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Abstract—This paper presents experimental results concerning
the control of a distributed solar collector field, where the main
objective concerns the regulation of the outlet oil temperature by
suitably manipulating the oil flow rate. This is achieved by means
of a constrained nonlinear adaptive model-based predictive
control framework where the control action sequence is obtained
by solving an open loop optimization problem, subject to a set
of constraints. The plant dynamics is approximated by an affine
state-space neural network, whose complexity is specified in terms
of the cardinality of dominant singular values associated with
a subspace oblique projection of data driven Hankel matrices.
The neural network is first trained offline and subsequently
improved through a recursive updating of its weights and biases,
based on a dual unscented Kalman filter. The control scheme
was implemented on the Acurex field of the Plataforma Solar
de Almerı́a, Spain. Results from these experiments demonstrate
the feasibility of the proposed framework, and highlighted the
ability to cope with time-varying and unmodelled dynamics,
under the form of disturbances, and its inherent capability for
accommodating actuation faults.

Index Terms—Model-based predictive control, adaptive con-
trol, constrained optimization, affine state-space neural networks,
online training, unscented Kalman filter, distributed solar collec-
tor field.

I. INTRODUCTION

THE modern societies way of life has been propped
up on a high pace of fossil energy consumption per

capita, which was constantly growing over the last century [1].
Inevitably, this behaviour is prompting a depletion of fossil
energy reserves that is accompanied by an increase of air
pollution, along with other forms of environmental degradation
[2]. In order to mitigate such impacts on the environment,
without compromising economic growth, it is crucial to im-
plement a world-wide paradigm shift towards a non-carbon
based economy. It implies not only energy conservation, but
also the increase of renewable energy sources mix, such as,
wind, hydroelectric or solar energy, which currently counts for
less than 10 %, at world scale1.

In the case of thermal solar power for electricity generation,
there are some commercial systems in operation, most based
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on parabolic trough solar collectors, namely, the Andasol I
& II in the Plateau of Guadix, Granada, Spain and the Solar
Energy Generating Systems, in the Mojave Desert, California,
USA (see e.g. [3] and references therein).

Parabolic trough solar systems concentrate irradiation on
a linear absorber tube located at the focal line, while a heat
transfer fluid, typically a synthetic oil, flows along the receiver
pipes. In order to maximize the collected energy, regardless of
possible disturbances acting on the system, namely, changes on
direct solar radiation due to cloud cover, inlet oil temperature
drift, or optical efficiency degradation, due to dirt deposition
on the mirrors’ surface, it is crucial that the control system
should be designed in terms of favouring the closed loop
performance and robustness alike [4].

Among advanced control techniques applied to distributed
solar collector fields (DSC) to control the outlet heating
fluid’s temperature (see e.g. [5]) model-based predictive con-
trol (MPC) techniques have a number of appealing features,
namely, providing optimal or suboptimal sequences of control
actions, the potential for dealing with both input and output
constraints, and the inherent ability for designing robust con-
strained control systems.

Different predictive control schemes have been applied to
DSC systems (see e.g. [6]–[8]). Essentially, they all consider
an explicit dynamic model of the plant within an optimisation
thread in order to come up with an optimised sequence of
control actions. In addition, most of the implementations also
include a feedforward compensator in the control system to
cope with measurable disturbances [6]. Although few imple-
mentation based on fixed parameters can be found in the
literature, mainly because of the inherent nonlinear time-
varying plant dynamics, it is worth mentioning the work of
Camacho [9] where a generalized predictive controller was
implemented on the Acurex field of the Plataforma Solar de
Almerı́a (PSA). In Camacho and Berenguel [6] an adaptive
robust predictive control scheme was derived based on a
simplified transfer function of the plant, considering the poles
location fixed and zeros robustly identified online. According
to the authors this control scheme showed poor performance
in terms of static error, in the case of radiation and inlet
oil temperature disturbances. Coito et al. [8] and Silva et al.
[10] implemented a self-tuning control by multistep horizons
(MUSMAR) framework on the Acurex field, while in [11]
the authors propose a MUSMAR variant based on a bi-
criteria optimization in order to improve the control system’s
performance in start-up transients. Experimental results have
demonstrated the feasibility of these receding horizon ap-
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proaches. In Pickhardt and Silva [12] a nonlinear predictive
control scheme is proposed assuming an input-output model
of the plant within a receding horizon framework. The model’s
parameters are updated online at every sampling time to allow
accommodating time-varying effects and modelling errors.
Although the obtained results were promising, they show a
significant underperformance of the control system in the
presence of mild to severe radiation disturbances. In addition,
as the authors stress, the underlying control law cannot in-
corporate an integral effect and the computation overhead in
the optimization stage is quite dependent on the prediction
horizon, which may have a direct impact on the sampling
frequency.

A drawback of considering true nonlinear model-based
predictive control (NMPC) techniques is linked to the need
of solving a non-convex optimisation problem. Specifically,
the convergence to a feasible/optimal solution and stability
conditions cannot be guaranteed in advance, and the under-
lying computation time might exceed, by far, the specified
sampling period. Moreover, in many cases, finding a good
analytical model of the plant might be a very demanding,
time consuming and costly task. As such, system identification
should be favoured against analytical modelling, based on phe-
nomenological considerations. An example of nonlinear black
box structures are the artificial neural networks, which are
quite appealing in terms of approximation and generalisation
capabilities (see e.g. [13]–[17].

