
Distributed Multi-Agent Architecture for Dependable
Supervision over WSAN: Oil Refinery Tests

Paulo Gil and Luis Palma
UNINOVA-CTS, Dep. Eng.
Electrotécnica, FCT/UNL

Monte de Caparica, Portugal
{psg,lbp}@fct.unl.pt

Amâncio Santos
Instituto Politécnico de

Coimbra
ISEC, DEIS

Coimbra, Portugal
amancio@isec.pt

Alberto Cardoso
CISUC-Informatics

Engineering Department
University of Coimbra

Coimbra, Portugal
alberto@dei.uc.pt

ABSTRACT
In supervision applications over wireless sensor and actua-
tor networks the communication channels’ reliability, along
with the network quality of service and readings are critical
issues. As such, in the design and implementation stages
of such schemes preventive measures should be taken into
account for the sake of control systems dependability. This
paper proposes a multi-agent based framework implemented
in some of the nodes of the network, for dealing with in-
termittent communication link breakdowns on the forward
channel and accommodating outliers on the raw data taken
from the environment. Experiments on a real oil refinery
process demonstrate the feasibility of such approaches in the
context of critical industrial supervision tasks.

Categories and Subject Descriptors
B.4.5 [Reliability, Testing, and Fault-Tolerance]: Built-
in tests; B.8 [Performance and Reliability].

General Terms
Algorithms, Performance, Experimentation

Keywords
Oil refinery plant, wireless sensor networks, outliers and
communication faults, dependability, multi-agent systems

1. INTRODUCTION
In the current technological context automation and con-
trol tasks are of paramount importance to industry. Com-
monly, they rely on wired communication infrastructures,
for sending sensor readings to a remote control room, where
Supervisory Control and Data Acquisition (SCADA) sys-
tems are used to monitor and manipulate a given plant or
process. The approach based on wired solutions, however,
is recognised to be rather awkward in what the flexibility,
deployment and configuration are concerned. In fact, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MoMM ’14 December 08-10-2014, Kaohsiung, Taiwan
Copyright 2014 ACM 978-1-4503-3008-4/14/12 ...$15.00.
http://dx.doi.org/10.1145/2684103.2684110

installation is quite costly in terms of equipment, materi-
als and labour. On the other hand, in the case of critical
plants, the security measures overhead adds-up, as cables
must be laid out underground or embedded into buildings’
structures. As a result of such a rigidity it is not easy to make
reconfigurations to the original system in order, for instance,
to adapt to new layouts or processes. To overcome these
limitations associated with wired based communication so-
lutions, researchers and practitioners, alike have shifted to
wireless based architectures to connect embedded devices,
such as sensors, actuators and control platforms. One of
such an approach relies on Wireless Sensor and Actuator
Networks (WSANs).
WSANs are based on small, low-cost sensor or actuator nodes,
spatially distributed over a given environment, where each
node consists of a miniature electronic device with wire-
less communication interface, power source, programmable
micro controller, and possibly multi-type sensors or ADC
and/or DAC ports. The small dimension of these devices,
absence of wired connections and external power supply, easy
deployment, flexible installation and fully mobile operation,
make them ideal for a wide range of applications, particu-
larly in the process industry (see e.g. [8]).
Sensor and actuator nodes may be arranged in single-hop or
multi-hop networks with a variable number of self-organized
devices. Sensor nodes can be considered in monitoring ap-
plications, through which data is gathered from a given tar-
get, while actuator nodes are incorporated in networked con-
trol systems or in automation contexts. Although WSANs
are conceptually feasible from the academic point of view,
many concurrently challenges still prevent their dissemina-
tion on the industrial theatre. Among these obstacles may
be reckoned the robustness to cyber-attacks, confidentiality
of transmitted data, performance assurance in high packet
delivery rates, reliability of active links, or the quality of raw
data [4].
As for sensor nodes, due of harsh environmental conditions,
along with constraints on nodes’ resources it is likely to ob-
serve artefacts on the raw data [3], which are commonly de-
noted as outliers. These outliers should be accommodated
in order to avoid biasing decisions. Most of the available
techniques for detecting these artefacts are computationally
intensive, requiring large amounts of memory, high level of
energy consumption, noticeable communication overheads,
and above all are not tailored to heavy online data stream-
ing. Regarding actuator nodes integrated on centralised
networked control system, it might happen that because of
channels link breakdown the closed loop system behaviour

