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In managing business processes, the process uncertainty and variability are significant fac-
tors causing difficulties in prediction and decision making, which evokes and augments
the importance and need of process measures for systematic analysis. We propose an
entropy-based process measure to quantify the uncertainty of business process models.
The proposed measure enables capturing the dynamic behavior of processes, in contrast
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1. Introduction

A business process is a collection of tasks and deci-
sions to produce products or services in an organization.
The measurement of business processes has a great signif-
icance since a process does not only create value, but also
costs. In recent years, many measures of process models
have been devised to reflect or predict process character-
istics such as understandability, reliability, usability, and
maintainability [1]. A process model designed with the aid
of these metrics as guiding principles is likely to be less
error-prone, easier to understand, maintain, and manage,
and more efficient [2].

Several process measures for complexity [3,4], den-
sity [5], coupling and cohesion [6] have been recently in-
troduced to provide a quantitative basis for the design,
development, and analysis of process models. In particular,
most studies have addressed complexity measures. Higher
complexity leads to more difficulty in understanding and
interpreting process models. Mendling et al. [7] analyzed
hundreds of SAP reference models to confirm that com-
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plexity seemed to be a key determinant for errors. Gon-
zalez et al. [1] and Muketha et al. [8] provide very good
surveys of recent research done in this area.

In this paper, we focus on the uncertainty and variabil-
ity of business processes. Uncertainty and variability are
caused by events that force a system to deviate from a
regular and predictable behavior [9]. In operational pro-
cesses, reducing variability or uncertainty has been an im-
portant issue, since doing so enables the process to guar-
antee better predictability and managerial efficiency. On
the contrary, systems with high variability and uncertainty
have more difficulties in making more efficient planning
and scheduling. In mathematical statistics, entropy is often
used to measure uncertainty about the value of a random
variable [10]. In a similar way, the concept of entropy can
be applied to measure the uncertainty of execution scenar-
ios in a process. See Section 2 for details.

In contrast to previous research emphasizing the static
aspect of process models, in this paper, we propose an
entropy-based measure which captures the dynamic be-
havior of processes. It enables experts to better understand
the nature of processes at runtime. The proposed entropy-
based process measure quantifies the uncertainty of ex-
ecuting business process models and the process uncer-
tainty is defined in terms of the transition and execution of
tasks. We provide explicit forms of measure for primitive
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control-flow patterns and illustrate it by a process model
fractionated into separate blocks of primitive patterns.

2. Entropy-based uncertainty measure

A business process is a set of logically related tasks per-
formed to achieve a defined business outcome [11]. The
process has uncertainty because some parts of it are condi-
tionally executed at runtime based on managers’ decisions
or process data. While it is not possible to know for sure if
a particular task will be executed, it is possible to associate
a probabilistic model to conditional tasks by analyzing the
past behavior of processes’ executions. In our research, we
use the entropy measure to model the uncertainty associ-
ated with the execution (or not execution) of conditional
tasks. The uncertainty becomes higher as the distribution
over execution scenarios is more uniform. The larger num-
ber of scenarios leads to the higher uncertainty, when all
scenarios have the same probability of occurring. These
properties of process uncertainty can be reflected by the
concept of entropy.

The uncertainty of information is generally calculated
by Shannon’s entropy [12]:

n n
H(X)=)_ P()u(x)=—K Y P(x;)log; P(x;)

i=1 i=1
where X is a discrete random variable taking possible
states Xxi,X2,...,Xp with probabilities P(x1), P(x2),...,
P(xy), respectively (for 1 <i<n, P(x;) >0, ) P(x;) =1).
The entropy H(X) is the expectation of u(x;) which is x;’s
uncertainty. Shannon interpreted the amount of informa-
tion by the entropy measure when K =1 (the constant K
is merely the choice of measurement unit). Shannon’s en-
tropy is a simple quantitative measure of uncertainty in a
data set. The entropy increases, as the state distribution is
more uniform.

