
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. X, MONTH 2015 1

A survey on Human-in-the-Loop applications
towards an Internet of All

David Nunes, Pei Zhang, and Jorge Sá Silva

Abstract—Our tools and appliances are becoming increas-
ingly more intelligent and interconnected, giving birth to an
“Internet of Things” that can be used to support new types of
cyber-physical systems (CPSs). While many CPSs are human-
centric applications where humans are an essential part of the
system, unfortunately, most of these systems still consider the
human as an external and unpredictable element to the control
loop. In order for these systems to better serve human needs,
future CPSs will need to bolster a closer tie with the human
element, through Human-in-the-Loop controls that take into
consideration human intents, psychological states, emotions
and actions inferred through sensory data. This area is a
natural confluence of multidisciplinary focus but currently
lacks a general understanding of the underlying requirements,
principles and theory. As far as we know, this survey is the first
effort towards extending the field’s knowledge through an in-
depth research of the state-of-the-art and a critical overview
of the current taxonomic efforts in the area of Human-in-
the-Loop CPSs. On top of this research, a novel taxonomic
exercise focused on the general roles of the human component
together with a requirement analysis, are presented.

Index Terms—Human-in-the-loop, Cyber-Physical Systems,
Internet of All

I. INTRODUCTION

A. Internet of Things and Cyber-Physical Systems

In the last few years we have been experiencing an
unprecedented surge of technological advancement that
culminated in many revolutionary human inventions,
including personal desktop computers, portable computers
and a global network of these computerized devices, aptly
called ”the Internet”. As this inventive surge continues
to develop, we are now experiencing a new sort of
revolution. We humans have now achieved the power to
extend our traditional tools and appliances and give them
intelligence and communication capabilities. This idea
began with a vision of an ”Internet of Things (IoT)”,
where radio-frequency identification would allow the
“tagging” of everyday objects to be read, identified and
managed by computers. The continued advances in the

D. Nunes and J. Silva are with the Department of Informatics
Engineering, University of Coimbra, Polo II - Pinhal de Marrocos,
3030-290 Coimbra, Portugal

P. Zhang is with the Silicon Valley Campus of the Carnegie
Mellon University, 23 Moffett Field, CA 94035, USA

Authors’ Emails:
David Nunes: dsnunes@dei.uc.pt
Pei Zhang: peizhang@cmu.edu
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miniaturization of computational facilitates allowed us
to go beyond the simple tagging and identification and
effectively integrate computational resources into these
objects, making our tools effectively “intelligent”. This
means that, theoretically, everything from lightbulbs to
fridges, microwaves and coffee machines can be soon
connected to the Internet. In fact, some opinions, such as
the one shared by Gartner, say the “Internet of Things”
will soon have 26 billion connected devices by 2020 [1].
From the use of these diverse computational elements rises
the concept of cyber-physical systems, which consists on
the sensing and control of physical phenomena through
networks of interconnected devices that work together to
achieve common goals. These CPSs represent a confluence
of robotics, wireless sensor networks, mobile computing
and the Internet of Things to achieve a highly monitored
and easily controlled and adaptable environments.

The IoT and CPSs are, therefore, closely related concepts
that have been pushed by two different groups. The IoT was
initially driven from a computer science perspective, mostly
by the European Commission. The goal is to develop
a network of connecting computers to objects with self
configuring capabilities that functions on top of the current
Internet. This development effort includes the hardware,
software, standards, interoperable communication protocols
and the languages that describe these intelligent objects
[2]. Several requirements are associated with the advent of
the IoT, namely the development of intelligence in devices,
interfaces and services, the assurance of security and pri-
vacy, systems integration, communication interoperability
and data semantization and management [3].

On the other hand, the concept of CPSs derived from
an engineering perspective, being initially supported by
the US National Science Foundation (NSF). CPSs concern
themselves with the control and monitoring of physical en-
vironments and phenomena, through sensing and actuation
systems consisting of several distributed computing devices,
tightly coupled in their functions towards their physical
environment [4]. In this sense, CPS require considerable
interdisciplinary and a strong foundation in mathematical
abstractions (algorithms, processes) that model physical
phenomena, to apply technology towards solving physical
problems. This also implies smart devices and services,
effective actuation, security, privacy, integration, commu-
nication and data processing [5].

Thus, the IoT tended to focus more on openness and net-
working of intelligent devices, with CPSs being more con-
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cerned with applicability, modeling of physical processes
and problem solving often through closed-looped systems.
While their core philosophy and focus were initially differ-
ent, their many similarities, such as intensive information
processing, comprehensive intelligent services and efficient
interconnection and data exchange, have lead to both terms
being used interchangeably [6] without clearly identified
frontiers [4]. Therefore, both concepts have now become
inherently complementary and synonymous.

This concept of automatic monitoring and control of
environments is already used by many applications. From
industrial applications that monitor and actuate over several
factory processes, to smartphone-based social networking
applications that achieve metropolitan-wide reduction of
pollution and traffic, these environments can encompass
a multitude of domains. The health-care domain can also
benefit from CPSs for disease management and personal
health. For example, body networks may integrate the
user’s vital signs and activity levels with environmental
information on pollutants or noise, to suggest healthier
and more pleasant walking routes, restaurants and leisure
activities. CPSs can also be observed in transportation,
as many modern vehicles feature cruise control systems
that maintain the automobile’s speed or perform parking
maneuvers. All these systems combine sensors, actuators
and the computational intelligence of the devices to achieve
the desired results.

