
Siddhartha Bhattacharyya
RCC Institute of Information Technology, India

Paramartha Dutta
Visva Bharati University, India

Handbook of Research on
Computational Intelligence
for Engineering, Science,
and Business

Volume I

Handbook of research on computational intelligence for engineering, science, and business / Siddhartha Bhattacharyya and
Paramartha Dutta, editors.
 pages cm
 Includes bibliographical references and index.
 Summary: “This book discusses the computation intelligence approaches, initiatives and applications in the engineering,
science and business fields, highlighting that computational intelligence as no longer limited to computing-related disci-
plines and can be applied to any effort which handles complex and meaningful information”-- Provided by publisher.
 ISBN 978-1-4666-2518-1 (hardcover) -- ISBN (invalid) 978-1-4666-2519-8 (ebook) -- ISBN (invalid) 978-1-4666-2520-4
(print & perpetual access) 1. Computational intelligence. 2. Content analysis (Communication) I. Bhattacharyya,
Siddhartha, 1975- II. Dutta, Paramartha.
 Q342.H36 2013
 006.3--dc23
 2012027413

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Editorial Director: Joel Gamon
Book Production Manager: Jennifer Romanchak
Publishing Systems Analyst: Adrienne Freeland
Development Editor: Austin DeMarco
Assistant Acquisitions Editor: Kayla Wolfe
Typesetter: Lisandro Gonzalez
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

384

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

Ricardo Jorge Santos
CISUC – FCTUC – University of Coimbra, Portugal

Jorge Bernardino
CISUC – ISEC – Polytechnic Institute of Coimbra, Portugal

Marco Vieira
CISUC – FCTUC – University of Coimbra, Portugal

Using Data Masking
for Balancing Security
and Performance in
Data Warehousing

ABSTRACT

Data Warehouses (DWs) are the core of sensitive business information, which makes them an appealing
target. Encryption solutions are accepted as the best way to ensure strong security in data confidentiality
while keeping high database performance. However, this work shows that they introduce massive stor-
age space and performance overheads to a magnitude that makes them unfeasible for DWs. This work
proposes a data masking technique for protecting sensitive business data in DWs which balances security
strength with database performance, using a formula based on the mathematical modular operator and
simple arithmetic operations. The proposed solution provides apparent randomness in the generation
and distribution of the masked values, while introducing small storage space and query execution time
overheads. It also enables a false data injection method for misleading attackers and increasing the
overall security strength. It can be easily implemented in any DataBase Management System (DBMS)
and transparently used, without changes to application source code. Experimental evaluations using a
real-world DW and TPC-H decision support benchmark implemented in leading DBMS Oracle 11g and
Microsoft SQL Server 2008 demonstrate its overall effectiveness. Results show the substantial savings
of its implementation costs when compared with state of the art encryption solutions provided by those
DBMS and that it outperforms those solutions in both data querying and insertion of new data.

DOI: 10.4018/978-1-4666-2518-1.ch015

385

Using Data Masking for Balancing Security and Performance in Data Warehousing

INTRODUCTION

Data confidentiality focuses on protecting data
from unauthorized disclosure. Currently, data is a
major asset for any enterprise, not only for know-
ing the past, but also for aiding today’s business
or predicting future trends (Baer, 2004; Kobielus,
2009). Given its decision support nature, the data
in Data Warehouses (DWs) translates into busi-
ness knowledge, providing invaluable decision
making information for adding business value.
Consequently, DWs are the core of the enterprise’s
sensitive data. Unfortunately, this makes them a
main target for both inside and outside attackers
(Yuhanna, 2009). Consequently, several studies
have demonstrated that efficiently securing sen-
sitive data has become an imperative concern in
many enterprises (McKendrick, 2009; Yuhanna,
2009).

To protect information in databases, data
masking actions and encryption techniques are
widely used. Data masking routines are mainly
simpler than encryption routines, but provide
lower security strength. Moreover, data masking
routines provided by most commercial tools typi-
cally change data in an irreversible manner, i.e.,
after masking data it not possible to subsequently
retrieve the original true values, making them
useless for real live DW databases. This has made
masking solutions the main choice for protecting
published data or production data, instead of real-
live databases (Bertino & Sandhu, 2005; Huey,
2008; Natan, 2005; Oracle, 2010a; Ravikumar et
al., 2011; Gartner, 2009).

Published research and best practice guides
state that encryption is the best method to protect
sensitive data at the database level while maintain-
ing high database performance (Agrawal et al.,
2004; Ge & Zdonik, 2007; Huey, 2008; Natan,
2005; Oracle, 2010a, 2010b; Procopiuc & Srivas-
tava, 2011; Vimercati et al., 2007; Hacigumus et
al., 2004). However, since DWs are usually huge
in size, with millions or billions of rows in their

fact tables, and user queries are typically ad hoc
and access large amounts of data, encryption and
decryption overhead is a major concern (Agrawal
et al., 2004). General encryption algorithms are
mainly built taking under consideration desirable
security strength. Although efficient in their secu-
rity purpose, most encryption solutions introduce
several key costs from the DW perspective:

•	 Large processing time/resources for en-
crypting sensitive data, given routine or
hardware access in very large databases
such as those in DWs;

•	 Extra storage space of encrypted data.
Since DWs usually have many millions
or billions of rows, even a small modifica-
tion of any column size to accommodate
encrypted output introduces large storage
space overheads; and

•	 Overhead query response time and allocat-
ed resources for decrypting data to process
queries. Given the huge amount of data
typically accessed by DW queries, this is
probably the most significant drawback for
using encryption in DWs.

In this work, we present the commonly
available encryption techniques for databases,
thoroughly discussing the issues involving the
use of these techniques, in what concerns data-
base performance and requirements, from the
data warehousing perspective. As demonstrated
throughout this work, the introduced overheads
imply that the standard encryption algorithms cur-
rently provided by DBMS dramatically degrade
database performance, which is a critical issue
in data warehousing. This ultimately jeopardizes
their applicability in DWs. Consequently, de-
veloping a data masking/encryption strategy for
DWs must balance between the requirements for
security and desire for high performance (Ge &
Zdonik, 2007; Mattson, 2004; Nadeem & Javed,
2005; Vieira & Madeira, 2005).

386

Using Data Masking for Balancing Security and Performance in Data Warehousing

Data used for analyzing business performance
is mostly stored in specific attributes, called facts.
Facts are stored in fact tables, which typically
take up 90% or more of storage space in DWs
(Kimball, 2002). This work proposes a mask-
ing technique for DW data based on the MOD-
modulus operation (which returns the remainder
of a division expression) and simple arithmetic
operations, which balances strong data security
with database performance. Its main contribution
is a solution specifically tailored for DWs, which
is able to produce better overall security-perfor-
mance tradeoffs than most available solutions
such as encryption standards, i.e., that presents
an acceptable and significant level of security
strength while introducing small storage space
and response time overheads, such as presented
in (Santos et al., 2011).

The proposed solution in this work is not to
be regarded as an alternative to standard encryp-
tion in terms of security strength, but rather as an
efficient alternate data confidentiality solution in
setups where the tradeoff between performance
and security needs to be revised. To ensure their
security strength, standard encryption algorithms
such as AES (AES, 2001) and DES (3DES, 2005;
DES, 1977) are complex routines requiring high
computational efforts and focusing almost solely
on ensuring security regardless from performance
issues, while the approach in this work aims for
securely masking data while introducing low
computational efforts, to make it feasible for use
in DWs.

The proposed technique uses three masking
keys for calculating each masked value. These
keys are also encrypted and stored in a vault
that can be seen as a “black box”, which will
be placed in the database server machine with a
purpose similar to the Oracle Wallet (Huey, 2008),
as explained further on. All SQL commands and
actions required by users are also encrypted and

stored in this black box, in a log which can be
audited by any user with database or enterprise
administration or management privileges. This
enables super users to watch over each other and
provides a data source that can be subsequently
used for solutions able to audit and analyze user
actions, such as database intrusion detection
systems.

The proposed solution is transparent and does
not require changing both DBMS and user ap-
plications code. Its usage is based on rewriting
user queries in order to process them with the
true data values. Contrarily to similar middleware
solutions that pre-fetch encrypted data to process
decryption locally, by simply rewriting queries
network bandwidth congestion is avoided. The
data processed in the database is encrypted at
all times, protecting the data against attackers
that gain direct access to the database server and
never allowing breaches before the user queries
are processed. Only the final processed results
are returned to the authorized user applications
that required them. This also allows using the
database (or creating instant replicas) for testing
purposes in software application development, i.e.,
for production purposes, since the masked data
is realistic but not real. It is also a broad-scoped
security solution, which besides enabling data
masking, can also inject false data to increase the
DW’s overall security strength.

As can be seen in the experimental results, the
proposed solution significantly decreases both data
storage space and processing overheads, both in
inserting and querying data from the DW, when
compared with standard encryption algorithms like
AES and 3DES, provided by major DBMS such
as Oracle and SQL Server, for nearly all queries
in all tested scenarios. The experiments show that
the proposed technique’s overall results make it
a valid alternative to those standard solutions.