end up being inevitably compromised.
Dealing with outliers in raw data and intermittent communi-
cation faults on forward channels are the main motivations
and contributions of this work. Both issues are addressed
by appealing to a hierarchical multi-agent system deployed
on nodes. Outliers detection and accommodation is imple-
mented using univariate statistics, along with an oversam-
pling technique, while fault tolerant mechanisms are incor-
porated by applying a given command action, in such a way
the system is driven to a safe operation state.
These approaches aiming at strengthening the dependability
of the overall system, namely in terms of purity/quality of
readings and tolerance to intermittent communication faults
is evaluated on a real oil refinery process.

2. MULTI-AGENTS SYSTEMS

2.1 Agents and Multi-Agents
An intelligent agent can be defined as a computing entity em-
bedded in a given environment, comprising a certain degree
of autonomy and having perception abilities. They possess
inherent capabilities to interact with congenerous agents,
while presenting idiosyncratic pro-activity features, in the
sense that it can assume initiatives in a way to persistently
fulfil its own goals. Therefore, an agent is supposed to act or
react spontaneously, executing pre-emptive and independent
actions, in accordance to some predefined goals [5].
Although in some particular cases agents can act on their
own, it is common to find clusters of agents, in different
functions, carrying out a number of tasks. In this sense, a
multi-agent system (MAS) is a collection of heterogeneous
intelligent agents organised in a particular topology, with co-
operation and interaction capabilities, aiming to accomplish,
in a holistic manner, a given prescribed mission.
The MAS architecture implemented in this work follows a
hierarchical multi-agent system (HMAS) topology. Fig. 1
shows a local HMAS topology for monitoring and control
over WSANs, in which several agents responsible for mon-
itoring and control, using available digital-to-analogue con-
verters (DACs) ports, are locally coordinated by its master-
agent. The master-agent’s main purpose is to carry out ex-
tensive management routines related to lower-level agents
and to monitor the communication status between local nodes,
and the WSAN’s sink or gateway. Agents belonging to the
lowest layer are used to interface directly, and in a dis-
tributed way, with sensor readings or to take over the com-
mand of the system in case of link breakdown. As such,
they process queries, pre-process collected data from the en-
vironment, extract useful information from these data, as in-
structed by upper-level agents, which have the responsibility
for coordinating subordinate entities, based on a centralised
goal-driven conditioning strategy.

2.2 Multi-Agent Architecture
The hierarchical multi-agent based architecture is composed
of two layers, namely a higher-level layer with coordination
functionalities and a bottom layer comprising subordinate
agents that are committed to specific tasks,such as moni-
toring analogue-to-digital converters (ADCs) readings, de-
tection of outliers and their subsequent accommodation or
switching the system to a safe operation regime. Available
lower-level agents can be independently launched, paused,
resumed and stopped at runtime. Additionally, the agents’

Monitoring agents Control agent

Master agent

Figure 1: Illustration of a multi-agent system.

Table 1: Message Payload.
Message

type
Node

ID
Control

ID
Data
ID

Agent
ID

Agent
msg

configuration can be remotely performed by means of appro-
priate command messages delivered through the sink node.
Each message comprises a header and a payload. The header
includes the sender and destination addresses in the WSAN,
message sequence number, hops, and a control identifier.
Regarding the message payload (see Table 1) it consists of
Message Type: the message can be originated from the sys-
tem’s application or from a local agent; Node ID : denoting
the node address; Control ID : the command flag for local
agents; Data ID : data collected in the node ID; Agent ID :
agent’s identifier that will be launched, stopped or resumed;
Agent MSG: data provided by an agent.
Concerning the agents’ commands, the platform is provided
with: i) Start Agent : starts a given agent at by sending the
command flag, the agent’s ID and the node’s destination
address; ii) Stop Agent : stops a particular agent; iii) Start
All Agents: starts all agents stacked at node’s memory; iv)
Stop All Agents: stops all the agents that are running at the
sensor or actuator node.

