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ABSTRACT

Data Warehouses (DWs) are the core of sensitive business information, which makes them an appealing 
target. Encryption solutions are accepted as the best way to ensure strong security in data confidentiality 
while keeping high database performance. However, this work shows that they introduce massive stor-
age space and performance overheads to a magnitude that makes them unfeasible for DWs. This work 
proposes a data masking technique for protecting sensitive business data in DWs which balances security 
strength with database performance, using a formula based on the mathematical modular operator and 
simple arithmetic operations. The proposed solution provides apparent randomness in the generation 
and distribution of the masked values, while introducing small storage space and query execution time 
overheads. It also enables a false data injection method for misleading attackers and increasing the 
overall security strength. It can be easily implemented in any DataBase Management System (DBMS) 
and transparently used, without changes to application source code. Experimental evaluations using a 
real-world DW and TPC-H decision support benchmark implemented in leading DBMS Oracle 11g and 
Microsoft SQL Server 2008 demonstrate its overall effectiveness. Results show the substantial savings 
of its implementation costs when compared with state of the art encryption solutions provided by those 
DBMS and that it outperforms those solutions in both data querying and insertion of new data.
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INTRODUCTION

Data confidentiality focuses on protecting data 
from unauthorized disclosure. Currently, data is a 
major asset for any enterprise, not only for know-
ing the past, but also for aiding today’s business 
or predicting future trends (Baer, 2004; Kobielus, 
2009). Given its decision support nature, the data 
in Data Warehouses (DWs) translates into busi-
ness knowledge, providing invaluable decision 
making information for adding business value. 
Consequently, DWs are the core of the enterprise’s 
sensitive data. Unfortunately, this makes them a 
main target for both inside and outside attackers 
(Yuhanna, 2009). Consequently, several studies 
have demonstrated that efficiently securing sen-
sitive data has become an imperative concern in 
many enterprises (McKendrick, 2009; Yuhanna, 
2009).

To protect information in databases, data 
masking actions and encryption techniques are 
widely used. Data masking routines are mainly 
simpler than encryption routines, but provide 
lower security strength. Moreover, data masking 
routines provided by most commercial tools typi-
cally change data in an irreversible manner, i.e., 
after masking data it not possible to subsequently 
retrieve the original true values, making them 
useless for real live DW databases. This has made 
masking solutions the main choice for protecting 
published data or production data, instead of real-
live databases (Bertino & Sandhu, 2005; Huey, 
2008; Natan, 2005; Oracle, 2010a; Ravikumar et 
al., 2011; Gartner, 2009).

Published research and best practice guides 
state that encryption is the best method to protect 
sensitive data at the database level while maintain-
ing high database performance (Agrawal et al., 
2004; Ge & Zdonik, 2007; Huey, 2008; Natan, 
2005; Oracle, 2010a, 2010b; Procopiuc & Srivas-
tava, 2011; Vimercati et al., 2007; Hacigumus et 
al., 2004). However, since DWs are usually huge 
in size, with millions or billions of rows in their 

fact tables, and user queries are typically ad hoc 
and access large amounts of data, encryption and 
decryption overhead is a major concern (Agrawal 
et al., 2004). General encryption algorithms are 
mainly built taking under consideration desirable 
security strength. Although efficient in their secu-
rity purpose, most encryption solutions introduce 
several key costs from the DW perspective:

•	 Large processing time/resources for en-
crypting sensitive data, given routine or 
hardware access in very large databases 
such as those in DWs;

•	 Extra storage space of encrypted data. 
Since DWs usually have many millions 
or billions of rows, even a small modifica-
tion of any column size to accommodate 
encrypted output introduces large storage 
space overheads; and

•	 Overhead query response time and allocat-
ed resources for decrypting data to process 
queries. Given the huge amount of data 
typically accessed by DW queries, this is 
probably the most significant drawback for 
using encryption in DWs.

In this work, we present the commonly 
available encryption techniques for databases, 
thoroughly discussing the issues involving the 
use of these techniques, in what concerns data-
base performance and requirements, from the 
data warehousing perspective. As demonstrated 
throughout this work, the introduced overheads 
imply that the standard encryption algorithms cur-
rently provided by DBMS dramatically degrade 
database performance, which is a critical issue 
in data warehousing. This ultimately jeopardizes 
their applicability in DWs. Consequently, de-
veloping a data masking/encryption strategy for 
DWs must balance between the requirements for 
security and desire for high performance (Ge & 
Zdonik, 2007; Mattson, 2004; Nadeem & Javed, 
2005; Vieira & Madeira, 2005).
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Data used for analyzing business performance 
is mostly stored in specific attributes, called facts. 
Facts are stored in fact tables, which typically 
take up 90% or more of storage space in DWs 
(Kimball, 2002). This work proposes a mask-
ing technique for DW data based on the MOD-
modulus operation (which returns the remainder 
of a division expression) and simple arithmetic 
operations, which balances strong data security 
with database performance. Its main contribution 
is a solution specifically tailored for DWs, which 
is able to produce better overall security-perfor-
mance tradeoffs than most available solutions 
such as encryption standards, i.e., that presents 
an acceptable and significant level of security 
strength while introducing small storage space 
and response time overheads, such as presented 
in (Santos et al., 2011).

The proposed solution in this work is not to 
be regarded as an alternative to standard encryp-
tion in terms of security strength, but rather as an 
efficient alternate data confidentiality solution in 
setups where the tradeoff between performance 
and security needs to be revised. To ensure their 
security strength, standard encryption algorithms 
such as AES (AES, 2001) and DES (3DES, 2005; 
DES, 1977) are complex routines requiring high 
computational efforts and focusing almost solely 
on ensuring security regardless from performance 
issues, while the approach in this work aims for 
securely masking data while introducing low 
computational efforts, to make it feasible for use 
in DWs.

The proposed technique uses three masking 
keys for calculating each masked value. These 
keys are also encrypted and stored in a vault 
that can be seen as a “black box”, which will 
be placed in the database server machine with a 
purpose similar to the Oracle Wallet (Huey, 2008), 
as explained further on. All SQL commands and 
actions required by users are also encrypted and 

stored in this black box, in a log which can be 
audited by any user with database or enterprise 
administration or management privileges. This 
enables super users to watch over each other and 
provides a data source that can be subsequently 
used for solutions able to audit and analyze user 
actions, such as database intrusion detection 
systems.

The proposed solution is transparent and does 
not require changing both DBMS and user ap-
plications code. Its usage is based on rewriting 
user queries in order to process them with the 
true data values. Contrarily to similar middleware 
solutions that pre-fetch encrypted data to process 
decryption locally, by simply rewriting queries 
network bandwidth congestion is avoided. The 
data processed in the database is encrypted at 
all times, protecting the data against attackers 
that gain direct access to the database server and 
never allowing breaches before the user queries 
are processed. Only the final processed results 
are returned to the authorized user applications 
that required them. This also allows using the 
database (or creating instant replicas) for testing 
purposes in software application development, i.e., 
for production purposes, since the masked data 
is realistic but not real. It is also a broad-scoped 
security solution, which besides enabling data 
masking, can also inject false data to increase the 
DW’s overall security strength.

As can be seen in the experimental results, the 
proposed solution significantly decreases both data 
storage space and processing overheads, both in 
inserting and querying data from the DW, when 
compared with standard encryption algorithms like 
AES and 3DES, provided by major DBMS such 
as Oracle and SQL Server, for nearly all queries 
in all tested scenarios. The experiments show that 
the proposed technique’s overall results make it 
a valid alternative to those standard solutions.
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BACKGROUND AND 
RELATED WORK

Standard Data Encryption 
Algorithms

Typical encryption algorithms include executing 
bit shifting and exclusive Or (XOR) operations 
within a predefined number of rounds. These 
operations rely on a key, which influences the 
“data mix” output of each round. There are 
mainly two types of encryption techniques: Block 
Ciphers and Stream Ciphers. A block cipher is 
a type of symmetric-key encryption algorithm 
that transforms a fixed-length block of plaintext 
(unencrypted text) data into a block of ciphertext 
(encrypted text) data of the same length, under the 
action of a user-provided secret key. Decryption is 
performed by applying the reverse transformation 
to the ciphertext block using the same secret key. 
Stream ciphers take a string (the encryption key) 
and deterministically generate a set of random-
seeming text (called keystream) from that key. That 
keystream is then XORed against the message to 
encipher. To decipher the text, the recipient hands 
the same key to the stream cipher to produce an 
identical keystream and XORs it with the cipher-
text, thus retrieving the original message.