So far, traditional embedded systems and wireless net-
works were designed with a specific scientific, industrial or
engineering application in mind, which was usually respon-
sible for collecting data from sensors and analyzing it for a
certain task. This target-application driven development of
such technologies results in a constrained applicability; that
is, the systems are effective for targeted scenarios but are
narrow in approach and do not explore a wider usability
space. Such restriction inhibits eventual cost reductions
that come with mass production and widespread use of a
technology [7]. Some believe these restricted deployments,
whose primary benefactors are privileged users who already
know the capabilities of the network, are just the initial
steps towards a future where the vast majority of intelli-
gent devices are interconnected in massive, non-centralized
networks [8]. As we approach a completely ubiquitous
and pervasive technological world, ordinary people will be
capable of accessing extremely rich and dynamic pools of
data regarding their surrounding environments, stemming
from highly heterogeneous and open CPSs. In fact, Wood
et. al [8] argued that future CPSs will become ubiquitous
and distributed, with many data streams overlaying the
network, provided by large amounts of sensors. They also
defended that these streams should be open for use without
centrally controlled authorization, through self-advertising
and discovery by nearby users. Thus, data acquisition,
processing and visualization should be focused on users,
not administrators or scientists.

Additionally, the data should be localized and delivered
preferentially to local users, which have a greater need
to know the physical constraints of interactions with their

surrounding environment. On the other hand, this openness
raises the need for stochastic system designs, since the de-
mand for sensor data and actuation would be unpredictable.
Heterogeneity will also need to be considered, since diverse
types of sensor hardware, mobile devices, applications, user
interfaces, actuators, data flows, and usage patterns already
exist and the tendency is for this diversity to increase
and evolve. This view of an open approach for CPSs
proposed by Wood et. al. is, however, debatable. There are
obvious concerns in terms of privacy and security in face
of suggested openness of these CPS deployments.

B. Humans within Cyber-Physical Systems

While these interconnected and intelligent tools commu-
nicate with each other without any human involvement,
human technology is made by humans, for humans. Thus,
to promote the creation of systems that are useful to the
average person, it is not enough to simply consider the
openness, heterogeneity and integration of smart tools.
Effective tools also require efficient and intuitive manip-
ulation. Therefore, equally important is the discerning of
how those tools can be used within a certain context. These
ideas have been previously explored as context awareness,
for Mobile and Wireless Networking [9] and the IoT [10].
Actually, increasing context awareness is a cross-cutting
challenge for the design of highly optimized networking
systems that support distributed autonomic decision making
and reconfigurable aspects [9]. However, current trends on
context awareness research encompass a broad definition
of context. ”Context” can be defined as any information
that can be used to characterize an entity, that is, a person,
place or object [11]. Thus, several works in the area
attempt to predict context [12] and use this information
to achieve several ends, such as mobility management [13]
or energy efficiency in ubiquitous environments [14]. There
are also remarkable proposals for frameworks that manage
and distribute this contextual data [15] [10].

Yet, outside of the area of e-health, whose primary
objective is the monitoring of patients [16], there is still
scarce scientific work that focuses on the actual effects of
this human ”context” in the control-loop of CPSs powered
by the IoT. Indeed, one important element often left out
of current cyber-physical research is the human user [8].
On the other hand, nowadays humans are, by themselves,
walking sensor networks. They use smart-shirts, carry a
smartphone with several sensors and network capabilities
(GSM, Bluetooth, LTE), use Google glasses, iPods, smart
watches and shoes with sensors. In particular, smartphones
have become personal portable computers, representing a
versatile computational resource; nowadays, even the most
basic and cheap mobile phones are capable of processing
considerable amounts of information and are equipped
with a few sensors (microphone and camera) and basic
programming platforms. Modern smartphones are actually
more powerful than desktop computers from a decade ago.
For example, an iPad 2 tablet, introduced in 2011, has
a peak calculation speed equivalent to that of the Cray-2
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supercomputer, introduced in 1985 [17]. However, tablets
and smartphones also possess advanced sensors such as
gyroscopes, accelerometers and digital compasses, feature
quad-core processors and up to 2 Gigabyes of RAM. In
a very real sense these devices have brought us pocket-
size supercomputer-like computational power in a matter
of few years. They also brought us incredible mobility, not
only for our telephone calls, but also in our Internet access,
allowing us to communicate with remote devices almost
anywhere. While possibilities of such advanced mobile
platforms are already apparent in the diversity of existing
applications made available for them, we believe these are
only primordial examples. When we begin using all of these
sensors and mobile devices to monitor and evaluate human
nature, humans become an integral part of CPSs and we
are now in the realm of Human-in-the-loop Cyber-Physical
Systems (HiLCPS), that is, cyber-physical systems that take
human interaction into consideration. Human presence and
behavior is no longer seen as an external and unknown
factor but becomes a key part of the system instead. Thus,
current CPSs that involve control loops will begin to include
humans as inherent elements of this control. For example,
today’s aircraft pilots still decide for themselves when to
engage the autopilot or assume manual control of the plane,
and cruise control systems for automobiles simply maintain
the desired speed without taking the driver’s behavior into
consideration. Future HiTLCPSs will bolster a stronger tie
between humans and control loops. By inferring the user’s
intents, psychological states, emotions and actions through
sensors, a control-loop’s performance and accuracy can be
vastly improved. For example, cruise control systems could
take into consideration the driver’s psychological state (e.g.
fatigue, attention-levels, etc.) to emit signal alarms and
suggest the activation of cruise control [18]. HiTLCPSs
also include brain-computer interfaces (BCIs), controlled
assistive robots, intelligent prostheses, monitoring systems,
among others [19]. In order to improve the accuracy and
timeliness of the system by considering the human element,
it is essential to integrate reliable and accurate modeling
techniques that attempt to learn and predict human be-
havior. Since humans are often considered unpredictable,
bringing them into CPSs is a colossal challenge, as it
requires modeling of complex behavioral, psychological
and physiological aspects of human nature. Within these
aspects, a multitude of variables regarding the person’s
status may be measured, including movement, vital signs,
attention level and any other facet that may be interesting
to control the task at hand.