387

Using Data Masking for Balancing Security and Performance in Data Warehousing

BACKGROUND AND
RELATED WORK

Standard Data Encryption
Algorithms

Typical encryption algorithms include executing
bit shifting and exclusive Or (XOR) operations
within a predefined number of rounds. These
operations rely on a key, which influences the
“data mix” output of each round. There are
mainly two types of encryption techniques: Block
Ciphers and Stream Ciphers. A block cipher is
a type of symmetric-key encryption algorithm
that transforms a fixed-length block of plaintext
(unencrypted text) data into a block of ciphertext
(encrypted text) data of the same length, under the
action of a user-provided secret key. Decryption is
performed by applying the reverse transformation
to the ciphertext block using the same secret key.
Stream ciphers take a string (the encryption key)
and deterministically generate a set of random-
seeming text (called keystream) from that key. That
keystream is then XORed against the message to
encipher. To decipher the text, the recipient hands
the same key to the stream cipher to produce an
identical keystream and XORs it with the cipher-
text, thus retrieving the original message.

The Data Encryption Standard (DES) became
the first encryption standard in 1977 (DES, 1977).
DES is a 64 bit block cipher and uses a 56 bit
encryption key, which means it produces 64 bit
outputs. This has implications in short data lengths.
Even 8 bit data, when encrypted by the algorithm,
will always result in a 64 bit chunk. This encryption
standard suffered many attacks and methods that
demonstrated it is an insecure block cipher (Kim
et al., 2010). There has considerable controversy
over its design, particularly in the choice of a
56 bit key (Nadeem & Javed, 2005). Moreover,
given the computational power which exists today,
performing an exhaustive key search for breaking
a 56 bit key is a perfectly feasible task, which
makes DES an unsecure cipher.

As an enhancement of DES, the Triple DES
(3DES) encryption standard (3DES, 2005) was
proposed. In this algorithm, the encryption method
is similar to the original DES algorithm, but it
is applied three times to increase the encryption
level, using three different 56 bit keys. Thus, the
effective key length is 168 bits. This makes 3DES
a cipher capable of providing much stronger se-
curity than DES. However, since the algorithm
increases the number of cryptographic operations
it needs to execute, it is a well known fact that
the 3DES algorithm is one of the slowest block
cipher methods.

The Advanced Encryption Standard (AES)
was proposed to replace DES based algorithms
(AES, 2001). The AES algorithms are the latest
generation of block ciphers, and have a significant
increase in the block size (from the old standard
of 64 bits up to 128 bits). AES provides three ap-
proved key lengths: 128, 192 and 256 bits. AES
is considered fast and able to provide stronger
encryption, compared to other encryption algo-
rithms, such as DES and 3DES (Nadeem & Javed,
2005; Oracle, 2005; Radha & Kumar, 2005). Brute
force attack is the only known effective attack
known against it.

The Blowfish encryption algorithm (Schneier,
1994) is a public domain encryption algorithm,
provided by Counterpane Systems, a consulting
firm specialized in cryptography and computer
security. Blowfish is a variable length key, 64
bit block cipher. Though it suffers from the weak
keys problem, no attack is known to be successful
against it (Nadeem & Javed, 2005).

The work in (Nadeem & Javed, 2005) imple-
mented the DES, 3DES, AES and Blowfish al-
gorithms and executed experiments to compare
their performance. This study demonstrated the
Blowfish algorithm was the fastest algorithm.
However, it is a public domain solution and not
an encryption standard, reason why major DBMS
vendors such as Oracle, MySQL and Microsoft
SQL Server do not provide it with their database
servers. Regarding the open encryption standards,

388

Using Data Masking for Balancing Security and Performance in Data Warehousing

AES was the best solution, both in execution
time and throughput. On the other hand, 3DES
presented the worst performance.

Other Solutions Based on
Modifying Data for Enforcing
Data Confidentiality

Data masking solutions are mainly used for gen-
erating test databases for software development
environments, named production databases, or for
camouflaging data values in publicly available
published data (Huey, 2008; Oracle, 2005, 2010a;
Ravikuhmar et al., 2011). An extensive survey on
data masking techniques and their purpose is given
in (Ravikuhmar et al., 2011). Many organizations
have strived to solve confidentiality issues with
hand-crafted solutions within the enterprise to
solve the problem of sharing sensitive informa-
tion. The most common solution is probably to
use scripts with triggers in order to mask and
unmask each value, or to embed the masking/
unmasking logic within the user applications
themselves. Many commercial data masking
packages have also been developed, such as the
Oracle Data Masking (ODM) pack (Natan, 2005;
Oracle, 2010a).

The Oracle EM Data Masking Pack (DMP)
(Oracle, 2010a) provides masking primitives
to replace sensitive data with realistic-looking
values, such as random numbers, random digits,
random dates, constants, as well as built-in mask-
ing routines which shuffle the value in a column
across different rows. However, the DMP masking
process is irreversible, which means that is only
intended for replacing true data with false data
without being able to retrieve the true data after
masking, making it useless for real DW users.
Oracle recommends using the DMP mainly for
testing databases, as an easy, efficient and fast
solution in the development lifecycle of user
applications (Oracle, 2010A). This is typically
what happens with other standard commercial
database masking solutions (Ravikuhmar et al.,

2011). Since data masking techniques are often
considered as lacking strong security strength and
most rely on cross-referencing actions in order to
retrieve the true original values (which bring huge
table joins in DW databases), they are considered
inadequate for use with real-world live databases
such as DWs.

Web-based applications require supporting co-
operative processes while ensuring confidentiality
of data. This research field is characterized by a
number of different approaches and techniques,
including privacy-preserving data mining (Vaidya
& Clifton, 2002), privacy-preserving information
retrieval (Vimercati et al., 2010), and database
systems specifically tailored toward enforcing
privacy (Agrawal et al., 2002). A selective en-
cryption model is proposed in (Vimercati et al.,
2010), for access control.

An Order Preserving Encryption Scheme for
numeric data is proposed in (Agrawal et al., 2004),
by flattening and transforming plain text distribu-
tion onto a target distribution, based on value-based
buckets. This solution allows any comparison
operation to be directly applied on encrypted
data, such as equality and range queries, as well
as MAX, MIN and COUNT queries. However,
storage space overhead depends on the skew in
the plaintext and target distributions, which can
be a problem in DWs. The mapping function for
the buckets introduces a greater overhead than
the MOBAT technique, and the definition of how
the bucket distribution should be built and how it
should scale is not a trivial task. A similar type of
solution for processing queries without decrypt-
ing data was proposed earlier by (Hacigumus et
al., 2002), suffering from the same problems.
This last solution uses only one encryption key
to encrypt data, which reduces the number of
hypothesis the attacker needs to consider in order
to break security.

A light-weighted database encryption scheme
with low decryption overhead in column-oriented
DBMS is proposed in (Ge & Zdonik, 2007). They
claim their solution is as secure as any underlying

389

Using Data Masking for Balancing Security and Performance in Data Warehousing

block cipher, while demonstrating the inherent
insecurity of any order preserving encryption
scheme, such as (Agrawal et al., 2004), under ba-
sic attack scenarios. However, their experimental
evaluations show an overhead of at least 50% in
response time to retrieve the encrypted tuples, a
very large cost for DW queries.

The work in (Radha & Kumar, 2005) proposes
a security middleware that acts as a wrapper/inter-
face between user applications and the encrypted
database server, for ensuring data integrity and ef-
ficient query execution over encrypted databases,
evaluating queries at the application server and
retrieving only the required rows from the server.
They use only one TPC-H query for measuring
the database server costs of their solution. The
results show those costs rise by a factor that is
proportional to the size of the tested data subset,
which in their experiments is extremely small (it
ranges from 10MB to 50MB, where query execu-
tion time rises up to 5 times for the last). This is not
a realistic dataset for DWs. In a DW environment,
previously transporting all the required data from
the database to the middleware is unreasonable,
since the amount of data accessed for processing
decision support queries is typically much larger
than a few tens of MB. This would strangle the
network due to bandwidth consumption of data
roundtrips between middleware and database,
jeopardizing data throughput and consequently,
response time. Thus, all encrypted data should be
processed at the DBMS itself, eliminating network
overhead from the critical path. The fact that they
only test one query is also somewhat inconclusive,
due to the large scope of possibilities in building
and executing decision support queries.

Recently, research has proposed non-determin-
istic methods for masking data, such as perturba-
tion techniques (Agrawal et al., 2005; Procopiuc
& Srivastava, 2011; Xiao et al., 2009). The work
in (Agrawal et al., 2005) proposes a solution based
on data perturbation techniques and explains data
reconstruction for responding to queries, in a DW
environment. Recent similar work proposed data

anonymization solutions relying on perturbation
or differential techniques such as (Procopiuc &
Srivastava, 2011) and (Xiao et al., 2009). Although
providing strong guarantees against privacy
breaching, perturbation methods produce errors
in data reconstruction, which is not acceptable in
most data warehousing environments.

Data injection has been mostly used for build-
ing synthetic datasets for benchmarking and
production purposes, i.e., filling in databases for
testing the development of databases and applica-
tions (Arora et al., 2006; Callot et al., 2009; Lo
et al., 2010). To our knowledge, there are no data
injection solutions for enforcing data confidential-
ity as proposed in our technique.

Analyzing Packaged DBMS
Encrypted Solutions:
The Oracle 11g TDE

In the recent past, Oracle has integrated standard
data encryption routines within their DBMS
(Huey, 2008; Oracle, 2005, 2010b). The Oracle
Transparent Data Encryption (TDE) solution was
introduced in Oracle Database 10g Release 2. TDE
enables transparently applying encryption within
the database avoiding expensive changes to ap-
plication source code, including database triggers
and views. Data is transparently encrypted when
written to disk and transparently decrypted after
a user application has been successfully authen-
ticated. The TDE allows the user to choose from
various standard algorithms, such as AES (with
128, 192 and 256 bit keys), and 3DES. Oracle does
not allow to plug-in other encryption algorithms
within the DBMS kernel.

