


1

A Multi-agent System for Outliers Accommodation
in Wireless Sensor Networks
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Pólo II, 3030-290 Coimbra, Portugal
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Abstract—In monitoring applications the accuracy of data is
paramount. When considering wireless sensor networks the
quality of readings taken from the environment may be hampered
by outliers in raw data collected from transmitters attached
to nodes’ analogue-to-digital converter ports. To improve the
data quality sent to the base-station, a real-time data analysis
should be implemented at nodes’ level, while taking into account
their computing power and storage limitations. This paper deals
with the problem of outliers detection and accommodation in
raw data. The proposed approach relies on univariate statistics
within an hierarchical multi-agent framework. Results from
experiments on a real monitoring scenario, at a major oil refinery
plant, show the relevance of the proposed approach.

Keywords—Oil refinery plant, real-time monitoring, wireless sen-
sor networks, outliers detection and accommodation, multi-agent
systems.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of small, low-cost
sensor nodes spatially distributed over a given environment,
where readings are taken from. Each node includes a minia-
ture electronic device with wireless communication interface,
programmable micro-controller, power source, and possibly
multi-type sensors or analogue-to-digital converters (ADCs).
The small dimension of these devices, absence of wired
connections and external power supply, easy of deployment,
flexible installation and fully mobile operation, make them
ideal for a myriad of applications, namely in process industry.

Sensor nodes can be grouped in single-hop or multi-hop
networks with a varying number of self-organized devices,
which can be used, for instance, to detect and classify events
[1], or gather data from the environment. However, harsh
environmental conditions, along with constraints on resources,
in particular limited processing, small data storage, narrow
bandwidth and autonomy may lead to artefacts in the raw
data [2], commonly referred to as outliers. Generically, they
can be defined as readings that considerably deviate from the
normal pattern of sensed data [3].

Most of the techniques towards outlier detection are computa-
tionally intensive, require large amounts of memory for data
storage, with high levels of energy consumption and commu-
nication overheads and, above all, do not support distributed

computation [4]. Besides, standard methods are not tailor-
made for heavy online data streaming, and are essentially
based on data patterns, in order to minimize the redundancy of
collected data. The above conjectures make clear the need for
mechanisms to allow detecting and accommodating of outliers
that could effectively be deployed on each sensor node. Such
an endeavour, which constitutes one of the contributions of
this work, can conceptually be accomplished by incorporating
into the code, running at each node, cooperative autonomous
threads, under the form of mobile agents. These agents can
further be functionally aggregated into a multi-agent frame-
work, where information can be exchanged among agents.

In order to cope with computational constraints, the proposed
approach relies on univariate statistics, within the Shewhart
control chart framework. Its implementation on sensor nodes
uses a hierarchical multi-agent system, together with an
oversampling technique within each sampling interval. To
deal with transient time-series the oversampled data-series is
assumed to be linearly time-dependent, being the underlying
parameters computed by a linear regression technique. The
incorporation of an oversampling mechanism within the pro-
posed framework enables the Shewhart control chart based
approach to behave statistically more consistent.

The performance of the proposed architecture towards outliers
accommodation in WSNs environments, was evaluated on
a real oil refinery monitoring process, where a number of
experiments have been conducted.

II. MULTI-AGENTS SYSTEMS

A. Agents and Multi-Agents

An intelligent agent, or agent for short, can be defined
as a computing entity embedded in a given environment,
comprising a certain degree of autonomy and possessing the
ability to perceive the world in which it is immersed. Further,
it possesses the ability to interact with other agents, while
presenting idiosyncratic pro-activity features, in the sense
that can assume initiatives in a way to persistently fulfil its
own goals [5]. Therefore, an agent is supposed to act or
react spontaneously, executing pre-emptive and independent
actions, according to predefined goals [6].
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Fig. 1 illustrates the use of an intelligent agent in the context
of distributed control systems.

AGENT

Sensors Actuators

ENVIRONMENT

Users

Services

Computer

Networks

Databases

Fig. 1. Agent model and information environment.

Although in some particular cases agents can act on their own,
it is more common to find clusters of agents, in different
functions, carrying out a number of tasks. In this sense, a
multi-agent system (MAS) can holistically be regarded as a
collection of heterogeneous multi-tasking intelligent agents
organised in a particular topology, with co-operation and
interaction capabilities.