The maturing of HiTLCPSs’ design requires a general
understanding of their underlying requirements, principles
and theory. As HiTLCPSs have a wide spectrum of applica-
bility, it is necessary to amass examples of HiTL solutions
from multiple domains before such an understanding may
be achieved [18]. This need drives us to ask questions such
as why do current IoT solutions still leave behind the hu-
man? Why have we yet to integrate the human component
into CPSs? In particular, we also want to discover how
we can take advantage of these new ubiquitous sensing

platforms known as smartphones, personal devices used
massively by people throughout their days, to build not an
Internet of Things, but an “Internet of All”: an Internet
that includes the emotions, psychological states, actions
and drives of the ordinary user - the Human, as part of
larger scale systems. Pondering on these questions, our
research paper makes the following contributions to the
further development of the field of HiTLCPS:

• An analysis of the state-of-the-art of the field of
HiTLCPSs

• A critical overview of current taxonomic efforts
• An extension to current taxonomies that considers the

perspective of the possible human roles in HiTLCPSs
• An analysis of the requirements and challenges for

these types of systems
While there are previous articles that discuss the field

of HiTL and its unresolved challenges [20] [19], as far as
we know this is the first effort towards a general overview
of the existing solutions, projects and taxonomic analysis
in the field of HiTLCPSs. The only previous taxonomic
classification of the field of HiTLCPS [20] is limited in
the sense that it only classifies the different types of HiTL
applications. We intend to provide an alternative point of
view of HiTL process by performing a taxonomic exercise
in the perspective of the different processes of the HiTL
control.

The rest of this paper is organized as follows: section II
is dedicated to a introduction to the major concepts and
evolution of current HiTLCPSs, where the main associ-
ated technologies are identified and where several relevant
research works, including those with a social network-
ing component, are described; in section III, taxonomic
overviews of HiTLCPSs and the human roles within them
are presented; section IV attempts to identify several re-
quirements that need to be addressed in future HiTLCPSs;
section V represents an overview of our research, including
a chronological exposition and the main lessons learned;
we finalize our paper in section VI with a few concluding
remarks and possible future research directions.

II. EVOLUTION OF HITL SYSTEMS

Emerging research in HiTL control systems based on the
IoT and in CPSs offers a tremendous range of opportunities.

Fig. 1. The Processes of Human-in-the-Loop Control
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Figure 1 presents the various processes associated with
HiTL control. On an initial phase, data related to the human
individual is gathered from the available sensors. This data
is then processed in order to infer the human’s state, that
is, his physical and / or psychological condition. Some
approaches may also attempt to predict future states based
on historical data and the current state. Finally, the system
may or may not perform a certain action based on current
determined conditions. Some ”open-loop” systems do not
affect the system per se, that is, their results are merely
informative, without direct actuation. However, ”closed-
loop” systems actuate directly on the environment or the
human in order to influence the loop and achieve a desired
state.

Introducing HiTL concepts into CPSs is still a challenge
currently scarcely addressed by the academia. In the paper
written by Stankovic et al. [20] three main challenges were
identified for HiTLCPSs. Firstly, there is a need for a com-
prehensive understanding of the spectrum of HiTL applica-
tions, which requires a study of a large number of solutions
so that common underlying principles, requirements and
models may be found. Secondly, it is necessary to improve
the techniques that derive models of human psychological
states, emotions, physiological responses and actions. In
order words, we need reliable mechanisms for modeling,
detecting and possibly predicting human nature, such as
advanced mathematical models or machine learning tech-
niques. Current state-of-the-art techniques are either very
generic or too application-specific and the development of
dynamic human-behavior models that are both accurate and
general enough remains an enormous challenge. Finally,
these human behavior models need to be incorporated into
the formal methodology of feedback control, either outside
or inside of the loop, within the system model or at any
other level of the hierarchical control.

A. Technologies for Supporting HiTLCPSs

In an effort to gain an understanding of the existing
types of solutions and methods, we will begin by analyzing
the scope of HiTLCPSs through a practical perspective,
first delving into the processes of data acquisition, then
considering different solutions for inferring state and finally,
different techniques for actuation.

1) Data Acquisition in HiTLCPSs: The acquisition of
data through which the human’s state may be inferred is
a complex process with a multitude of possible sources
of information. HiTLCPSs have previously used physical
properties, such as localization (e.g. GPS positioning), vital
signals (heart rate, ECG, EEG, body temperature...), move-
ment (accelerometers), sound (voice processing), among
many other types of information that can be acquired
directly from physical reality. There are also many non-
physical properties that may be derived, such as communi-
cation behaviors (e.g. phone calls, SMSs), or socialization
habits. Most of this raw physical data comes from dis-
tributed sensor architectures, which are critically important
for HiTLCPSs since they allow the measurement of changes

which may be processed to infer current environmental
conditions and human activities, psychological states and
intents. On this regard, several types of architectures and
technologies have been proposed.

One of the most important technologies for the pro-
cess of data acquisition in HiTLCPSs are Wireless Sensor
Networks (WSNs). These are networks of small battery-
powered devices with limited capabilities, wireless com-
munication and various sensors that have been applied
in countless application scenarios worldwide. One highly
debated challenge for applying WSNs to CPSs is the inte-
gration of these tiny devices into the worldwide Internet of
Things. This ease of integration is of particular importance
for HiTLCPSs, since it would make these systems more
distributed, open, interactive, discoverable and heteroge-
neous, as previously envisioned in [8]. In WSNs, the use
of the IP protocol has always been considered inadequate
due to the fact that it does not minimize memory usage or
processing. Moreover, the use of the full TCP/IP stack is not
possible because it requires more resources than what most
of these devices can offer. However, the integration of IP
has the advantage of offering a transparent communication
between nodes while using a well-known protocol, provid-
ing interoperability and even Internet connectivity. While
working towards employing IP in WSNs, the IETF created
the 6LowPAN group that has been working on standards for
the transmission of IPv6 packets over low capability devices
in wireless personal areas, using IEEE 802.15.4 radios. New
drafts were also proposed for adapting 6LoWPAN to other
technologies like Bluetooth. Unfortunately, 6LowPAN can-
not be applied to devices devoid of processing or memory
capabilities, such as RFID tags. Gateway-based approaches
are a possible solution to support IP functionalities on
these scenarios. The main advantage of these approaches
is that terminal devices do not require any processing
or communication capabilities. Moreover, they make the
sensor and device networks transparent to external environ-
ments and developers can use any protocols that are most
suitable. However, one inherent problem of gateway-based
approaches is that they become a single point of failure.
This problem is exacerbated in environments where devices
present some type of mobility, i.e. moving from place
to place while maintaining connectivity. In these mobile
environments, all of the communication processes are more
fragile and failure of fixed gateways can compromise the
integrity of the HiTLCPS. Another problem of gateway-
based approaches is that sensor nodes are often required
to format the data according to a specification defined by
the provided drivers of the gateway, forcing the developer
to create a software driver or analyzer for each specific
data frame format, further reducing their interoperability
for HiTLCPSs.