The Data Encryption Standard (DES) became 
the first encryption standard in 1977 (DES, 1977). 
DES is a 64 bit block cipher and uses a 56 bit 
encryption key, which means it produces 64 bit 
outputs. This has implications in short data lengths. 
Even 8 bit data, when encrypted by the algorithm, 
will always result in a 64 bit chunk. This encryption 
standard suffered many attacks and methods that 
demonstrated it is an insecure block cipher (Kim 
et al., 2010). There has considerable controversy 
over its design, particularly in the choice of a 
56 bit key (Nadeem & Javed, 2005). Moreover, 
given the computational power which exists today, 
performing an exhaustive key search for breaking 
a 56 bit key is a perfectly feasible task, which 
makes DES an unsecure cipher.

As an enhancement of DES, the Triple DES 
(3DES) encryption standard (3DES, 2005) was 
proposed. In this algorithm, the encryption method 
is similar to the original DES algorithm, but it 
is applied three times to increase the encryption 
level, using three different 56 bit keys. Thus, the 
effective key length is 168 bits. This makes 3DES 
a cipher capable of providing much stronger se-
curity than DES. However, since the algorithm 
increases the number of cryptographic operations 
it needs to execute, it is a well known fact that 
the 3DES algorithm is one of the slowest block 
cipher methods.

The Advanced Encryption Standard (AES) 
was proposed to replace DES based algorithms 
(AES, 2001). The AES algorithms are the latest 
generation of block ciphers, and have a significant 
increase in the block size (from the old standard 
of 64 bits up to 128 bits). AES provides three ap-
proved key lengths: 128, 192 and 256 bits. AES 
is considered fast and able to provide stronger 
encryption, compared to other encryption algo-
rithms, such as DES and 3DES (Nadeem & Javed, 
2005; Oracle, 2005; Radha & Kumar, 2005). Brute 
force attack is the only known effective attack 
known against it.

The Blowfish encryption algorithm (Schneier, 
1994) is a public domain encryption algorithm, 
provided by Counterpane Systems, a consulting 
firm specialized in cryptography and computer 
security. Blowfish is a variable length key, 64 
bit block cipher. Though it suffers from the weak 
keys problem, no attack is known to be successful 
against it (Nadeem & Javed, 2005).

The work in (Nadeem & Javed, 2005) imple-
mented the DES, 3DES, AES and Blowfish al-
gorithms and executed experiments to compare 
their performance. This study demonstrated the 
Blowfish algorithm was the fastest algorithm. 
However, it is a public domain solution and not 
an encryption standard, reason why major DBMS 
vendors such as Oracle, MySQL and Microsoft 
SQL Server do not provide it with their database 
servers. Regarding the open encryption standards, 
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AES was the best solution, both in execution 
time and throughput. On the other hand, 3DES 
presented the worst performance.

Other Solutions Based on 
Modifying Data for Enforcing 
Data Confidentiality

Data masking solutions are mainly used for gen-
erating test databases for software development 
environments, named production databases, or for 
camouflaging data values in publicly available 
published data (Huey, 2008; Oracle, 2005, 2010a; 
Ravikuhmar et al., 2011). An extensive survey on 
data masking techniques and their purpose is given 
in (Ravikuhmar et al., 2011). Many organizations 
have strived to solve confidentiality issues with 
hand-crafted solutions within the enterprise to 
solve the problem of sharing sensitive informa-
tion. The most common solution is probably to 
use scripts with triggers in order to mask and 
unmask each value, or to embed the masking/
unmasking logic within the user applications 
themselves. Many commercial data masking 
packages have also been developed, such as the 
Oracle Data Masking (ODM) pack (Natan, 2005; 
Oracle, 2010a).

The Oracle EM Data Masking Pack (DMP) 
(Oracle, 2010a) provides masking primitives 
to replace sensitive data with realistic-looking 
values, such as random numbers, random digits, 
random dates, constants, as well as built-in mask-
ing routines which shuffle the value in a column 
across different rows. However, the DMP masking 
process is irreversible, which means that is only 
intended for replacing true data with false data 
without being able to retrieve the true data after 
masking, making it useless for real DW users. 
Oracle recommends using the DMP mainly for 
testing databases, as an easy, efficient and fast 
solution in the development lifecycle of user 
applications (Oracle, 2010A). This is typically 
what happens with other standard commercial 
database masking solutions (Ravikuhmar et al., 

2011). Since data masking techniques are often 
considered as lacking strong security strength and 
most rely on cross-referencing actions in order to 
retrieve the true original values (which bring huge 
table joins in DW databases), they are considered 
inadequate for use with real-world live databases 
such as DWs.

Web-based applications require supporting co-
operative processes while ensuring confidentiality 
of data. This research field is characterized by a 
number of different approaches and techniques, 
including privacy-preserving data mining (Vaidya 
& Clifton, 2002), privacy-preserving information 
retrieval (Vimercati et al., 2010), and database 
systems specifically tailored toward enforcing 
privacy (Agrawal et al., 2002). A selective en-
cryption model is proposed in (Vimercati et al., 
2010), for access control.

An Order Preserving Encryption Scheme for 
numeric data is proposed in (Agrawal et al., 2004), 
by flattening and transforming plain text distribu-
tion onto a target distribution, based on value-based 
buckets. This solution allows any comparison 
operation to be directly applied on encrypted 
data, such as equality and range queries, as well 
as MAX, MIN and COUNT queries. However, 
storage space overhead depends on the skew in 
the plaintext and target distributions, which can 
be a problem in DWs. The mapping function for 
the buckets introduces a greater overhead than 
the MOBAT technique, and the definition of how 
the bucket distribution should be built and how it 
should scale is not a trivial task. A similar type of 
solution for processing queries without decrypt-
ing data was proposed earlier by (Hacigumus et 
al., 2002), suffering from the same problems. 
This last solution uses only one encryption key 
to encrypt data, which reduces the number of 
hypothesis the attacker needs to consider in order 
to break security.

A light-weighted database encryption scheme 
with low decryption overhead in column-oriented 
DBMS is proposed in (Ge & Zdonik, 2007). They 
claim their solution is as secure as any underlying 
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block cipher, while demonstrating the inherent 
insecurity of any order preserving encryption 
scheme, such as (Agrawal et al., 2004), under ba-
sic attack scenarios. However, their experimental 
evaluations show an overhead of at least 50% in 
response time to retrieve the encrypted tuples, a 
very large cost for DW queries.

The work in (Radha & Kumar, 2005) proposes 
a security middleware that acts as a wrapper/inter-
face between user applications and the encrypted 
database server, for ensuring data integrity and ef-
ficient query execution over encrypted databases, 
evaluating queries at the application server and 
retrieving only the required rows from the server. 
They use only one TPC-H query for measuring 
the database server costs of their solution. The 
results show those costs rise by a factor that is 
proportional to the size of the tested data subset, 
which in their experiments is extremely small (it 
ranges from 10MB to 50MB, where query execu-
tion time rises up to 5 times for the last). This is not 
a realistic dataset for DWs. In a DW environment, 
previously transporting all the required data from 
the database to the middleware is unreasonable, 
since the amount of data accessed for processing 
decision support queries is typically much larger 
than a few tens of MB. This would strangle the 
network due to bandwidth consumption of data 
roundtrips between middleware and database, 
jeopardizing data throughput and consequently, 
response time. Thus, all encrypted data should be 
processed at the DBMS itself, eliminating network 
overhead from the critical path. The fact that they 
only test one query is also somewhat inconclusive, 
due to the large scope of possibilities in building 
and executing decision support queries.

Recently, research has proposed non-determin-
istic methods for masking data, such as perturba-
tion techniques (Agrawal et al., 2005; Procopiuc 
& Srivastava, 2011; Xiao et al., 2009). The work 
in (Agrawal et al., 2005) proposes a solution based 
on data perturbation techniques and explains data 
reconstruction for responding to queries, in a DW 
environment. Recent similar work proposed data 

anonymization solutions relying on perturbation 
or differential techniques such as (Procopiuc & 
Srivastava, 2011) and (Xiao et al., 2009). Although 
providing strong guarantees against privacy 
breaching, perturbation methods produce errors 
in data reconstruction, which is not acceptable in 
most data warehousing environments.