Oracle TDE uses a two tier encryption key
architecture, consisting of a master key and one
or more table and/or tablespace keys. These keys
are encrypted using the master key. Key manage-
ment is accomplished by creating an Oracle Wallet
for each case. The Oracle Wallet is an encrypted
container, physically a specific folder in the direc-
tory tree of the hard disk, which is used to store

390

Using Data Masking for Balancing Security and Performance in Data Warehousing

authentication and signing credentials, including
passwords, the TDE master key, tablespace and
table private keys, and certificates needed by SSL/
TLS for data communication and access purposes.
If a wallet is damaged or missing, or if the user
is not authorized to open it, no encrypted data
linked and masked to that wallet can be accessed.
This implies that any authorized backup of the
encrypted data should also include backing up
its respective wallet. File and directory permis-
sions should be defined by the DW manager for
determining who is allowed access to the wallet
directory, avoiding its disclosure.

Oracle TDE allows two types of encryption:
tablespace encryption (where all data stored in the
tablespace is encrypted) or column encryption,
for encrypting specific table columns. Since the
proposal in this work is a column-based solution, it
is compared with column-based encryption. More-
over, Oracle recommends that column encryption
should be preferred when it is easy to determine
which columns are sensitive and which are not,
or when a small number of well defined columns
are sensitive (Huey, 2008; Oracle, 2010b), which
is typically what happens in DWs (Kimball &
Ross, 2002).

When using column encryption, a storage space
overhead between 1 and 52 bytes per encrypted
value is added. The generation of independently
encrypted values for the same column is done
by using an explicit option (named SALT) that
will use an independent key for generating each
ciphertext, implying 16 bytes of storage space
overhead. If this option is not used, those extra
16 bytes are saved but all encrypted values in the
column rely on one key only, which lowers the
security strength. TDE does not support encrypt-
ing columns with foreign key constraints, due
to the fact that individual tables have their own
unique encryption key. However, joining tables
is transparent and allowed to users and applica-
tions, even if the columns for the join condition
are encrypted.

In order to evaluate its use and performance im-
pact in data warehousing scenarios, experimental
evaluations of column-data encryption solutions
provided by Oracle 11g TDE were executed, using
the well known TPC-H benchmark (TPC, 2011).
In these tests, the response time overhead for a
workload composed of all the benchmark’s queries
that access the fact table LineItem, on its 1GB
scale database, was measured, using a Pentium
2.8GHz CPU, with 2GB of RAM, where 512MB
were dedicated for use by Oracle database memory
area (SGA), on a 1.5TByte SATA hard disk.

For fairness, the database was optimized in
a standard best practice manner for all scenarios
(including primary keys, foreign keys, referential
integrity constraints, and bitmap join indexes).
Response times for each TPC-H query, shown in
Table 1, are an average obtained from six execu-
tions, for each scenario. Before each execution,
the database server was restarted. Three scenarios
were defined: (1) without using encrypted data
(Standard Query Exec. Time); (2) against numeri-
cal columns encrypted with AES 128 bit (Query
Exec. Time Using AES128); and (3) with 3DES
(Query Exec. Time Using 3DES168). The standard
deviations for each scenario range within [0.56,
52.27], [0.73, 66.34] and [0.69, 67.89], respec-
tively. The AES128 and 3DES168 algorithms were
chosen for the tests because they are, respectively,
the simplest (and fastest) and most complex (and
slowest) of the set of available algorithms, accord-
ing to Oracle (Huey, 2008; Oracle, 2010b). This is
consistent with what was discussed in background
and related work section, given that AES is the
algorithm which requires less computational re-
sources, while 3DES requires the most.

Although Oracle argues using TDE will only
increase response time between 5% and 10%, on
average, (Oracle, 2010B), the results clearly show
that this is not true for the tested scenarios. The
results in Table 1 show that response time overhead
is, on average, much higher than 10%. In fact, all
overheads are much greater than 10%, registering
171% or 185% for the whole workload (last table

391

Using Data Masking for Balancing Security and Performance in Data Warehousing

line), depending on which encryption algorithm
is used. Moreover, the individual query execution
time overhead for more than a half of the queries
registered more than 100% for both encryption
algorithms.

MOBAT: A MODULUS-BASED
DATA MASKING TECHNIQUE
FOR BALANCING SECURITY
AND PERFORMANCE IN
DATA WAREHOUSES

The Data Masking Solution’s
Functional Architecture

The system’s functional architecture is shown
in Figure 1, comprised by three entities: 1) the
masked database and its DBMS; 2) the MOBAT
security application (MOBAT-SA); and 3) user/
client applications to query the masked database.
The MOBAT-SA acts as a middleware broker

between the masked database DBMS and those
applications, ensuring the queried data is securely
processed and proper results are returned to those
applications. All communications are made
through SSL/TLS secure connections, to protect
SQL instructions and returned results between
the system’s entities, avoiding problems from
intercepting messages by attackers on the network.

The Black Box is a set of files in a directory
of the database server, created for each database
to be masked and managed by the MOBAT-SA.
This process is similar to the creation of an Ora-
cle Wallet, which keeps all the encryption keys
and definitions for each Oracle Database (Huey,
2008). However, contrarily to what happens in
Oracle, where the DBA is free to access the Or-
acle Wallet whenever s/he wishes, only the
MOBAT-SA can access the Black Box, i.e., ab-
solutely no user has direct access to its content.
In the Black Box, the MOBAT-SA will store all
the generated masking keys and predefined data
access policies for the database to which it con-

Table 1. Oracle 11g TPC-H 1GByte standard vs. column-encryption query response time (in seconds)

Queries Standard Query
Exec. Time

Query Exec. Time
Using AES128

% Overhead Using
AES128

Query Exec. Time
Using 3DES168

% Overhead Using
3DES168

Q1 11 904 8118% 977 8782%

Q3 10 23 130% 24 140%

Q5 10 23 130% 25 150%

Q6 8 30 275% 32 300%

Q7 10 24 140% 24 140%

Q8 312 373 20% 377 21%

Q9 127 192 51% 197 55%

Q10 10 23 130% 23 130%

Q12 10 22 120% 24 140%

Q14 8 24 200% 25 213%

Q15 14 21 50% 22 57%

Q17 38 52 37% 54 42%

Q18 49 184 276% 191 290%

Q19 90 121 34% 127 41%

Q20 105 184 75% 188 79%

TOTALS 812 2200 171% 2310 185%

392

Using Data Masking for Balancing Security and Performance in Data Warehousing

cerns. The MOBAT-SA will also create a history
log for recording a duplicate of all the further
instructions and actions executed in the database,
for auditing and control purposes. All Black Box
contents are encrypted, using the AES standard
encryption algorithm with a 256 bit key. In case
of losing the Black Box of a certain database,
there is no way to restore its true data, except to
crack the masking keys.

The masking keys’ security depends on where
they are stored and who has access to them. MO-
BAT uses three masking keys; two are private
and one is public. The private masking keys are
generated by MOBAT-SA, and encrypted and
stored by it in the Black Box. The values of those
keys are never shown or known by the DBA or
any other user. To obtain true results, all user
queries or actions must pass through MOBAT-SA,
which will store a copy of those instructions in the
Black Box history log. Each time a user requests
the execution of any action, the MOBAT-SA
will receive and parse the instructions, fetch the
necessary masking keys, rewrite the query, send
it to be processed by the DBMS and retrieve the
processed results, and finally send those results
back to the application that issued the request.

The Data Masking Formula

Generally, most facts in DWs are columns with
numerical values (Kimball & Ross, 2002). Since
fact tables usually represent more than 90% of
the DW’s total size (Kimball & Ross, 2002), it
is fair to assume that numeric type columns also
represent the largest portion of business data.
MOBAT aims on masking the DW’s numerical
values while introducing small overheads in the
computational efforts for query processing. The
aim is to ensure that sensitive data is replaced by
realistic (but not real) data.

Suppose a table T with a set of N numerical
columns Ci = {C1, C2, C3, …, CN) to be masked
and a total set of M rows Rj = {R1, R2, R3, …, RM).
Each value to mask in the table will be identified
as a pair (Rj, Ci), where Rj and Ci respectively
represent the row and column to which the value
refers. The masking Formula depends on the fol-
lowing predefinitions:

•	 K1 and K2 are private keys stored in the
Black Box, known only by MOBAT-SA;

•	 K1 is a 128 bit random generated value,
constant for T;

Figure 1. The data masking solution functional architecture

393

Using Data Masking for Balancing Security and Performance in Data Warehousing

•	 K2 is a 128 bit random generated value,
ranging between the minimum and maxi-
mum positive integer value possible of col-
umn Ci, given the maximum storage size of
Ci. There is a K2 for each column Ci to be
masked, represented by K2, i;

•	 K3 is a public key based on a 128 bit col-
umn appended to each row Rj in T, filled
in with a random value between 1 and 2128,
represented by K3, j.