Some research works focused on some of these archi-
tectural issues for including WSNs into HiTLCPS. SenQ
[21] is a data streaming service for WSNs designed to
support user-driven applications through peer-to-peer in-
network queries between wearable interfaces and other
resource-constrained devices. It introduced the concept of
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”virtual sensors”, user-defined streams that could be dy-
namically discovered and shared. For example, in assisted-
living scenarios for elderly people, a doctor could combine
information from mobility speed, movement and location
(e.g. nearby stairs) to create a virtual sensor that alerted
nearby healthcare staff of an elevated risk of falls. SenQ
took into consideration several requirements that were not
satisfied by existing query system designs at the time,
such as heterogeneity of sensor devices, dynamics of data
flow patterns, localized aggregation of sensor data and in-
network monitoring. The system supported hierarchical ar-
chitectures but predominantly favored ad hoc decentralized
ones, as the authors defended that ad hoc architectures with
neighborhood device and service discovery are better suited
for supporting large-scale and open systems with many
users and sensors [8]. Data and control logic was also kept
close to the concerned devices, in order to save energy
and preserve scalability by providing a stack with loosely
coupled layers that were placed on devices according to
their capabilities and by enabling in-network peer-to-peer
query issue for streaming data.

Another type of communication paradigm that may ben-
efit HiTCPSs is body-coupled communication (BCC) [20]
for supporting low-energy usage, heterogeneity and reduced
interference. BCC leverages the human body as the com-
munication channel, that is, signals are transmitted between
sensors through electrical impulses directly through human
tissue to a point of data collection. Through a circuit-
equivalent representation of the body channel, different
types of body tissue (skin, fat, muscles and bone) are mod-
eled with variable levels of impedance [22]. In particular, in
“Galvanic coupling” the signal is applied differentially over
two coupler electrodes and received differentially by two
detector electrodes. The coupler establishes a modulated
electrical field, which is sensed by the detector. There-
fore, a signal transfer is established between the coupler
and detector units by coupling signal currents galvanically
into the human body [23]. There are several motivations
propelling the support this paradigm. Firstly, the energy
consumed in BCC is shown to be approximately three
orders of magnitude less than the low-power classic RF-
based network created through IEEE 802.15.4-based nodes.
This technology is also bolstered by a high bandwidth
availability of approximately 10Mbps, which accommo-
dates the needs of multiple sensor measurements. Finally,
it offers a considerable mitigation of fading phenomena
and overcomes typical interference problems of the ISM
band, which are usually affected by nearby devices (e.g.
Bluetooth, Wi-Fi or microwave ovens) [20].

In a different perspective, we argue that much of the
computational power and sensing capabilities for future
HiTLCPSs will come from devices already existing in the
environment. In particular, we believe that near-future HiTL
systems will be heavily based on smartphone technology,
due to their rapidly expanding dissemination and their
powerful computation and sensing capabilities. Current
low-end smartphones capable of basic sensing and pro-
cessing functions are widely available even in many low-

and middle-income countries that lack a much needed
basic infrastructure, such as paved roads and electricity,
diminishing the need for fixed Internet deployment [24]
[25]. The International Telecommunications Union found
that, by the end of 2011, the number of mobile phone
subscriptions reached 5.9 billion, representing a penetration
of 87% of the entire world and 79% of all developing
countries [26]. Thus, smartphones are extremely common,
increasingly cheap, and provide mobile Internet connectiv-
ity almost everywhere, making them excellent candidates
for sensing and processing nodes in future HiTL applica-
tions. In fact, smartphone sensors such as accelerometers,
GPS, microphones or cameras can be used by simple
inference mechanisms to evaluate a human’s psychological
and physiologic states and integrate this information into
HiTLCPSs. Several mechanisms to support this continuous
sensing have been proposed. Jigsaw [27] is a continuous
sensing engine that supports resilient accelerometer, mi-
crophone and GPS data processing. It comprises a set of
plug-and-play sensing pipelines that adapt their depth and
sophistication depending on the quality and information of
data as well as the mobility and behavioural patterns of
the user to drive down energy costs. This reusable and
application agnostic sensing engine proposed solutions to
problems that usually arise in smartphone sensors, such
as performing calibration of the accelerometer indepen-
dently of body position, reducing computational costs of
microphone processing and reducing the GPS duty cycle
by taking into account the activity of the user. Focusing
more specifically on the microphone, as one of the most
ubiquitous but least exploited of the smartphone sensors,
SoundSense [28] is a scalable sound sensing platform for
people-centric sensing applications which classifies sound
events. It is a general purpose sound sensing system for
resource limited phones that uses several supervised and
unsupervised sensing techniques to classify general types
of sound (music, voice) and discover novel sound events
that are specific to individual users. These are two examples
of sensing architectures that could be exploited to enable
future continuous and ubiquitous smartphone sensing in
HiTLCPSs.