The intent of a process model is achieved through com-
pleting a set of process tasks in one of all possible execu-
tion scenarios. In this paper, we focus on the uncertainty
of which scenario is executed to accomplish the intent
of process model at each time. We define the execution
scenario (ES) probability of a scenario as the probability
that the specific one out of all possible scenarios is exe-
cuted. The ES probability is obtained by repetitively multi-
plying the transition probabilities between two sequential
tasks in the scenario. The process uncertainty increases, as
the probability distribution over scenarios is more uniform.
When all ES probabilities are same, the larger number of
scenarios results in the higher uncertainty. This relation-
ship between the process uncertainty and its transition
probabilities can be formulated with Shannon’s entropy
and it can be viewed as a measure of the uncertainty of
process model.

For illustrating how the concept of entropy can be ap-
plied to calculating the uncertainty of process models, con-
sider a simple process model B consisting of task to pro-
ceeding to one of tasks t1, tp, and t3 in an XOR-split, where
there exist three possible execution scenarios: tg — t1,
to — ty, and tg — t3. The corresponding ES probabilities
are P(t; — t) =1/5, P(t; — t3) =3/10, and P(t] — t4) =

1/2, respectively. In this process model B, the uncertainty
of which scenario is executed is calculated using Shannon’s
entropy as follows:

3
U(B)=_ P(to— t;)logy(to — t;)

i=1

1 1 1 3 1 3 1 I 1 1.48
= (5 %625+ 75 %270 " 2 °g22>_ '

where U(B) denotes the uncertainty of process model B.
The minimum value (= 0) for the measure is attained with
only one ES probability equal to 1 and the others equal to
zero (e.g., P(ty > t2) =1, P(t; > t3) =0, P(t; — tg) =0),
which means that the process model is always executed
in the specific scenario of task ty proceeding to task tq
with no uncertainty. The maximum value is attained with
all equal ES probabilities (i.e., P(t; — t2) = P(t1 — t3) =
P(ty — t4) = 1/3), which maximize the uncertainty of
which scenario is executed. ES probabilities can be esti-
mated from the historical data of the process model and
be updated with every new observation.

A process with high entropy indicates that it is more
difficult to correctly predict which conditional tasks will
be called for execution. On the other hand, a process with
low entropy indicates that some conditional tasks have a
higher probability of being executed than others. As a re-
sult, the uncertainty of which tasks will be called for exe-
cution is lower. If process model A has higher entropy than
process model B, then it is possible to predict with higher
confidence and accuracy which conditional tasks will be
executed in process model B.

3. Explicit forms of measure for process models

This section provides the explicit forms of the uncer-
tainty measure for five primitive control-flow patterns such
as sequence, AND-split, OR-split, XOR-split, and loop. To
describe the accurate behaviors of process models, Petri
nets are used to represent them as shown in Fig. 1. A pro-
cess model is a directed bipartite graph with two node
types, tasks and places, which are depicted by rectangles
and circles, respectively [6]. In the model, the state of a
process is represented by the distribution of tokens, de-
picted by black dots. In a process model, a task is ready if
each of its input places contains at least one token. A ready
task can start its execution, and when the task starts, it
consumes a token from each input place and produces
a token for each output place. In this paper, we define
a transition between two sequential tasks as the accom-
plished movement of tokens required to make the task
that follows ready. The transition probability is obtained
by simply multiplying all the probabilities of related token
movements. If a place has only one output task, the tran-
sition probability to the following task is 1. However, if the
place has more than one output task, the transition prob-
abilities to the following tasks can vary between 0 and 1
according to the control-flow patterns of the process.

Each process model under analysis can be simply ex-
pressed with only one control-flow pattern containing
multiple process blocks at a certain level of resolution as
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Fig. 1. A process model in the sequence pattern: (a) expressed with unexpanded process blocks and (b) expressed with expanded process blocks. t1 and ty

are individual tasks.

shown in Fig. 1(a) and, at the next finer level of resolution,
the process block may reduce to only one individual task
or expand to another group of process sub-blocks in one
or more control-flow patterns as shown in Fig. 1(b). We
assume that all process blocks are independently executed.

