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Abstract: In monitoring applications the accuracy of data is paramount. When considering wireless sensor 
networks the quality of readings taken from the environment may be hampered by outliers in raw data 
collected from transmitters attached to nodes' analogue-to-digital converter ports. To improve the data 
quality sent to the base-station, a real-time data analysis should be implemented at nodes' level, while 
taking into account their computing power and storage limitations. This paper deals with the problem of 
outliers detection and accommodation in raw data. The proposed approach relies on univariate statistics 
within an hierarchical multi-agent framework. Results from experiments on a real monitoring scenario, at a 
major oil refinery plant, show the relevance of the proposed approach. 

Key words: Oil refinery plant, real-time monitoring, wireless sensor networks, outliers detection and 
accommodation, multi-agent systems. 

1. Introduction 

Wireless Sensor Networks (WSNs) consist of small, low-cost sensor nodes spatially distributed over a 

given environment, where readings are taken from. Each node includes a miniature electronic device with 

wireless communication interface, programmable micro-controller, power source, and possibly multi-type 

sensors or analogue-to-digital converters (ADCs). The small dimension of these devices, absence of wired 

connections and external power supply, easy of deployment, flexible installation and fully mobile operation, 

make them ideal for a myriad of applications, namely in process industry. 

Sensor nodes can be grouped in single-hop or multi-hop networks with a varying number of 

self-organized devices, which can be used, for instance, to detect and classify events [1], or gather data from 

the environment. However, harsh environmental conditions, along with constraints on resources, in 

particular limited processing, small data storage, narrow bandwidth and autonomy may lead to artefacts in 

the raw data [2], commonly referred to as outliers. Generically, they can be defined as readings that 

considerably deviate from the normal pattern of sensed data [3]. 

Most of the techniques towards outlier detection are computationally intensive, require large amounts of 

memory for data storage, with high levels of energy consumption and communication overheads and, above 

all, do not support distributed computation [4]. Besides, standard methods are not tailor-made for heavy 

online data streaming, and are essentially based on data patterns, in order to minimize the redundancy of 
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collected data. The above conjectures make clear the need for mechanisms to allow detecting and 

accommodating of outliers that could effectively be deployed on each sensor node. Such an endeavor, which 

constitutes one of the contributions of this work, can conceptually be accomplished by incorporating into 

the code, running at each node, cooperative autonomous threads, under the form of mobile agents. These 

agents can further be functionally aggregated into a multi-agent framework, where information can be 

exchanged among agents. 

In order to cope with computational constraints, the proposed approach relies on univariate statistics, 

within the Shewhart control chart framework. Its implementation on sensor nodes uses a hierarchical 

multi-agent system, together with an oversampling technique within each sampling interval. To deal with 

transient time-series the oversampled data-series is assumed to be linearly time-dependent, being the 

underlying parameters computed by a linear regression technique. The incorporation of an oversampling 

mechanism within the pro-posed framework enables the Shewhart control chart based approach to behave 

statistically more consistent. 

The performance of the proposed architecture towards outliers accommodation in WSNs environments, 

was evaluated on a real oil refinery monitoring process, where a number of experiments have been 

conducted. 

2. Multi-Agents Systems 

2.1. Agents and Multi-Agents 

An intelligent agent, or agent for short, can be defined as a computing entity embedded in a given 

environment, comprising a certain degree of autonomy and possessing the ability to perceive the world in 

which it is immersed. Further, it possesses the ability to interact with other agents, while presenting 

idiosyncratic pro-activity features, in the sense that can assume initiatives in a way to persistently fulfil its 

own goals [SJ. Therefore, an agent is supposed to act or react spontaneously, executing pre-emptive and 

independent actions, according to predefined goals [6]. Fig. 1 illustrates the use of an intelligent agent in the 

context of distributed control systems. 

Sensors Actuators 

Fig. 1. Agent model and information environment. 

Although in some particular cases agents can act on their own, it is more common to find clusters of 

agents, in different functions, carrying out a number of tasks. In this sense, a multi-agent system (MAS) can 

holistically be regarded as a collection of heterogeneous multi-tasking intelligent agents organised in a 

particular topology, with co-operation and interaction capabilities. 

