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Abstract—In this paper an approach to design proportional-
integral (PI) controllers, for SISO systems, based on neural lin-
ear principal components analysis (PCA) is presented. Closed-
loop control can be formulated and implemented within the
reduced space defined by a PCA model. The neural linear PCA
controller, results in an integral controller, which can be used
as an inferential controller. The main contributions of the paper
are: a) the proposed architecture with a classical proportional
controller and a neural integral controller based on linear
neural PCA; b) the evaluation of the controller performance
using the Harris index. Some experimental results obtained with
a DC motor linear model are presented, showing the controller
performance.

I. INTRODUCTION

The PID controller is the most dominating form of feedback
system in use today in industries. Research on PID control
will have certainly impact on the future, [1], [2], [3]. Most
loops use in fact only PI control because derivative action is
not used very often. The PID controller is used for a wide
range of control problems: process control, motor drives,
automotive, flight control, etc. The PID controllers appears
in different forms: as standard single-loop controllers, as a
software module in programmable logic controllers (PLC’s)
and also as distributed multi-loop control systems.

Principal component analysis (PCA) and other multivariate
statistical methods (factor analysis, discriminant analysis,
etc) can be used to develop nonparametric models for
process monitoring (including fault detection and diagnosis),
[4], [5], [6], [7]. PCA can also be used for controller loop
monitoring, [8], as well as for feedback control in the scores
space, [4], [5], [9], [10], [11].

The proposed PCA control formulation, in a reduced
control space, is analogous to modal control, also called
eigenvalue-assignment control. The great advantage of
the control structure proposed here is the fact that only

input-output process data is needed for controller tuning, so
this is a data-based controller tuning approach.

In this paper, a PI controller based on linear neural
PCA, to deal with linear SISO systems in real-time
applications, is proposed.

II. CONTROL BASED ON PCA MODELS

Principal components analysis (PCA) can be used to design
integral controllers, [4], [5], [9], [10], [11].
The Matlab notation is used here to define sub-matrices.
The architecture of the classical integral PCA controller is
depicted in Fig. 1. Detailed information about the design of
this kind of controllers can be found in [9], [10], [11]. The
block ”Pa” represents the plant, ”C” is the PCA controller,
and Q is given by (1). The algorithms were implemented
in discrete-time. Let’s assume that k is the k sample in the
algorithms.

Q = (UT )+ (1)

In (1), + represents the pseudo-inverse of the matrix and T
is the transposed. The matrix U is obtained from (2), where
xd(k) = y(k) is the process output.

U = (ΥT xd(k))T (2)

Assuming two principal components, a = 2, Υ is the
projection of the regression matrix X (input/output data)
on the 2D PCA scores space, accordingly (3).

Υ = X P (3)

Assuming that the training data matrix is X ∈ <n×m, where
n is the number of rows and m is the number of columns,
the matrix P corresponds to the first a columns of the
loadings (singular vectors) matrix V , i.e. V = P (:, 1 : a),



Fig. 1. Architecture of the classical integral PCA controller.

for a SVD decomposition as follows (4), assuming that Λ is
the singular values matrix.

cov(X) =
1

n− 1
XT X = V Λ V T (4)

Assuming an ARX(2,2,1) model for the plant/process under
study, the projection of the on-line regressor data vector
x(k) = [y(k) y(k − 1) y(k − 2) u(k − 1) u(k − 2)] on
the 2D scores space, is given by (5).

t(k) = x(k) P (5)

The classical integral PCA controller was initially formulated
by Piovoso, [4], [5]. Some developments using ARX models
were proposed later, for static PCA models and also for
adaptive PCA models, [9], [10], [11]. In the incremental
form, assuming u(k) = xmp(k), the control action of the
classical integral controller based on static PCA is given by
(6).

xmp(k) = xmp(k − 1) +Ki ∆xm(k) (6)

The incremental action depends on the manipulated matrix
Pmp as described in (7).

∆xm(k) = ∆t(k) Pmp (7)

The P matrix is decomposed into two matrices, P =
[P ex|Pmp]: exogenous matrix (”Pex”, first r columns) and
manipulated matrix (”Pmp”, the last m-r columns). The
variables m, r and m-r are, respectively, the length of x(k),
the number of output process variables and input process
variables in the regression vector x(k) = [y(k) y(k −
1) y(k − 2) u(k − 1) u(k − 2)]; for an ARX(2,2,1) model
the variables assume the values m = 5, r = 3 and m-r = 2.

III. PROPOSED CONTROLLER STRUCTURE BASED ON
LINEAR NEURAL PCA

The integral controller proposed here is based on neural
linear PCA that can be implemented accordingly to the
architecture depicted in Fig. 2, [12], [13]. Function G
implements data compression and function H implements
data decompression.