The above discussion motivates the development of a
generic conceptual platform for nonlinear control system de-
sign, relying on a model-based predictive control framework,
with the model of the plant described by an affine state-
space three-layered neural network. The number of neurons
to be included in the hidden layer is selected taking into
account the specificity of the model structure and by applying
the singular value decomposition (SVD) to a given oblique
subspace projection. In order to cope with time-varying dy-
namics and modelling errors, an indirect adaptive scheme is
suggested, where the neural network weights are updated by
a recursive updating technique based on a dual unscented
Kalman filter (DUKF) [18]. Finally, it should be mentioned
that any comparisons, either in terms of performance or
complexity, against other control techniques are out of scope
in this work, being the reader referred to [4] and [5], and
references therein, for a comprehensive discussion on control
schemes applied to distributed solar collector fields.

The remainder of this paper is organized as follows. Sec-
tion II introduces the affine state-space neural network topol-
ogy, and describes the approaches considered for managing its
complexity and training methodologies. Section III formulates
the generic model-based control (MPC) scheme. In Section IV
the distributed solar collector field (Acurex) of the Plataforma
Solar de Almerı́a, Spain, is described, while in Section V
some experimental results are presented and discussed. Finally,
Section VI concludes the paper.

II. AFFINE STATE-SPACE NEURAL NETWORKS

Modelling nonlinear dynamic systems has been the main
driving force for developing robust black-box topologies (see

e.g. [19], [20]) in order to deal with unknown dynamics,
nonlinearities and uncertainties. In this context, the ability of
neural networks to learn based on input-output data and gener-
alize to unseen data are quite appealing, in particular when the
process dynamics is highly complex. In addition, their intrinsic
approximation capabilities, scalability and inherent structural
flexibility to cope with a larger class of problems are invaluable
characteristics.

In the case of three-layered feedforward neural networks
(input layer - hidden layer - output layer) consisting of
sufficient number of hidden-layer’s neurons with sigmoidal
activation function, they can, in theory, approximate, to any
level of accuracy, a given continuous nonlinear function (see
e.g. [21]–[24]). However, this neural network topology is static
by nature and consequently cannot inherently approximate
spatio-temporal information. The way these structures can
be used to emulate nonlinear systems’ dynamics is typically
carried out by providing the network with a regressor vector
comprising past inputs and past outputs, being these structures
dubbed as NARX (Nonlinear AutoRegressive with eXogenous
inputs) neural networks.

Although NARX neural networks are effective in emulating
nonlinear systems’ dynamics (see e.g. [25]) they have some
inescapable drawbacks. Specifically, they can only encode a
finite number of previous inputs and outputs, they suffer from
high sensitivity to the regressor’s lag windows, and show a
notorious susceptibility to noisy data.

A conceptually different way to represent nonlinear system
dynamics is by incorporating feedback connections within the
hidden layer of a three-layered neural network, where the
remaining two layers are represented by the input layer and
output layer. This architecture, referred to as state-space neural
network, represents a broader class of nonlinear dynamic
systems, and not only is less vulnerable to noisy data, but
also the whole system history can inherently be embedded
into the model. Moreover, state-space neural networks provide
universal identification models in the restricted sense that they
can approximate uniformly any multi input - multi output
nonlinear dynamics over a finite time horizon, for every
continuous and bounded input signal (see e.g. [26]).

A. Neural network architecture

The affine discrete-time state-space neural network topology
considered in this work consists of three layers, as depicted
in Fig. 1. The input layer and the output layer have as many
neurons as the number of exogenous inputs and outputs of the
dynamic system to be modeled, while the number of neurons
to be incorporated within the hidden layer should be judi-
ciously selected for the sake of generalization performance.
A neural network comprising a deficient number of hidden
layer neurons may not be feasible to appropriately emulate the
underlying system dynamics, while a number of neurons larger
than theoretically required may result in limited generalization
performance due to overfitting. This problem is addressed in
Section II-B.

The activation functions of neurons included in the hidden
layer are both linear and sigmoidal, since in conjunction they
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Fig. 1. Affine state-space neural network.

improve the neural predictor performance in case of mild
nonlinear dynamics [27], and contribute to a less demanding
training phase.

In state-space form the corresponding analytical model can
be written as,

x (k + 1) = Ax (k) +B u (k) +Dσ (E x (k))

y (k) = C x (k)
(1)

where x ∈ Rn denotes the hyperstate space vector, y ∈ Rp the
output vector and u ∈ Rm the input vector. Matrices A, B, C,
D and E are real-valued matrices of appropriate dimensions,
while the nonlinear activation function σ(·) is a continuous and
differentiable sigmoidal function, upper and lower bounded,
satisfying the following conditions [28]:
• limt→±∞σ (t) = ±1;
• σ (t) = 0⇐ t = 0;
• σ′ (t) > 0;
• limt→±∞σ

′ (t) = 0;
• max (σ′ (t)) ≤ 1⇐ t = 0.
The reader is referred to [29] for a comprehensive survey

on activation functions in artificial neural networks and [30] to
a thorough study on stability conditions applied to the affine
state-space architecture considered in this work.