Suppose each value to mask as (Rj, Ci). Each
new masked value (Rj, Ci)’ is obtained by applying
the following Formula (1) for row j and column
i of table T:

(Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i)
+ K2, i	 (1)

MOD is the modular operator that returns the
remainder of a division expression. Since K1 and
K2, i are constant values for the table and each
column, respectively, and K3, j is stored along
with each row in the table, the inverse Formula
of (1) for retrieving the original value is shown
as Formula (2):

(Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i)
– K2, i 	 (2)

If the values of K3, j were stored in a lookup
table separate from table T, a heavy join opera-
tion between those tables would be required to
unmask data. Given the typical enormous number
of rows in fact tables, this is unfeasible and should
be avoided at all cost. In order to avoid this when
using MOBAT, the values of K3, j must be stored
along with each row j in table T. To manage this,
there are two possible solutions:

1. 	 A new column is created and added to table
T for storing each K3, j value;

2. 	 Table T is recreated with the inclusion of K3, j
in the CREATE TABLE statement from the
start and then restoring the table’s data.

The second option implies additional efforts
and time to rebuild table T, depending on its size.
However, it should speed up query response time,
when compared with the first option, since the new
column K3, j is included with the original data in
each row from the start; the second option makes
it physically stored apart from the remaining
original data in the table. The impact on database
performance can be compared be observing their
results in the experimental evaluation section. The
results for MOBAT where the new K3, j columns are
added to the fact tables a posteriori are referenced
as MOBAT_AddCol; and the results for MOBAT
where the K3, j columns are included in the fact
tables from the start and completely rebuilt are
referenced as MOBAT_CreateCol.

A third option for defining K3, j values and
speed up MOBAT performance is to use any long
integer typed column CZ, which is already part
of the original data structure of table T, as K3, j,
instead of creating an extra column for K3,j in T. In
this case, no changes in table T data structure are
required, eliminating storage space overhead in T.
However, this limits the strength of the masking
Formula (1), since the value of K3, j also depends
on the range and cardinality of the values of CZ,
and the predictability of knowing the values of
CZ on behalf of an attacker. The results for this
third option for defining K3,j are also shown in
the experimental evaluation section, referred
to as MOBAT_ColKey, where L_OrderKey and
S_SaleID are used as CZ in the TPC-H and real-
world sales DW, respectively; i.e., each value of
L_OrderKey and S_SaleID in each row j of tables
LineItem and Sales, respectively, function as K3, j
for MOBAT. The next subsection explains how
to query the masked database.

394

Using Data Masking for Balancing Security and Performance in Data Warehousing

Implementing the Data Masking
Solution in a Database

To mask a database, a DBA must require this action
through MOBAT-SA. Entering the DBA login and
database connection data, the MOBAT-SA will at-
tempt to login to that database. If it succeeds, the
MOBAT-SA will scan all the data access policies
defined in the database for identifying authorized
users and respective permissions. The Black
Box will then be created and updated with those
user access definitions and data policies, and an
action log for recording all further user actions
requested to execute in the database will also be
created, as explained earlier. After the previous
step is executed, the MOBAT-SA will ask the DBA
which tables and columns are to be masked. All
the needed private masking keys for each table
and column will then be generated, encrypted and
stored in the respective Black Box.

Finally, the MOBAT-SA will apply the data
masking Formula on all rows of all columns to
be masked, replacing the original values with the
new masked values. Whenever the database needs
to insert new data or modify or delete existing
data, this should be done through the MOBAT-SA,
which will apply the masking routine to any value
which refers to any masked column, and store the
masked value directly in place. Contrarily to most
standard commercial data masking solutions, the
MOBAT-SA also allows reversing the masked
database back to its original data, if intended. The
next subsection explains how the data is masked
by the MOD-based technique.

Querying the Masked Database

Whenever user applications wish to execute a
query, they submit it to the MOBAT-SA instead of
directly querying the database. The MOBAT-SA
then rewrites the received query in order to process
it with the real data values, using Formula (2) to
replace the respective masked columns used in the

query, and checking the user access definitions in
the Black Box to see if it comes from an authorized
user. To rewrite the user query, the MOBAT-SA
searches for which tables and columns it needs to
process, and looks up the Black Box for retrieving
the needed K1 and K2,i data masking keys for those
tables and columns, respectively, as well as the
names of the needed K3, j key fields to be used by
the MOBAT-SA in those tables.

As an example, suppose the LineItem table
of the TPC-H benchmark (TPC, 2011) has four
numerical fact columns (i = 4) (L_Quantity, L_Ex-
tendedPrice, L_Tax and L_Discount) masked by
MOBAT. Suppose also that MOBAT has generated
and filled in a new column L_KeyK3 for the j rows
of the LineItem table, which will act as the public
K3, j key values, and has stored the value of 9342
(for example) for key K1 referring to the LineItem
table, as well as K2, L_Quantity = 12, K2, L_ExtendedPrice
= 51234, and K2, L_Discount = 4 (for example also).
Consider TPC-H query 6:

SELECT SUM(L_ExtendedPrice * L_Dis-

count) AS Revenue

FROM LineItem

WHERE L_ShipDate>=TO_DATE(‘1994-01-

01’)

 AND L_ShipDate<TO_DATE(‘1995-01-

01’)

 AND L_Discount BETWEEN 0.05 AND

0.07

 AND L_Quantity<24

The new query, rewritten by the MOBAT-SA
and submitted to the DBMS will be:

SELECT SUM((L_

ExtendedPrice+MOD(MOD(L_

KeyK3,9342),51234)-51234) *

 (L_Discount+MOD(MOD(L_

KeyK3,9342),4)-4)) AS Revenue

FROM LineItem

WHERE L_ShipDate>=TO_DATE(‘1994-01-

395

Using Data Masking for Balancing Security and Performance in Data Warehousing

01’)

 AND L_ShipDate<TO_DATE(‘1995-01-

01’)

 AND (L_Discount+MOD(MOD(L_

KeyK3,9342),4)-4) BETWEEN 0.05 AND

0.07

 AND (L_Quantity+MOD(MOD(L_

KeyK3,9342),12)-12)<24

As seen in the example, query parsing and
adaptation is a straightforward operation, replac-
ing each masked column with their respective
reverseFormula (2). This is valid for any type
of query, including equality and range queries,
as well as built-in functions. The changes to the
queries are transparently handled by the broker
and kept hidden from users. Only query results
are returned to user applications.

Using False Data Injection

MOBAT may also be used for injecting false rows
throughout the fact tables, making it increasingly
difficult to distinguish true and false data, in order
to mislead attackers that gain direct access to the
database. To achieve this, instead of generating
independent random numbers for the values of the
K3,j keys in each row, as previously described, K3,j
is redefined as a multiple of the sum of the true
original values of all Ci, j columns to be masked,
for each true row j:

K3,j = (∑Ci, j) * k, { i = 1…n } where k is a
random integer constant that does not overflow
128 bits for K3,j and n is the number of masked
columns C in row j			 (3)

For false rows, random values for filling each
column Ci,j would be generated, and the value of
K3,j would be equal to any value different from
those possibly generated by Formula (3). Thus,
true rows are verifiable through testing if K3,j is a
multiple of the sum of the true unmasked values

of all masked columns, using the MOD remainder
operator. Formula (4) shows how to test if a certain
row j is true or false:

Given R = K3,j MOD (∑Ci, j) , { i = 1…n } as in 	
(3)

IF R=0 THEN row j is True ELSE row j is
False 	 (4)

There is a tradeoff between security and perfor-
mance when using this false data injection method.
The more false data is injected, the stronger is
the level of security of the table. However, the
more data is injected, the more data is scanned
and verified by the queries, decreasing database
performance. The increased overall security
strength for each fact table is directly dependent
on how many false rows should be injected into
each table, and how to distribute the false rows
throughout the existing data.

Security Issues

Encrypting the Contents
of the Black Box

In what concerns the Black Box, all of its content
is encrypted using the standard AES 256 bit al-
gorithm, making it as secure in this aspect as any
other similar encryption solution for stored data
(e.g. Oracle 11g TDE and Microsoft SQL Server
2008 TDE). The only allowed access to the Black
Box’s content is done by the MOBAT-SA, which
is managed only by the application itself.

Handling Transparency and
Securing Communications

All user queries and instructions are managed by
the MOBAT-SA, which transparently parses and
rewrites them to query the DBMS and retrieve
the intended results. The users never see the

396

Using Data Masking for Balancing Security and Performance in Data Warehousing

rewritten instructions. For security purposes, the
MOBAT-SA shuts off any historical log on the
database managed by the DBMS before request-
ing the execution of the rewritten instructions, so
that they are not stored in the DBMS, since this
could disclose the private keys. All communica-
tions between user applications, MOBAT-SA and
the DBMS are performed through encrypted SSL/
TLS connections. All these actions prevent attack-
ers from accessing the masking keys, rewritten
queries/instructions and true data.

Attack scenarios. Given their massive amount
of data and complex performance optimization
structures, DW databases are only updated at
very specific moments in an extremely controlled
environment, with the database offline to its users
(Kimball & Ross, 2002). Since DWs are typically
in a read-only mode when they are online, attack
scenarios on the masked database can come from
two types of attackers, interested in data theft: 1) a
masqueraded user (an authorized user with mali-
cious intent or someone who has stolen password
and login information and logs in the system as an
authorized user); or 2) an attacker that manages to
bypass the MOBAT-SA and gain direct access to
the database. It is assumed that the attackers have
access to the masking Formula and the masked
values, and do not know the values of masking
keys K1 and K2 for each masked value.