The MAS architecture implemented in this work follows a hierarchical multi-agent system (HMAS) based 

topology. Fig. 2 shows a local HMAS topology for monitoring and control over wireless sensor and actuator 
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networks (WSANs), in which several agents that are responsible for monitoring and control are locally 

coordinated by a master-agent. The master-agent's main purpose is to carry out extensive management 

tasks related to lower-level agents, as well as monitoring the communication status between local nodes 

and the WSAN's sink. Agents belonging to the lowest layer are used to interface directly, and in a distributed 

way, with sensor readings. They analyse queries, pre-process collected data from the environment, and 

extract useful information from these readings, as instructed by the upper-level agent, based on a 

centralised goal-driven conditioning strategy. 

2.2. Multi-Agent Architecture for WSNs 

The HMAS architecture is composed of two layers, namely a higher-level layer with coordination 

functionalities and a bottom layer comprising subordinate agents that are committed to specific tasks, such 

as monitoring ADCs readings, detection of outliers and their subsequent accommodation. Each lower-level 

agent available at the local repository can be independently launched, paused, resumed and stopped at run­

time. Additionally, the agents' configuration can be remotely modified by means of appropriate command 

messages. 

Message 
Type 

Table 1. Messa 
Node 

ID 
Control 

ID 
Agent Agent 

ID MSG 

Each message comprises a header and a payload. The header includes the sender and destination 

addresses within the WSN, message sequence number, hops, along with a control identifier. Regarding the 

message payload (see Table 1) it consists of Message 1)lpe: the message can be originated from the system's 

application or from a local agent; Node ID: denoting the node address; Control ID: the command flag for 

local agents; Data ID: data collected in the node ID; Agent ID: agent's identifier that will be launched, 

stopped or resumed; Agent MSG: data provided by an agent. With respect to mobile agents' commands, the 

platform is provided with: i) Start Agent: starts a monitoring agent at the sensor node by sending the 

command flag, the agent's ID and the node's destination address; ii) Stop Agent: stops a particular 

monitoring agent; iii) Start All Agents: starts all monitoring agents stacked at the sensor node memory; iv) 

Stop All Agents: stops all monitoring agents that are running at the sensor node. 

• Master-Agent: 

~--, 
~ .8 6 /j I 
Local Agent \ / 

Manager Monitoring Agents 

I 
AD Cs 

(c l) 

Road;og ~ Buffer 1 Control 

DA Cs 

SENSORIACTUATOR 
NODE 

Writing 

'-J=:j+-Buffe~ j 

Fig. 2. Illustration of a multi-agent system. 

Agent 

Its main commitments are essentially related to coordination tasks, namely, managing routines associated 
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with lower-level agents, such as launching, stopping and resuming agents, and their configuration; 

monitoring the communication channel between the sensor node and the sink, using a two-way beaconing 

system; sending alarms to the base- station. By default, this agent is always launched whenever the sensor 

node is switched on or rebooted. When started, it executes several diagnostic routines, and launches 

predefined subordinate agents, aiming at real-time monitoring of raw data, outliers detection and 

accommodation. In addition, the master- agent is also engaged in monitoring the "health" of lower-level 

agents. If of one of these agents crashes the master-agent will kill the corresponding thread, reloads the 

agent's "clone" from the local repository, and eventually starts it. Moreover, if a given monitoring agent is no 

longer necessary, the master- agent removes it from the device memory, by killing the corresponding 

thread. 

• Monitoring Agents: 

Subordinate agents are launched by the master-agent. They have to be started with a number of 

parameters as argument, in order to detect and accommodate possible outliers in the readings by using the 

univariate statistical approach presented in Section 3.3. These parameters are described in Algorithm 1, and 

include the sampling and oversampling frequencies, along with the standard normal deviate. If the sample 

taken at a given sampling time (k + l)T5 is tagged as an outlier the corresponding value is replaced by the 

prediction of the oversampled data linear approximation, computed at t = (k + l)T5 , and an alarm is 

triggered and sent to the master-agent. 

3. Outliers Detection and Accommodation 

Outliers detection methodologies can be categorized into statistical-based, nearest neighbour-based, 

clustering-based, classification-based and spectral decomposition-based approaches (see e.g. [7]) . The first 

category can be further split into parametric [8] and non-parametric [9] methods according to how the 

statistical model is built. Both approaches rely on an estimate for the underlying probability distribution 

characterizing the time-series, while evaluating raw samples in terms of the available statistical model. 