B. Neural network complexity

This section deals with the problem of selecting an effective
number of hidden layer neurons for the system represented in
Fig. 1. Formally, it can be tackled by estimating an effective
order for the affine state-space model (Eq. 1), assuming a
linear approximation to the system’s dynamics [31].

Let us assume a generic finite dimensional discrete-time
invariant linear system represented in state-space form as,

x (k + 1) = Ax (k) +B u (k) + η (k)

y (k) = C x (k) +Du (k) + ϑ (k)
(2)

where x ∈ Rn, y ∈ Rp, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n and D ∈ Rp×m. Vectors ϑ ∈ Rp and η ∈ Rn

are, respectively, unobserved Gaussian distributed, zero mean,
white noise sequences accounting for the measurement noise
and process noise. Additionally, suppose that the available data
collected from the plant are ergodic and go to infinity, and
Eq. (2) satisfies the orthogonality property, that is,

E
[(
x (k)
u (k)

)(
ηT (k) ϑT (k)

)]
= 0 (3)

with E denoting the expectation.
Consider now the past and future input block Hankel

matrices, respectively, Up ≡ U0|i−1 and Uf ≡ Ui|2i−1 given
by:

Up =


u (0) u (1) · · · u (j − 1)
u (1) u (2) · · · u (j)

...
...

. . .
...

u (i− 1) u (i) · · · u (i+ j − 2)

 (4)

Uf =


u (i) u (i+ 1) · · · u (i+ j − 1)

u (i+ 1) u (i+ 2) · · · u (i+ j)
...

...
. . .

...
u (2i− 1) u (2i) · · · u (2i+ j − 2)

 (5)

and the past and future output block Hankel matrices, Yp ≡
Y0|i−1 and Yf ≡ Yi|2i−1 given according to,

Yp =


y (0) y (1) · · · y (j − 1)
y (1) y (2) · · · y (j)

...
...

. . .
...

y (i− 1) y (i) · · · y (i+ j − 2)

 (6)

Yf =


y (i) y (i+ 1) · · · y (i+ j − 1)

y (i+ 1) y (i+ 2) · · · y (i+ j)
...

...
. . .

...
y (2i− 1) y (2i) · · · y (2i+ j − 2)

 (7)

where the number of block rows i should be selected larger
than the expected maximum order of the system under iden-
tification, that is, n � i and the number of block columns
j →∞.

The effective order for the linear model (2), which depends
on the information embedded in the data set, can be retrieved
from the rank of a subspace projection Π involving the above
Hankel matrices (see e.g. [32].)

Definition 1 (Oblique projection). The oblique projection of
the row space of P ∈ Rp×j along the row space of Υ ∈ Rq×j

on the row space of Γ ∈ Rl×j is given by:

P/ΥΓ = P
[
ΓT ΥT

] [(ΓΓT ΓΥT

ΥΓT ΥΥT

)†]
1:l

Γ (8)

withM† denoting the Moore-Penrose pseudoinverse of matrix
M.

Theorem 1 (Main subspace identification theorem [33]).
Under the assumptions that: a) the deterministic input is
uncorrelated with the process noise η and measurement noise
ϑ; b) the process noise η and the measurement noise ϑ
are not identically zero; c) the exogenous input sequence is
persistently exciting [34] of order 2 i; d) the data set is large
(j →∞), then:



4

1) The projection Πi can be defined as the oblique projec-
tion of the row space of Yf on the past input/output row
space along the row space of Uf,

Πi = Yf�Uf

(
Up

Yp

)
(9)

2) The order of the linear discrete-time system is given by
the number of non-zero singular values of Πi.

The number of non-zero singular values of Πi reveals
whether this projection is of full rank or rank deficient. In
order to obtain the rank of Πi the singular value decomposition
(SVD) can be applied to the above projection, under the strict
conditions of Theorem 1. Since the SVD provides orthonormal
bases for range and null spaces, the cardinality of the column
space of Πi provides an estimate to the order of the linear
system (2).

When this approach is applied to finite data sets (j � ∞)
or in the case of data collected from nonlinear systems, even
for large data sets exempt from coloured noise, the oblique
projection matrix Πi is full rank, that is, rank (Πi) = i · p,
irrespective of the number of row blocks i of the corresponding
block Hankel matrices. In such cases it is imperative to reduce
the column space of Πi, by taking into account, for instance,
the dominant singular values cardinality.

In the MATLAB c© System Identification Toolbox [35]
the implemented approach to estimate the system’s order r
searches for a gap in the singular values, being the order given
by the largest integer, so that the corresponding singular value
is greater than the geometric mean of the largest singular value
σ1 and the smallest non-zero singular value σs, that is,

r = max

{
r : log σr >

1

2
(log σ1 + log σs)

}
(10)

A similar approach based on the search for a gap is
presented in [36], where the estimate model order is given
by,

r = max

{
r :

σr
σr+1

>
σ`
σ`+1

,∀ ` = 1, . . . , s ∧ ` 6= r

}
(11)

C. Training

The affine state-space neural network training is first carried
out offline by using the Levenberg-Marquardt algorithm (see
e.g. [37]), in particular because of its efficiency when the
network contains no more than a few hundred parameters
[38]. In the case of indirect adaptive MPC schemes this
set of parameters is subsequently updated online by means
of a recursive approach based on a dual Kalman filter. Its
implementation relies, essentially, on the propagation of means
and covariances through nonlinear transformations, referred to
as unscented transformation (see e.g. [18], [39]). In the dual
unscented Kalman filter framework both states and parame-
ters are computed simultaneously in two different stages: i)
the time update stage concerns the evaluation of one step-
ahead predictions for states and parameters, while ii) in the
measurement update a correction is made to these estimates
on the basis of current noisy measurements.