Handling Masqueraded Attackers

In what concerns masqueraded attackers, all logins
and queries submitted to the MOBAT-SA are auto-
matically encrypted and permanently stored in the
Black Box historical action log without change.
The Black Box can never be manually accessed or
updated by anyone except the MOBAT-SA itself.
Technically, if a DBA is allowed to control security
without any restriction (which may happen in the
Oracle 11g TDE solution, for instance), the whole
system becomes vulnerable to malicious DBA
actions. To manage this, MOBAT-SA allows any

user with administration privileges to query the
read-only historical log, so any DBA can watch
over other DBA to check for misuse. Since all
database access is controlled by the MOBAT-SA,
extracting the predefined data access policies in the
first instantiation with the database to mask, from
data access policies previously defined using the
DBMS. Subsequent changes in data access policies
by DBAs must be done through the MOBAT-SA.
Since these requested changes are also stored in
the Black Box history log, changes in data access
policies with the purpose of executing malicious
actions can always be detected. This log can also
be used to develop an intrusion detection system
(which is not within the scope of this work).

Handling Attackers with Direct
Access to the Database

The masked data in the database remains masked
at all times. For attackers that bypass the MOBAT-
SA and gain direct access to the database, they
will only see masked data, reflecting realistic but
false values. The exposure in this case of attack
is similar to those of similar scenarios where the
attacker can see the encrypted data. Similarly,
the attacker’s task is to try and crack the mask-
ing/encryption keys by exhaustive key search in
chosen ciphertext attacks.

Generating Apparent Randomness
for the Masked Values

Generating randomness for masking and crypto-
graphic applications is a costly and security-critical
operation (Barbosa & Farshim, 2009). In order
to guarantee their security strength, two same
original real data values must generically originate
different masking generated values, so a level of
apparent randomness is ensured. Given that the
proposed masking Formula (1) uses two MOD
operations in conjunction with randomly generated
realistic values, the generated masked values for

397

Using Data Masking for Balancing Security and Performance in Data Warehousing

the same original data values are mostly different.
To demonstrate this, suppose a table T with two
masked columns, Column1 and Column2. Suppose
the MOBAT-SA generated the values K1 = 9264
for table T and K2,1 = 12 and K2,2 = 78254 for each
column. Table 2 shows the original data for T on
the left and its resulting masked content on the
right. It can be seen that the same original values
of Column1 result in different masked values,
and vice-versa, achieving apparent randomness.
Of course, this is a very small dataset used only
to illustrate these features.

Non-Invertibility of the Masking Formula

The MOBAT masking Formula uses two con-
secutive MOD operations. For a function to be
invertible, each output must correspond to no more
than one input, i.e., more than one different inputs
cannot generate the same output; a function with
this property is called one-to-one, or information-
preserving, or an injection. An injective function
is a function that preserves distinctness: it never
maps distinct elements of its domain to the same
element of its codomain. Since the MOBAT opera-
tor is non-injective, given that for X MOD Y = Z,
the same output Z, considering Y a constant, can
have an undetermined number of possibilities in X

as an input which will generate the same value Z
when applying the operator (e.g. 15 MOD 4=3, 19
MOD 4=3, 23 MOD 4=3, 27 MOD 4=3, etc). Since
MOD operations are non-injective, this means the
MOBAT Formula (1) is also non-injective. Given
that injectivity is a required property for having
invertibility, MOBAT is therefore, non-invertible.
The only way to break its security is to crack the
masking key values of each column.

Key Management

As known (and it is assumed that the attackers
have access to the masking Formula), the level of
security of data masking or encryption solutions
does not depend on its secrecy, but on its keys
(Nadeem & Javed, 2005). The quality of each set
of operations in achieving the intended “data mix”
affects the performance of the algorithm. Thus,
there is always a tradeoff between security and
performance in these algorithms. As discussed in
(Kim et al., 2010; McKendrick, 2009; Nadeem &
Javed, 2005), there is no easy way of obtaining
impartial and widely accepted values for defining
the minimum number of secure rounds for each
algorithm.

In the proposed masking Formula, there are
three keys: K1 is a unique value generated once

Table 2. Example of original and resulting MOBAT dataset

T – Original dataset T‘ – MOBAT Masked dataset

Column1 Column2 K3,j Column1‘ Column2‘ K3,j

11 91873 7537 22 162590 7537

2 94129 1808 6 170575 1808

18 71624 29636 22 148034 29636

19 38824 50877 22 112521 50877

15 84624 34997 22 155673 34997

12 46926 41395 17 120841 41395

15 92503 23744 19 165541 23744

19 28562 46700 23 101600 46700

19 41042 58902 25 114080 58902

398

Using Data Masking for Balancing Security and Performance in Data Warehousing

for each table and made constant for all values to
mask in that table; K2 is a unique value generated
once for each column in each table and made
constant for all values to mask in that column; and
K3 is a value generated for each row in the table,
made constant for all the values in the columns to
mask in that row. Since K3 is public (given that it
is stored in the fact table), only key values K1 and
K2 need to be discovered for retrieving the real
data values. K1 is a 16 byte integer key, i.e., a set
of 128 bits. K2 depends on the maximum storage
size defined for each column, variable between 1
and 128 bits. This means that the masking Formula
implies a minimum of 2129 key combinations, for
K1 and K2 together (at least 16 bytes + 1 bit), and
roughly needs an average number of 2128 tests
(half of the total amount of possible brute force
tests – 50% chance) for discovering the keys using
brute force, for each masked column in the table,
since K2 is column dependant. Consequently, the
minimum number of combinations needed to
discover all the needed key values for a i number
of columns is i * 2129, resulting in an average of i
* 2128 ≈ i * 3.4 x 1038 brute force tests in order to
discover the keys.

The security strength of standard encryption al-
gorithms is higher, given both the mixes produced
in each round and usage of 128 to 256 bit keys,
resulting in a higher number and complexity of
combinations. Although MOBAT is not so strong
in security, it requires much less computational
resources, while maintaining a considerable level
of security, given the high number of possible
brute force attack combinations. Periodically,
the masking may be refreshed by rebuilding the
masked table values, switching the values of all
or any one of the K1, K2, and K3 keys, in order
to ensure data is properly protected. Moreover,
the data injection method also allows increasing
MOBAT’s overall security strength. Although it is
not possible to absolutely prove that a particular
algorithm is secure (Ge & Zdonik, 2007; Kim
et al., 2010; Mattson, 2004; McKendrick, 2009;

Nadeem & Javed, 2005; Natan, 2005), we believe
the proposed technique is secure enough to be
acceptable for use.

Performance and
Transparency Issues

Performance in Middleware Data
Confidentiality Solutions

Topologies involving middleware data confi-
dentiality solutions, such as (Radha & Kumar,
2005), typically request all the masked/encrypted
data from the database and perform the unmask-
ing/decrypting actions themselves locally. This
strangles the network due to communication
costs with bandwidth consumption between the
middleware and the database, jeopardizing data
throughput and consequently, response time. In
a DW environment, previously acquiring all the
data from the database needed for processing a
query at the middleware solution is unreasonable,
given the typically large amount of data accessed
for answering decision support queries. In this
sense, MOBAT-SA just rewrites user queries
and then sends them to be processed directly
by the DBMS, sending only the results back to
the user application that requested the execution
of the query. This eliminates network overhead
from the critical path, optimizing response time
and throughput when compared to other similar
middleware security solutions.

CPU Processing Costs in Data
Confidentiality Algorithms

This work is focused on protecting numerical
values. This type of data typically represents
up to 16 bytes of storage size for each column.
The number of clock cycles for encrypting these
values depends directly on the algorithms and on
the CPU architecture in which they are executed.
As an example on a Pentium II CPU (required

399

Using Data Masking for Balancing Security and Performance in Data Warehousing

by NIST for comparison tests) from (Elminaam
et al., 2010), the AES Rijndael algorithm with a
128 bit key, implemented in C, takes up 29 clock
cycles per encrypted byte, for encrypting a 16
byte value, resulting in a total of 29*16 = 464
clock cycles. The same algorithm with a 256 bit
key takes up 39 clock cycles per encrypted byte,
which means it will need 39*16 = 624 clock
cycles for encrypting the same 16 byte value.
Since a MOD operation on the same CPU takes
up 142 clock cycles and an arithmetic sum or
subtraction takes up 3 clock cycles (Fog, 2011),
for masking the same 16 byte value MOBAT’s
masking Formula needs 2*142+2*3=290 clock
cycles (2 MOD operations, plus one addition and
one subtraction). This means MOBAT is 1.6 times
faster than AES using a 128 bit key and 2.15 times
faster than AES using a 256 bit key to process each
16 byte value on that CPU. However, although
the proposed Formula is faster to compute than
standard encryption algorithms, this work is not
mainly focused on making it faster than those
algorithms. Most implementations of encryption
algorithms are CPU optimized, designed and
programmed for specific processor models and
therefore, depending on those CPUs, while the
solution proposed in this work is assumed as
processor-independent. This is achieved by the
high-level SQL reprogramming of the user que-
ries, making it usable in any DBMS, regardless
of the used CPU.