Regarding nearest neighbour methods, they rely on particular metrics to compute distances among objects 

or samples with clear geometric interpretation, according to which a so-called outlier factor is calculated 

[10]. In clustering-based techniques [11] data sets are grouped into clusters consisting of similar attributes, 

being an object classified as an outlier when lying outside identified clusters. This kind of techniques is 

appealing in the sense that they do not require a priori knowledge of the data statistics, and can be used in 

an incremental model [4]. Classification-based methods, on the other hand, are based on machine learning 

techniques to come up with a classification model, which is apprehended or learnt from the available data 

set. A drawback of these techniques is that they are computationally intensive to be implementable in 

real-time on sensor nodes. At last, spectral decomposition based approaches [12] use principal component 

analysis (PCA) based techniques to identify normal modes of behaviour in data sets, at the expense of a high 

computational complexity. 

3.1. Preliminaries 

Consider the single-input single-output (SISO) nonlinear dynamic discrete-time system described by, 

x(k+l) = f(x(k),u(k) ,µ(k)) 

y (x) = h(x(k) ,u(k) ,v(k)) 
(1) 

where x E JR{n denotes the state vector, u E JR{m the input vector, y E JR{P the output vector, and µ E 

JR{nand v E JR{n random variables. The mappings f: JR{n X JR{m X )R{n ~ JR{n and h: JR{n x JR{m x JR{P ~ JR{P are 

respectively, the process model and the observation model. 
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By considering that the source of uncertainty in readings is due to environmental conditions or sampling 

anomalies, which imply in both cases an additive noise disturbance, (1) can be rewritten as follows: 

x(k+l) = f(x(k),u(k)) 

y(k) = h(x(k), u(k)) + m(k) 
(2) 

with w E JRl.P a stochastic variable. 
If w is Gaussian in continuous-time, its probability distribution can be described by, 

(3) 

with liJ the distribution's mean and (j
2 its variance. 

Taking into account the central limit theorem, given certain conditions, the mean of a sufficiently large 

number (N~oo) of independent random variables, each with finite mean and variance, will be 

approximately Gaussian distributed. As a corollary of the central limit theorem, it is plausible to expect that, 

for a stationary deterministic-stochastic system, the readings taken from sensor nodes should follow 

approximately a Gaussian distribution. 

3.2. Outliers Identification Approach 

The univariate statistical-based approach to limit sensing assumes that a single physical variable is 

observed through a sensor reading, which is used to determine boundary thresholds for in-control 

operation [13]. The violation of these computed limits by sampled data will indicate a possible outlier. It 

should be mentioned that the upper (L1u) and lower (L1/) limits on the Shewhart chart are particularly 

critical to the performance of the method, in terms of sensitivity and specificity (see Fig. 3). More 

specifically; tight threshold limits result in a high rate of false outliers, while loose thresholds increase the 

missed detection rate 

8~--~---~---~---~ 

7 

6 

Raw data 

---Mean 

- - - Upper limit 

----- Lower limit r 5 

~ 4 f-- - - -~ - - .--~ -- - - -- -1 
• • 

31------~------------; • . . . 
2 - -- -- -- -------- ---"-- -- ---- --'! . . . . 

5 IO 15 20 
Sample 

Fig. 3. Illustration of a Shewhart chart. 

Statistical hypothesis theory can be used to predict false outlier and missed detection rates on a given 

ensemble. Let z be a monitoring variable, for which any deviation from its mean z, results from additive 

errors, and assume that its variability follows a Gaussian distribution N(z, (j
2 ) with standard deviation (j, 

Then, the probability P of z lying within a given interval is described by: 

(4) 
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P{z < (z - ca12<J)} ~ z ~ P{z > (z +ca12<J)} =I-a (5) 

where Ca;z is the standard normal deviate corresponding to the (1 - a/2) percentile and athe level of 

significance, which specifies the degree of trade-off between false outliers and missed detection rates. Some 

typical values for the standard normal deviate include Ca;2 = {1.0,1.5,3.0}. In the case of a standard normal 

deviate Ca;2 = 1.5, the probability P{z - Ca;zO"} :5 z::::; P{z + Ca;z O"} = 86.64%. 