The notations used for the explicit forms of uncertainty
measure for process models are as follows:

e B: process model under analysis, as a whole

e N: total number of process blocks at a certain level of
resolution where process model B can be expressed
as only one control-flow pattern containing multiple
process blocks, as shown in Fig. 1(a)

e M: total number of possible execution scenarios for
the N process blocks in process model B

e BSy and P(BSy): kth execution scenario for the N pro-
cess blocks in process model B and its ES probability

e Bg: gth process block in process model B, 1 < g <N

e P(Bg): probability that the gth process block Bg is
executed by all M possible execution scenarios in or-
der to accomplish the intent of process model B,
1<g<N

e Sgi and sg;: ith execution scenario of process block
Bg and its ES probability, 1 <i < Vg

e Ry and rg p: transition between two sequential pro-
cess blocks Bg and By, and its transition probability

e Ng: total number of process sub-blocks at a certain
level of resolution where process block Bg can be ex-
pressed as only one control-flow pattern containing
multiple process sub-blocks, as shown in Fig. 1(b)

e By j: jth process sub-block in process block By,
1<j<Ng

Each explicit form of the uncertainty measure given
in Sections 3.1-3.4 can be divided into two compo-
nents: expectation of execution-related uncertainties, rep-
resented by —Z,’C‘/’:] P(BSk)log, P(BSk), and expectation
of uncertainties within process blocks, represented by
Zgzl P(Bg)U(Bg). Therefore, the general form of the un-
certainty measure of process model B is

M N
U(B)=—Y P(BS)log, P(BSK) + ) P(Bg)U(By)
k=1 g=1

3.1. Sequence

The sequence block is a set of process blocks executed
in sequence. Fig. 2(a) shows sequence block Bsgq with pro-
cess blocks Bg (1 < g < N). The explicit form of its uncer-

tainty measure is U(Bsgq) = Zg:1 U(Bg).

Proof. Suppose that sequence block Bsgq includes only
two process blocks By and B; (i.e. N =2). When process
blocks B1 and B; are sequentially and independently ex-
ecuted in scenarios Sy and Sy j (1<i<Vyand 1< j<
V) with transitions Ro 1 and R 3, its corresponding Shan-
non’s entropy-based uncertainty is logz(r(),]51,,-r1,252,j)*1.
Note that ro1 =112 =1 and Z,V:]] S1i = 2;21 s2j=1.
Hereby, the uncertainty measure of sequence block Bsgq,
defined as the expectation of uncertainties, is calculated as
follows:

Vi Vs
U(Bseg) = » Y P(Ro1)P(S1.)P(R1.2)P(S2,})

i=1 j=1

x log,{P(Ro,1)P(S1.)P(R1.2)P(S2. 1)}

=—{ro.1r1.2logy(ro.111.2)}
Vq
+ ro,m,zZsl,ilogz(su)_]
i=1
Vo
+T0,171,2 Z s2,j108,(s2. )"
j=1
1
=—) P(BSy)log, P(BS))
k=1

2
+ Y P(Bg)U(By)

g=1
2
=Y U(By)
g=1

The derivation can be easily extended to a sequence block
with more than two process blocks (i.e. N >3). O

3.2. AND-split

The AND-split block embraces two or more parallel
branches all of which are executed concurrently after the
preceding task. Fig. 2(b) shows AND-split block Banp with
process blocks Bg (1 < g < N). The explicit form of its un-

certainty measure is U(Banp) = Zg;l U(Bg).

Proof. The AND-split block is equivalent to the sequence
block in that all included process blocks are executed and
the order of execution does not change the entropy. The
proof follows directly from that of Section 3.1. O
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Fig. 2. Five primitive patterns: (a) sequence block Bsgq, (b) AND-split block Banp, (c) XOR-split block Bxor, (d) OR-split block Bog, and (e) loop block Biogp.