Assume the general state-space nonlinear system written as:

x (k + 1) = f
(
x (k) , u (k) , wf (k) , k

)
+ η (k)

z (k) = g (x (k) , u (k) , wg (k) , k) + ϑ (k)
(12)

where x ∈ Rn, u ∈ Rm, z ∈ Rp; f (·) and g (·) are real
vector nonlinear functions with parametrisations wf and wg;
η ∈ Rn and ϑ ∈ Rp are random variables representing the
process noise and measurement noise, respectively.

Taking into account the nonlinear black-box structure de-
scribed by Eq. (12) the corresponding DUKF equations are as
follows:

Weights estimation
Time update:

Ωi (k|k − 1) = Ωi (k − 1|k − 1) (13)

Pw (k|k − 1) = Pw (k − 1|k − 1) + Ψ (14)

Zw
i (k|k − 1) = g (x̂ (k − 1|k − 1) , u (k − 1|k − 1)

,Ωi (k|k − 1) , k)
(15)

ẑw (k|k − 1) =

2Nw∑
l=0

Γw
l Z

w
l (k|k − 1) (16)

Pw
z (k|k − 1) =

2Nw∑
l=0

{Γw
l [Zw

l (k|k − 1)− ẑw (k|k − 1)]

· [Zw
l (k|k − 1)− ẑw (k|k − 1)]

T
}

+ Υ

(17)

Pwz (k|k − 1) =

2Nw∑
l=0

{Γw
l [Ωl (k|k − 1)− ŵ (k|k − 1)]

· [Zw
l (k|k − 1)− ẑw (k|k − 1)]

T
}

(18)
Measurement update:

Kw (k) = Pwz (k|k − 1) [Pw
z (k|k − 1)]

−1 (19)

ŵ (k|k) = ŵ (k|k − 1) +Kw (k) [z (k)− ẑw (k|k − 1)] (20)

Pw (k|k) = Pw (k|k − 1)−Kw (k)Pw
z (k|k − 1)

· (Kw (k))
T (21)

with Ω the sigma points matrices of the vectorized affine
state-space neural network weights w =

(
wf |wg

)
, Pw, P

w
z

and Pwz covariance matrices, Zw the observation matrix, ẑw
the weighted observation vector; Γ is the vector of weighting
coefficients, K the Kalman gain; Υ denotes the measurement
noise variance and Ψ the process noise.

State vector estimation
Time update:

χl (k|k − 1) = f (χl (k − 1|k − 1) , u (k − 1)

ŵ (k − 1|k − 1) , k)
(22)

x̂ (k|k − 1) =

2Nx∑
l=0

Γx
l · χl (k|k − 1) (23)
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Px (k|k − 1) =

2Nx∑
l=0

{Γx
l [χl (k|k − 1)− x̂ (k|k − 1)]

· [χl (k|k − 1)− x̂ (k|k − 1)]}+ Θ

(24)

Zx
i (k|k − 1) = g (χl (k − 1|k − 1) , u (k − 1|k − 1)

, ŵ (k|k − 1) , k)
(25)

ẑx (k|k − 1) =

2Nx∑
l=0

Γx
l Z

x
l (k|k − 1) (26)

P x
z (k|k − 1) =

2Nx∑
l=0

{Γx
l [Zx

l (k|k − 1)− ẑx (k|k − 1)]

· [Zx
l (k|k − 1)− ẑx (k|k − 1)]

T
}

+ Υ

(27)

Pxz (k|k − 1) =

2Nx∑
l=0

{Γx
l [χl (k|k − 1)− x̂ (k|k − 1)]

· [Zx
l (k|k − 1)− ẑx (k|k − 1)]

T
} (28)

Measurement update:

Kx (k) = Pxz (k|k − 1) [P x
z (k|k − 1)]

−1 (29)

x̂ (k|k) = x̂ (k|k − 1) +Kx (k) [z (k)− ẑx (k|k − 1)] (30)

Px (k|k) = Px (k|k − 1)−Kx (k)P x
z (k|k − 1)

· (Kx (k))
T (31)

where Θ is the process noise variance matrix and χ the sigma
points matrices associated with the hyperstate vector x.

III. MODEL-BASED PREDICTIVE CONTROL

Model-based predictive control is a discrete-time technique
where an explicit dynamic model of the plant is used to predict
the system outputs over a finite horizon P , while a sequence
of control actions is adjusted during a finite control horizon
M in order to minimize a given cost function (see e.g. [40]).
At time step k the optimiser computes online an optimal
open loop sequence of control actions, so that the predicted
outputs follow a pre-specified reference signal and taking into
account possible hard and soft constraints. Only the current
control action u(k|k) is actually fed to the plant over the time
interval [k, k + 1). Next, at time step k + 1, the prediction
and control horizons are shifted ahead by one step and a new
open loop optimisation problem is solved using the most recent
measurements from the plant and the control action fed to the
plant at previous discrete-time u(k|k).