The MAS architecture implemented in this work follows a hi-
erarchical multi-agent system (HMAS) based topology. Fig. 2
shows a local HMAS topology for monitoring and control over
wireless sensor and actuator networks (WSANs), in which
several agents responsible for monitoring and control are lo-
cally coordinated by a master-agent. The master-agent’s main
purpose is to carry out extensive management tasks related to
lower-level agents, as well as monitoring the communication
status between local nodes and the WSAN’s sink. Agents
belonging to the lowest layer are used to interface directly,
and in a distributed way, with sensor readings. They analyse
queries, pre-process collected data from the environment, and
extract useful information from these readings, as instructed
by the upper-level agent, based on a centralised goal-driven
conditioning strategy.
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Fig. 2. Illustration of a multi-agent system.
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B. Multi-Agent Architecture for WSNs

The HMAS architecture is composed of two layers, namely
a higher-level layer with coordination functionalities and a
bottom layer comprising subordinate agents that are com-
mitted to specific tasks, such as monitoring ADCs readings,
detection of outliers and their subsequent accommodation.
Each lower-level agent available at the local repository can be
independently launched, paused, resumed and stopped at run-
time. Additionally, the agents’ configuration can be remotely
modified by means of appropriate command messages.

Each message comprises a header and a payload. The header
includes the sender and destination addresses within the
WSN, message sequence number, hops, along with a control
identifier. Regarding the message payload (see Table I) it
consists of Message Type: the message can be originated
from the system’s application or from a local agent; Node
ID: denoting the node address; Control ID: the command
flag for local agents; Data ID: data collected in the node ID;
Agent ID: agent’s identifier that will be launched, stopped or
resumed; Agent MSG: data provided by an agent.

With respect to mobile agents’ commands, the platform is
provided with: i) Start Agent: starts a monitoring agent at
the sensor node by sending the command flag, the agent’s
ID and the node’s destination address; ii) Stop Agent: stops
a particular monitoring agent; iii) Start All Agents: starts all
monitoring agents stacked at the sensor node memory; iv) Stop
All Agents: stops all monitoring agents that are running at the
sensor node.

1) Master-Agent: Its main commitments are essentially related
to coordination tasks, namely, managing routines associated
with lower-level agents, such as launching, stopping and
resuming agents, and their configuration; monitoring the com-
munication channel between the sensor node and the sink, us-
ing a two-way beaconing system; sending alarms to the base-
station. By default, this agent is always launched whenever
the sensor node is switched on or rebooted. When started, it
executes several diagnostic routines, and launches predefined
subordinate agents, aiming at real-time monitoring of raw data,
outliers detection and accommodation. In addition, the master-
agent is also engaged in monitoring the ”health” of lower-level
agents. If of one of these agents crashes the master-agent will
kill the corresponding thread, reloads the agent’s ”clone” from
the local repository, and eventually starts it. Moreover, if a
given monitoring agent is no longer necessary, the master-
agent removes it from the device memory, by killing the
corresponding thread.

2) Monitoring Agents: Subordinate agents are launched by
the master-agent. They have to be started with a number of
parameters as argument, in order to detect and accommodate
possible outliers in the readings by using the univariate sta-
tistical approach presented in Section III-C. These parameters
are described in Algorithm 1, and include the sampling and
oversampling frequencies, along with the standard normal de-
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viate. If the sample taken at a given sampling time (k + 1)Ts
is tagged as an outlier the corresponding value is replaced by
the prediction of the oversampled data linear approximation,
computed at t = (k + 1)Ts, and an alarm is triggered and
sent to the master-agent.

III. OUTLIERS DETECTION AND ACCOMMODATION

Outliers detection methodologies can be categorized into
statistical-based, nearest neighbour-based, clustering-based,
classification-based and spectral decomposition-based ap-
proaches (see e.g. [7]). The first category can be further split
into parametric [8] and non-parametric [9] methods according
to how the statistical model is built. Both approaches rely
on an estimate for the underlying probability distribution
characterizing the time-series, while evaluating raw samples
in terms of the available statistical model. Regarding nearest
neighbour methods, they rely on particular metrics to compute
distances among objects or samples with clear geometric
interpretation, according to which a so-called outlier factor
is calculated [10]. In clustering-based techniques [11] data
sets are grouped into clusters consisting of similar attributes,
being an object classified as an outlier when lying outside
identified clusters. This kind of techniques are appealing in
the sense that they do not require a priori knowledge of the
data statistics, and can be used in an incremental model [4].
Classification-based methods, on the other hand, are based on
machine learning techniques to come up with a classification
model, which is apprehended or learnt from the available data
set. A drawback of these techniques is that they are computa-
tionally intensive to be implementable in real-time on sensor
nodes. At last, spectral decomposition-based approaches [12]
use principal component analysis (PCA) based techniques to
identify normal modes of behaviour in data sets, at the expense
of a high computational complexity.