2.2.1 Master-Agent
Its main commitments are related to coordination tasks,
namely managing routines associated with lower-level agents:
launching, stopping and resuming agents, and their con-
figuration; monitoring the communication channel between
the underlying node and sink, using a two-way beaconing
system; sending alarms to the base-station. By default,
this agent is always launched whenever the sensor node is
switched on or rebooted. When started, it runs a number
of diagnostic routines, and launches predefined subordinate
agents, aiming at real-time monitoring of raw data, outliers
detection and accommodation, as well as the control agent
responsible for handling communication faults. Complemen-
tary, the master-agent is also committed in monitoring the
”health” of lower-level agents. In case of one of the agents
crashes the master-agent will kill the corresponding thread,
reloads the agent’s ”clone” from the local repository, and
eventually starts it. In addition, if a given agent is no longer
needed, the master-agent removes it from memory, by killing
the corresponding thread.

2.2.2 Monitoring Agents
Subordinate monitoring agents are launched by the master-

Algorithm 1: Control agent.

Input: us − Safety Command Value
ts − Safety Time
fs − Sync Flag

1 StartTimer(t); // timer init

2 while true do // infinite cicle

3 c← GetMessage; // get new command

4 if c = abort then return; // abort

5 if c ≥ 0 then // DAC command

6 Dac(c); // send to DAC

7 if (t > ts) & fs then // DAC was in safety mode

8 SendMessage(t); // send sync message

end
9 ResetTimer(t); // reset timer

10 else if t > ts then // timer expired

11 Dac(us); // put DAC in safety mode

end

end

agent. They are started with a number of parameters as ar-
gument in order to detect and accommodate possible outliers
in the readings, by using the univariate statistical approach
presented in Section 3. These parameters include the sam-
pling and oversampling frequencies, along with the standard
normal deviate. If the sample taken at a given sampling time
(k + 1)Ts is tagged as an outlier, the corresponding value is
replaced by the mean of the oversampled data, and an alarm
is accordingly triggered.

2.2.3 Control Agents
The control agent is loaded by the master agent, as well,
from which it receives at launch-time, as configuration pa-
rameters, safety time (tS), the control action corresponding
to a safe mode operation (uS) and also a flag. In a time-out
event the control agent will take over the system’s manipu-
lation by sending it to a safe operation state, according to
Algorithm 1.

3. OUTLIERS ACCOMMODATION
As the problem to be addressed here concerns the local real-
time detection and accommodation of outliers in readings,
the algorithm must be computationally efficient, which dic-
tated the choice for a statistical based approach.
The univariate statistical-based approach to limit sensing
assumes that a single physical variable is observed through
a sensor reading, and a given time-series used to determine
boundary thresholds for in-control operation [1]. The vio-
lation of these limits by sampled data will indicate a likely
presence of an outlier. The upper (∆u) and lower (∆l) limits
on the Shewhart chart are particularly critical to the perfor-
mance of the method, namely in terms of sensitivity and
specificity. More specifically, tight threshold limits will re-
sult in a high rate of false outliers, while loose ones increase
the missed detection rate.
Statistical hypothesis theory can be used to predict false
outlier and missed detection rates on a given ensemble. Let
z be a monitoring variable, for which any deviation from
its mean, z̄, results from additive errors, and assume that
its variability follows a Gaussian distribution N (z̄, σ2) with
standard deviation σ. Then the probability P of z lying

Algorithm 2: Outliers detection and accommodation.