3.3. XOR-split

The XOR-split block embraces two or more branches
only one of which is executed after the preceding task.
Fig. 2(c) shows XOR-split block Bxor with process blocks
By (1 < g < N). The explicit form of its uncertainty

. N N
measure is U(Bxor) = — > 5170, 1082 (T0,g) — 2 g_1T0,g X

"
Ziﬁ] Sg.ilogy(Sg.i)-

Proof. When process block B; is executed in scenario
S1i (1 <i< V) with transition Rg i, its correspond-
ing Shannon’s entropy-based uncertainty is logz(r0,1s1)‘1.
Note that Zgzl ro,e =1 and 21‘21 s1,i = 1. Hereby, the un-
certainty measure of XOR-split block Bxor is calculated as
follows:

N Vi

U(Bxor) = » Y P(Ro.g)P(Sg.i)

g=1i=1
x 10g5{P(Ro.g)P(Sg.)} "

N
=—) roglog,(ro.g)
g1
N Vg
—1
+ ) Togrog Y Sgiloga(sgi)
g=1 i=1
N

=—Y_ P(BS))log, P(BSy)
k=1

N
+Y P(BUBy) O
g=1

3.4. OR-split

The OR-split block embraces two or more branches
each of which is decided to be executed or not concur-

rently and independently after the preceding task. Fig. 2(d)
shows OR-split block Bor with process blocks Bg (1 <
g < N), dummy process blocks B, (N +1<h <2N), and
transitions between two sequential blocks. The dummy
blocks are used to indicate that its corresponding process
block is not executed. Note that U(By) =0 for N+ 1 <
h < 2N. The explicit form of its uncertainty measure is
U(Bor) = — Y_g_1{r0,g 1083 (o g) + (1—r0 g) logy (1 -0 ¢) +

4
To.g Zizg1 Sg.i log, (sg,i)}

Proof. As shown in Fig. 2(d), for convenience, let B”g‘ de-
note the gth logical block comprised of process block Bg,
its dummy block By, and transitions Ro g and Ro nig.
Note that syyg1 =1, Ziv:g] Sg,i = 1. When process blocks
Bg and By, are exclusively executed in scenarios Sg; and
SN+g,j (1 <i<Vyand j=1) with transitions Rg ¢ and
Ro,N+g, the uncertainty measure of logical block BZ is cal-
culated as a XOR-split block:

U(By) = —To.gloga(ro.g) — (1 —1o,g) logy (1 —10,¢)
Vg
—Tog ng,i logy(sg,i)
i=1
= —P(BSg)log, P(BSg)
— P(BSn+g)logy P(BSn+g) — P(Bg)U(Bg)
Hereby, the uncertainty measure of Bog is calculated as
in an AND-split block with BZ 1<g<N):

N

U(Bor) = » _U(B})

g=1

N
=— {roglog,(ro.g) + (1 —ro.¢) logy(1 —r0.¢)
g=1
Vg
+70g Y 5g.il0g(5¢.0)}

i=1
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Table 1
Execution scenarios and ES probabilities of Bioop.

No. Block-level execution scenarios of Bioop ES probabilities of Bioop
0 Bo-B1-B3 P(BSo) =T0111,3 =113
1 Bo-B1-B2-B1-B3 P(BS1) =ro1r1,212,17,3 =T1,21"3
L-1 Bo-B1-B2-B1-----B1-B2-B1-B3 P(BSL—1) =To1T1,272.1 - T2.11 27121713 = (" 2) 7 'ri 3
L Bo-B1-B2-B1----B1-B2-B1-B3-B1-B3 P(BSL) =To1r1.272,1 ++ T2.1T1,.2T2,1T1,2r2,1 = (r1.2)*
2N L .
=Y P(BSy)log, P(BS) > P(BSi) logy(P(BS))
k=1 k=0
2N L-1 .
k k -
+Y P(ByU(By). O = {12 3l0g;((n2)"r13) "}
g=1 k=0
L y—1
+ (r1,2) " logy((r1,2)
3.5. Loop ’ gz( ’ )

The loop block embraces process blocks which are
executed repeatedly until satisfying a certain condition.
Fig. 2(e) shows Loop block Bigop with two process blocks
By (1 < g < 2). The explicit form of its uncertainty mea-
sure is

1
U(Broop) = —{1 — (T1,2)L}{w

N ( 1—(ry )1 }
1,3

—

U(B1)