A. Preliminaries

Consider the single-input single-output (SISO) nonlinear dy-
namic discrete-time system described by,

x (k + 1) = f (x (k) , u (k) , µ (k))

y (k) = h (x (k) , u (k) , υ (k))
(1)

where x ∈ Rn denotes the state vector, u ∈ Rm the input
vector, y ∈ Rp the output vector, and µ ∈ Rn and υ ∈ Rp
random variables. The mappings f : Rn × Rm × Rn 7→ Rn
and h : Rn × Rm × Rp 7→ Rp, are, respectively, the process
and observation models.

By considering that the source of uncertainty in readings is
due to environmental conditions or sampling anomalies, which
imply in both cases an additive noise disturbance, equation (1)
can be rewritten as,

x (k + 1) = f (x (k) , u (k))

y (k) = h (x (k) , u (k)) + ω (k)
(2)

with ω ∈ Rp a stochastic variable.

If ω is Gaussian in continuous-time, its probability distribution
can be described by,

p (ω) =
1

σ
√

2π
e−

1
2 (ω−ω̄

σ )
2

(3)

with ω̄ the distribution mean and σ2 the variance.

Taking into account the central limit theorem, given certain
conditions, the mean of a sufficiently large number (N →∞)
of independent random variables, each with finite mean and
variance, will be approximately Gaussian distributed. As a
corollary of the central limit theorem, it is plausible to
expect that, for a stationary deterministic-stochastic system,
readings taken from sensor nodes should follow approximately
a Gaussian distribution.

B. Outliers Identification Approach

The univariate statistical-based approach to limit sensing as-
sumes that a single physical variable is observed through a
sensor reading, which is used to determine boundary thresh-
olds for in-control operation [13]. The violation of these
computed limits by sampled data will indicate a possible
outlier. It should be mentioned that the upper (∆u) and lower
(∆l) limits on the Shewhart chart are particularly critical to
the performance of the method, in terms of sensitivity and
specificity (see Fig. 3). More specifically, tight threshold limits
result in a high rate of false outliers, while loose thresholds
increase the missed detection rate.
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Fig. 3. Ilustration of a Shewhart chart.

Statistical hypothesis theory can be used to predict false
outlier and missed detection rates on a given ensemble. Let
z be a monitoring variable, for which any deviation from
its mean, z̄, results from additive errors, and assume that
its variability follows a Gaussian distribution N (z̄, σ2) with
standard deviation σ. Then, the probability P of z lying within
a given interval is described by

P
{
z <

(
z̄ − cα/2σ

)}
= P

{
z >

(
z̄ + cα/2σ

)}
=
α

2
(4)

P
{(
z̄ − cα/2σ

)
≤ z ≤

(
z̄ + cα/2σ

)}
= 1− α (5)

where cα/2 is the standard normal deviate corresponding to
the (1− α

2 ) percentile, and α the level of significance, which
specifies the degree of trade-off between false outliers and
missed detection rates. Some typical values for the standard
normal deviate include cα/2 = {1.0; 1.5; 3.0}. In the case
of a standard normal deviate cα/2 = 1.5, the probability
P
{(
z̄ − cα/2σ

)
≤ z ≤

(
z̄ + cα/2σ

)}
is 86.64 %.
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In order to improve the consistency of the univariate sta-
tistical approach, the present work resorts to an oversam-
pling technique within each sampling interval, namely for
t ∈ [kTs, (k + 1)Ts], with Ts the sampling period, t the con-
tinuous time and k the discrete-time. This enables collecting a
statistically representative time-series, which is subsequently
used within the underlying Shewhart control chart. If the
sample taken at time (k + 1)Ts lies outside the threshold
limits it is tagged as an outlier and accordingly replaced by a
plausible estimate.