Data injection has been mostly used for build-
ing synthetic datasets for benchmarking and 
production purposes, i.e., filling in databases for 
testing the development of databases and applica-
tions (Arora et al., 2006; Callot et al., 2009; Lo 
et al., 2010). To our knowledge, there are no data 
injection solutions for enforcing data confidential-
ity as proposed in our technique.

Analyzing Packaged DBMS 
Encrypted Solutions: 
The Oracle 11g TDE

In the recent past, Oracle has integrated standard 
data encryption routines within their DBMS 
(Huey, 2008; Oracle, 2005, 2010b). The Oracle 
Transparent Data Encryption (TDE) solution was 
introduced in Oracle Database 10g Release 2. TDE 
enables transparently applying encryption within 
the database avoiding expensive changes to ap-
plication source code, including database triggers 
and views. Data is transparently encrypted when 
written to disk and transparently decrypted after 
a user application has been successfully authen-
ticated. The TDE allows the user to choose from 
various standard algorithms, such as AES (with 
128, 192 and 256 bit keys), and 3DES. Oracle does 
not allow to plug-in other encryption algorithms 
within the DBMS kernel.

Oracle TDE uses a two tier encryption key 
architecture, consisting of a master key and one 
or more table and/or tablespace keys. These keys 
are encrypted using the master key. Key manage-
ment is accomplished by creating an Oracle Wallet 
for each case. The Oracle Wallet is an encrypted 
container, physically a specific folder in the direc-
tory tree of the hard disk, which is used to store 
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authentication and signing credentials, including 
passwords, the TDE master key, tablespace and 
table private keys, and certificates needed by SSL/
TLS for data communication and access purposes. 
If a wallet is damaged or missing, or if the user 
is not authorized to open it, no encrypted data 
linked and masked to that wallet can be accessed. 
This implies that any authorized backup of the 
encrypted data should also include backing up 
its respective wallet. File and directory permis-
sions should be defined by the DW manager for 
determining who is allowed access to the wallet 
directory, avoiding its disclosure.

Oracle TDE allows two types of encryption: 
tablespace encryption (where all data stored in the 
tablespace is encrypted) or column encryption, 
for encrypting specific table columns. Since the 
proposal in this work is a column-based solution, it 
is compared with column-based encryption. More-
over, Oracle recommends that column encryption 
should be preferred when it is easy to determine 
which columns are sensitive and which are not, 
or when a small number of well defined columns 
are sensitive (Huey, 2008; Oracle, 2010b), which 
is typically what happens in DWs (Kimball & 
Ross, 2002).

When using column encryption, a storage space 
overhead between 1 and 52 bytes per encrypted 
value is added. The generation of independently 
encrypted values for the same column is done 
by using an explicit option (named SALT) that 
will use an independent key for generating each 
ciphertext, implying 16 bytes of storage space 
overhead. If this option is not used, those extra 
16 bytes are saved but all encrypted values in the 
column rely on one key only, which lowers the 
security strength. TDE does not support encrypt-
ing columns with foreign key constraints, due 
to the fact that individual tables have their own 
unique encryption key. However, joining tables 
is transparent and allowed to users and applica-
tions, even if the columns for the join condition 
are encrypted.

In order to evaluate its use and performance im-
pact in data warehousing scenarios, experimental 
evaluations of column-data encryption solutions 
provided by Oracle 11g TDE were executed, using 
the well known TPC-H benchmark (TPC, 2011). 
In these tests, the response time overhead for a 
workload composed of all the benchmark’s queries 
that access the fact table LineItem, on its 1GB 
scale database, was measured, using a Pentium 
2.8GHz CPU, with 2GB of RAM, where 512MB 
were dedicated for use by Oracle database memory 
area (SGA), on a 1.5TByte SATA hard disk.

For fairness, the database was optimized in 
a standard best practice manner for all scenarios 
(including primary keys, foreign keys, referential 
integrity constraints, and bitmap join indexes). 
Response times for each TPC-H query, shown in 
Table 1, are an average obtained from six execu-
tions, for each scenario. Before each execution, 
the database server was restarted. Three scenarios 
were defined: (1) without using encrypted data 
(Standard Query Exec. Time); (2) against numeri-
cal columns encrypted with AES 128 bit (Query 
Exec. Time Using AES128); and (3) with 3DES 
(Query Exec. Time Using 3DES168). The standard 
deviations for each scenario range within [0.56, 
52.27], [0.73, 66.34] and [0.69, 67.89], respec-
tively. The AES128 and 3DES168 algorithms were 
chosen for the tests because they are, respectively, 
the simplest (and fastest) and most complex (and 
slowest) of the set of available algorithms, accord-
ing to Oracle (Huey, 2008; Oracle, 2010b). This is 
consistent with what was discussed in background 
and related work section, given that AES is the 
algorithm which requires less computational re-
sources, while 3DES requires the most.

Although Oracle argues using TDE will only 
increase response time between 5% and 10%, on 
average, (Oracle, 2010B), the results clearly show 
that this is not true for the tested scenarios. The 
results in Table 1 show that response time overhead 
is, on average, much higher than 10%. In fact, all 
overheads are much greater than 10%, registering 
171% or 185% for the whole workload (last table 
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line), depending on which encryption algorithm 
is used. Moreover, the individual query execution 
time overhead for more than a half of the queries 
registered more than 100% for both encryption 
algorithms.

MOBAT: A MODULUS-BASED 
DATA MASKING TECHNIQUE 
FOR BALANCING SECURITY 
AND PERFORMANCE IN 
DATA WAREHOUSES

The Data Masking Solution’s 
Functional Architecture

The system’s functional architecture is shown 
in Figure 1, comprised by three entities: 1) the 
masked database and its DBMS; 2) the MOBAT 
security application (MOBAT-SA); and 3) user/
client applications to query the masked database. 
The MOBAT-SA acts as a middleware broker 

between the masked database DBMS and those 
applications, ensuring the queried data is securely 
processed and proper results are returned to those 
applications. All communications are made 
through SSL/TLS secure connections, to protect 
SQL instructions and returned results between 
the system’s entities, avoiding problems from 
intercepting messages by attackers on the network.

The Black Box is a set of files in a directory 
of the database server, created for each database 
to be masked and managed by the MOBAT-SA. 
This process is similar to the creation of an Ora-
cle Wallet, which keeps all the encryption keys 
and definitions for each Oracle Database (Huey, 
2008). However, contrarily to what happens in 
Oracle, where the DBA is free to access the Or-
acle Wallet whenever s/he wishes, only the 
MOBAT-SA can access the Black Box, i.e., ab-
solutely no user has direct access to its content. 
In the Black Box, the MOBAT-SA will store all 
the generated masking keys and predefined data 
access policies for the database to which it con-

Table 1. Oracle 11g TPC-H 1GByte standard vs. column-encryption query response time (in seconds) 

Queries Standard Query 
Exec. Time

Query Exec. Time 
Using AES128

% Overhead Using 
AES128

Query Exec. Time 
Using 3DES168

% Overhead Using 
3DES168

Q1 11 904 8118% 977 8782%

Q3 10 23 130% 24 140%

Q5 10 23 130% 25 150%

Q6 8 30 275% 32 300%

Q7 10 24 140% 24 140%

Q8 312 373 20% 377 21%

Q9 127 192 51% 197 55%

Q10 10 23 130% 23 130%

Q12 10 22 120% 24 140%

Q14 8 24 200% 25 213%

Q15 14 21 50% 22 57%

Q17 38 52 37% 54 42%

Q18 49 184 276% 191 290%

Q19 90 121 34% 127 41%

Q20 105 184 75% 188 79%

TOTALS 812 2200 171% 2310 185%
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cerns. The MOBAT-SA will also create a history 
log for recording a duplicate of all the further 
instructions and actions executed in the database, 
for auditing and control purposes. All Black Box 
contents are encrypted, using the AES standard 
encryption algorithm with a 256 bit key. In case 
of losing the Black Box of a certain database, 
there is no way to restore its true data, except to 
crack the masking keys.