In order to improve the consistency of the univariate statistical approach, the present work resorts to an 

oversampling mechanism within each sampling interval, namely fort E [kTs, (k + l)Ts], with Ts the 

sampling period, t the continuous time, and k the discrete-time. This enables collecting a statistically 

representative time-series, which is subsequently used within the underlying Shewhart control chart. If the 

sample taken at time(k + l)Ts lies outside the threshold limits it is tagged as an outlier, and accordingly 

replaced by a plausible estimate. 

3.3. Transient Time Series 

In the case of non-stationary physical variables, the corresponding readings can be represented by the 

concatenation of a non-stationary random process and a deterministic time trend. If the sampling period Ts 

is adequately chosen, taking into account the bandwidth of the system, the deterministic-stochastic 

time-series for r E [kTs, (k + l)Ts] can be approx-imated by a linear regression, as in (6). 

z(r ) = a +b xr (6) 

The computation of those deterministic parameters in the equation (6) is carried out by minimising the 

x2 merit function given by, 

(7) 

with Ns the number of samples and O"i the readings' standard deviate. 
Since the uncertainty associated with each measurement included in the data set is not a priori known, 

some considerations concerning the x2 fitting have to be taken, so as to derive a plausible value for O"i . If 

one assumes that all the samples in the time-series have equal standard deviation (O"i = O") and the model 

fits well enough, then it is possible, without loss of generality, to assign an arbitrary value to the standard 

deviation O", in particular O" = 1 for simplicity's sake. In this case, the x2 merit function can be rewritten as 

the residual sum of squares shown in (8). 

NS 

z2(a,b) = :Lz(r;)-a-b.T; 

S(t) = L/i 
S(t

2
) = L/l 

i=l 

S(z) = L/i 
S(t · z) = L/i · zi 

The computation of e = [a b F can be carried out according to: 

(
$(t 2

) - $(t)) 
e _ .s(t) 1 ( S(t) ) 

- .sct 2)+.s2 Ct) S(t · z) 

(8) 

(9) 

(10) 
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If the sensor reading taken at time r = (k + l)T5 is outside the threshold limits, then it is considered an 

outlier and consequently is replaced by the trend provided by the oversampling time-series, which is 

computed using (6). The underlying methodology is outlined in Algorithm 1. 

Algorithm 1: Outliers Accommodation in Transient Time-Series 
Input: f s - Sampling Frequency 

f os - Oversampling Frequency 
snd - Standard Normal Deviate 

Output: Sample/ Accommodated Sample 
1 Ts~ 1 / f s; / / sampling period 
2 T os ~ 1 / f os; / / oversampling period 
3 ti ~ GetTime; / / initial time 
4 i ~ O; //initial iteration 
5 repeat / / oversampling until next sample time 
6 i ~ i + 1; / / iteration 
7 z[1] ~ GetSample; // oversample 
8 Sleep(T os); / / node sleep for Tos seconds 
until GetTime 2! ti + Ts; 
9 y ~ GetSample; / / sample 
10 (a, b) ~ DataFitting(z); //a and b from Eq. (10) 
11 z[i + 1] ~a+ bx (i + 1); //next value from linear model 
12 Llu ~ z[i + 1] + snd x STD(z); //upper threshold 
13 M ~ z[i + 1] - snd x STD(z); //lower threshold 
14 ify E/ [ill, Llu] then returny;// the sample is not an outlier 
15 else return z[i + 1]; //is an outlier: accommodated 

4. Refinery Case-Study 

The proposed approach to deal with outliers in WSNs was implemented in an oil refinery, namely at the 

Petrogal oil refinery, located at Sines, Portugal. The refinery environment is highly challenging in terms of 

wireless communications, as huge thick metal structures and non-stop operating machines contribute to a 

high noise level, which may seriously hamper the WSN performance and the quality of raw data. 

4.1. Scenario Description 

The test-bed included a WSN consisting of 12 sensor nodes, deployed at the water treatment area (Line 4) 

and a sink located at the portable office, which is connected to a Linux OS server computer. In this machine 

Dispatcher software pre-processes packets stemming from the WSN and forwards those via a TCP /IP 

connection to the GINSENG middleware running on a different PC located in the Refinery control room. 

Additionally, the Dispatcher relays system's configuration commands, originated at the middleware, to 

individual sensor nodes, being the middleware responsible for the configuration of the whole network and 

the local multi-agent architecture (Section 2.2). 