Input: fs − Sampling Frequency
fos − Oversampling Frequency
snd − Standard Normal Deviate

Output: Sample/Accommodated Sample

1 Ts← 1 / fs; // sampling period

2 Tos← 1 / fos; // oversampling period

3 ti← GetTime; // initial time

4 i← 0; // initial iteration

5 repeat // oversampling until next sample time

6 i← i+ 1; // iteration

7 z[i]← GetSample; // oversample

8 Sleep(Tos); // node sleep for Tos seconds

until GetTime ≥ ti+ Ts;
9 y ← GetSample; // sample

10 z[i+ 1]← Mean(z) ; // expected value

11 ∆u← z[i+ 1] + snd× STD(z); // upper threshold

12 ∆l← z[i+ 1]− snd× STD(z); // lower threshold

13 if y /∈ [∆l,∆u] then return y; // the sample is not an

outlier

14 else return z[i+ 1]; // is an outlier: accommodated

within a given interval is expressed as

P
{
z <

(
z̄ − cα/2σ

)}
= P

{
z >

(
z̄ + cα/2σ

)}
=
α

2
(1)

P
{(
z̄ − cα/2σ

)
≤ z ≤

(
z̄ + cα/2σ

)}
= 1− α (2)

where cα/2 is the standard normal deviate corresponding to
the (1− α

2
) percentile, and α the level of significance, which

specifies the degree of trade-off between false outlier and
missed detection rates. Some typical values for the standard
normal deviate include cα/2 = {1.0; 1.5; 3.0}. In the case
of a standard normal deviate cα/2 = 1.5, the probability

P
{(
z̄ − cα/2σ

)
≤ z ≤

(
z̄ + cα/2σ

)}
is 86.64 %.

In order to improve the consistency of the univariate sta-
tistical approach, the present work resorts to an oversam-
pling technique within each sampling time, namely for t ∈
[kTs, (k + 1)Ts], with Ts the sampling period, t the contin-
uous time and k the discrete-time. This enables collecting a
statistically representative time series, which is subsequently
used within the underlying Shewhart control chart. If the
sample taken at time (k + 1)Ts lies outside the threshold
limits it is tagged as an outlier and accordingly replaced by
a plausible estimate. This methodology is outlined in Algo-
rithm 2.

4. REFINERY CASE-STUDY
The proposed approach to deal with outliers detection and
accommodation in WSANs was implemented in an oil refin-
ery plant, namely at the Petrogal refinery, located at Sines,
Portugal. The refinery environment is highly challenging
with respect to wireless communications, as huge thick metal
structures and non-stop operating machines contribute to a
high noise level, which can seriously hamper the WSAN per-
formance and the quality of raw data. Experiments on site
have shown that the radio environment, although noisy, was
fairly stable.
Another issue concerning the WSAN’s deployment on this

	

Figure 2: Water treatment area - Line 4.

particular scenario is its need to comply with strict rules for
the access and management of personnel in critical environ-
ments. Several areas are classified as ATmosphère EXplo-
sive (ATEX), which imposes access and mobility restrictions
to personnel, and require that all electrical equipment, in-
cluding sensor nodes and other hardware, must be encased
in ATEX-certified boxes.