2) State Inference in HiTLCPS: A recurring premise
behind powerful HiTL systems is transparent interfaces that
can infer human intent, physical and psychological states,
emotions and actions. While traditional interface schemes
such as the mouse and keyboard have long been used
to transmit human desires, they are unpractical, involving
series of key combinations or sequences of mouse clicks
that are unintuitive and require practice and repetition in
order to learn and master. On the other hand, HiTLCPS
applications are meant to react to natural human behavior
and do not necessarily require direct human interaction.
However, deriving advanced mathematical models or ma-
chine learning techniques that can reliably classify and
possibly predicting human nature is a colossal challenge.

Many different methods and types of signals are used
to perform human activity classification in the literature.
One of the most successful and popular techniques is the
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use of Hidden Markov Models [29] [30] [31], but some ap-
proaches also use naive-bayes classifiers [32] [33] [34] [35],
Support Vector Machines [36], C4.5 [34] [36] and Fuzzy
classification [37]. Research also uses different kinds of
sensory data for activity detection: wearable sensor boards
with many different types of sensors [29] [30], wearable
accelerometers [31] [38] [36] [34], gyroscopes [38], ECG
[36], heart rate [34], to smartphone accelerometer data and
sound [39] and even RSSI signals [40]. The application of
activity recognition is present in many areas, from sport
solutions to social networking and health monitoring. The
state-of-art is very active and presents very good results,
some works achieving accuracy levels in the order of 90-
95%.

The detection of a user’s psychological state has also
been previously attempted. Smartphones have been used
in Experience Sampling Method (ESM) studies, where
participants respond to short questionnaires that give insight
into their moods and behavior [41]. Through a prototype
smartphone-based ESM system, named EmotionSense, it
was possible to study the influence of different sampling
strategies on the inferred conclusions about the participants’
behavior. Their prototype system was based on an Android
application that used both ”physical sensors” (including the
accelerometer, microphone, proximity, GPS location and
the phone’s screen status) as well as ”software sensors”
(capturing phone calls and SMS activity). These sensors
were used to evaluate the context of users and to trigger
survey questions about their feelings, namely how positive
and negative they felt, their location and their social setting.
The application could be remotely reconfigured to vary the
questions, sampling parameters and triggering mechanisms
that notified users to answers a questionnaire. The results
were used to empirically quantify the extent that sensor-
triggered ESM designs influence the breadth of behavioral
data captured in these kinds of studies.

EmotionSense was also used to enhance Behavior
Change Interventions (BCI) by using the devices capabili-
ties to positively influence human behavior [42]. Traditional
BCIs involve advice, support and information relevant to
the patient’s daily activities that are given during sessions
by therapists and coaches. Smartphones with their powerful
sensing and machine learning capabilities, ubiquity and
presence, allow for behavior scientists to use directed,
unobtrusive and real-time behavior change interventions
to induce lifestyle changes that may help people coping
with chronic diseases, smoking addiction, diets or even
depression. Information can be delivered and measured
in the moments when the users need it the most; for
example, people addicted to smoking usually suffer from
detectable stress when feeling the need to smoke, allowing
an opportunity for the system to send a notification urging
them not to do so. Thus, detecting the user’s context
and emotions allows for interventions to be delivered at
the right time and place. The EmotionSense application
uses the Gaussian Mixture Model (GMM) machine learn-
ing technique to detect ongoing conversations and their
respective participants. An emotion inference component

was also developed using a similar approach, training a
background GMM representative of all emotions through
the Emotional Prosody Speech and Transcripts library [43].
This component allowed the application to infer five broad
emotional states from the smartphone’s microphone: anger,
fear, happiness, neutrality and sadness. The authors reported
an accuracy of over 90% for speaker identification and over
70% for emotion recognition. With the same objective of
providing positive behavioral change, the authors also de-
veloped SociableSense [44], a platform that monitored the
user’s social interactions and provided real-time feedback to
improve their relations with their peers. In this work, the au-
thors attempted to measure the “sociability” of users, which
is an important factor in many behavioral disorders, ranging
from autism to depression. The system then closed the loop
by providing real-time feedback and alerts that aimed to
make people more sociable. The sociability measurement
was divided into two factors, collocation and interaction.
Collocation was defined by the proximity between users
and it was inferred by a coarse-grained Bluetooth-based
indoor localization mechanism. Interaction was derived
from the speaking between users and it was inferred via the
microphone sensor and a speaker identification classifier,
in a fashion similar to EmotionSense. Active socialization
was promoted through a gaming system which classified
the most sociable persons as “mayors” of the social groups.
Their results showed that such feedback mechanisms influ-
enced users and increased their sociability.

Several ongoing challenges for mobile sensing were also
identified in [42], including:

• Energy constraints associated with continuous sensing,
which require intelligent mechanisms that dynamically
adapt sampling rates depending on the user’s context.

• Data processing and inference mechanisms that can
accurately extract information on human behavior
from raw sensor data and the importance of balanc-
ing the distribution of this computation through the
smartphone sensors and cloud-based back-ends.

• Generalizability of classification mechanisms that need
to make uniform inferences regarding widely different
populations of users.

• Privacy concerns about the acquisition of sensitive
data (locations, activities) and the recording of data
without people’s informed consent (e.g. inadvertently
capturing the voice of an external person through the
microphone of a smartphone user)

The detection of emotion is not restricted to voice pattern
recognition, however, and other interesting ways of infer-
ring the user’s psychological state have been proposed. The
touch interface and movement of a smartphone were used
in [45] as a way for infering emotional states. The proposed
framework consisted on a emotion recognition process and
an emotion preference learning algorithm which were used
to recommend smartphone applications, media contents and
mobile services that fit the user’s current emotional state.
The system collected data from three sensors, the touch
interface, accelerometer and gyroscope, classifying it into
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types (e.g. touch actions could be divided into tapping,
dragging, flicking and multi-touching). The processed data
was used to quantify higher level emotions, such as ”neu-
tral”, ”disgust”, happiness” or ”sadness”, through decision
tree classification methods. By analyzing communication
history and application usage patterns, MoodScope [46]
also inferred the mood of the user based on how the
smartphone was used. The system passively ran in the
background, monitoring application usage, phone calls,
email messages, SMSes, web browsing histories, and lo-
cation changes as user behavior features. With daily mood
averages as labels and usage records as a feature table, the
authors applied a regression algorithm to discern a mood
inference model.