Encryption in Microsoft SQL
Server 2008 and MySQL 5.5

Microsoft SQL Server and MySQL 5.5 only
encrypt textual or varbinary type values (char,
varchar, varbinary, etc). Given that most sensi-
tive columns in DW fact tables store numerical
values, when using these DBMS they must be
converted to a textual or varbinary format. Once
decrypted for processing, these values also must
be transformed back into numerical format in

order to apply arithmetical operations such as
sums, averages, etc. This is a significant drawback,
introducing extra computational overheads with
evident impact in performance. On the contrary,
MOBAT is specifically designed for masking
numerical values, and in this sense, is therefore
much more appropriate for protecting DW facts.

Transparently querying masked data. Query
instructions in MOBAT become longer due to
replacing each masked column with the masking
or unmasking Formulas, but this is automatically
and transparently managed by the MOBAT-SA,
eliminating user application code changes. The
only change the user applications need is to send
the query to the MOBAT-SA, instead of querying
the database directly.

EXPERIMENTAL EVALUATION

The TPC-H decision support benchmark (TPC,
2011) (1GB and 10GB scale sizes) and a real-
world sales DW storing one year of commercial
data (taking up 2GB of data) was used to evaluate
the proposed approach. All scenarios were tested
in the leading commercial DBMSs, Oracle 11g
and Microsoft SQL Server 2008 R2, on a Pentium
2.8GHz CPU with a 1.5TB SATA hard disk and
2GB RAM, 512MB of which devoted to database
memory cache. Oracle 11g ran on Windows XP
Professional, while SQL Server ran on Windows
2003 Server.

The database schema of TPC-H has one fact
table (LineItem), and seven dimension tables. The
Sales DW database schema has one fact table
(Sales) and four dimension tables attached to it. In
the TPC-H setups, four columns of LineItem were
masked (L_Quantity, L_ExtendedPrice, L_Tax
and L_Discount), given they are the numerical
fact columns. In the Sales DW, five numerical
columns were masked (S_ShipToCost, S_Tax,
S_Quantity, S_Profit, and S_SalesAmount), for
the same reasons.

400

Using Data Masking for Balancing Security and Performance in Data Warehousing

Since MOBAT is column-based, for fairness
it is compared with the column-based AES128
and 3DES168 encryption algorithms provided
by both DBMS, given that tablespace encryption
has functional primitives that speedup perfor-
mance, making it unfair to compare MOBAT with
tablespace-based techniques (Huey, 2008; Oracle,
2010b). Moreover, best practice documentation for
encryption in documentation from both DBMSs
(Huey, 2008; Oracle, 2010b) recommends using
column-based encryption when the sensitive
data consists on a small number of well-defined
columns. The AES128 and 3DES168 algorithms
were used for comparison because they are, respec-
tively, the fastest and slowest available algorithms
in those DBMS (Huey, 2008; Oracle, 2010b), as
previously mentioned. Table 3 shows the defined
experimental encryption/masking scenarios.

Analyzing Data Loading
Performance

Tables 4 and 5 show the results concerning data
storage size and loading time (in seconds), respec-
tively, for all data of the TPC-H 1GB LineItem fact
table, in each defined scenario, in each DBMS.
Figures 2 and 3 show the overhead percentages
concerning these results. The results in the re-
maining databases are similar to those shown in
the Figures, with absolute values approximately
proportional to their database sizes, and to avoid

redundancy are not included. The MOBAT ColKey
setup is not included, since it does not require
changing the fact table data structure and thus,
presents no overhead in loading data.

In what concerns storage space, MOBAT
presents overheads ranging from 4.1% (32MB)
to 5.7% (44MB) of extra storage space in Oracle
and 2.8% (35MB) in SQL Server. AES128 and
3DES168 present storage space overheads from
103.6% (800MB) to 153.9% (1188MB) in Oracle
and 76.3% (944MB) to 94.8% (1173MB) in SQL
Server, corresponding to a much higher increase
of extra storage space.

In what concerns data loading time, MOBAT
presents an overhead ranging from 3.5% (11
seconds) to 7.7% (24 seconds) in Oracle and
from 4.3% (9 seconds) to 6.5% (14 seconds)
in SQL Server, of extra loading time. AES128
and 3DES168 present much greater loading
time overheads, from 189.7% (588 seconds) to
191.6% (594 seconds) in Oracle and 123.1%
(261 seconds) to 129.2% (274 seconds) in SQL
Server, corresponding to a much higher increase
of extra loading time.

As seen in these results, MOBAT is much more
efficient than the standard encryption algorithms,
introducing very small overheads in both storage
space and loading time. Since these results are
for the TPC-H 1GB sized database and that the
overhead percentages are similar for the remaining
tested scenarios, it can be noticed that for the TPC-

Table 3. Experimental data encryption/masking scenarios

Reference/Label Description

Standard Standard data without masking/encryption

AES128 Col Data encrypted with TDE AES 128 bit key column encryption

3DES168 Col Data encrypted with TDE 3DES168 column encryption

MOBAT AddCol Data masked by MOBAT Formula (1), where a column for masking keys K3, j has been added to the
existing fact table

MOBAT CreateCol Data masked by MOBAT Formula (1), where a column for masking keys K3, j was added to the fact
table, which has been completely recreated

MOBAT ColKey Data masked by MOBAT Formula (1), using a numerical column from the original fact table data
structure as key K3, j

401

Using Data Masking for Balancing Security and Performance in Data Warehousing

Table 5. TPC-H 1GB line item fact table data loading time for each experimental scenario

DBMS Standard AES128
Col

Absolute/
Relative

Overhead

3DES168
Col

Absolute/
Relative

Overhead

MOBAT
AddCol

Absolute/
Relative

Overhead

MOBAT
CreateCol

Absolute/
Relative

Overhead

Oracle
11g

310s 898s +588s /
190%

904s +594s /
192%

334s +24s / 8% 321s +11s / 4%

SQL
Server
2008

212s 473s +261s /
123%

486s +274s /
129%

226s +14s / 7% 221s +9s / 4%

Figure 2. Storage space overheads for TPC-H 1GB

Figure 3. Loading time overheads for TPC-H 1GB

Table 4. TPC-H 1GB line item fact table storage sizes for each experimental scenario

DBMS Standard AES128
Col

Absolute/
Relative

Overhead

3DES168
Col

Absolute/
Relative

Overhead

MOBAT
AddCol

Absolute/
Relative

Overhead

MOBAT
CreateCol

Absolute/
Relative

Overhead

Oracle
11g

772MB 1960MB +1188MB /
154%

1572MB +800MB /
104%

816MB +44MB /
6%

804MB +32MB /
4%

SQL
Server
2008

1237MB 2410MB +1173MB /
95%

2181MB +944MB /
76%

1272MB +35MB /
3%

1272MB +35MB /
3%

402

Using Data Masking for Balancing Security and Performance in Data Warehousing

H 10GB, which is ten times bigger, the absolute
values of the overheads are also approximately
ten times bigger. Proportionally, this means that
TPC-H 10GB has approximately 8GB to 12GB
of increased storage space, and approximately 43
to 99 minutes of increased loading time. Given
that 10GB is actually a small size for a DW da-
tabase, it is easy to conjecture that the overheads
introduced by DBMS data encryption algorithms
in DWs are extremely significant and may in fact
be impracticable.

Analyzing Query Performance

For TPC-H, the test workload was composed of
the benchmark’s queries 1, 3, 6, 7, 8, 10, 12, 14,
15, 17, 19, and 20, representing queries access-
ing the masked fact table LineItem. For the Sales
DW, the workload was a set of 29 queries, all
processing facts in the Sales masked fact table,
representing a sample of typical decision support
queries, such as customer product and promotion
sales daily (9 queries), monthly (9 queries) and
annual (11 queries) values, with actions as row
selection, joining, aggregates, and ordering.

For fairness, databases were optimized in a
standard best practice manner in all scenarios
(including primary keys, foreign keys, referential
integrity constraints and join indexes). Before
each execution the database server was restarted.
Response time results for each query’s execution
time are an average obtained from six executions
for each tested scenario on each DBMS (with

Oracle 11g standard deviations between [0.52,
54.65] and [0.64, 70.10] for 1GB and 10GB TPC-
H, respectively, and [0.57, 71.20] for the Sales
DW, and SQL Server 2008 standard deviations
between [0.49, 52.13] and [0.60, 67.93] for 1GB
and 10GB TPC-H, respectively, and [0.55, 70.02]
for the Sales DW).

Figures 4 and 5 show the total query workload
execution time overhead for each scenario, for each
database. The Standard execution time for each
scenario, i.e., the execution time of the workload
against a non-encrypted/masked database is 626,
6155, and 2233 seconds in Oracle 11g, and 580,
5301, and 2211 seconds in SQL Server 2008, for
the 1GB TPC-H, 10GB TPC-H, and Sales DW,
respectively. Comparing the overheads intro-
duced by each technique in both DBMS, shown
in Figures 4 and 5, MOBAT is much better than
AES128 and 3DES168, given the complete query
workload in each setup.

In Oracle 11g, MOBAT ranges from at least
5.32 (187.7/35.3) times better than those standard
column encryption solutions for the 1GB TPC-H
database, to 9.23 (203/22) times better. In the
10GB TPC-H database, the gains range from 6.05
(131.8/21.8) to 8.58 (144.2/16.8) times better, and
for the Sales DW, from 5.39 (688.3/127.7) to 10.5
(814.7/77.6) times better. Notice that column
encryption introduces a minimum overhead of
131.8% (8112 seconds) in the TPC-H 10GB
setup (total workload response time takes almost
4 hours, instead of the standard time, which is
less than 2 hours), and 688.3% (15370 seconds)

Figure 4. Query execution time overheads for each tested database in Oracle 11g

403

Using Data Masking for Balancing Security and Performance in Data Warehousing

in the Sales DW setup (workload response time
takes almost 5 hours, instead of the standard 37
minutes). On the other hand, MOBAT introduces
a maximum overhead of 21.8% (1342 seconds)
in the TPC-H 10GB setup (total workload response
time takes little over 2 hours), and 127.7% (2851
seconds) in the Sales DW setup (total workload
response time takes almost 1.5 hours).