The WSN was consisted of 12 Crossbow's TelosB (TPR2400) nodes, plus one sink. These devices are IEEE 

802.15.4 compliant, and incorporate eight 12-bit ADC ports and another two 12-bit ADC ports for the 

internal thermistor and battery voltage monitoring. Also, they include two light transducers and one 

humidity/temperature transducer on-board connected to 14-bit ADC ports. The nodes were enclosed in 

ATmosphere EXplosive (ATEX) junction boxes attached to external 9 dB antennas, in order to cope with the 

wireless signal attenuation using the on-board (internal) TelosB nodes' antenna. Fig. 4 shows one of the 

deployed nodes at the water treatment area within an ATEX junction box. The junction boxes are listed in 

Table 2, along with the corresponding attached transmitters and nodes' ID. 

The operating system for WSNs programming was developed under GINSENG project [14], and is based 

on the Contiki OS. It is built around an event-driven kernel, although providing optional pre-emptive 

multi-threading functionalities, which can be applied to individual processes [15]. 
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Table 2. Junction Boxes DeElo~ed in Line 4 

Junction Box TYI~e Transmitter Nodeld TreePosition 

JBl (sink) 101 N-0-0 

JB7 Flow FT-5147 107 N-1-0 
JBS Flow FT-5141 102 N-1-1 

JB12 Pressure PT-5170 108 N-1-2 

JB10 Flow FT-5147 110 N-1-3 
JB8 Pressure PT-5170 109 N-2-0 

JB15 Pressure PT-5100 112 N-2-1 

JB14 Pressure PT-5100 105 N-2-2 

JB16 Flow FT-5100 113 N-2-3 
JB3 Flow FT-5130 111 N-3-0 
JB4 Flow FT-5141 106 N-3-1 

JB13 Flow FT-5130 103 N-3-2 

JB6 Flaw FT-500 104 N-3-3 

Fig. 4. Sensor node in an ATEX junction box. 

JB5 JB12 JBlO JB15 JB14 JB16 JB4 JB13 JB6 

Fig. 5. Logical topology. 

Flow and pressure transmitters are connected to a 4-20 mA current loop backbone, which extends across 

the water treatment area. Before providing their signals to nodes' ADCs ports it is required to convert the 

current-based signal to 0-2:5 V, using dedicated current-to-voltage converters. On the other hand, to ensure 

a reliable and deterministic readings' delivery, the communication in the WSN was implemented based on a 

novel Time Division Multiple Access (TDMA) scheme [16], with respect to the Media Access Control (MAC) 

protocol, while the network was arranged on a multihop hierarchical tree routing topology for channel 

access. It assumes a criterious node deployment within a virtual tree topology. Hierarchical addresses are 

used to identify each node's position in a 3-3 tree topology, as depicted in Fig. 5. The nodes are programmed 
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satisfying a 3-3 network envelope, where the sink has 3 children nodes, with each of these nodes also 

having 3 children nodes. As such, the nodes N-1-0, N-2-0 and N-3-0 of the first level are responsible for 

forwarding messages originated at the associated set of 3 children nodes, of the second level, to the sink, 

and configuration message semanated by the middleware through the sink to lower level nodes. 

4.2. Experiments 

The first experiment aim at comparing the reliability consistency between readings associated with 

sensor nodes ADC against those provided by the existing wired solution. It was performed using the signal 

from the transmitter PT-5170, which is attached to the ADCO of the sensor node N-1-2 (ID#109). As can be 

observed in Fig. 6, there is a noticeable mismatch between the wired delivered PT-5170 signal and the node 

ID#109 readings that were sent to the sink. The signal degradation can partly be attributed to artefacts in 

the readings provided by the node N-1-2. Such an observation is corroborated by the metrics presented in 

Table 3, where the error is computed as the difference between both time synchronised signals. 

Statistics 

Count 
Count 

Maximum 
Minimum 
Average 
Variance 

Correlation 

~ 

~ 
8 
~ 
•.r. 

J: 

Table 3. Accuracy Test Statistics 

Variable 

WSN data 
Backbone data 

!Error! 
!Error! 
!Error! 
!Error! 

WSN \Backbone 

9 

8.5 

8 

7.5 

7 
100 150 200 

Value Relative Value 

1200 100 % 
1200 100 % 

4 .l x 10-1 bar 3.4 x 10° % FSR 
l.5 X 10-4 bar 1.3 x 10-3 % FSR 
6 . l x 10-2 bar 5.0 x 10-1 % FSR 
l.7 x 10-3 bar 1.4 x 10- 2 % FSR 

0.999 

- ,,_ - WSN 

--- B~ckbone 

250 
Sample 

300 350 400 

Fig. 6. Comparison between the wired PT-5170 signal in JBOS and sensor node (ID#109). 