Since the nonlinear model-based predictive control scheme
developed in this work considers a local linear model of the
plant derived at each discrete-time from the linearisation of
the affine state-space neural network (Fig. 1), the remaining
of this section will focus exclusively on the formulation of
the constrained MPC tracking problem under the quadratic
programming format.

Let the local linear discrete-time dynamic system be de-
scribed in the state-space form as follows:

x (k + 1) = Ax (k) +B u (k)

y (k) = C x (k)
(32)

with x ∈ Rn, y ∈ Rp, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m and
C ∈ Rp×n. In addition, assume that the performance index
is defined as 2-norm and consider a set of linear constraints
imposed on the system’s inputs and outputs, along with a
bound on the rate of change of the control action vector. Under
the above premisses the open loop optimization problem can
be stated as follows:

∆U∗ = arg min
∆U

{
P∑
l=1

‖y (k + l|k)− r (k + l)‖2Ql

P−1∑
l=1

‖u (k + l|k)‖2Rl
+

M−1∑
l=1

‖∆u (k + l|k)‖2Sl

} (33)

subject to the system dynamics (32) and to the following set
of constraints:

ymin ≤ y (k + l|k) ≤ ymax, l = 1, . . . , P, k ≥ 0

umin ≤ u (k + l|k) ≤ umax, l = 1, . . . , P − 1, k ≥ 0

|∆u (k + l|k)| ≤ ∆umax, l = 1, . . . ,M − 1, k ≥ 0

∆u (k + l|k) = 0 , l = M, . . . , P − 1, k ≥ 0

(34)

with Ql ∈ Rp×p, Rl, Sl ∈ Rm×p; ∆u ∈ Rm is the control
action increment, r ∈ Rp denotes the reference signal and
∆U∗ the extended optimal control action sequence.

Since the cost function is quadratic and the set of constraints
is linear, then optimization problem is convex and its solution
is unique. In this case, the constrained open loop optimal
control problem can be restated as a quadratic programming
(QP) problem, namely,

∆U∗ = arg min
∆U

{
hT∆U +

1

2
∆UTH∆U

}
s.t. G ·∆U ≤ d

(35)

where G ∈ R(4m·M+2p·P )×m·M , d ∈ R(4m·M+2p·P ) and
∆U ∈ Rm·M . The gradient h ∈ Rm·M and the Hessian
H ∈ Rm·M×m·M are given by:

hTj = 2

xT (k|k)

 P−1∑
i=j−1

(
CAi+1

)T
Qi+1

i−j+1∑
q=0

CAq

B
−

 P−1∑
i=j−1

rT (i+ 1)Qi+1

i−j+1∑
q=0

CAq

B
+ uT (k − 1|k − 1)

P−1∑
i=0

Ri

}
(36)

HT
jj = 2

{
BT

P−j∑
i=0

[
i∑

q=0

(CAq)
T
Qi+1

i∑
q=0

CAq

]
B

+

P−1∑
i=j−1

Ri + Sj−1


(j = 1, . . . ,M)

(37)
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HT
jl = 2

BT
P−1∑
i=j−1

[
i−j+1∑
q=0

(CAq)
T
Qi+1

i−l+1∑
q=0

CAq

]
B

+

M−1∑
i=j−1

Ri


(j, l = 1, . . . ,M ; j 6= l)

(38)
Concerning the constraint inequation, it follows that G is a
block matrix defined as:

G =


G1

G2

G3

G4

G5

G6

 (39)

with

G1 = −G2


Im 0m · · · 0m 0m
0m Im 0m 0m 0m

...
...

...
...

...
0m 0m 0m 0m Im

 (40)

G3 = −G4 =


Im 0m · · · 0m 0m
Im Im 0m 0m 0m

...
...

...
...

...
Im Im Im Im Im

 (41)

G5 = −G6 =



φ11 0p×m · · · 0p×m 0p×m
φ21 φ22 0p×m · · · 0p×m

...
...

...
...

...
φM1 φM2 φM3 · · · φMP

...
...

...
...

...
φP1 φP2 φP3 · · · φPM


(42)

where φij is given by:

φij = C

i−j∑
q=0

Aq ·B, i = 1, . . . , P ; j = 1, . . . ,M∧j ≤ i (43)

With respect to the column vector d it takes the following
form:

d =


d1

d2

d3

d4

d5

d6

 (44)

d1 = d2 =


∆umax (k|k)

∆umax (k + 1|k)
...

∆umax (k +M − 1|k)

 (45)

d3 =



umax (k + |k)− u (k − 1|k − 1)
umax (k + 1|k)− u (k − 1|k − 1)

...
umax (k +M |k)− u (k − 1|k − 1)

...
umax (k + P − 1|k)− u (k − 1|k − 1)


(46)

d4 =



−umin (k + |k) + u (k − 1|k − 1)
−umin (k + 1|k) + u (k − 1|k − 1)

...
−umin (k +M |k) + u (k − 1|k − 1)

...
−umin (k + P − 1|k) + u (k − 1|k − 1)


(47)

d5 =


cȳ1
cȳ2
...
cȳP

 (48)

d6 =


c
y

1

c
y

2
...
c
y

P

 (49)

with

cȳi = ymax−C

Aix (k|k) +

i−1∑
j=0

AjBu (k − 1|k − 1)

 (50)

and

c
y

i = −ymin + C

Aix (k|k) +

i−1∑
j=0

AjBu (k − 1|k − 1)


(51)

where ymax denotes the maximum allowable output from the
plant, and ymin corresponds to the admissible minimum output.