3) Actuation in HiTLCPS: Actuation is a very broad
definition in the field of HiTLCPSs. For example, ap-
plications that passively monitor a human being’s sleep
environment to give information about potential causes of
sleep disruption [47], or that record a human’s cardiac
sounds to detection of possible pathologies [48] do not
directly influence the associated environment to attempt
to achieve a certain goal and yet, they still ”actuate” by
providing information. A more direct actuation with the
physical world can be achieved through specialized device,
such as robots [19]. Future generation of advanced robots
are envisioned to be mobile and operating in unstructured
or uncertain contexts. The world has seen a gradual increase
in the number of robots installed annually, from about
65.000 in the early 2000 to 105.000 in 2007, according
to the United Nations Economic Commission for Europe
[49], and to about 120.000 predicted for 2015. The sector
is expected to grow at a rate of 4-5% per year, from a
value of $5.4B in 2005 to a projected value of $52B by
2025, according to the U.N. Economic Commission Study.
Considering these factors, robotics will also play a huge
role in future HiTLCPSs.

Interestingly, in recent years there has been a combina-
tion of two important technologies - robots and WSNs -
that complement each other. WSNs assist in the process
of discovering the environment where robots actuate; the
detailed level of information provided by their sensors may
be essential for the tasks to be undertaken by the robot. On
the other hand, robots can be used as mules that collect
and forward information from several sensor nodes spread
in the environment. Thus, the excessive energy needed
for long distance or multi-hop transmissions is reduced.
Robots can also perform the calibration of sensors and
support their recharging process when energy levels are low.
Robots and wireless sensor technologies can be exploited
to support remote monitoring in dangerous environments
under maintenance, using a set of sensors to measure,
for example, gas levels. They can also be applied in the
monitoring of environmental impact, such as in waste-
water treatment facilities or for measuring air emissions,
allowing a proactive implementation of a social responsi-
bility culture. Using wireless technology and robotic mobile
inspection for the monitoring and surveillance of wide
areas, where diagnosis and intrusion detection are critical,

is also a more reliable cost-efficient solution than traditional
methods.

While WSNs offer the sensorial capabilities necessary
for robots to perform the desired tasks, humans provide
the necessary management of the operation. Thus, robots
are capable of performing missions in hazardous environ-
ments in cooperation with humans, taking in considera-
tion the psychological state of humans, while using data
from WSNs to scan both humans and the environment.
In fact, the combination of Human-WSNs-Robots has a
huge potential in the perspective of actuation in HiTLCPSs,
since advanced industrial automation can strongly bene-
fit from distributed sensing capabilities. Robots, humans
and WSNs can be deployed to support personnel safety,
by complementing human work in hazardous contexts,
with wireless sensor networks collecting and processing
information. Mobile workers and robots can be equipped
with multiple sensory systems that send information to
a control center, accessible and monitored by safety and
personnel health-control staff. This allows workers to safely
and remotely control operations and to make decisions
faster. Such combination of these technologies allows us
to envision highly advanced HiTLCPSs applied to many
different scenarios. As an example, flying inspection robots
could be used to navigate interactively and inspect power
plant structures (including various components within and
around boilers, environmental filters or cooling towers) and
structures within the oil and gas industry (inside and outside
large scale chimneys, inside and outside flare systems,
inside button part of refining columns, as well as pipelines
and pipe webs). On the other hand, workers in the field may
collaborate with these robots in their inspection tasks, in the
management of the whole operation and in the deployment
and collection of sensor networks. HiTL controls allow
for this collaboration to be safe for humans, since their
presence, actions and intentions are made known to the
individual robots, as well as the entire system.

There are several projects that specifically study and
evaluate the integration of WSNs with Robots. For example,
the Robotic UBIquitous COgnitive Network (FP7- ICT-
269914) [50] is an on-going project that aims to create
autonomous and auto-configured systems by combining
WSNs, multi-agents and mobile robots. The proposed
mechanisms reduce the complexity and the time needed
in deployment and reconfiguration tasks. However, the
main objective of this project is to remove, as much as
possible, the Human from the configuration and main-
tenance processes. According to the authors, this means
that the quality of service that is offered by the Robot-
WSNs intends to be significantly improved, without the
need for extensive human involvement. Considering that
these technologies are meant to co-exist with human beings,
why are humans excluded from control loop decisions?
Why not take advantage of the Human potential to create
immerse HiTLCPSs?

Other research venues focus more this human-robot
cooperation. Projects such as NIFTi: Natural human-robot
cooperation in dynamic environments (FP7-ICT-247870)
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[51], an European FP7 project that ran from January
2010 until December 2013, proposed new models for co-
operation between robots and humans when they work
towards a shared goal, performing tasks together. However,
this project required a lot of direct instructions from hu-
man to robots and WSNs were not used to dynamically
contribute and adapt these systems. PHRIENDS: Physical
Human-Robot-Interaction - Dependability and Safety (FP6-
IST-045359) [52] was a project that aimed to propose the
coexistence of robots and humans. One of its main objec-
tives was to find the strictest safety standards for this co-
existence. Later, this project resulted in a new PF7 project,
SAPHARI [53], which maintained its main objective but
now used soft robotics, combining cognitive reaction and
safe physical human-robot interaction. In contrast with its
precursor project, SAPHARI intended to provide reliable,
efficient and easy to use functionalities. There are also
other projects on the topic of safety in interactions between
humans and robots. CHRIS - Cooperative Human Robot
Interaction Systems (FP7-ICT-215805) [54] evaluated a
mapping mechanism between robots and humans. This
project also aimed to study the safety of cooperative tasks
between humans and robots when they work for the same
purpose. However, once again, these environments did not
assume the existence and the participation of WSNs. On
the other hand, Humans were seen as just end-users and
they were not integrated in the system. SWARMANOID
- Towards Humanoid Robotic Systems (FP6-IST-022888)
[55] and SYMBRION: Symbiotic Robotic Organisms (FP7-
ICT-2007.8.2) [56] were two similar projects that aimed
to find strategies to achieve a collaborative work between
robots. SWARMANOID proposed joint mechanisms both
by air and land to achieve search tasks. The latter project
intended to optimize energy by sharing policies. Robot-
Era [57] is a project that started in 2012 and it will finish
in 2015. It intends to implement and integrate advanced
robotic systems and intelligent environments in real sce-
narios for the aging population. Some of these intelligent
environments are based on WSNs and their role is to
support the quality of life and independent living for elderly
people.