The masking keys’ security depends on where 
they are stored and who has access to them. MO-
BAT uses three masking keys; two are private 
and one is public. The private masking keys are 
generated by MOBAT-SA, and encrypted and 
stored by it in the Black Box. The values of those 
keys are never shown or known by the DBA or 
any other user. To obtain true results, all user 
queries or actions must pass through MOBAT-SA, 
which will store a copy of those instructions in the 
Black Box history log. Each time a user requests 
the execution of any action, the MOBAT-SA 
will receive and parse the instructions, fetch the 
necessary masking keys, rewrite the query, send 
it to be processed by the DBMS and retrieve the 
processed results, and finally send those results 
back to the application that issued the request.

The Data Masking Formula

Generally, most facts in DWs are columns with 
numerical values (Kimball & Ross, 2002). Since 
fact tables usually represent more than 90% of 
the DW’s total size (Kimball & Ross, 2002), it 
is fair to assume that numeric type columns also 
represent the largest portion of business data. 
MOBAT aims on masking the DW’s numerical 
values while introducing small overheads in the 
computational efforts for query processing. The 
aim is to ensure that sensitive data is replaced by 
realistic (but not real) data.

Suppose a table T with a set of N numerical 
columns Ci = {C1, C2, C3, …, CN) to be masked 
and a total set of M rows Rj = {R1, R2, R3, …, RM). 
Each value to mask in the table will be identified 
as a pair (Rj, Ci), where Rj and Ci respectively 
represent the row and column to which the value 
refers. The masking Formula depends on the fol-
lowing predefinitions:

•	 K1 and K2 are private keys stored in the 
Black Box, known only by MOBAT-SA;

•	 K1 is a 128 bit random generated value, 
constant for T;

Figure 1. The data masking solution functional architecture
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•	 K2 is a 128 bit random generated value, 
ranging between the minimum and maxi-
mum positive integer value possible of col-
umn Ci, given the maximum storage size of 
Ci. There is a K2 for each column Ci to be 
masked, represented by K2, i;

•	 K3 is a public key based on a 128 bit col-
umn appended to each row Rj in T, filled 
in with a random value between 1 and 2128, 
represented by K3, j.

Suppose each value to mask as (Rj, Ci). Each 
new masked value (Rj, Ci)’ is obtained by applying 
the following Formula (1) for row j and column 
i of table T:

(Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i) 
+ K2, i	 (1)

MOD is the modular operator that returns the 
remainder of a division expression. Since K1 and 
K2, i are constant values for the table and each 
column, respectively, and K3, j is stored along 
with each row in the table, the inverse Formula 
of (1) for retrieving the original value is shown 
as Formula (2):

(Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i) 
– K2, i 	 (2)

If the values of K3, j were stored in a lookup 
table separate from table T, a heavy join opera-
tion between those tables would be required to 
unmask data. Given the typical enormous number 
of rows in fact tables, this is unfeasible and should 
be avoided at all cost. In order to avoid this when 
using MOBAT, the values of K3, j must be stored 
along with each row j in table T. To manage this, 
there are two possible solutions:

1. 	 A new column is created and added to table 
T for storing each K3, j value;

2. 	 Table T is recreated with the inclusion of K3, j 
in the CREATE TABLE statement from the 
start and then restoring the table’s data.

The second option implies additional efforts 
and time to rebuild table T, depending on its size. 
However, it should speed up query response time, 
when compared with the first option, since the new 
column K3, j is included with the original data in 
each row from the start; the second option makes 
it physically stored apart from the remaining 
original data in the table. The impact on database 
performance can be compared be observing their 
results in the experimental evaluation section. The 
results for MOBAT where the new K3, j columns are 
added to the fact tables a posteriori are referenced 
as MOBAT_AddCol; and the results for MOBAT 
where the K3, j columns are included in the fact 
tables from the start and completely rebuilt are 
referenced as MOBAT_CreateCol.

A third option for defining K3, j values and 
speed up MOBAT performance is to use any long 
integer typed column CZ, which is already part 
of the original data structure of table T, as K3, j, 
instead of creating an extra column for K3,j in T. In 
this case, no changes in table T data structure are 
required, eliminating storage space overhead in T. 
However, this limits the strength of the masking 
Formula (1), since the value of K3, j also depends 
on the range and cardinality of the values of CZ, 
and the predictability of knowing the values of 
CZ on behalf of an attacker. The results for this 
third option for defining K3,j are also shown in 
the experimental evaluation section, referred 
to as MOBAT_ColKey, where L_OrderKey and 
S_SaleID are used as CZ in the TPC-H and real-
world sales DW, respectively; i.e., each value of 
L_OrderKey and S_SaleID in each row j of tables 
LineItem and Sales, respectively, function as K3, j 
for MOBAT. The next subsection explains how 
to query the masked database.
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Implementing the Data Masking 
Solution in a Database

To mask a database, a DBA must require this action 
through MOBAT-SA. Entering the DBA login and 
database connection data, the MOBAT-SA will at-
tempt to login to that database. If it succeeds, the 
MOBAT-SA will scan all the data access policies 
defined in the database for identifying authorized 
users and respective permissions. The Black 
Box will then be created and updated with those 
user access definitions and data policies, and an 
action log for recording all further user actions 
requested to execute in the database will also be 
created, as explained earlier. After the previous 
step is executed, the MOBAT-SA will ask the DBA 
which tables and columns are to be masked. All 
the needed private masking keys for each table 
and column will then be generated, encrypted and 
stored in the respective Black Box.

Finally, the MOBAT-SA will apply the data 
masking Formula on all rows of all columns to 
be masked, replacing the original values with the 
new masked values. Whenever the database needs 
to insert new data or modify or delete existing 
data, this should be done through the MOBAT-SA, 
which will apply the masking routine to any value 
which refers to any masked column, and store the 
masked value directly in place. Contrarily to most 
standard commercial data masking solutions, the 
MOBAT-SA also allows reversing the masked 
database back to its original data, if intended. The 
next subsection explains how the data is masked 
by the MOD-based technique.

Querying the Masked Database

Whenever user applications wish to execute a 
query, they submit it to the MOBAT-SA instead of 
directly querying the database. The MOBAT-SA 
then rewrites the received query in order to process 
it with the real data values, using Formula (2) to 
replace the respective masked columns used in the 

query, and checking the user access definitions in 
the Black Box to see if it comes from an authorized 
user. To rewrite the user query, the MOBAT-SA 
searches for which tables and columns it needs to 
process, and looks up the Black Box for retrieving 
the needed K1 and K2,i data masking keys for those 
tables and columns, respectively, as well as the 
names of the needed K3, j key fields to be used by 
the MOBAT-SA in those tables.

As an example, suppose the LineItem table 
of the TPC-H benchmark (TPC, 2011) has four 
numerical fact columns (i = 4) (L_Quantity, L_Ex-
tendedPrice, L_Tax and L_Discount) masked by 
MOBAT. Suppose also that MOBAT has generated 
and filled in a new column L_KeyK3 for the j rows 
of the LineItem table, which will act as the public 
K3, j key values, and has stored the value of 9342 
(for example) for key K1 referring to the LineItem 
table, as well as K2, L_Quantity = 12, K2, L_ExtendedPrice 
= 51234, and K2, L_Discount = 4 (for example also). 
Consider TPC-H query 6:

SELECT SUM(L_ExtendedPrice * L_Dis-

count) AS Revenue 

FROM   LineItem  

WHERE  L_ShipDate>=TO_DATE(‘1994-01-

01’)  

   AND L_ShipDate<TO_DATE(‘1995-01-

01’)  

   AND L_Discount BETWEEN 0.05 AND 

0.07 

   AND L_Quantity<24

The new query, rewritten by the MOBAT-SA 
and submitted to the DBMS will be:

SELECT SUM((L_

ExtendedPrice+MOD(MOD(L_

KeyK3,9342),51234)-51234) *  

           (L_Discount+MOD(MOD(L_

KeyK3,9342),4)-4)) AS Revenue 

FROM   LineItem  

WHERE  L_ShipDate>=TO_DATE(‘1994-01-
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01’)  

   AND L_ShipDate<TO_DATE(‘1995-01-

01’)  

   AND (L_Discount+MOD(MOD(L_

KeyK3,9342),4)-4) BETWEEN 0.05 AND 

0.07  

   AND (L_Quantity+MOD(MOD(L_

KeyK3,9342),12)-12)<24 

As seen in the example, query parsing and 
adaptation is a straightforward operation, replac-
ing each masked column with their respective 
reverseFormula (2). This is valid for any type 
of query, including equality and range queries, 
as well as built-in functions. The changes to the 
queries are transparently handled by the broker 
and kept hidden from users. Only query results 
are returned to user applications.

