e(k))
(2)

3 Linear Integral Controller based on Classical PCA
Model

In the past some approaches have been proposed for design classical integral
controllers based on principal components analysis (PCA), [5, 7, 8, 26, 27].
The architecture of the classical integral PCA controller is depicted in Fig. 1.
Detailed information about the design of this kind of controllers can be found in
[5, 7, 8]. The block ”Pa” represents the plant, ”C” is the PCA controller, and
Q is given by (3). Let’s assume that k is the k sample in the algorithms.

Q = (UT )+ (3)

In (3), + represents the pseudo-inverse of the matrix and T is the transposed.
The matrix U is obtained from (4), where xd(k) = y(k) is the process output.

U = (Υ T xd(k))T (4)

Assuming two principal components, a = 2, Υ is the projection of the regression
matrix X (input/output data) on the 2D PCA scores space, accordingly (5).

Υ = X P (5)

Assuming that the training data matrix is X ∈ <n×m, where n is the number
of rows and m is the number of columns, the matrix P corresponds to the first
a columns of the loadings (singular vectors) matrix V , i.e. V = (P ):,1...a, for a
SVD decomposition as follows (6), assuming that Λ is the singular values matrix.

cov(X) =
1

n− 1
XT X = V Λ V T (6)

Assuming an ARX(2,2,1) model for the plant/process under study, the projection
of the on-line regressor data vector x(k) = [y(k) y(k−1) y(k−2) u(k−1) u(k−2)]
on the 2D scores space, is given by (7).

t(k) = x(k) P (7)

The classical integral PCA controller was initially formulated by Piovoso, [26,
27]. Some developments using ARX models were proposed later, for static PCA
models and also for adaptive PCA models, [5, 7, 8]. In the incremental form,
assuming u(k) = xmp(k), the control action of the classical integral controller
based on static PCA is given by (8).

xmp(k) = xmp(k − 1) +Ki ∆xm(k) (8)



Fig. 1. Architecture of the classical integral PCA controller.

The incremental action depends on the manipulated matrix Pmp as described
in (9).

∆xm(k) = ∆t(k) Pmp (9)

The P matrix is decomposed into two matrices, P = [P ex|Pmp]: exogenous
matrix ( P ex, first r columns) and manipulated matrix ( Pmp, the last m− r
columns). The variables m, r and m−r are, respectively, the length of x(k), the
number of process output variables and process input variables in the regression
vector x(k) = [y(k) y(k − 1) y(k − 2) u(k − 1) u(k − 2)]; for an autoregressive
ARX(2,2,1) model the variables assume the values m = 5, r = 3 and m−r = 2.

4 Linear Controller based on Neural PCA Model

The main ideas related to the design of integral controllers using neural PCA
models can be found in [6]. The integral controller presented here is based on
neural linear PCA that can be implemented accordingly to the architecture de-
picted in Fig. 2, [13, 22]. The auto-associative neural network implements data
compression at the bottleneck layer (BL) using function G and data decompres-
sion at the output layer (OL) using function H.
The main idea is the implementation of the equation t(k) = x(k) P using
a neural structure. In fact, since to implement PCA on neural structures an
auto-associative architecture is needed, the projection on the 2D scores space
is obtained at the output of the bottleneck layer (BL), assuming two principal
components, a = 2. In this work, only linear activation functions without bias
were used, in order to guarantee a linear neural network, so both σ and φ are
linear activation functions.
First of all, the algorithm needs input / output training data to build a neural
linear PCA model. Let’s assume that the training data is archived in the matrix
X ∈ <n×m. In this work, to build the data matrix, the regressor vector was
inspired on the regressor of an ARX(2,2,1) model, as described in (10), without
loss of generality. The simulations were done assuming n = 800,m = 5, for a
sampling period of Ts = 1[s].

x(k, :) = [y(k) y(k − 1) y(k − 2) u(k − 1) u(k − 2)] (10)



Fig. 2. Architecture of auto-associative neural network for PCA.

The training data should not contain very high frequency data since this can
cause problems in the Levenberg-Marquardt optimization algorithm used in the
training of the neural networks, [25].
The integral controller based on linear neural PCA will be presented using a
matrix formulation, inspired on the linear integral PCA controller described in
section 3. In the algorithm M is the neural mapping matrix (first layer matrix
ML, with weight matrix W 1) and B is the neural bottleneck matrix (second
layer matrix BL, with weight matrix W 2).
The P n matrix, equivalent to the main singular vectors matrix, is obtained from
the neural network weight matrices as described in (11).

P n = B M (11)

The P n matrix is decomposed into two matrices, P n = [P ex|Pmp]: exogenous
matrix ( P ex, first r columns) and manipulated matrix ( Pmp, the last columns).

P ex = (P n):,1...r (12)

Pmp = (P n):,r+1...m (13)

The matrix Mλ is obtained from the P n matrix, where + is the pseudo-inverse
of the matrix.