C. Transient Time Series

In the case of non-stationary physical variables, the corre-
sponding readings can be represented by the concatenation
of a non-stationary random process and a deterministic time
trend. If the sampling period Ts is adequately chosen, taking
into account the bandwidth of the system, the deterministic-
stochastic time-series for τ ∈ [kTs, (k + 1)Ts] can be approx-
imated by a linear regression, as in (6).

z (τ) = a+ b · τ (6)

The computation of those deterministic parameters in the
equation (6) is carried out by minimising the χ2 merit function
given by,

χ2 (a, b) =

Ns∑
i=1

(
z (τi)− a− b · τi

σi

)2

(7)

with Ns the number of samples and σi the readings standard
deviate.
Since the uncertainty associated with each measurement in-
cluded in the data set is not a priori known, some consid-
erations concerning the χ2 fitting have to be taken, in order
to derive a plausible value for σi. If it is assumed that all
the samples in the time-series have equal standard deviation
(σi = σ) and the model fits well enough, then it is possible,
without loss of generality, to assign an arbitrary value to the
standard deviation σ, in particular σ = 1 for simplicity. In this
case, the χ2 merit function can be rewritten as the residual sum
of squares shown in Eq. (8).

χ2 (a, b) =

Ns∑
i=1

(z (τi)− a− b · τi)2 (8)

Considering the operator S (·) ,
∑Ns
i=1 (·) and

S (t) =

Ns∑
j=1

tj S (z) =

Ns∑
j=1

zj

S
(
t2
)

=

Ns∑
j=1

(tj)
2 S (t · z) =

Ns∑
j=1

tj · zj

(9)

the computation of θ = [a b]
T is carried out according to:

θ =

(
S
(
t2
)
−S (t)

−S (t) 1

)
S (t2) + S2 (t)

(
S (z)
S (t · z)

)
(10)

If the sensor reading taken at time τ = (k + 1)Ts is
outside the threshold limits then it is considered an outlier,

Algorithm 1: Outliers detection and accommodation in
transient time-series.

Input: fs − Sampling Frequency
fos − Oversampling Frequency
snd − Standard Normal Deviate

Output: Sample/Accommodated Sample

1 Ts← 1 / fs; // sampling period
2 Tos← 1 / fos; // oversampling period
3 ti← GetTime; // initial time
4 i← 0; // initial iteration
5 repeat // oversampling until next sample time
6 i← i+ 1; // iteration
7 z[i]← GetSample; // oversample
8 Sleep(Tos); // node sleep for Tos seconds

until GetTime ≥ ti+ Ts;
9 y ← GetSample; // sample

10 (a, b)← DataFitting(z); // a and b from Eq. (10)
11 z[i+ 1]← a+ b× (i+ 1); // next value from linear model
12 ∆u← z[i+ 1] + snd× STD(z); // upper threshold
13 ∆l← z[i+ 1]− snd× STD(z); // lower threshold
14 if y /∈ [∆l,∆u] then return y;// the sample is not an outlier
15 else return z[i+ 1]; // is an outlier: accommodated

and accordingly replaced by the trend of the oversampling
data, calculated by equation (6), for τ = (k + 1)Ts. This
methodology is outlined in Algorithm 1.

IV. REFINERY CASE-STUDY

The proposed approach to deal with outliers in WSNs was
implemented in an oil refinery, namely at the Petrogal oil
refinery, located at Sines, Portugal. The refinery environment
is highly challenging in terms of wireless communications, as
huge thick metal structures and non-stop operating machines
contribute to a high noise level, which may seriously hamper
the WSN performance and the quality of raw data.

A. Scenario Description

The test-bed included a WSN consisting of 12 sensor nodes,
deployed at the water treatment area (Line 4) and a sink
located at the portable office, which is connected to a Linux
OS server computer. In this machine a Dispatcher software
processes packets received from the WSN, and forwards each
packet via a TCP/IP connection to the GINSENG middle-
ware running on a remote PC, at the refinery control room.
Additionally, the Dispatcher relays system’s configuration
commands, originated at the middleware, to individual sensor
nodes, being the middleware responsible for the configuration
of the whole network and the local multi-agent architecture
(Section II-B).