IV. SOLAR POWER PLANT SETUP

A. Description

The distributed solar collector field (Acurex) used as a
testbed for model-based predictive control experiments is
owned by the Plataforma Solar de Almerı́a (PSA), and is
located in the desert of Tabernas, in the South of Spain. The
Acurex plant is part of a small Solar Power System (SPS),
which includes, in addition, a thermal storage tank system and
a power unit (see Fig. 2).

The DSC field (Fig. 3) consists of 480 parabolic trough
collectors arranged in 20 rows aligned on a West-East axis
and forming 10 independent loops. Each solar collector is a
linear parabolic-shaped reflector that focuses the sun’s beam
radiation on a linear absorber pipe located at the focus of the
parabola. Each loop is 172 m long, with an active section
of 142 m, while the reflective area of the mirrors is around
264.4 m2.

The heat transfer fluid used to transport the thermal energy
is the Santotherm 55, which is a synthetic oil with a maximum
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outT

inT

loop 2 

loop 1 

Fig. 2. PSA’s Solar Power System schematics.

Fig. 3. Acurex solar collector loop.

film temperature of 318 ◦C and an autoignition temperature
of 357 ◦C. The thermal oil is heated as it circulates through
the absorber pipe before entering the top of the storage tank.
The colder inlet oil is extracted form the bottom of the tank,
while a three way valve located at the field outlet enables
the oil recycling (by-passing the storage tank) until the outlet
oil temperature is high enough to be sent to the tank. The
thermal energy stored in the tank is subsequently used to
generate electricity in a conventional steam turbine/generator
or consumed in the solar desalination plant. The main reason
for including a storage tank in the SPS is to provide a
buffer between the electricity production and the solar energy

availability.The DSC field is provided with a sun tracking
system, which causes the solar collector to revolve around
an axis parallel to the receiver in order to follow the yearly
variation of the sun’s declination.

The DSC field operating limits are, in terms of oil flow
rate, restricted to a minimum of 2.0 l/s and a maximum of
12.0 l/s. The lower bound is imposed to reduce the risk of
oil decomposition, which occurs when its temperature exceeds
305 ◦C, while the maximum bound is related to the admissible
pressure drop along the pipe length.

From the control point of view, the main difference between
a standard power plant and a thermal solar power plant is
that the energy source (solar radiation) cannot be manipulated.
Moreover, the direct solar radiation is seasonally dependent,
varies throughout the day and is susceptible to atmospheric
conditions, such as cloud cover, humidity and turbidity. In
this context, the objective of the control system is to maintain
the outlet oil temperature at a prescribed value irrespective
of variations on the beam solar radiation, inlet oil temperature
and solar collectors’ reflectivity, while taking into account hard
constraints imposed on the system, and by manipulating the
oil flow rate through each loop.

B. Solar Collector Field Identification

Regarding the identification of the Acurex field for control
purpose, the outlet oil temperature Tout (system output) de-
pends not only on the oil flow rate Qin(input), but also on other
variables, such as the inlet oil temperature Tin, solar radiation
Irr, ambient temperature and mirrors reflectivity. Since the
solar beam radiation and the inlet oil temperature are mea-
surable, it is worth incorporating a feedforward compensator
(Fig. 4) in series with the plant (see e.g. [4]).

Compensator ACUREX

Tin

Tref

Irr

Qin Tout

Fig. 4. Feedforward compensator.

This feedforward term is derived for steady state conditions
and delivers the required oil flow rate demanded to the pump,
provided the desired outlet oil temperature Tref, solar beam
radiation and inlet oil temperature are known. The feedfor-
ward term was implemented according to following general
expression:

Qin =
µ ·Nact · Ic ·Aeff

ρ · cp (Tref − Tin)
(52)

where µ is a coefficient to be computed experimentally, Nact
the number of active loops, Ic the corrected solar radiation
computed from the solar beam radiation Irr, Aeff denotes the
effective mirrors’ surface of each loop, ρ is the oil specific
mass and cp is the specific thermal capacity.

The input to the feedforward compensator is the reference
outlet oil temperature, while the corresponding output is
associated with the oil flow rate, and the remaining variables,
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Fig. 5. Data set collected from the Acurex field.

namely, Tin and Ic, can be regarded as measurable distur-
bances acting on the pseudo-system.

For the Acurex identification two data sets have been col-
lected from the plant to be used in the neural network training
and validation phases. They included the outlet oil temperature
(Tout), the inlet oil temperature (Tin), the flow rate (Qin) and
the solar beam radiation (Irr), at a sample rate of 15 s. One
of those data sets is plotted in Fig. 5. In order to come with an
estimate for the effective order of the affine state-space neural
network the approach proposed in Sec. II-B is then applied.
Taking into account the data set presented in Fig. 5 and a
number of row blocks chosen as i = 20, which is substantially
higher than the expected effective dominant singular values
cardinality, the singular values associated with the projection
matrix Π20 are presented in (53). From the singular values
inspection, in terms of absolute magnitude and magnitude
decay, it is clear that the dominant vector basis is quite lower
than the rank of Π20. Hence, a post-processing procedure
should be considered to reduce the model’s complexity. It
should be mentioned that, in the present case, full rankness
is mainly due to nonlinear dynamics embedded in the data
sets, and also to a finite data set (j << ∞) collected from
the plant.