Using False Data Injection

MOBAT may also be used for injecting false rows 
throughout the fact tables, making it increasingly 
difficult to distinguish true and false data, in order 
to mislead attackers that gain direct access to the 
database. To achieve this, instead of generating 
independent random numbers for the values of the 
K3,j keys in each row, as previously described, K3,j 
is redefined as a multiple of the sum of the true 
original values of all Ci, j columns to be masked, 
for each true row j:

K3,j = (∑Ci, j ) * k, { i = 1…n } where k is a 
random integer constant that does not overflow 
128 bits for K3,j and n is the number of masked 
columns C in row j			         (3)

For false rows, random values for filling each 
column Ci,j would be generated, and the value of 
K3,j would be equal to any value different from 
those possibly generated by Formula (3). Thus, 
true rows are verifiable through testing if K3,j is a 
multiple of the sum of the true unmasked values 

of all masked columns, using the MOD remainder 
operator. Formula (4) shows how to test if a certain 
row j is true or false:

Given R = K3,j MOD (∑Ci, j) , { i = 1…n } as in 	
(3)

IF R=0 THEN row j is True ELSE row j is 
False 	 (4)

There is a tradeoff between security and perfor-
mance when using this false data injection method. 
The more false data is injected, the stronger is 
the level of security of the table. However, the 
more data is injected, the more data is scanned 
and verified by the queries, decreasing database 
performance. The increased overall security 
strength for each fact table is directly dependent 
on how many false rows should be injected into 
each table, and how to distribute the false rows 
throughout the existing data.

Security Issues

Encrypting the Contents 
of the Black Box

In what concerns the Black Box, all of its content 
is encrypted using the standard AES 256 bit al-
gorithm, making it as secure in this aspect as any 
other similar encryption solution for stored data 
(e.g. Oracle 11g TDE and Microsoft SQL Server 
2008 TDE). The only allowed access to the Black 
Box’s content is done by the MOBAT-SA, which 
is managed only by the application itself.

Handling Transparency and 
Securing Communications

All user queries and instructions are managed by 
the MOBAT-SA, which transparently parses and 
rewrites them to query the DBMS and retrieve 
the intended results. The users never see the 
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rewritten instructions. For security purposes, the 
MOBAT-SA shuts off any historical log on the 
database managed by the DBMS before request-
ing the execution of the rewritten instructions, so 
that they are not stored in the DBMS, since this 
could disclose the private keys. All communica-
tions between user applications, MOBAT-SA and 
the DBMS are performed through encrypted SSL/
TLS connections. All these actions prevent attack-
ers from accessing the masking keys, rewritten 
queries/instructions and true data.

Attack scenarios. Given their massive amount 
of data and complex performance optimization 
structures, DW databases are only updated at 
very specific moments in an extremely controlled 
environment, with the database offline to its users 
(Kimball & Ross, 2002). Since DWs are typically 
in a read-only mode when they are online, attack 
scenarios on the masked database can come from 
two types of attackers, interested in data theft: 1) a 
masqueraded user (an authorized user with mali-
cious intent or someone who has stolen password 
and login information and logs in the system as an 
authorized user); or 2) an attacker that manages to 
bypass the MOBAT-SA and gain direct access to 
the database. It is assumed that the attackers have 
access to the masking Formula and the masked 
values, and do not know the values of masking 
keys K1 and K2 for each masked value.

Handling Masqueraded Attackers

In what concerns masqueraded attackers, all logins 
and queries submitted to the MOBAT-SA are auto-
matically encrypted and permanently stored in the 
Black Box historical action log without change. 
The Black Box can never be manually accessed or 
updated by anyone except the MOBAT-SA itself. 
Technically, if a DBA is allowed to control security 
without any restriction (which may happen in the 
Oracle 11g TDE solution, for instance), the whole 
system becomes vulnerable to malicious DBA 
actions. To manage this, MOBAT-SA allows any 

user with administration privileges to query the 
read-only historical log, so any DBA can watch 
over other DBA to check for misuse. Since all 
database access is controlled by the MOBAT-SA, 
extracting the predefined data access policies in the 
first instantiation with the database to mask, from 
data access policies previously defined using the 
DBMS. Subsequent changes in data access policies 
by DBAs must be done through the MOBAT-SA. 
Since these requested changes are also stored in 
the Black Box history log, changes in data access 
policies with the purpose of executing malicious 
actions can always be detected. This log can also 
be used to develop an intrusion detection system 
(which is not within the scope of this work).

Handling Attackers with Direct 
Access to the Database

The masked data in the database remains masked 
at all times. For attackers that bypass the MOBAT-
SA and gain direct access to the database, they 
will only see masked data, reflecting realistic but 
false values. The exposure in this case of attack 
is similar to those of similar scenarios where the 
attacker can see the encrypted data. Similarly, 
the attacker’s task is to try and crack the mask-
ing/encryption keys by exhaustive key search in 
chosen ciphertext attacks.

Generating Apparent Randomness 
for the Masked Values

Generating randomness for masking and crypto-
graphic applications is a costly and security-critical 
operation (Barbosa & Farshim, 2009). In order 
to guarantee their security strength, two same 
original real data values must generically originate 
different masking generated values, so a level of 
apparent randomness is ensured. Given that the 
proposed masking Formula (1) uses two MOD 
operations in conjunction with randomly generated 
realistic values, the generated masked values for 
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the same original data values are mostly different. 
To demonstrate this, suppose a table T with two 
masked columns, Column1 and Column2. Suppose 
the MOBAT-SA generated the values K1 = 9264 
for table T and K2,1 = 12 and K2,2 = 78254 for each 
column. Table 2 shows the original data for T on 
the left and its resulting masked content on the 
right. It can be seen that the same original values 
of Column1 result in different masked values, 
and vice-versa, achieving apparent randomness. 
Of course, this is a very small dataset used only 
to illustrate these features.

Non-Invertibility of the Masking Formula

The MOBAT masking Formula uses two con-
secutive MOD operations. For a function to be 
invertible, each output must correspond to no more 
than one input, i.e., more than one different inputs 
cannot generate the same output; a function with 
this property is called one-to-one, or information-
preserving, or an injection. An injective function 
is a function that preserves distinctness: it never 
maps distinct elements of its domain to the same 
element of its codomain. Since the MOBAT opera-
tor is non-injective, given that for X MOD Y = Z, 
the same output Z, considering Y a constant, can 
have an undetermined number of possibilities in X 

as an input which will generate the same value Z 
when applying the operator (e.g. 15 MOD 4=3, 19 
MOD 4=3, 23 MOD 4=3, 27 MOD 4=3, etc). Since 
MOD operations are non-injective, this means the 
MOBAT Formula (1) is also non-injective. Given 
that injectivity is a required property for having 
invertibility, MOBAT is therefore, non-invertible. 
The only way to break its security is to crack the 
masking key values of each column.

Key Management

As known (and it is assumed that the attackers 
have access to the masking Formula), the level of 
security of data masking or encryption solutions 
does not depend on its secrecy, but on its keys 
(Nadeem & Javed, 2005). The quality of each set 
of operations in achieving the intended “data mix” 
affects the performance of the algorithm. Thus, 
there is always a tradeoff between security and 
performance in these algorithms. As discussed in 
(Kim et al., 2010; McKendrick, 2009; Nadeem & 
Javed, 2005), there is no easy way of obtaining 
impartial and widely accepted values for defining 
the minimum number of secure rounds for each 
algorithm.