The main idea and contribution in the paper is the

Fig. 2. Architecture of auto-associative neural network for PCA.

implementation of the equation t(k) = x(k) P using
a neural structure. In fact, since to implement PCA on
neural structures an auto-associative architecture is needed,
the projection on the 2D scores space is obtained at the
output of the bottleneck layer (BL), assuming two principal
components, a = 2. In this work, only linear activation
functions without bias were used, in order to guarantee a
linear neural network, so both σ and φ are linear activation
functions. As observed in Fig. 2, an auto-associative neural
network implements a data compression at the bottleneck
layer and a data decompression at the output layer.

First of all, the algorithm needs input / output training data
to build a neural linear PCA model. Let’s assume that the
training data is archived in the matrix X ∈ <n×m. In
this work, to build the data matrix, the regressor vector
was inspired on the regressor of an ARX(2,2,1) model, as
described in (8), without loss of generality. In this work, the
simulations were done assuming n = 3636,m = 5, for a
sampling period of Ts = 0.11[s]. .

x(k, :) = [y(k) y(k − 1) y(k − 2) u(k − 1) u(k − 2)] (8)

The training data should not contain very high frequency
data since this can cause problems in the training algorithm
of the neural network that was used for the PCA model. The
Levenberg-Marquardt optimization algorithm was used for
the training of the neural network, [14].

The integral controller based on linear neural PCA will be
presented using a matrix formulation, inspired on the linear
integral PCA controller described in section II.
In the algorithm M is the neural mapping matrix (first
layer matrix ML, with weight matrix W 1) and B is
the neural bottleneck matrix (second layer matrix BL, with
weight matrix W 2), i.e., M = W 1 and B = W 2.

The P n matrix, equivalent to the main singular vectors
matrix, is obtained from the neural network weight matrices
as described in (9).

P n = B M (9)



The P n matrix is decomposed into two matrices, P n =
[P ex|Pmp]: exogenous matrix ( Pex, first r columns) and
manipulated matrix ( Pmp, the last columns).

P ex = P n(:, 1 : r) (10)

Pmp = P n(:, r + 1 : m) (11)

The matrix Mλ is obtained from the P n matrix, where +
is the pseudo-inverse of the matrix.

Mλ = (P ex)+Pmp (12)

The error vector is given by

∆x(k, :) = [ec(k) ec(k − 1) ec(k − 2)] (13)

The increment in the manipulated variable is expressed by

∆xmp(k) = ∆x(k, :) Mλ(:, 1) (14)

The non-saturated control action is formulated as

uc0(k) = uc(k − 1) +Ki ∆xmp(k) + aw(k − 1) (15)

The saturated control action is given by

uc(k) = satur(uc0(k), ...) (16)

The anti-windup term is expressed by

aw(k) = Kaw [uc(k)− uc0(k)] (17)

A proportional term was added to the integral controller in
order to improve the overall controller performance. The new
non-saturated control action is given by (18).

uc0(k) = Kp ec(k) + uc(k− 1) +Ki ∆xmp(k) + aw(k− 1)
(18)

IV. CONTROL LOOP PERFORMANCE MONITORING BASED
ON HARRIS INDEX

In a typical process industry there are hundreds of controllers.
Even if these controllers initially perform well, various
factors can contribute to their performance deterioration,
including [15]: sensor/actuator or process faults, sticking
valves producing oscillations, to name just a few. Around
50% of all industrial controllers, or more, have some kind
of performance problem, [16], [17].

Most of the reported industrial applications of control
loop performance monitoring are based on the pioneer
method suggested by Harris, [18], or some algorithms
inspired on Harris approach, such as the approaches
found in the references [19], [20], to name just a few.
The great popularity of the methods based on the Harris
performance index is due to both the conceptual and
computational simplicity, as also the small amount of

information required. Performance indices can be used for
control loop performance monitoring or for control structure
selection, [21].

The first indices for control loop performance assessment
were proposed by Harris [18], Desborough and Harris [22]
and Stanfelj et al [23]. A review of the status in control loop
performance assessment (CLPA) technology and industrial
applications was published in 2006, by Jelali [24]. Merits
and drawbacks of each CLPA method are highlighted. The
application of fuzzy logic and neural networks were also
investigated in the CLPA field, [25].

Next is described, summarily, the modified Harris index
used in this work, [8]. The key variable for CLPA is the
control error, e(k) = r(k)− y(k). The control error should
have no predictable component. Let’s compute a residual
δ(k) between the measured control error e(k) and a forward
prediction ê(k), described by

δ(k) = e(k)− ê(k) (19)

In a control loop that is performing well it is expected that
the control error contains only random noise. The normalized
CLPA index used here ϑ(k), computed on-line for a sliding
window (time horizon), is described by (20), where var(.) is
the variance and mse(.) is the mean-squared error.

ϑ(k) = 1− var(δ(k))

mse(e(k))
(20)

For typical data from process control loops an autoregression
AR(n,b) time series model that makes predictions b steps
ahead is suitable for modeling the forward prediction ê(k).

A good performing loop has a value of the CLPA
index ϑ(k) close to 0, while for a poorly performing loop
is close to 1.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed control
structure, different process models were tested, namely first
and second order models. Here, simulation results obtained
with a DC motor model are presented. The algorithms were
implemented in Matlab in discrete-time, k.