4.1 Scenario Description
The test-bed included a WSAN consisting of a number of
nodes deployed at the water treatment area, Line 4 (Fig. 2)
and a sink located at the portable office, which is attached
to a Linux operating system computer. In this machine
a Dispatcher software processes packets received from the
WSAN, and forwards each packet via a TCP/IP connec-
tion to the GINSENG middleware running on an another
computer. This computer is located at the refinery main
control room. Additionally, the Dispatcher relays configura-
tion commands, originated from the middleware to individ-
ual sensor/actuator nodes, being the middleware responsible
for the configuration of the whole network and local multi-
agent architecture (Section 2.2).
The WSAN consisted of Crossbow’s TelosB (TPR2400) nodes,
namely twelve sensor/actuator nodes and one sink. These
devices are IEEE 802.15.4 (ZigBee) compliant, and incor-
porate eight 12-bit ADC ports, two 12-bit ADC ports as-
sociated with the internal thermistor and battery voltage
and two 12-bit DAC port. In addition, they include two
light transducers and one humidity/temperature transducer
on-board connected to 14-bit ADC ports. The nodes were
enclosed in ATEX junction boxes attached to external 9 dB
antennas, in order to cope with the wireless signal attenu-
ation using the on-board (internal) TelosB nodes’ antenna.
Fig. 3 shows one of the deployed nodes at the water treat-
ment area within an ATEX junction box (JB). The junction
boxes associated with the corresponding nodes are listed in
Table 2.
Concerning the operating system for WSANs programming,
it was developed under GINSENG project [6] and is based on
the Contiki OS. It is built around an event-driven kernel, al-
though providing optional pre-emptive multi-threading func-
tionalities, which can be applied to individual processes [2].
Flow and pressure transmitters are connected to a 4−20 mA
current loop backbone, which extends across the water treat-

Figure 3: Sensor node in a ATEX junction box.

Table 2: Junction boxes deployed in the water treat-
ment zone.

JB Type Transmitter Node Id Tree

JB1 - (sink) 101 N-0-0
JB7 Flow FT-5147 107 N-1-0
JB5 Flow FT-5141 102 N-1-1
JB12 Pressure PT-5170 108 N-1-2
JB10 Flow FT-5147 110 N-1-3
JB8 Pressure PT-5170 109 N-2-0
JB15 Pressure PT-5100 112 N-2-1
JB14 Pressure PT-5100 105 N-2-2
JB16 Flow FT-5100 113 N-2-3
JB3 Flow FT-5130 111 N-3-0
JB4 Flow FT-5141 106 N-3-1
JB13 Flow FT-5130 103 N-3-2
JB6 Flow FT-5100 104 N-3-3

ment area. Before providing their signals to nodes ADCs
ports it is needed to convert the current-based signal to
0−2.5 V, using dedicated current-to-voltage converters. On
the other hand, to ensure a reliable and deterministic read-
ings delivery, the communication in the WSAN was im-
plemented based on a novel Time Division Multiple Ac-
cess (TDMA) scheme [7], with respect to the Media Access
Control (MAC) protocol, while the network was arranged
on a multi-hop hierarchical tree routing topology for chan-
nel access. It assumes a carefully planned node deployment
within a virtual tree topology. Hierarchical addresses are
used to identify each node’s position in a 3-3 tree topology,
as depicted in Fig. 4. The nodes are programmed satisfying
a 3-3 network envelope, where the sink has 3 children nodes,
with each of these nodes also having 3 children nodes. As
such, the nodes N-1-0, N-2-0 and N-3-0 of the first level are
responsible for forwarding messages originated at the asso-
ciated set of 3 children nodes, of the second level, to the
sink, and configuration messages emanated by the middle-
ware through the sink to lower level nodes, as well as control
actions to actuator nodes. This schedule proved to support
end-to-end network reliability of around 99 % [4].

4.2 Experiments
The first experiment was aimed at comparing the consis-
tency of readings associated with sensor nodes ADC against
those provided by the standard wired solution. It was carried

JB7 JB8 JB3

JB5 JB12 JB10 JB15 JB14 JB16 JB4 JB13 JB6

JB1

Sink

Nodes

802.15.4 links

Figure 4: Logical Topology.

Table 3: Comparative accuracy statistics.