In the proposed masking Formula, there are 
three keys: K1 is a unique value generated once 

Table 2. Example of original and resulting MOBAT dataset 

T – Original dataset T‘ – MOBAT Masked dataset

Column1 Column2 K3,j Column1‘ Column2‘ K3,j

11 91873 7537 22 162590 7537

2 94129 1808 6 170575 1808

18 71624 29636 22 148034 29636

19 38824 50877 22 112521 50877

15 84624 34997 22 155673 34997

12 46926 41395 17 120841 41395

15 92503 23744 19 165541 23744

19 28562 46700 23 101600 46700

19 41042 58902 25 114080 58902
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for each table and made constant for all values to 
mask in that table; K2 is a unique value generated 
once for each column in each table and made 
constant for all values to mask in that column; and 
K3 is a value generated for each row in the table, 
made constant for all the values in the columns to 
mask in that row. Since K3 is public (given that it 
is stored in the fact table), only key values K1 and 
K2 need to be discovered for retrieving the real 
data values. K1 is a 16 byte integer key, i.e., a set 
of 128 bits. K2 depends on the maximum storage 
size defined for each column, variable between 1 
and 128 bits. This means that the masking Formula 
implies a minimum of 2129 key combinations, for 
K1 and K2 together (at least 16 bytes + 1 bit), and 
roughly needs an average number of 2128 tests 
(half of the total amount of possible brute force 
tests – 50% chance) for discovering the keys using 
brute force, for each masked column in the table, 
since K2 is column dependant. Consequently, the 
minimum number of combinations needed to 
discover all the needed key values for a i number 
of columns is i * 2129, resulting in an average of i 
* 2128 ≈ i * 3.4 x 1038 brute force tests in order to 
discover the keys.

The security strength of standard encryption al-
gorithms is higher, given both the mixes produced 
in each round and usage of 128 to 256 bit keys, 
resulting in a higher number and complexity of 
combinations. Although MOBAT is not so strong 
in security, it requires much less computational 
resources, while maintaining a considerable level 
of security, given the high number of possible 
brute force attack combinations. Periodically, 
the masking may be refreshed by rebuilding the 
masked table values, switching the values of all 
or any one of the K1, K2, and K3 keys, in order 
to ensure data is properly protected. Moreover, 
the data injection method also allows increasing 
MOBAT’s overall security strength. Although it is 
not possible to absolutely prove that a particular 
algorithm is secure (Ge & Zdonik, 2007; Kim 
et al., 2010; Mattson, 2004; McKendrick, 2009; 

Nadeem & Javed, 2005; Natan, 2005), we believe 
the proposed technique is secure enough to be 
acceptable for use.

Performance and 
Transparency Issues

Performance in Middleware Data 
Confidentiality Solutions

Topologies involving middleware data confi-
dentiality solutions, such as (Radha & Kumar, 
2005), typically request all the masked/encrypted 
data from the database and perform the unmask-
ing/decrypting actions themselves locally. This 
strangles the network due to communication 
costs with bandwidth consumption between the 
middleware and the database, jeopardizing data 
throughput and consequently, response time. In 
a DW environment, previously acquiring all the 
data from the database needed for processing a 
query at the middleware solution is unreasonable, 
given the typically large amount of data accessed 
for answering decision support queries. In this 
sense, MOBAT-SA just rewrites user queries 
and then sends them to be processed directly 
by the DBMS, sending only the results back to 
the user application that requested the execution 
of the query. This eliminates network overhead 
from the critical path, optimizing response time 
and throughput when compared to other similar 
middleware security solutions.

CPU Processing Costs in Data 
Confidentiality Algorithms

This work is focused on protecting numerical 
values. This type of data typically represents 
up to 16 bytes of storage size for each column. 
The number of clock cycles for encrypting these 
values depends directly on the algorithms and on 
the CPU architecture in which they are executed. 
As an example on a Pentium II CPU (required 
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by NIST for comparison tests) from (Elminaam 
et al., 2010), the AES Rijndael algorithm with a 
128 bit key, implemented in C, takes up 29 clock 
cycles per encrypted byte, for encrypting a 16 
byte value, resulting in a total of 29*16 = 464 
clock cycles. The same algorithm with a 256 bit 
key takes up 39 clock cycles per encrypted byte, 
which means it will need 39*16 = 624 clock 
cycles for encrypting the same 16 byte value. 
Since a MOD operation on the same CPU takes 
up 142 clock cycles and an arithmetic sum or 
subtraction takes up 3 clock cycles (Fog, 2011), 
for masking the same 16 byte value MOBAT’s 
masking Formula needs 2*142+2*3=290 clock 
cycles (2 MOD operations, plus one addition and 
one subtraction). This means MOBAT is 1.6 times 
faster than AES using a 128 bit key and 2.15 times 
faster than AES using a 256 bit key to process each 
16 byte value on that CPU. However, although 
the proposed Formula is faster to compute than 
standard encryption algorithms, this work is not 
mainly focused on making it faster than those 
algorithms. Most implementations of encryption 
algorithms are CPU optimized, designed and 
programmed for specific processor models and 
therefore, depending on those CPUs, while the 
solution proposed in this work is assumed as 
processor-independent. This is achieved by the 
high-level SQL reprogramming of the user que-
ries, making it usable in any DBMS, regardless 
of the used CPU.

Encryption in Microsoft SQL 
Server 2008 and MySQL 5.5

Microsoft SQL Server and MySQL 5.5 only 
encrypt textual or varbinary type values (char, 
varchar, varbinary, etc). Given that most sensi-
tive columns in DW fact tables store numerical 
values, when using these DBMS they must be 
converted to a textual or varbinary format. Once 
decrypted for processing, these values also must 
be transformed back into numerical format in 

order to apply arithmetical operations such as 
sums, averages, etc. This is a significant drawback, 
introducing extra computational overheads with 
evident impact in performance. On the contrary, 
MOBAT is specifically designed for masking 
numerical values, and in this sense, is therefore 
much more appropriate for protecting DW facts.

Transparently querying masked data. Query 
instructions in MOBAT become longer due to 
replacing each masked column with the masking 
or unmasking Formulas, but this is automatically 
and transparently managed by the MOBAT-SA, 
eliminating user application code changes. The 
only change the user applications need is to send 
the query to the MOBAT-SA, instead of querying 
the database directly.

EXPERIMENTAL EVALUATION

The TPC-H decision support benchmark (TPC, 
2011) (1GB and 10GB scale sizes) and a real-
world sales DW storing one year of commercial 
data (taking up 2GB of data) was used to evaluate 
the proposed approach. All scenarios were tested 
in the leading commercial DBMSs, Oracle 11g 
and Microsoft SQL Server 2008 R2, on a Pentium 
2.8GHz CPU with a 1.5TB SATA hard disk and 
2GB RAM, 512MB of which devoted to database 
memory cache. Oracle 11g ran on Windows XP 
Professional, while SQL Server ran on Windows 
2003 Server.

The database schema of TPC-H has one fact 
table (LineItem), and seven dimension tables. The 
Sales DW database schema has one fact table 
(Sales) and four dimension tables attached to it. In 
the TPC-H setups, four columns of LineItem were 
masked (L_Quantity, L_ExtendedPrice, L_Tax 
and L_Discount), given they are the numerical 
fact columns. In the Sales DW, five numerical 
columns were masked (S_ShipToCost, S_Tax, 
S_Quantity, S_Profit, and S_SalesAmount), for 
the same reasons.
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Since MOBAT is column-based, for fairness 
it is compared with the column-based AES128 
and 3DES168 encryption algorithms provided 
by both DBMS, given that tablespace encryption 
has functional primitives that speedup perfor-
mance, making it unfair to compare MOBAT with 
tablespace-based techniques (Huey, 2008; Oracle, 
2010b). Moreover, best practice documentation for 
encryption in documentation from both DBMSs 
(Huey, 2008; Oracle, 2010b) recommends using 
column-based encryption when the sensitive 
data consists on a small number of well-defined 
columns. The AES128 and 3DES168 algorithms 
were used for comparison because they are, respec-
tively, the fastest and slowest available algorithms 
in those DBMS (Huey, 2008; Oracle, 2010b), as 
previously mentioned. Table 3 shows the defined 
experimental encryption/masking scenarios.

Analyzing Data Loading 
Performance

Tables 4 and 5 show the results concerning data 
storage size and loading time (in seconds), respec-
tively, for all data of the TPC-H 1GB LineItem fact 
table, in each defined scenario, in each DBMS. 
Figures 2 and 3 show the overhead percentages 
concerning these results. The results in the re-
maining databases are similar to those shown in 
the Figures, with absolute values approximately 
proportional to their database sizes, and to avoid 

redundancy are not included. The MOBAT ColKey 
setup is not included, since it does not require 
changing the fact table data structure and thus, 
presents no overhead in loading data.