Mλ = (P ex)+Pmp (14)

The error vector is given by

∆x(k, :) = [ec(k) ec(k − 1) ec(k − 2)] (15)

The increment in the manipulated variable is expressed by

∆xmp(k) = ∆x(k) (Mλ):,1 (16)



The non-saturated control action is formulated as

uc0(k) = uc(k − 1) +Ki ∆xmp(k) + aw(k − 1) (17)

The saturated control action is given by

uc(k) = satur(uc0(k), ...) (18)

The anti-windup term is expressed by

aw(k) = Kaw [uc(k)− uc0(k)] (19)

A proportional term was added to the integral controller in order to improve the
overall controller performance. The new non-saturated control action is given by
(20).

uc0(k) = Kp ec(k) + uc(k − 1) +Ki ∆xmp(k) + aw(k − 1) (20)

5 Nonlinear Adaptive PI Multi-Controller based on
Neural PCA Models

Inspired on the previous works [5, 6, 7, 8], a nonlinear adaptive PI multi-
controller based on PCA multi-models, one PCA model for each setpoint range,
is proposed here. The general architecture is depicted in Fig. 3. The supervisor,
with a control-loop performance analysis module based on the modified Har-
ris index as described in section 2, implements the adaptive mechanism used to
compute the adaptive integral term. The block ”Sat” is a saturation mechanism.
As described in section 4 the integral term of the controller depends on the P n

matrix. This matrix is computed accordingly P n = B M . For each local linear
neural PCA model a set of matrices {Bi;M i} is available after off-line training
of the linear local PCA neural models. Assuming ζ local linear neural models
for ζ setpoint ranges, each adaptive matrix {B(k);M(k)} is computed on-line
from a linear combination of the matrices of local models accordingly (21). The
weights are computed accordingly (22), where |ei(k)| is the absolute value of
the control error at each time instant k. This methodology weighs more nearby
models.
The supervisor should guarantee a minimum dwell-time associated with switch-
ing between matrices in order to guarantee stability, [23, 24]. In this work a
rounding approach was applied to the weights αi in order to guarantee a mini-
mum dwell-time.

M(k) =

ζ∑
i=1

αi(k)M i(k) B(k) =

ζ∑
i=1

αi(k)Bi(k)

ζ∑
i=1

αi(k) = 1 (21)

αi(k) =
Γ (k)∑ζ
i=1 Γ (k)

Γ (k) = 1− |ei(k)|∑ζ
i=1 |ei(k)|

|ei(k)| = |ri(k)− y(k)| (22)



Fig. 3. Architecture for nonlinear neural PI-PCA multi-controller.

6 Experimental Results

In order to evaluate the performance of the proposed PI multi-controller struc-
ture, experimental results obtained with a simulation model of a three-tank sys-
tem benchmark are presented, [17], as depicted in Fig. 4. The water levels (h1, h2
and h3) in each tank are the process state variables. In this benchmark, usually,
the main goal is to maintain the water level, in the central tank, around a certain
predefined set-point. The experiments show the water level evolution in the left
tank T1. It is assumed that valve V13 and the outflow valve in the central tank
T3 are open. The algorithms were implemented in Matlab in discrete-time k.
The sampling time is 1 s. The input/output variables were normalized to the
range [0;1].
In Fig. 5 can be observed an experiment done with the neural PCA multi-
controller proposed, for two set-points r1 = 0.15/0.6 and r2 = 0.3/0.6. From
top to bottom can be observed the following signals: reference (r) and process
output (y), control error (e), control action (u), proportional action (up) and in-
tegral action (ui), high-pass filtering of reference signal (hpfr), weights αi (wx),
and finally the modified Harris index (ha). The controller gains are the following:
Kp = 1,Ki = 0.2 η, with η = mean(abs(t1)). The value t1 is the projection of
data along the first singularvector, i.e., the first principal component.
The adaptive PCA multi-controller (AMC) was compared with two linear neural
controllers (C1 & C2) tuned for each set-point (r1, r2), for the same profile of
set-points depicted in Fig. 5. The mean squared error of the modified Harris in-
dex obtained for each controller are the following, respectively, for the controllers
AMC, C1 and C2: 0.368, 0.390 and 0.738. The multi-controller (AMC) reveals
the best performance.



Fig. 4. Three-tank benchmark system.

Fig. 5. Experiment with the multi-controller for two set-points, r1 and r2.

7 Conclusions

In this paper, a new approach for design nonlinear adaptive PI multi-controllers
based on PCA multi-models, for SISO systems, was proposed.



Since neural networks are very sensitive to data, high frequency data should be
avoided in the training phase of each PCA neural network. Only data around
each set-point should be considered for the training of each local linear PCA
model used to build the integral term of the PI multi-controller. The behaviour
of the integral neural PCA controller, in terms of overdamped or underdamped
responses, depends on the spectral content of the data used in the training phase
of the neural networks. The obtained results are very promising. A good perfor-
mance was obtained for different simulations as observed in the behaviour of the
modified normalized Harris index. More tests should be done to evaluate this
approach with other classes of systems.
Some future research pointers are: a) improvement of the approaches for better
tuning the controller gains; b) discover the classes of systems that are apro-
priate for this kind of controllers; c) the comparison with classical adaptive PI
controllers based on gain scheduling; d) the robustness of the multi-controller
against faults and failures should also be analysed; e) the generalization for
MIMO systems should also be investigated.
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