L+1

roa—(r

+{ 12— (r1,2) }U(Bz)
1,3

Proof. Note that ro1 =r2,1 =1 and r12+r1 3 = 1. All pos-
sible block-level execution scenarios of loop block Bioop
and corresponding ES probabilities are shown in Table 1.
The kth block-level execution scenario BSy is equivalent to
a sequence block containing (k + 1) process blocks of B
and k process blocks of B,. Note that By and B3 are not
included in BSy since those are not in the loop. Hence, the
uncertainty measure of BS) is obtained by:

U(BSK) = (k+ 1)« U(B1) +k=*U(B2)

Loop block Bipop can be viewed as an XOR-split
with L branches the transition probabilities of which are
equal to the ES probabilities shown in Table 1. Note that
Zﬁzg P(BSy) =r13+r12r134 -+ (1.2 s+ )t =
1 with r;3 =1 — ry 2. Thus, calculating the uncertainty
measure of loop block Bipop can be written in terms of all
possible block-level execution scenarios:

L
-1

U(Broop) = ) _ P(BSy) log,(P(BSk))

k=0

L
+ > P(BSU(BS))
k=0
The first term in the equation of U(Brgop) is further

expanded as follows:

r1.2log, (r
=-{1- (H,z)%{%z;u) +10g2(r1,3)}

The second term in the equation of U(Byroop) is further
expanded as follows:

L
> " P(BSi)U(BSk)

k=0

=
—_

= [r1.2)%r13{(k + DU (B1) + kU (B2)}]
k:

+ (1. {(L+ 1HU(B1) + LU (B2)}

_ L+1 _ L+1
:{1 (r1,2) }U(B1)+{r1‘2 (r1,2) }U(Bz)
1,3 1,3

= P(B1)U(B1) + P(B2)U(B>)

Il
=}

Therefore, the explicit form of the uncertainty measure
for Broop with two process blocks By (1< g<2) is:

1
U(Broop) = —{1 - myL}{%

_ L+1
+ [71 (.2) }U(Bl)
1,3

{1’1,2 — ()1
3

+ lng(rl.3)}

}U(Bz)

L
=— Z P(BSy)log, P(BSk)
k=0
2
+Y P(ByU(By) O
g=1

3.6. Uncertainty of process model comprised by tasks only

As shown in Table 2, the explicit forms of the uncer-
tainty measure U (B) given in Sections 3.1 to 3.5 reduce to
ones for the corresponding control-flow pattern only, when
each process block reduces to a task with its ES probability
of 1 and its uncertainty measure of zero.



140 J.-Y. Jung et al. / Information Processing Letters 111 (2011) 135-141

Table 2

Explicit forms of the uncertainty measure for control-flow patterns.

Control-flow pattern

Explicit form of the uncertainty measure for control-flow pattern only

Sequence U(Bseq) =0

AND-split U(Banp) =0

XOR-slit U(Bxor) = — Yp—1 To.¢ l0g, (1o g)

OR-split U(Bor) = — Zg:, {ro,g log, (ro,g) + (1 —ro,g)log, (1 —ro g)}
Loop U (Broop) = —{1— (r1 2) H22112) —jog, (11 5)}

Fig. 3. Logical block-based approach for calculating the uncertainty measure: (a) logical blocks at the first iteration, (b) logical blocks at the second iteration,

and (c) logical blocks at the third iteration.

For comparing the uncertainties of control-flow pat-
terns in terms of the structure only excluding the effect
of transition probabilities, assume that all splitting points
of each control flow pattern in Table 2 have the equal
transition probabilities. That is, ro ¢ = 1/N for XOR-split,
ro,g = 1/2 for OR-split, and ri3 =ry3 = 1/2 for Loop.
The sequence and AND-split control-flow have the uncer-
tainty measure of zero since the execution order of tasks
is known with no uncertainty. The loop control-flow con-
verges to 1 as L increases. The uncertainty of the XOR-split
is minimized with the smallest number of branches (i.e.
g =2) and increases as the number of branches increases.
The OR-split always shows the higher uncertainty than the
XOR-split at the same number of branches.