In SQL Server 2008, shown in Figure 5, MO-
BAT ranges from at least 4.35 (174.3/40.1) times
better than those standard column encryption
solutions for the 1GB TPC-H database, to 8.60
(195.2/22.7) times better. In the 10GB TPC-H
database, the gains range from 7.15 (151.6/21.2) to
14.02 (183.7/13.1) times better, and for the Sales
DW, from 5.38 (665.4/123.7) to 11.78 (758.6/64.4)
times better. Notice that column encryption in-
troduces a minimum overhead of 151.6% (8036
seconds) in the TPC-H 10GB setup (total workload

response time takes almost 4 hours, instead of the
standard time, which is less than 2 hours), and
665.4% (14712 seconds) in the Sales DW setup
(workload response time takes almost 5 hours,
instead of the standard 37 minutes). On the other
hand, MOBAT introduces a maximum overhead
of 21.2% (1124 seconds) in the TPC-H 10GB
setup (total workload response time still takes
less than 2 hours), and 123.7% (2735 seconds)
in the Sales DW setup (total workload response
time takes almost 1.4 hours).

The results for each individual query execu-
tion time in the Oracle 11g for the TPC-H 10GB
scenarios can be seen in Figure 6. These results
show that all queries have an overhead similar to
those of the complete workload (shown in Figures
4 and 5). This is also true for all the other scenarios
in both DBMS, making it redundant to include
all results in this section.

Figure 5. Query execution time overheads for each tested database in SQL Server 2008

Figure 6. 10GB TPC-H Individual Query Exec. Time Overhead per Encryption/Masking Algorithm

404

Using Data Masking for Balancing Security and Performance in Data Warehousing

Query Q1 presents the most significant results
because it processes more than 90% of the total
fact table data, while the remaining queries process
less than 10%. It can be seen that mostly all que-
ries processed by AES and 3DES have introduced
overheads of several orders of magnitude higher
than MOBAT.

All the results in all scenarios in both DBMS
also show that the performance of CreateCol
Masking is better than AddCol Masking, which
was expected as previously mentioned, explain-
ing the technique. The performance results of
ColKey Masking are the best, given the absence
of changes in the original fact table data structure
and storage size.

Analyzing the Impact in Performance
Using False Data Injection

In order to test false data injection scenarios, 25%,
50%, 75% and 100% of false rows (relatively to
the total number of true rows) were inserted into
the TPC-H 1GB database using Oracle 11g, ac-
cording to what was previously explained, using
Formula (3) for defining the values of key K3,j.
All queries used in the tests were modified using
Formula (4), to distinguish between true and false
data. The false rows were uniformly distributed
throughout the fact table. Table 6 shows the results
for each scenario, with total workload execution
time overhead relatively to the total workload of
MOBAT AddCol and CreateCol, since the ColKey
setup cannot be used because it already uses a
previous existing column and does not allow us-

ing the public K3,j key for the false data injection
purpose according to Formula (3).

The introduced overheads in each query work-
load refer to executing the MOD operation from
Formula (4) and the extra amount of false rows
each query needs to access and test. As it would
be expected, the overhead in each scenario is more
or less proportional to the amount of false data
injected. The results for the remaining database
setups, TPC-H 10GB and the Sales DW, are
similar to those shown in Table 6, and to avoid
redundancy are not included here.

FUTURE RESEARCH DIRECTIONS

In a traditional DW, users execute much more
queries than updates against their databases. Thus,
data is static, i.e., there is no loading of new data
when the databases are available to its users. In
these environments, the main performance issue
in most cases is not encryption overheads, but
decryption overheads. Since loading of new data
is done in well defined time windows in which the
database is offline, there is no impact in user query
response time; it only affects DW maintenance
time. However, the higher is the amount of data
to load, the higher the storage space and loading
time overheads. Nevertheless, this static data state
paradigm has been changing, with the increasing
implementation of real-time data warehousing
solutions. Thus, given the size of DWs and the
amount of data typically processed by decision
support queries, the overheads introduced by both

Table 6. TPC-H 1GB workload exec. time(seconds)/overhead (%) with false data injection using MOBAT
in Oracle 11g

+25% False Data
(Time/Overhead)

+50% False Data
(Time/Overhead)

+75% False Data
(Time/Overhead)

+100% False Data
(Time/Overhead)

1G TPC-H MOBAT Ad-
dCol

1110 sec / 31% 1355 sec / 60% 1601 sec / 89% 1855 sec / 119%

1G TPC-H MOBAT Cre-
ateCol

1045 sec / 29% 1264 sec / 56% 1482 sec / 83% 1709 sec / 111%

405

Using Data Masking for Balancing Security and Performance in Data Warehousing

encryption and decryption as well as masking and
unmasking algorithms need to be dealt with, for
the sake of their feasibility. The development of
future data confidentiality solutions must consider
the performance of both encryption/masking and
decryption/unmasking as critical.

To improve CPU performance and scalability
of data confidentiality algorithms, the results
obtained by the Salsa20 family of algorithms
(Bernstein, 2005, 2008) indicate that using long
chains of simple operations instead of short chains
of complex operations may allow developing
faster solutions, while still being able to maintain
significant levels of security.

The basic argument for increasing the block
size of the standard 16 bytes to a higher size of
256 bytes, for example, is that it does not need
as many cipher rounds to achieve the same con-
jectured security level. Using a larger block size
should provide just as much mixing as the first
few cipher rounds and thus, saves time. The basic
counterargument is that a larger block size also
loses time in CPU models. On most CPUs, the
communication cost of sweeping through a 256-
byte block is a bottleneck, because they have been
designed for computations that do not involve so
much data. However, current CPU trends show
that their evolution will allow them to compute
larger amounts of bits. Thus, future algorithms
should take advantage of this, increasing the typi-
cal 128 bit block size used in AES. Being able to
do parallel processing is a performance booster
in speed and scalability.

Some ciphers sacrifice security strength at-
tempting to obtain higher speed. Until this mo-
ment, 256 bit keys have been used and considered
secure, since the computational efforts in trying
to break their security were considered nearly
impracticable. However, the recent multi-core
CPU trends indicate that this key length will be
rapidly surpassed as hardware processing power
evolves. Therefore, to avoid rapidly becoming use-
less, at least 256 bit or higher key lengths should
be used in the development of new solutions.

Although higher keys should, in principle, bring
worse performance, in our opinion the problem
is not centered on the key length, but on the used
block size and the algorithm itself.

There is always a tradeoff between perfor-
mance and security; research will probably lead to
solutions that are better in database performance,
but have less security strength. The main issue is
to significantly decrease storage space, resource
consumption and response time, while maintaining
substantial security strength. A possibility is to
develop variable-based dynamic algorithms that
enable the user to choose between different key
lengths and block sizes, the number of encryption/
masking rounds, and any other parameter that
could allow DBAs and application developers
to fine tune the security-performance tradeoff’s
balance according to the specific features and
requirements of each DW. To our knowledge, this
type of solution has never been proposed.

CONCLUSION

This work presents a data masking solution spe-
cifically designed for enhancing data confiden-
tiality in DWs. It also takes advantage of one of
the masked fact tables masking key for enabling
false data injection, increasing the overall security
strength against attackers that gain direct access
to the database.

The proposed data masking Formula is
composed by a set of two consecutive modulus
(division remainder) operations and two simple
arithmetic operations. It requires small computa-
tional efforts and can be straightforward and easily
implemented in any DBMS. Since it basically
works by transparently rewriting user queries,
it minimizes efforts in changes to user applica-
tions driven by changes in DW data structures,
nor does it jeopardize network bandwidth. The
masked database can be directly used for produc-
tion purposes, enabling developing applications
to directly query it without passing through the

406

Using Data Masking for Balancing Security and Performance in Data Warehousing

MOBAT application, therefore retrieving realistic
data, but never the real data, for testing software
development. This also avoids disclosure of the
real original data if any attacker bypasses database
access control and is able to retrieve data directly
from the database.

Although it was not conceived as a direct
alternative to standard encryption solutions, it
has been compared with the AES and 3DES
algorithms, provided by leading commercial
DBMS. The experimental results show that the
storage space increase and degradation of database
performance introduced by these standard solu-
tions is very significant from the DW perspective.
This enforces stating that those techniques are in
fact too complex and costly in performance to
be used in DW scenarios. Given that most DW
data consists on numerical values, the proposed
masking technique is tailored for this kind of data.
Our technique shows better database performance
than the encryption standards, while managing to
maintain a significant level of security strength,
enforced by the false data injection method. Thus,
it is an efficient overall solution and a valid alter-
native for balancing the performance and security
issues from the DW perspective.

As future work, we intend to develop our
technique in order to accomplish also masking
textual values, in order to provide a broader
data confidentiality solution. Another research
challenge is to take advantage of the history log
stored in the MOBAT-SA Black Box to manage
intrusion detection.