Despite all of these efforts, much work still has to be
done, in particular for robotic actuation that considers the
human-state. Thus, the role of robotics in future HiTLCPSs
cannot be yet fully understood. In addition to the unsur-
passed technical challenges, there are also questions of an
ethical nature that will also need to be considered. We will
identify some these matters further in section V-B2.

B. Applications of HiTLCPSs

There is a need for a comprehensive understanding of
spectrum of HiTL applications, which requires a study of
a large number of solutions so that common underlying
principles, requirements and models may be found. In
this section, we will analyze several works in the area of
HiTLCPSs that apply the different processes discussed in
section II.

To contribute to this need for understanding spectrum of
HiTL applications, the work in [18] provided its own im-
plementation of a human-in-the-loop system that attempted
to reduce the energy waste on computer workstations by
modeling human behavior to detect distractions. Current
practices for reducing energy consumption are usually
based on fixed timers that initiate sleep-mode after several
minutes of inactivity. However, this distraction detection
system used adaptive timeout intervals, multi-level sens-
ing and background processing to detect distractions (e.g.
phone calls, restroom breaks) with 97.28% of accuracy and
cut energy waste by 80.19% [18]. The proposed ”distraction
model” enclosed two main sources of information, user
activities and system activities. At the user-activity level,
the authors used a “gaze tracker” which evaluated the user’s
gazing at the computer’s screen through a webcam. At the
system-activity level, the system evaluated keyboard and
mouse events, CPU usage and network activities to infer
the machine’s level of use. The control loop combined both
types of information to determine the distraction status of
the user, with some self-correcting measures; e.g. if the
user resumed the system shortly after it was put to sleep,
the control loop took this as a negative feedback event, and
subsequently adjusted the timeout interval.

The area of Human Computer Interaction (HCI) has long
studied the concept of HiTL. Humans prefer to attend
to their surrounding environment and engage in dialog
and interaction with other humans rather than to control
the operations of machines that serve them. Thus, in
[58] it is suggested that we must put Computers in the
Human Interaction Loop (CHIL), rather than the other
way around and a consortium of 15 laboratories in 9
countries has teamed up to explore what is needed to
build usable CHIL computing services. The consortium
developed infrastructure used in several prototype services,
including a proactive phone/communication device, a Mem-
ory Jog system for supportive information and reminders in
meetings, collaborative supportive workspaces and meeting
monitoring and a simultaneous speech translator for the
lecture domain. These projects led to several advances in
the areas of audio-visual perceptual technologies, including
speech recognition and natural language, person tracking
and identification, identification of interaction cues such as
gestures, body and head poses and attention, as well as
human activity classification.

A communication framework for human-machine inter-
action that is sensitive to human affective states is pre-
sented in [59], through the detection and recognition of
human affective states based on physiological signals. Since
anxiety plays an important role in various human-machine
interaction tasks and can be related to task performance, this
framework was applied in [60] to specifically detect anxiety
through the user’s physiological signals. The presented
anxiety-recognition methods can be potentially applied in
advanced HiTLCPSs.

HiTL concepts have also been applied to smartphone data
usage. In fact, HiTL has previously been proposed as a
solution for addressing the increasing demand for wireless
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data access [61]. Since the wireless spectrum is limited and
shared, and transmission rates cannot be improved anymore
solely with physical layer innovations. Thus, a ”user-in-
the-loop” mechanism was proposed that promoted spatial
control, in which the user was encouraged to move to a
less congested location, and temporal control, in which
incentives, such as dynamic pricing, ensured that the user
reduced or postponed his current data demand in case the
network was congested. This closed-loop controlled user
activity itself through suggestions and incentives, influ-
enced by the current location’s signal-to-interference-plus-
noise ratio and traffic situation. The authors proposed that
users receive control information on the form of a graphical
user interface, showing a map and directions towards a
better location and a better time to start his traffic session
(e.g. outside of busy hours).

Schirner et al. [19] have previously stressed the existing
multidisciplinary challenges associated with the acquisition
of human states in HiTLCPS. For example, embedded
systems are key components used for these systems and,
as such, they proposed a holistic methodology for system
automation in which designers develop their algorithms in
high-level languages and fit them into an electronic system
level (ESL) tool suite which acts as a system compiler, pro-
ducing code for both the CPU and the field-programmable
gate array. This automation allows for researchers to more
easily test their algorithms on real scenarios and to focus
more exclusively on the important task of algorithm and
model development. Schirner et al. also used an EEG-based
brain-computer interface for context-aware sensing of a
human’s status, which influenced the control of an electrical
wheelchair. To improve the intent inference accuracy, the
authors suggested that inference algorithms should adapt to
the current application as well as the user’s preferences and
historical behavior, that is, use application-specific priors
and contextual information. The field of robotics is also
addressed, as robots are the primary means for actuation
and interaction with the physical world in CPSs. Their
semiautonomous wheelchair interpreted brain signals that
translate high-level tasks such as “Navigate-to-Kitchen” and
then executed path planning and obstacle avoidance [19].
However, important research questions are still unresolved,
namely the problem of dividing control between human
and machine, as well as the modularity and configurability
of such systems. Distributed sensor architectures are also
very important for HiTL since they allow the measurement
of physiological changes which may be processed to infer
current human activities, psychological states and intent.
On this regard, BCC was presented as a means for sup-
porting low-energy usage, high bandwidth, heterogeneity
and reduce interference.