Statistics Variable Value Rel. Value

Count WSN 1200 100 %
Count Backbone 1200 100 %
Max. |Error| 4.1×10−1 bar 3.4×100 % FSR
Min. |Error| 1.5×10−4 bar 1.3×10−3 % FSR
Mean |Error| 6.1×10−2 bar 5.0×10−1 % FSR
σ2 |Error| 1.7×10−3 bar 1.4×10−2 % FSR

Corr. 0.999

Table 4: Message payload.

k yk σ2 ∆u ∆l alarm zk

out using the signal from the transmitter PT-5170, which is
attached to the ADC0 of the sensor node N-1-2 (ID#109).
As can be observed in Fig. 5, it is clear a slight mismatch
between the wired delivered PT-5170 signal and the node
ID#109 readings that were sent to the sink. The signal
degradation can partly be explained by the presence of arte-
facts in the raw data delivered through the WSAN, which
is corroborated by the metrics presented in Table 3, where
the error is defined as the difference between both time-
synchronised signals.
The next experiment concerns the application of the pro-
posed approach to deal with artefacts on readings taken
from a pressure transmitter attached to a ADC port. To
allow the detection and accommodation of outliers in raw
data the corresponding monitoring agent was launched by
the master-agent, at start-up. The readings were taken ev-
ery 1 s (Ts = 1 s), while the oversampling frequency fos was
considered to be of 100 Hz and the standard normal deviate
chosen as 1.5.
The message payload associated with the sensor readings
that is transmitted to the sink (see Table 4) includes: the
sample number (k); reading (yk); oversampling variance (σ2);
upper threshold for the oversampling data (∆u); lower thresh-
old (∆l); triggered alarm (0 for undetected outlier, 1 for a
sample violating of the upper threshold, and 2 for a violation
of the lower threshold); the accommodated sample (zk), in
case of an outlier alarm is raised.
Experimental results taken from the pressure transmitter

100 150 200 250 300 350 400
7

7.5

8

8.5

9

Sample

P
re

ss
u

re
 [

b
ar

]

WSN

Backbone

Figure 5: Comparison between the wired PT-5170
signal in JB08 and sensor node (ID#109).

0 200 400 600 800 1000 1200
7.1

7.2

7.3

7.4

Sample

 P
re

ss
u
re

 [
b
ar

]

Outlier

Upper

Lower

Sent out

Figure 6: Detection and accommodation of outliers
in the refinery flow transmitter PT-5100.

PT-5100, located at JB15 are shown in Fig. 6, where de-
tected outliers are represented by a red asterisk, while the
green line concerns the data sent to the sink. After being
identified, outliers are accordingly replaced by the mean of
oversampled data (see Algorithm 2). As can be observed,
the implementation of the proposed solution towards data
cleaning proves quite effective in improving the quality of
the data. This is corroborated by the metrics presented in
Table 4.2.

Table 5: Pressure transmitter PT-5100 (JB15).

Test Variables Abs. Value Rel. Value

Count samples 1200 100%
Count outliers 456 12.7%

Minimum accommod. −0.13 bar −1.1% FSR
Maximum accommod. 0.08 bar 0.6% FSR

Mean accommod. 0.01 bar 0.1% FSR
σ accommod. 0.04 bar 0.3% FSR

The final experiment concerns the evaluation of the sug-
gested approach to deal with intermittent forward commu-
nication channel breakdown in the context of a networked
control systems. As describe in Section-2.2, whenever the
control agent detects a link breakdown, which occurs right
after the time counter exceeds a user prescribed time-out
value, this agent takes over the process control in such a
way that the system is sent to a safe operation mode. It

0

1

2

3
Intermittent fault

In
p
u
t

to
 v

al
v
e

[V
]

0 200 400 600 800 1000 1200
0

1

2

3

Sample

C
o
n
tr

o
l

ac
ti

o
n
 [

V
]

Figure 7: Communication fault accommodation.

should be mentioned that a predefined control action is as-
sociated to a given safe operation state. This will guarantee
a dependable functioning, according to the a priori defined
safe state, as long as the fault is active, while assuming no
disturbances will be presented. For the refinery tests a mo-
torised valve was chosen in one of the branches of the water
treatment area. This valve was fed with a discrete-time si-
nusoidal signal with amplitude 0.75 V and off-set 1.25 V,
delivered through the WSAN to node N-3-0 (ID#111). In
this case the sampling rate was chosen as 2 s.
Fig. 7 shows the control signal, for which some faults were
injected in the downlink communication. The injected faults
were selected as an intermittent broken link sequence on the
forward channel. Whenever a fault is detected by the un-
derlying control agent it reacts accordingly by delivering a
high-level output signal, uS = 2.5 V, (safety measure) to
avoid the controlled system becomes unpredictable.