The next experiment intends to assess the performance of the proposed approach to deal with artefacts 

on raw data. The experiment included readings taken from a flow rate transmitter and a static pressure 

transmitter, which were previously attached to ADC ports of sensor nodes. Flow rate samples were collected 

in seven different locations, while static pressure readings were taken in five different points of the set-up. 

To allow the detection and accommodation of outliers the monitoring agents were launched by the 

underlying master-agent, at start-up. The readings were taken every 1 s (Ts= ls), while the oversampling 

frequency fos was chosen as 100 Hz and the standard normal deviate defined as 1:5. 

The message payload associated with the sensor readings that is transmitted to the sink includes: the 

sample number (k), ); reading (yk); oversampling variance (a 2); upper threshold for the oversampling data 

(~ u); lower threshold (~I); triggered alarm (0 for undetected outlier, 1 for a sample violating of the upper 

threshold, and 2 for a violation of the lower threshold); the accommodated sample (Zk), in case ofan outlier 

alarm is raised. 
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Fig. 7. Detection and accommodation of outliers in 

the refinery flow transmitter FT-5130. 
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Fig. 8. Detection and accommodation of outliers in 

the refinery flow transmitter PT-5100. 

Table 4. FT-5130 (JB13) Statistics 
Statistics Variables Absolute Value Relative Value 

Count samples 1200 100% 
Count outliers 448 12.4% 

Minimum accommodations -16.9 m3 /h -10.5% FSR 
Maximum accommodations 20.9 m3 /h 13.1% FSR 

Mean accommodations -0.7m3 /h -0.5% FSR 
Std. Deviation accommodations 9.6 m3 /h 6.0 % FSR 

Table 5. PT-5100 (IB15) Statistics 
Statistics Variables Absolute Value Relative Value 

Count samples 1200 100% 
Count outliers 456 12.7% 

Minimum accommodations -0.13bar -1.1 % FSR 
Maximum accommodations 0.08 bar 0.6 % FSR 

Mean accommodations O.Olbar 0.1 % FSR 
Std. Deviation accommodations 0.04 bar 0.3 % FSR 

Experimental results taken from flow rate transmitter FT-5130, located at JB13 and the pressure 

transmitter PT-5100 at JB15 are shown, respectively, in Fig. 7 and Fig. 8, where detected outliers are 

represented by a red asterisk. After being identified, outliers are replaced by a first order prediction based 

on the linear regression obtained with oversampled time-series. The green line represents the data 

time-series sent to sink As can be observed, in both cases the implementation of the online solution proves 

to be invaluable in improving the quality of the data, which is corroborated by the statistical metrics 

presented in Table 4 and Table 5. More specifically, in the case of flow transmitter FT-5130, on 20 min of 

running time, represented by 1200 samples, the algorithm detected 4 78 outliers, which accounts for 

approximately 12.4 % of all the readings. With respect to the transmitter PT-5100, it was found 403 outliers 

in 1200 samples, which represents roughly 12.7 % of the time-series length. 

5. Conclusion 

This paper focused on the problem of real-time outliers detection and accommodation in data collected 

with wireless sensor networks. The development of feasible methodologies, from the practicality point of 

view, to deal with these kinds of artefacts in readings is crucial to improve the quality of data sent out 

through wireless sensor networks. 

The proposed approach relies on univariate statistics together with Shewhart control charts, 

implemented through a hierarchical multi-agent framework. To cope with non-stationary conditions of 
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time-series, the approach assumes the system's time response approximated by a linear regressive model 

within each sampling interval. The time-series used in the linear regression is obtained by oversampling the 

transmitters' signal provided to sensor nodes. Whenever a reading, taken at a given sampling time, is tagged 

as an outlier, it is replaced by the linear prediction at that discrete-time. 

In order to assess the feasibility of the proposed methodology, real monitoring scenario tryouts were 

conducted at a major oil refinery, namely at the water treatment area. Results from these experiments prove 

the practicality and implement ability of the proposed approach and highlights the inherent benefits for 

improving the quality of data collected with wireless sensor networks. 
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