REFERENCES

AES. (2001). Advanced encryption standard.
Nat. Inst. of Standards and Technology (NIST),
FIPS-197.

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y.
(2002). Hippocratic databases. International
Conference on Very Large DataBases (VLDB).

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y.
(2004). Order-preserving encryption for numeric
data. ACM Special Interest Group Conference on
Management Of Data (SIGMOD).

Agrawal, R., Srikant, R., & Thomas, D. (2005).
Privacy preserving OLAP. ACM SIG Inter-
national Conference on Management Of Data
(SIGMOD).

Arora, E., Ertin, R., Ramnath, M., Nesterenko,
M., & Leal, W. (2006). Kansei: A high-fidelity
sensing testbed. Internet Computing, 10. 3DES.
(2005). Triple DES. National Bureau of Stan-
dards, National Institute of Standards and Tech-
nology (NIST), Federal Information Processing
Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3.

Baer, H. (2004). On-time data warehousing with
Oracle Database 10g – Information at the speed
of your business. Oracle Whitepaper. Oracle
Corporation.

Barbosa, M., & Farshim, P. (2009). Randomness
reuse: Extensions and improvements. 12th Insti-
tute of Mathematics and its Applications (IMA)
International Conference on Cryptography and
Coding.

Bernstein, D. J. (2005). Snuffle 2005: The Salsa
encryption function. Retrieved from http://cr.yp.
to/snuffle.html

Bernstein, D. J. (2008). The Salsa20 family of
stream ciphers. New Stream Cipher Designs -
The eSTREAM Finalists 2008. Springer LNCS,
4986, 2008.

Bertino, E., & Sandhu, R. (2005). Database se-
curity – Concepts, approaches, and challenges.
IEEE Transactions on Dependable and Secure
Computing, 2(1). doi:10.1109/TDSC.2005.9

Callot, O., Frank, M., Gaspar, C., et al. (2009).
High-speed data injection for data-flow verifica-
tion at LHCb. Real-Time Conference (RT), 16th
IEEE-NPSS.

407

Using Data Masking for Balancing Security and Performance in Data Warehousing

Data Warehouse Masking Technique – Testing
Queries. (2011). Our project’s website. Retrieved
from http://213.13.123.56/MOBAT/queries.html

DES. (1977). Data encryption standard. National
Bureau of Standards, National Institute of Stan-
dards and Technology (NIST), Federal Informa-
tion Processing Standards (FIPS) Publication 46.

Elminaam, D., Kader, H., & Hadhoud, M. (2010).
Evaluating the performance of symmetric encryp-
tion algorithms. International Journal of Network
Security, 10(3).

Gartner Inc. (2009). Selection criteria for
data-masking technologies. Research Report ID
G00165388, Feb 2009.

Ge, T., & Zdonik, S. (2007). Fast, secure encryp-
tion for indexing in a column-oriented DBMS.
International Conference on Data Engineering
(ICDE).

Hacigumus, H., Iyer, B., & Mehrotra, S. (2004).
Efficient execution of aggregation queries over
encrypted relational databases. International
Conference on Database Systems for Advanced
Applications (DASFAA).

Hacigumus, H., Iyer, B. R., Li, C., & Mehrotra,
S. (2002). Executing SQL over encrypted data
in the database-service-provider model. ACM
SIG International Conference on Management
of Data (SIGMOD).

Huey, P. (2008). Oracle database security guide
11g. Oracle Corporation.

Kim, J., Lee, Y., & Lee, S. (2010). DES with any
reduced masked rounds is not secure against side-
channel attacks. Elsevier International Journal of
Computers and Mathematics with Applications,
60. Retrieved from www.elsevier.com/locate/
camwa

Kimball, R., & Ross, M. (2002). The data ware-
house toolkit (2nd ed.). Wiley & Sons, Inc.

Kobielus, J. (2009). The Forrester wave: En-
terprise data warehousing platforms. Forrester
Research Report.

Lo, E., Cheng, N., & Hon, W. (2010). Generat-
ing databases for query workloads. International
Conference on Very Large DataBases (VLDB).

Mattson, U. T. (2004). Database encryption – How
to balance security with performance. Proteg-
rity Corporation Technical Paper. doi:10.2139/
ssrn.670561

McKendrick, J. (2009). IOUG data security
2009: Budget pressure lead to increased risks.
The Independent Oracle Users Group (IOUG)
Security Report.

Nadeem, A., & Javed, M. Y. (2005). A performance
comparison of data encryption algorithms. IEEE
International Conference on Information and
Communication Technologies (ICICT).

Natan, R. B. (2005). Implementing database
security and auditing. Digital Press.

Oracle Corporation. (2005). Security and the data
warehouse. Oracle White Paper.

Oracle Corporation. (2010A). Data masking best
practices. Oracle White Paper.

Oracle Corporation. (2010B). Oracle advanced
security transparent data encryption best prac-
tices. Oracle White Paper.

Procopiuc, C. M., & Srivastava, D. (2011). Ef-
ficient table anonymization for aggregate query
answering. International Conference on Data
Engineering (ICDE).

Radha, V., & Kumar, N. H. (2005). EISA – An
enterprise application security solution for da-
tabases. In S. Jajodia & C. Mazumdar (Eds.),
International Conference on Information Systems
Security (ICISS), Springer LNCS 3803.

408

Using Data Masking for Balancing Security and Performance in Data Warehousing

Ravikumar, G. K., Manjunath, T. N., Ravindra,
S. H., & Umesh, I. M. (2011). A survey on recent
trends, process and development in data masking
for testing. International Journal of Computer
Science Issues, 8(2).

Santos, R., Bernardino, J., & Vieira, M. (2011).
A data masking technique for data warehouses.
International Database Engineering and Applica-
tions Symposium (IDEAS).

Schneier, B. (1994). Description of a new
variable-length key, block cipher (Blowfish).
Fast Software Encryption (FSE), Cambridge
Security Workshop.

Transaction Processing Council. (2011). The TPC
decision support benchmark H. Retrieved from
http://www.tpc.org/tpch/default.asp

Vaidya, J., & Clifton, C. (2002). Privacy pre-
serving association rule mining in vertically
partitioned data. ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining.

Vieira, M., & Madeira, H. (2005). Towards a
security benchmark for database management
systems. International Conference on Dependable
Systems and Networks (DSN).

Vimercati, S. C., Foresti, S., Jajodia, S., Parabos-
chi, S., & Samarati, P. (2010). Over-encryption:
Management of access control evolution on
oursourced data. International Conference on
Very Large DataBases (VLDB).

Xiao, X., Bender, G., Hay, M., & Gehrke, J.
(2009). iReduct: Differential privacy with re-
duced relative errors. ACM SIG International
Conference on Management of Data (SIGMOD).

Yuhanna, N. (2009). Your enterprise database se-
curity strategy 2010. Forrester Research Report.

ADDITIONAL READING

Aggarwal, C. (2005). On k-anonymity and the
curse of dimensionality. International Confer-
ence on Very Large DataBases (VLDB).

Aggarwal, G., Bawa, M., Ganesan, P., Garcia-
Molina, H., Kenthapadi, K., & Motwani, R.
… Xu, Y. (2005). Two can keep a secret: A
distributed architecture for secure database
services. International Conference on Innova-
tive Data Systems Research (CIDR).

Bernstein, D. J., & Schwabe, P. (2010). New
AES software speed records. International Con-
ference on Cryptology in India (INDOCRYPT).

Du, W., Deng, J., Han, Y., Varshney, P., Katz,
J., & Khalili, A. (2005). A pairwise key predis-
tribution scheme for wireless sensor networks.
ACM Transactions on Information and System
Security. TISSEC.

Esponda, F., Ackley, E., Helman, P., Jia, H.,
& Forrest, S. (2007). Protecting data privacy
through hard-to-reverse negative databases.
International Journal of Information Security,
6(6), 403–415. doi:10.1007/s10207-007-0030-
1

Ferguson, N. (2006). AES-CBC + elephant
diffuser – A disk encryption algorithm for Win-
dows Vista. Microsoft Corporation Whitepaper.

Gehrke, J. (2002). Data mining for security and
privacy. SIGKDD Explorations, 4(2).

Law, Y. W., Doumen, J., & Hartel, P. (2006).
Survey and benchmark of block ciphers for
wireless sensor networks. ACM Transactions
on Sensor Networks, 2(1).

Russell, M. D. (2004). Tinyness: An Overview
of TEA and Related Ciphers.

409

Using Data Masking for Balancing Security and Performance in Data Warehousing

Wunnava, S. V., & Rassi, E. (2002). Data
encryption performance and evaluation
schemes. International Southeast Conference
(SoutheastCon).

KEY TERMS AND DEFINITIONS

Data Confidentiality: Domain of Data Se-
curity focused on protecting unauthorized data
disclosure.

Data Encryption: Advanced form of Data
Masking with a well defined set of procedures
for encrypting and decrypting data, usually in the
form of a multi-step algorithm.

Data Masking: Also known as Data Obfus-
cation, it stands for any technique that is able to
replace true data with false data.

Data Security: Information technology expert
field involving the protection of any form of data.

Data Warehousing: Analytical databases fo-
cused on providing decision support information
and deriving business intelligence for enterprises.

Database Performance Optimization:
Domain of database performance focused on
all aspects and techniques that may enhance the
performance of inserting, querying, updating or
deleting data structures, namely in what concerns
response time, throughput, and storage space,
among other features.