In what concerns storage space, MOBAT 
presents overheads ranging from 4.1% (32MB) 
to 5.7% (44MB) of extra storage space in Oracle 
and 2.8% (35MB) in SQL Server. AES128 and 
3DES168 present storage space overheads from 
103.6% (800MB) to 153.9% (1188MB) in Oracle 
and 76.3% (944MB) to 94.8% (1173MB) in SQL 
Server, corresponding to a much higher increase 
of extra storage space.

In what concerns data loading time, MOBAT 
presents an overhead ranging from 3.5% (11 
seconds) to 7.7% (24 seconds) in Oracle and 
from 4.3% (9 seconds) to 6.5% (14 seconds) 
in SQL Server, of extra loading time. AES128 
and 3DES168 present much greater loading 
time overheads, from 189.7% (588 seconds) to 
191.6% (594 seconds) in Oracle and 123.1% 
(261 seconds) to 129.2% (274 seconds) in SQL 
Server, corresponding to a much higher increase 
of extra loading time.

As seen in these results, MOBAT is much more 
efficient than the standard encryption algorithms, 
introducing very small overheads in both storage 
space and loading time. Since these results are 
for the TPC-H 1GB sized database and that the 
overhead percentages are similar for the remaining 
tested scenarios, it can be noticed that for the TPC-

Table 3. Experimental data encryption/masking scenarios 

Reference/Label Description

Standard Standard data without masking/encryption

AES128 Col Data encrypted with TDE AES 128 bit key column encryption

3DES168 Col Data encrypted with TDE 3DES168 column encryption

MOBAT AddCol Data masked by MOBAT Formula (1), where a column for masking keys K3, j has been added to the 
existing fact table

MOBAT CreateCol Data masked by MOBAT Formula (1), where a column for masking keys K3, j was added to the fact 
table, which has been completely recreated

MOBAT ColKey Data masked by MOBAT Formula (1), using a numerical column from the original fact table data 
structure as key K3, j
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Table 5. TPC-H 1GB line item fact table data loading time for each experimental scenario

DBMS Standard AES128 
Col

Absolute/
Relative 

Overhead

3DES168 
Col

Absolute/
Relative 

Overhead

MOBAT 
AddCol

Absolute/
Relative 

Overhead

MOBAT 
CreateCol

Absolute/
Relative 

Overhead

Oracle 
11g

310s 898s +588s / 
190%

904s +594s / 
192%

334s +24s / 8% 321s +11s / 4%

SQL 
Server 
2008

212s 473s +261s / 
123%

486s +274s / 
129%

226s +14s / 7% 221s +9s / 4%

Figure 2. Storage space overheads for TPC-H 1GB

Figure 3. Loading time overheads for TPC-H 1GB

Table 4. TPC-H 1GB line item fact table storage sizes for each experimental scenario 

DBMS Standard AES128 
Col

Absolute/
Relative 

Overhead

3DES168 
Col

Absolute/
Relative 

Overhead

MOBAT 
AddCol

Absolute/
Relative 

Overhead

MOBAT 
CreateCol

Absolute/
Relative 

Overhead

Oracle 
11g

772MB 1960MB +1188MB / 
154%

1572MB +800MB / 
104%

816MB +44MB / 
6%

804MB +32MB / 
4%

SQL 
Server 
2008

1237MB 2410MB +1173MB / 
95%

2181MB +944MB / 
76%

1272MB +35MB / 
3%

1272MB +35MB / 
3%
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H 10GB, which is ten times bigger, the absolute 
values of the overheads are also approximately 
ten times bigger. Proportionally, this means that 
TPC-H 10GB has approximately 8GB to 12GB 
of increased storage space, and approximately 43 
to 99 minutes of increased loading time. Given 
that 10GB is actually a small size for a DW da-
tabase, it is easy to conjecture that the overheads 
introduced by DBMS data encryption algorithms 
in DWs are extremely significant and may in fact 
be impracticable.

Analyzing Query Performance

For TPC-H, the test workload was composed of 
the benchmark’s queries 1, 3, 6, 7, 8, 10, 12, 14, 
15, 17, 19, and 20, representing queries access-
ing the masked fact table LineItem. For the Sales 
DW, the workload was a set of 29 queries, all 
processing facts in the Sales masked fact table, 
representing a sample of typical decision support 
queries, such as customer product and promotion 
sales daily (9 queries), monthly (9 queries) and 
annual (11 queries) values, with actions as row 
selection, joining, aggregates, and ordering.

For fairness, databases were optimized in a 
standard best practice manner in all scenarios 
(including primary keys, foreign keys, referential 
integrity constraints and join indexes). Before 
each execution the database server was restarted. 
Response time results for each query’s execution 
time are an average obtained from six executions 
for each tested scenario on each DBMS (with 

Oracle 11g standard deviations between [0.52, 
54.65] and [0.64, 70.10] for 1GB and 10GB TPC-
H, respectively, and [0.57, 71.20] for the Sales 
DW, and SQL Server 2008 standard deviations 
between [0.49, 52.13] and [0.60, 67.93] for 1GB 
and 10GB TPC-H, respectively, and [0.55, 70.02] 
for the Sales DW).

Figures 4 and 5 show the total query workload 
execution time overhead for each scenario, for each 
database. The Standard execution time for each 
scenario, i.e., the execution time of the workload 
against a non-encrypted/masked database is 626, 
6155, and 2233 seconds in Oracle 11g, and 580, 
5301, and 2211 seconds in SQL Server 2008, for 
the 1GB TPC-H, 10GB TPC-H, and Sales DW, 
respectively. Comparing the overheads intro-
duced by each technique in both DBMS, shown 
in Figures 4 and 5, MOBAT is much better than 
AES128 and 3DES168, given the complete query 
workload in each setup.

In Oracle 11g, MOBAT ranges from at least 
5.32 (187.7/35.3) times better than those standard 
column encryption solutions for the 1GB TPC-H 
database, to 9.23 (203/22) times better. In the 
10GB TPC-H database, the gains range from 6.05 
(131.8/21.8) to 8.58 (144.2/16.8) times better, and 
for the Sales DW, from 5.39 (688.3/127.7) to 10.5 
(814.7/77.6) times better. Notice that column 
encryption introduces a minimum overhead of 
131.8% (8112 seconds) in the TPC-H 10GB 
setup (total workload response time takes almost 
4 hours, instead of the standard time, which is 
less than 2 hours), and 688.3% (15370 seconds) 

Figure 4. Query execution time overheads for each tested database in Oracle 11g
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in the Sales DW setup (workload response time 
takes almost 5 hours, instead of the standard 37 
minutes). On the other hand, MOBAT introduces 
a maximum overhead of 21.8% (1342 seconds) 
in the TPC-H 10GB setup (total workload response 
time takes little over 2 hours), and 127.7% (2851 
seconds) in the Sales DW setup (total workload 
response time takes almost 1.5 hours).

In SQL Server 2008, shown in Figure 5, MO-
BAT ranges from at least 4.35 (174.3/40.1) times 
better than those standard column encryption 
solutions for the 1GB TPC-H database, to 8.60 
(195.2/22.7) times better. In the 10GB TPC-H 
database, the gains range from 7.15 (151.6/21.2) to 
14.02 (183.7/13.1) times better, and for the Sales 
DW, from 5.38 (665.4/123.7) to 11.78 (758.6/64.4) 
times better. Notice that column encryption in-
troduces a minimum overhead of 151.6% (8036 
seconds) in the TPC-H 10GB setup (total workload 

response time takes almost 4 hours, instead of the 
standard time, which is less than 2 hours), and 
665.4% (14712 seconds) in the Sales DW setup 
(workload response time takes almost 5 hours, 
instead of the standard 37 minutes). On the other 
hand, MOBAT introduces a maximum overhead 
of 21.2% (1124 seconds) in the TPC-H 10GB 
setup (total workload response time still takes 
less than 2 hours), and 123.7% (2735 seconds) 
in the Sales DW setup (total workload response 
time takes almost 1.4 hours).

The results for each individual query execu-
tion time in the Oracle 11g for the TPC-H 10GB 
scenarios can be seen in Figure 6. These results 
show that all queries have an overhead similar to 
those of the complete workload (shown in Figures 
4 and 5). This is also true for all the other scenarios 
in both DBMS, making it redundant to include 
all results in this section.