The DC motor model was simulated in continuous-
time and sampled at each sampling period, Ts = 0.11[s],
using the ode45 function based on the Runge-Kutta method.
In armature controlled DC motors, the applied voltage ua(t)
controls the angular velocity ωr(t) of the shaft. A simplified
continuous-time transfer function of the DC motor can be
given by (21) and (22), a second order system, [26]. Km

is the torque constant, L is the armature inductance, R
is the armature resistance, J is the rotor inertia, Kf is
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Fig. 3. Training data for neural linear PCA using manual control with the
mouse.

the viscous-friction coefficient, and Kb is the back-emf
constant. The values, in S.I. units, used for the simulations
are: Km = Kb = 0.1[Nm/A] , L = 0.5[H] , R = 2 [Ω],
J = 0.8 [Kgm2/s2], and Kf = 0.2[Nms].

Gm(s) =
ωr(s)

ua(s)
(21)

Gm(s) =
Km

LJ s2 + (LKf +RJ) s+RKf +KmKb
(22)

Fig. 3 contains the input/output data used to train the auto-
associative neural network that implements the integral linear
neural PCA controller. The control input data was generated
by a human operator using a mouse, in closed-loop manual
control.

In Fig. 4 can be observed an experiment done with the PI-
PCA neural linear controller proposed in this work. From top
to bottom can be observed the following signals: reference (r)
and process output (y), control error (e), control action (u),
proportional action (up) and integral action (ui), and finally
the Harris index (ha).

The controller gains are the following: Kp = 1,Ki = 0.2 η,
with η = mean(abs(t1)), and Kaw = 1. The value t1
is the projection of the data x(k) along the first singular
vector, i.e., the first principal component, accordingly (5).

A small dither signal with variance 10−8 was added to the
output, and also to the reference signal in order to guarantee
persistent excitation conditions.

A comparison was done between the neural PI-PCA
controller and a classical PI controller in incremental form,
with gains Kp = 1.69, T i = 6.42 , [27]. The Harris index
(control loop performance index) was used for measure
the control loop performance in the experiments done, [8].
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Fig. 4. PI-PCA linear neural controller.

The mean value of the Harris index, ϑ, was computed
for two experiments, for all the experiment data, and the
obtained values are: a) neural PI-PCA controller, ϑ = 0.190;
b) classical PI controller, ϑ = 0.157. It is clear that the
performance is similar. It should be enhanced that a better
performance is obtained if the Harris index is lower.

In Fig. 5 can be observed an experiment done with
the PI-PCA neural linear controller in a faulty situation,
assuming that the sensor output tends abruptly to zero. It
can be observed that the controller reacts well. For this
situation the Harris index is ϑ = 0.265 for the neural
PI-PCA controller and is ϑ = 0.187 for the classical PI
controller.

As observed in Fig. 4 and Fig. 5, the Harris index
clearly detects low performance situations, namely transient
behaviours and faulty situations.

In Fig. 6 can be observed an experiment with a high
integral gain, Kp = 1,Ki = 1.0 η, i.e., 5 times greater than
the other simulation (see Fig. 4). Accordingly to the Harris
performance index, the control loop performance is not so
good, ϑ = 0.255, since ϑ it is higher. The control signal
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Fig. 5. Fault on sensor, y(k) = 0.

reveals a high variance and some oscillations appear on the
output signal.

When evaluating PID controllers it is of interest to
have a set of test examples so that different control schemes
can be evaluated. Over the years, Astrom and Hagglund
have collected a large number of test examples which has
been used for research and also for evaluation of commercial
PID controllers, [28]. In a near future, the proposed neural
PI-PCA control scheme will be evaluated with this set of test
examples, containing 11 transfer functions such as: multiple
equal poles, fourth order system, right half plane zero, time
delay and lag, time delay and double lag, heat conduction,
fast and slow modes, conditionally stable system, oscillatory
system, unstable pole and systems with integral action.
Classical PID control is not well suited for all of them.

VI. CONCLUSIONS

In this paper, a new approach for design integral controllers
based on linear neural PCA in the reduced 2D scores space,
for SISO systems, was proposed.
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Fig. 6. Experiment with high controller gain Ki.

In order to improve the overall control loop performance, a
proportional control action was incorporated in the control
structure.
The neural network is used to capture the integral controller
behaviour. Since neural networks are very sensitive to data,
high frequency data should be avoided in the training phase
of the PCA neural network. Typically overdamped behaviours
are obtained with this kind of controllers, due to the fact
that the integral part of the controller is implemented with a
neural network and the training data usually do not contain
high frequency data.
The obtained results are very promising. More tests should be
done to evaluate this approach with other classes of systems.
Some future research pointers are: a) develop an approach to
automatically adjust the controller gains, using optimization
techniques; b) extend the approach for nonlinear controllers
using a multi-models approach; c) more test examples should
be evaluated in order to discover the classes of systems that
are apropriate for this kind of controllers.
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