The WSN was consisted of 12 Crossbow’s TelosB (TPR2400)
nodes, plus one sink. These devices are IEEE 802.15.4 com-
pliant, and incorporate eight 12-bit ADC ports and another
two 12-bit ADC ports for the internal thermistor and battery
voltage monitoring. Also, they include two light transducers
and one humidity/temperature transducer on-board connected
to 14-bit ADC ports. The nodes were enclosed in ATmosphère
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Fig. 4. Sensor node in a ATEX junction box.

EXplosive (ATEX) junction boxes attached to external 9 dB
antennas, in order to cope with the wireless signal attenuation
using the on-board (internal) TelosB nodes’ antenna. Fig. 4
shows one of the deployed nodes at the water treatment area
within an ATEX junction box. The junction boxes are listed
in Table II, along with the corresponding attached transmitters
and nodes’ ID.

The operating system for WSNs programming was developed
under GINSENG project [14], and is based on the Contiki OS.
It is built around an event-driven kernel, although providing
optional pre-emptive multi-threading functionalities, which
can be applied to individual processes [15].

Flow and pressure transmitters are connected to a 4− 20 mA
current loop backbone, which extends across the water treat-
ment area. Before providing their signals to nodes’ ADCs
ports it is required to convert the current-based signal to
0 − 2.5 V, using dedicated current-to-voltage converters. On
the other hand, to ensure a reliable and deterministic readings’
delivery, the communication in the WSN was implemented
based on a novel Time Division Multiple Access (TDMA)
scheme [16], with respect to the Media Access Control
(MAC) protocol, while the network was arranged on a multi-
hop hierarchical tree routing topology for channel access. It
assumes a criterious node deployment within a virtual tree
topology. Hierarchical addresses are used to identify each
node’s position in a 3-3 tree topology, as depicted in Fig. 5.
The nodes are programmed satisfying a 3-3 network envelope,
where the sink has 3 children nodes, with each of these nodes
also having 3 children nodes. As such, the nodes N-1-0, N-2-
0 and N-3-0 of the first level are responsible for forwarding
messages originated at the associated set of 3 children nodes,
of the second level, to the sink, and configuration messages
emanated by the middleware through the sink to lower level
nodes.

B. Experiments

The first experiment aim at comparing the reliability consis-
tency between readings associated with sensor nodes ADC
against those provided by the existing wired solution. It was
performed using the signal from the transmitter PT-5170,
which is attached to the ADC0 of the sensor node N-1-2
(ID#109). As can be observed in Fig. 6, there is a noticeable
mismatch between the wired delivered PT-5170 signal and
the node ID#109 readings that were sent to the sink. The
signal degradation can partly be attributed to artefacts in the

TABLE II. JUNCTION BOXES DEPLOYED IN THE WATER TREATMENT
ZONE.

Junction Box Type Transmitter Node Id Tree Position

JB1 - (sink) 101 N-0-0
JB7 Flow FT-5147 107 N-1-0
JB5 Flow FT-5141 102 N-1-1

JB12 Pressure PT-5170 108 N-1-2
JB10 Flow FT-5147 110 N-1-3
JB8 Pressure PT-5170 109 N-2-0

JB15 Pressure PT-5100 112 N-2-1
JB14 Pressure PT-5100 105 N-2-2
JB16 Flow FT-5100 113 N-2-3
JB3 Flow FT-5130 111 N-3-0
JB4 Flow FT-5141 106 N-3-1

JB13 Flow FT-5130 103 N-3-2
JB6 Flow FT-5100 104 N-3-3

JB7 JB8 JB3

JB5 JB12 JB10 JB15 JB14 JB16 JB4 JB13 JB6

JB1

Sink

Nodes

802.15.4 links

Fig. 5. Logical Topology.

readings provided by the node N-1-2. Such an observation
is corroborated by the metrics presented in Table III, where
the error is computed as the difference between both time-
synchronised signals.

The next experiment intends to assess the performance of
the proposed approach to deal with artefacts on raw data.
The experiment included readings taken from a flow rate
transmitter and a static pressure transmitter, which were pre-
viously attached to ADC ports of sensor nodes. Flow rate
samples were collected in seven different locations, while
static pressure readings were taken in five different points of
the set-up. To allow the detection and accommodation of out-
liers the monitoring agents were launched by the underlying
master-agent, at start-up. The readings were taken every 1 s
(Ts = 1 s), while the oversampling frequency fos was chosen
as 100 Hz and the standard normal deviate defined as 1.5.