In order to reduce the vector basis dimension let us consider

the methodology based on (10), that is,

r = max {r : log σr > −0.1920}

The largest integer satisfying the previous inequality is 6,
which points to a 6th order model to approximate the plant’s
dynamics embedded in the collected data and considering a
linear approximation under the form of Eq. (2).

σ =



1381.623814
28.650875
27.872150
5.312726
1.814615
1.054868
0.719611
0.389758
0.387268
0.354688
0.293651
0.279058
0.262657
0.165907
0.138188
0.099948
0.099164
0.038363
0.031553
0.000493



(53)

To assess the 6th order affine state-space model perfor-
mance, the neural network was trained offline using the
Levenberg-Marquardt algorithm, within the MATLAB c© envi-
ronment. Fig. 6 compares the outlet oil temperature collected
on the Acurex field with the corresponding prediction pro-
vided by the affine state-space neural network. As can be
observed, the neural predictor’s output is in line with the
distributed solar collector field behaviour, either in terms of
overshoot, settling time and static gain. Nevertheless, a slight
model-plant mismatch is still detected, which is confirmed
by the Mean Normalized Absolute Error (MNAE) magnitude,
namely, 1.10 × 10−2. This fact suggests the need for an
improvement in terms of generalization capabilities of the
neural network approximator, by considering, for instance, a
recursive-based updating approach.

Sample
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Fig. 6. Acurex outlet oil temperature versus neural network simulation.
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V. SOLAR COLLECTOR FIELD TESTS

The nonlinear MPC scheme was tested on the Acurex
field of PSA in two different strategies, namely, indirect
adaptive and non-adaptive. In either cases, for regulating or
driving the outlet oil temperature to a pre-specified level,
despite variations in the sun’s beam radiation and in inlet oil
temperature, the control system manipulates the thermal oil
flow rate pumped to the solar collector field.

Given the computation complexity and memory require-
ments of this approach, it was chosen to run the main routines,
namely, online identification, in the case of adaptive schemes,
state estimation, and the open loop optimisation, on a remote
computer, more specifically a laptop computer. This allowed to
implement these routines in MATLAB c© taking advantage of
its programming flexibility and the available toolboxes, such
as the optimisation toolbox, for solving the required open loop
constrained quadratic optimisation problem.

LaptopTerminal

Serial Cable

TX/RX

Server

Fig. 7. Laptop-Server serial communication.

The laptop computer was connected with the Acurex field
Server via RS232 serial communication (Fig. 7), which pro-
vides the physical means for the exchange of data. In this
framework, the Acurex control server supplies the laptop with
the DSC field data, which computes a new control action
sequence under the form of oil flow rate. The new oil flow
rate u(k|k) is then sent to the laptop’s COM and read by
the Acurex field server. Next, the Server forwards the control
action, regarded as a reference flow rate, to the pump PI
(Proportional-Integral) controller. The communication routines
for synchronisation, sending and reading have been imple-
mented both in C code and included in the Acurex software
package and also in MATLAB c© to be called within the control
cycle implemented on the remote laptop.

In all the experiments reported in this work it was con-
sidered a prediction horizon P = 10 time-steps, a control
horizon M = 1 and the weight matrices associated with the
performance index presented in (54). These penalty matrices
were selected by a trial and error heuristic, using a simulation
software package for the Acurex Solar collector field [41],
and considering as design-based conditions the step response’s
overshoot and settling-time.

Qi =

{
5, i = 1, . . . , P − 1

100, i = P

Ri = 10−3, i = 1, . . . , P − 1

Si = 10−4, i = 1, . . . ,M − 1

(54)

In what the hard constraints included in the optimization
problem are concerned, they reflect physical limitations of the
Acurex field. The oil flow rate was set as lying within 2.0 l/s
and 10.0 l/s, being the upper bound lower than the maximum
admissible flow rate for safety reasons, while the outlet oil
temperature is limited to 300 ◦C. In addition, the maximum
oil flow rate increments were constrained to 0.1 l/s, in order
to enable a smooth pump operation, which contributes to
maximizing the main oil pump lifespan. In terms of sampling
time, unlike the experiment reported in Section V-C, in which
was considered a sampling time of 10 s, all the remaining
experiments were conducted considering a sampling time of
15 s.

A. Non-Adaptive MPC

This experiment concerns an MPC control configuration in
which the neural affine state-space neural network predictor
is not updated in the course of the conducted tests, and the
unscented Kalman filter is only used for state estimation .