Figure 5. Query execution time overheads for each tested database in SQL Server 2008

Figure 6. 10GB TPC-H Individual Query Exec. Time Overhead per Encryption/Masking Algorithm
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Query Q1 presents the most significant results 
because it processes more than 90% of the total 
fact table data, while the remaining queries process 
less than 10%. It can be seen that mostly all que-
ries processed by AES and 3DES have introduced 
overheads of several orders of magnitude higher 
than MOBAT.

All the results in all scenarios in both DBMS 
also show that the performance of CreateCol 
Masking is better than AddCol Masking, which 
was expected as previously mentioned, explain-
ing the technique. The performance results of 
ColKey Masking are the best, given the absence 
of changes in the original fact table data structure 
and storage size.

Analyzing the Impact in Performance 
Using False Data Injection

In order to test false data injection scenarios, 25%, 
50%, 75% and 100% of false rows (relatively to 
the total number of true rows) were inserted into 
the TPC-H 1GB database using Oracle 11g, ac-
cording to what was previously explained, using 
Formula (3) for defining the values of key K3,j. 
All queries used in the tests were modified using 
Formula (4), to distinguish between true and false 
data. The false rows were uniformly distributed 
throughout the fact table. Table 6 shows the results 
for each scenario, with total workload execution 
time overhead relatively to the total workload of 
MOBAT AddCol and CreateCol, since the ColKey 
setup cannot be used because it already uses a 
previous existing column and does not allow us-

ing the public K3,j key for the false data injection 
purpose according to Formula (3).

The introduced overheads in each query work-
load refer to executing the MOD operation from 
Formula (4) and the extra amount of false rows 
each query needs to access and test. As it would 
be expected, the overhead in each scenario is more 
or less proportional to the amount of false data 
injected. The results for the remaining database 
setups, TPC-H 10GB and the Sales DW, are 
similar to those shown in Table 6, and to avoid 
redundancy are not included here.

FUTURE RESEARCH DIRECTIONS

In a traditional DW, users execute much more 
queries than updates against their databases. Thus, 
data is static, i.e., there is no loading of new data 
when the databases are available to its users. In 
these environments, the main performance issue 
in most cases is not encryption overheads, but 
decryption overheads. Since loading of new data 
is done in well defined time windows in which the 
database is offline, there is no impact in user query 
response time; it only affects DW maintenance 
time. However, the higher is the amount of data 
to load, the higher the storage space and loading 
time overheads. Nevertheless, this static data state 
paradigm has been changing, with the increasing 
implementation of real-time data warehousing 
solutions. Thus, given the size of DWs and the 
amount of data typically processed by decision 
support queries, the overheads introduced by both 

Table 6. TPC-H 1GB workload exec. time(seconds)/overhead (%) with false data injection using MOBAT 
in Oracle 11g 

+25% False Data 
(Time/Overhead)

+50% False Data 
(Time/Overhead)

+75% False Data 
(Time/Overhead)

+100% False Data 
(Time/Overhead)

1G TPC-H MOBAT Ad-
dCol

1110 sec / 31% 1355 sec / 60% 1601 sec / 89% 1855 sec / 119%

1G TPC-H MOBAT Cre-
ateCol

1045 sec / 29% 1264 sec / 56% 1482 sec / 83% 1709 sec / 111%
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encryption and decryption as well as masking and 
unmasking algorithms need to be dealt with, for 
the sake of their feasibility. The development of 
future data confidentiality solutions must consider 
the performance of both encryption/masking and 
decryption/unmasking as critical.

To improve CPU performance and scalability 
of data confidentiality algorithms, the results 
obtained by the Salsa20 family of algorithms 
(Bernstein, 2005, 2008) indicate that using long 
chains of simple operations instead of short chains 
of complex operations may allow developing 
faster solutions, while still being able to maintain 
significant levels of security.

The basic argument for increasing the block 
size of the standard 16 bytes to a higher size of 
256 bytes, for example, is that it does not need 
as many cipher rounds to achieve the same con-
jectured security level. Using a larger block size 
should provide just as much mixing as the first 
few cipher rounds and thus, saves time. The basic 
counterargument is that a larger block size also 
loses time in CPU models. On most CPUs, the 
communication cost of sweeping through a 256-
byte block is a bottleneck, because they have been 
designed for computations that do not involve so 
much data. However, current CPU trends show 
that their evolution will allow them to compute 
larger amounts of bits. Thus, future algorithms 
should take advantage of this, increasing the typi-
cal 128 bit block size used in AES. Being able to 
do parallel processing is a performance booster 
in speed and scalability.

Some ciphers sacrifice security strength at-
tempting to obtain higher speed. Until this mo-
ment, 256 bit keys have been used and considered 
secure, since the computational efforts in trying 
to break their security were considered nearly 
impracticable. However, the recent multi-core 
CPU trends indicate that this key length will be 
rapidly surpassed as hardware processing power 
evolves. Therefore, to avoid rapidly becoming use-
less, at least 256 bit or higher key lengths should 
be used in the development of new solutions. 

Although higher keys should, in principle, bring 
worse performance, in our opinion the problem 
is not centered on the key length, but on the used 
block size and the algorithm itself.

There is always a tradeoff between perfor-
mance and security; research will probably lead to 
solutions that are better in database performance, 
but have less security strength. The main issue is 
to significantly decrease storage space, resource 
consumption and response time, while maintaining 
substantial security strength. A possibility is to 
develop variable-based dynamic algorithms that 
enable the user to choose between different key 
lengths and block sizes, the number of encryption/
masking rounds, and any other parameter that 
could allow DBAs and application developers 
to fine tune the security-performance tradeoff’s 
balance according to the specific features and 
requirements of each DW. To our knowledge, this 
type of solution has never been proposed.

CONCLUSION

This work presents a data masking solution spe-
cifically designed for enhancing data confiden-
tiality in DWs. It also takes advantage of one of 
the masked fact tables masking key for enabling 
false data injection, increasing the overall security 
strength against attackers that gain direct access 
to the database.

The proposed data masking Formula is 
composed by a set of two consecutive modulus 
(division remainder) operations and two simple 
arithmetic operations. It requires small computa-
tional efforts and can be straightforward and easily 
implemented in any DBMS. Since it basically 
works by transparently rewriting user queries, 
it minimizes efforts in changes to user applica-
tions driven by changes in DW data structures, 
nor does it jeopardize network bandwidth. The 
masked database can be directly used for produc-
tion purposes, enabling developing applications 
to directly query it without passing through the 
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MOBAT application, therefore retrieving realistic 
data, but never the real data, for testing software 
development. This also avoids disclosure of the 
real original data if any attacker bypasses database 
access control and is able to retrieve data directly 
from the database.

Although it was not conceived as a direct 
alternative to standard encryption solutions, it 
has been compared with the AES and 3DES 
algorithms, provided by leading commercial 
DBMS. The experimental results show that the 
storage space increase and degradation of database 
performance introduced by these standard solu-
tions is very significant from the DW perspective. 
This enforces stating that those techniques are in 
fact too complex and costly in performance to 
be used in DW scenarios. Given that most DW 
data consists on numerical values, the proposed 
masking technique is tailored for this kind of data. 
Our technique shows better database performance 
than the encryption standards, while managing to 
maintain a significant level of security strength, 
enforced by the false data injection method. Thus, 
it is an efficient overall solution and a valid alter-
native for balancing the performance and security 
issues from the DW perspective.

As future work, we intend to develop our 
technique in order to accomplish also masking 
textual values, in order to provide a broader 
data confidentiality solution. Another research 
challenge is to take advantage of the history log 
stored in the MOBAT-SA Black Box to manage 
intrusion detection.
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KEY TERMS AND DEFINITIONS

Data Confidentiality: Domain of Data Se-
curity focused on protecting unauthorized data 
disclosure.

Data Encryption: Advanced form of Data 
Masking with a well defined set of procedures 
for encrypting and decrypting data, usually in the 
form of a multi-step algorithm.

Data Masking: Also known as Data Obfus-
cation, it stands for any technique that is able to 
replace true data with false data.

Data Security: Information technology expert 
field involving the protection of any form of data.

Data Warehousing: Analytical databases fo-
cused on providing decision support information 
and deriving business intelligence for enterprises.

Database Performance Optimization: 
Domain of database performance focused on 
all aspects and techniques that may enhance the 
performance of inserting, querying, updating or 
deleting data structures, namely in what concerns 
response time, throughput, and storage space, 
among other features.