5. CONCLUSION
This paper focussed on real-time data cleaning and depend-
ability issues in wireless sensor and actuator networks. Both
problems were dealt with by means of a distributed multi-
agent framework, deployed to sensor and actuator nodes.
Each agent was programmed to carry out specific and con-
cise functions, namely for monitoring readings or to imple-
ment particular control policies. In the case of monitoring
agents, the detection and accommodation of outliers in raw
data was implemented by making use of univariate statis-
tics along with Shewhart control charts. In the case of fault
tolerance to intermittent forward channel breakdown, which
is implemented by the control agent, it relies on detecting a
time-out event with respect to received control actions from
the remote controller. When a breakdown in the forward

link is detected, a sequence of actions are triggered, through
which the system is sent to a predefined safe operation mode.
In order to assess the feasibility of proposed methodologies,
a number of tests were conducted on an oil refinery process,
specifically on a water treatment system. Results from these
experiments proved both the practicability and relevance of
the proposed approaches.

Acknowledgment
This work has been partially supported by the European
Commission under the contract FP7-ICT-224282 (GINSENG)
and Project CENTRO-07-ST24-FEDER-002003 (iCIS-Intelligent
Computing in the Internet of Services).

6. REFERENCES
[1] L. Chiang, E. Russell, and R. Braatz. Fault Detection

and Diagnosis in Industrial Systems. Heidelberg:

Springer, 2001.

[2] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a

lightweight and flexible operating system for tiny

networked sensors. In Proceedings of the First IEEE

Workshop on Embedded Networked Sensors, Tampa,

Florida, USA, November 2004.

[3] V. C. Gungor and G. P. Hancke. Industrial wireless

sensor networks: Challenges, design principles, and

technical approaches. Industrial Electronics, IEEE

Transactions on, 56(10):4258–4265, 2009.

[4] T. O’DONOVAN, J. Brown, F. Buesching, A. Cardoso,

J. Cecilio, J. DO Ó, P. FURTADO, P. GIL, A. JUGEL,

and W.-B. PÖTTNER. The ginseng system for wireless

monitoring and control: Design and deployment

experiences. ACM Transactions on Sensor Networks,

10(3), 2014.

[5] E. Oliveira, K. Fischer, and O. Stepankova. Multi-agent

systems: which research for which applications.

Robotics and Autonomous Systems, 27(1):91–106, 1999.

[6] W.-B. Pottner, L. Wolf, J. Cecilio, P. Furtado, R. Silva,

J. Silva, A. Santos, P. Gil, A. Cardoso, Z. Zinonos,

J. do O, B. McCarthy, J. Brown, U. Roedig,

T. O’Donovan, C. Sreenan, Z. He, T. Voigt, and

A. Jugel. Wsn evaluation in industrial environments

first results and lessons learned. In Distributed

Computing in Sensor Systems and Workshops

(DCOSS), 2011 International Conference on, pages

1–8, June 2011.

[7] P. Suriyachai, J. Brown, and U. Roedig. Time-critical

data delivery in wireless sensor networks. In

R. Rajaraman, T. Moscibroda, A. Dunkels, and

A. Scaglione, editors, Distributed Computing in Sensor

Systems, volume 6131 of Lecture Notes in Computer

Science, pages 216–229. Springer Berlin/Heidelberg,

2010.

[8] F. Tirkawi and S. Fischer. Generality challenges and

approaches in wsns. I. J. Communications, Networks

and System Sciences, 1:1–89, 2009.