4. Illustration I - How to apply the entropy measure?

This section illustrates the uncertainty measure with a
process model fractionated into separate blocks of primi-
tive patterns. Fig. 3(a) shows a process model with three
primitive control-flows and tasks t; (1 <i < 8). The XOR-
split has two branches with an equal transition probability
and the loop has the recursive transition probability of 0.2
with no bounded number of iterations. The uncertainty
measure of this process model is calculated by recursively
implementing two steps: (1) identifying maximum-sized
logical blocks consisting of tasks in only one primitive
control-flow and (2) calculating the uncertainty measure
of the identified logical blocks. The identified logical blocks
are considered as tasks at the next iteration.

At the first iteration, as shown in Fig. 3(a), B1 and
By, and Bj are identified as maximum-sized logical blocks
with only one sequence control-flow or only one loop
control-flow. Note that U(t;) =0 for 1 <i < 8. The uncer-
tainty measures of sequence blocks B; and Bj are equal
to 0. As for the loop, U(B3) = lim;_, o0 —{1 — (0.2)L} x
{% +log,(0.8)} = 0.902. At the second iteration, as
shown in Fig. 3(b), B4 and Bs are identified as maximum-
sized logical blocks with only one XOR control-flow or only

one sequence control-flow. U(B4) = —2 % (0.510g,(0.5)) =
1 with U(B1) =U(By) =0, U(Bs) = U(B3) + U(ty) =
0.902. At the third iteration, as shown in Fig. 3(c), Bg is
identified as a maximum-sized logical block with only one
AND-split control-flow. U(Bg) + U (B4) + U (B5) = 1.902. Fi-
nally, the process model can be viewed as a sequence block
with t1, Bg, and tg. Hence, U(B) = U(t1) +U(Bg) + U(tg) =
1.902.

5. Illustration II - A healthcare use case

Processes can coordinate and manage tens and even
hundreds of tasks which require often expensive and
scarce resources to be properly executed. In hospitals, for
example, healthcare processes can manage several tasks
which require specific and expensive resources that in-
clude doctors, X-rays and CAT scan equipments, EKGs,
ambulances, surgical rooms, digital records, etc. During
the design of a process, experts associate with each task
adequate roles and resources which are required for its ex-
ecution.

For example, consider two patients transported to an
emergency room by ambulance. Patients € and D are suf-
fering fracture and dyspnea (shortness of breath), respec-
tively. Before their arrival, a manager schedules the assign-
ment of resources for their checkup processes. The num-
ber of possibly required resources varies according to their
symptoms. So does the certainty for the use of each re-
source. In assigning X-rays, EKGs, CTs, and MRIs for their
checkup processes, the manager is fully convinced that an
X-ray is required for patient C. However, there is no such
resource for patient D, since the dyspnea can be caused
by abnormalities in many organs such as the heart, lungs,
and the brain. These two different uncertainties of checkup
processes can be reflected and distinguished by our pro-
posed measure. The manager has more difficulty in effi-
ciently assigning limited resources, as the more checkup
processes of high entropy are initiated. The entropy of the
checkup process for patient D could be reduced by adding
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a task of reviewing his/her past history and finding out the
frequent causes of his/her dyspnea.

For healthcare institutions, knowing beforehand that a
healthcare process model has low entropy (i.e. low uncer-
tainty) enables the creation of more accurate assignment
schedules for resources and makes possible a better plan-
ning. Healthcare professionals, medical equipment, and
physical facilities can be allocated ahead of time knowing
that they will be indeed needed to provide an efficient and
cost effective care to patients.

6. Conclusions

For assessing the predictability and managerial effi-
ciency of process models, we propose an entropy-based
measure to quantify the uncertainty of business process
models. The proposed measure enables to estimate the
process uncertainty and interpret it in terms of execution-
related uncertainties and process block-related uncertain-
ties. These types of measures can be used to guide busi-
ness process designers and analysts in developing and im-
proving processes to be more predictable, less complex,
less prone to errors, and simpler to understand [3,13].
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