The message payload associated with the sensor readings that
is transmitted to the sink (see Table IV) includes: the sample
number (k); reading (yk); oversampling variance (σ2); upper

TABLE III. ACCURACY TEST STATISTICS.

Statistics Variable Value Relative Value

Count WSN data 1200 100 %
Count Backbone data 1200 100 %

Maximum |Error| 4.1×10−1 bar 3.4×100 % FSR
Minimum |Error| 1.5×10−4 bar 1.3×10−3 % FSR
Average |Error| 6.1×10−2 bar 5.0×10−1 % FSR
Variance |Error| 1.7×10−3 bar 1.4×10−2 % FSR

Correlation WSN \ Backbone 0.999 —
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TABLE IV. MESSAGE PAYLOAD.
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Fig. 6. Comparison between the wired PT-5170 signal in JB08 and sensor
node (ID#109).
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Fig. 7. Detection and accommodation of outliers in the refinery flow
transmitter FT-5130.

threshold for the oversampling data (∆u); lower threshold
(∆l); triggered alarm (0 for undetected outlier, 1 for a sample
violating of the upper threshold, and 2 for a violation of the
lower threshold); the accommodated sample (zk), in case of
an outlier alarm is raised.

Experimental results taken from flow rate transmitter FT-
5130, located at JB13 and the pressure transmitter PT-5100
at JB15 are shown, respectively, in Fig. 7 and Fig. 8, where
detected outliers are represented by a red asterisk. After being
identified, outliers are replaced by a first order prediction
based on the linear regression obtained with oversampled
time-series. The green line represents the data time-series sent
to sink. As can be observed, in both cases the implementation
of the online solution proves to be invaluable in improving
the quality of the data, which is corroborated by the statistical
metrics presented in Table V and Table VI. More specifically,
in the case of flow transmitter FT-5130, on 20 min of running
time, represented by 1200 samples, the algorithm detected 478
outliers, which accounts for approximately 12.4 % of all the
readings. With respect to the transmitter PT-5100, it was found
403 outliers in 1200 samples, which represents roughly 12.7 %
of the time-series length.
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Fig. 8. Detection and accommodation of outliers in the refinery flow
transmitter PT-5100.

TABLE V. STATISTICS FOR FLOW TRANSMITTER FT-5130 (JB13).

Statistical Test Variables Absolute Value Relative Value

Count samples 1200 100%
Count outliers 448 12.4%

Minimum accommodations −16.9 m3/h −10.5% FSR
Maximum accommodations 20.9 m3/h 13.1% FSR

Mean accommodations −0.7 m3/h -−0.5% FSR
Std. Deviation accommodations 9.6 m3/h 6.0% FSR

V. CONCLUSION

This paper focused on the problem of real-time outliers
detection and accommodation in data collected with wireless
sensor networks. The development of feasible methodologies,
from the practicality point of view, to deal with these kinds of
artefacts in readings is crucial to improve the quality of data
sent out through wireless sensor networks.

The proposed approach relies on univariate statistics together
with Shewhart control charts, implemented through a hier-
archical multi-agent framework. To cope with non-stationary
conditions of time-series, the approach assumes the system’s
time response approximated by a linear regressive model
within each sampling interval. The time-series used in the
linear regression is obtained by oversampling the transmitters’
signal provided to sensor nodes. Whenever a reading, taken at
a given sampling time, is tagged as an outlier, it is replaced
by the linear prediction at that discrete-time.
In order to assess the feasibility of the proposed methodology,
real monitoring scenario tryouts were conducted at a major
oil refinery, namely at the water treatment area. Results from
these experiments prove the practicality and implementability
of the proposed approach and highlights the inherent benefits
for improving the quality of data collected with wireless sensor
networks.

TABLE VI. STATISTICS FOR PRESSURE TRANSMITTER PT-5100
(JB15).

Statistical Test Variables Absolute Value Relative Value

Count samples 1200 100%
Count outliers 456 12.7%

Minimum accommodations −0.13 bar −1.1% FSR
Maximum accommodations 0.08 bar 0.6% FSR

Mean accommodations 0.01 bar 0.1% FSR
Std. Deviation accommodations 0.04 bar 0.3% FSR
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