The main purpose of this experiment is twofold: to evaluate
the performance of a non-adaptive framework in controlling
the Acurex field and to use it on comparison basis to assess
improved MPC schemes performance, namely the indirect
adaptive approach.
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In Fig. 8 are presented the outcomes of one of the exper-
iments carried out at the site, for which the nonlinear model
parameters are fixed, and assuming Px(0) = I, see Eq. (24).
In this figure it is shown the outlet oil temperature (Tout), the
oil reference temperature (Tref ), the control action (u(k|k)),
under the form of demanded flow rate in each loop (Qin), the
oil inlet temperature (Tin) and the solar beam radiation prior
to correction (Irr), over time.

As can be observed from Fig. 8, the pump has a smooth
operation, although a residual static offset is evident for some
operating point, which is mainly attributed to model-plant
mismatch. Moreover, the control system performance is not
significantly affected by disturbances on solar beam radiation
and inlet oil temperature, as they are accommodated by the
feedforward compensator expressed in terms of Eq. (52).

B. Indirect Adaptive MPC

This Section considers the implementation of an indirect
adaptive MPC scheme on the Acurex field, for which the
plant parameters are adjusted online in order to cope with
unmodelled dynamics and disturbances. A dual unscented
Kalman filter, as proposed in Section II-C, was used for
recursive parameter estimation and state estimation. Initial
covariance matrices were chosen as Pw(0) = 5.0 × 10−3I
and Px(0) = I. Additionally, a forgetting factor τ = 0.9986
was also considered by rewriting Eq. (14) as:

Pw (k|k − 1) =
1

τ
Pw (k − 1|k − 1) (55)

The Fig. 9 shows results of an experiment where the
adaptive MPC scheme was incorporated in the control loop.
From these results it is possible to infer that the control
system is “well-behaved” despite disturbances on the solar
beam radiation and inlet oil temperature. Furthermore, given
the indirect adaptive trait of this controller, which relies on
recursive nonlinear identification techniques, modelling errors
are progressively attenuated, which benefits the steady-state
control system behaviour, namely the static error, in compari-
son with non-adaptive schemes. Finally, a mention should be
made to the fact that right after the control policy has been
switched to the MPC, a rather prominent overshoot is noticed,
along with slight oscillations in the outlet oil temperature,
which can be explained in part by the adaptation mechanisms
that are in play.

C. Indirect Adaptive MPC - Actuation Fault

This experiment intends to assess the control system be-
haviour and robustness for an operation fault on the actuation
system. This fault was taking place on the variable speed drive
attached to the main pump, and was imposing a difference
in the pumped oil flow rate with respect to the reference
oil flow rate provided by the MPC scheme. In the case of
the experiment in question, the flow rate deviation given by
the difference between the prescribed oil flow rate and the
measured value in loco is presented in Fig. 10. As can be
observed, most of the time the prescribed oil flow rate was
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Fig. 9. Indirect adaptive MPC.

higher than that fed to the Acurex field. As a result, this will
lead to a positive offset of the oil flow rate temperature if
the corresponding effect is not appropriately accommodated
by the control system.

The experiment was run using the indirect adaptive MPC
scheme with a sampling time of 10 s, and considering the same
covariance matrices as those presented in Sec. V-B, together
with τ = 0.9987. The obtained results are shown in Fig. 11.

As can be observed from this figure, the indirect adaptive
MPC scheme is able to drive the outlet oil temperature to the
corresponding reference, in spite of a malfunctioning pending
on the variable speed drive. The accommodation of this fault
is carried out by the joint contribution of online identifica-
tion, which incorporates into the Acurex field dynamics the
actuation fault, and the state estimation procedure.

In what the sampling time is concerned, no significant dif-
ference is detected in terms of performance by choosing more
stringent admissible values for the sampling time. However,
further studies have to be conducted on site to confirm this
assertion.

VI. CONCLUSIONS

This paper presented the implementation of a constrained
affine state-space neural network based predictive control
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Fig. 11. Indirect adaptive MPC - actuation fault.

scheme on a distributed solar collector (Acurex) field, owned
by the Plataforma Solar de Almerı́a, where the main goal
consists in driving the outlet oil temperature to a prescribed
value. The neural network predictor’s complexity measured
by the order of the state-space nonlinear model, is dealt with
by estimating the number of dominant singular values of a
subspace oblique projection of data driven Hankel matrices.

In order to guarantee that the optimization problem convexity
is held, the dynamic model of the Acurex field, described by an
affine state-space neural network, is locally linearised, while
the optimisation problem constraints are represented by a set of
linear inequalities. The online updating of the neural network
weights and state estimation is based on a dual unscented
Kalman filter. In the case of the non-adaptive MPC framework
only a state estimation is carried out.

Experiments conducted on the Acurex field included tests
based on a non-adaptive MPC scheme and on an indirect
adaptive version. The first implementation showed that as
a result of model-plant mismatch the outlet oil temperature
displays a static offset, irrespective of the operating regime.
This effect was practically removed in the indirect-adaptive
formulation, due to a neural model improvement, which is
gradually achieved by means of a recursive adjusting of
weights, based on new data collected from the plant.

Concerning the MPC robustness to measurable disturbances,
such as solar beam radiation and inlet oil temperature, they
were effectively accommodated by the feedforward compen-
sator as the experiments reveal. In addition, in the case of a
faulty actuator, resulting from a malfunction on the variable
speed drive that is attached to the main pump of the Acurex
field, the indirect adaptive MPC framework was able to
accommodate its impact on the outlet oil temperature.
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