At the Worcester Polytechnic Institute [62], a proto-
typing platform and open design framework for a semi-
autonomous wheelchair to realize a HiTLCPS was devel-
oped. The authors considered disabled individuals, namely
those suffering from “Locked-in syndrome”, a condition
in which an individual is fully aware and awake but all
voluntary muscles of the body are paralyzed. To improve

the life of these individuals, they created a HiTL wheelchair
system which used IR and ultrasonic sensors to navigate
through indoor environments, enabling the user to share
control with the wheelchair in a HiTL fashion. This allows
handicapped individuals to live more independently and
have mobility. The resulting prototype used modular com-
ponents to provide the wheelchair with a degree of semi-
autonomy that would assist users of powered wheelchairs to
navigate through the environment. This work was extended
in [19], where the user could interface with the wheelchair
through a brain/computer interface based on using steady-
state visual evoked potentials induced by flickering light
patterns in the operator’s visual field. A monitor showed
flickering checkerboards with different frequencies. Each
checkerboard and frequency corresponded one of four
desired locations. When operator focused on a desired
checkerboard on the monitor, his visual cortex predom-
inantly synchronized with the checkerboard’s flickering
harmonic frequencies. These frequencies were detected
through an electrode on the scalp near the occipital lobe,
where the visual cortex is located.

Other projects also focused on the development of
HiTL wheelchairs to assist disabled people. The work
“I Want That” [63], proposed a system that controlled
a commercially-available wheelchair-mounted robotic arm.
Since people with cognitive impairments may not be able to
navigate the manufacturer-provided menu-based interface,
the authors improved it with a vision-based system which
allows users to directly control the robotic arm to au-
tonomously retrieve a desired object from a shelf. To do so,
they used a touchscreen which displayed a shoulder camera
view, an approximation of the viewpoint of the user in the
wheelchair. An object selection module streamed the live
image feed from the camera and computed the position of
the objects. The user can indicate “I want that” by pointing
to an object on the screen. Afterwards, a visual tracking
module recognized the object from a template database
while the robotic arm reached towards it and brought it
back to the user.

A vision-based robotic device to facilitate activities of
daily living for spinal cord injured users with motor dis-
abilities was also proposed in [64], through a HiTL control
of an assistive robotic arm. The objective of the research
was to reduce time to task completion and cognitive burden
for users interacting with unstructured environments via a
wheelchair mounted robotic arm. Users could indicate the
approximate location of a desired object in the camera’s
field of view using one of diverse user interfaces, including
a touchScreen, a trackball, a jelly switch and microphone.
Afterwards, they could order the robotic arm to center the
object of interest in the visual field of the camera and then,
grab the desired object.

A model-driven design and validation of closed-loop
medical device systems was presented in [65]. The safety
of a closed-loop control system of interconnected medical
devices and mechanisms was studied in a clinical scenario,
with the objective of reducing the possibility of human
error and improve safety of the patient. A PCA pump
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delivered a drug to the patient at a programmed rate while a
pulse oximeter received physiological signals and processed
them to produce heart rate and SpO2 outputs. A Supervisor
component got these outputs and used a patient model to
calculate the level of drug in the patient’s body. This in
turn influenced the physiological output signals through a
drug absorption function. Based on this information, the
Supervisor decided whether or not to send a stop signal to
the PCA Pump. The main contribution of the paper was the
methodology for the analysis of safety properties of these
types of systems.

Heating, ventilation and cooling (HVAC) systems have
also been endowed with HiTL controls. For example, in
[66] the authors implemented a system that used cheap
and simple wireless motion sensors and door sensors to
automatically infer when occupants are away, active, or
sleeping in a home. The system used these patterns to
save energy by automatically turning off the home’s HVAC
system as much as possible without sacrificing occupant
comfort, effectively creating a HiTLCPS. Another example
can be found in [67] where a occupancy sensor network
was deployed across an entire floor of a university building
together with a control architecture that guided the opera-
tion of the building’s HVAC system, turn it on or off to save
energy while meeting building performance requirements.

C. Social Networking and HiTLCPSs

Despite being in their infancy, the IoT and CPSs are
already transforming the way our world and society work,
at a very fundamental level and at an incredibly fast pace.
As our Internet-connected devices evolve so do the means
we use to communicate and interact with the people we
deem close. In the past, people’s interactions were mostly
face-to-face amongst their peer groups, with occasional
long-distance relationships through letters or telephone
calls. In today’s world, we see a social revolution where
people share, in real-time, funny stories, thoughts, feelings,
photographs and other pieces of their lives with their family
and friends, some of which they have not been in physical
contact with for a long time, and in some cases, not even
ever seen in “real life”. Social networking is a phenomenon
that bloomed and continues to connect an astonishing
number of users, becoming fastest-growing active social
media behavior online. The sheer scale at these changes are
happening is astonishing: a statistical analysis by Browser
Media, Socialnomics and MacWorld suggest that Facebook,
one of the largest social networks, has around 1.4 Billion
users worldwide and that 98% of 18-24 year olds already
use social media websites [68]. Another study claims that
42.6% of the global online population uses Facebook [69].
This social networking tendency shows no indications of
slowing down, as the number of Facebook users increased
22% from 2012 to 2013 [70].

Since social networks are becomming so important
in the interconnections between humans, it is expected
that they will play a prominent role in HiTLCPSs.
This already evidenced when we take into consideration

the pervasiness of social networking, made possible
through the use of dedicated smartphone applications.
Of the 1,310,000,000 monthly active Facebook users,
around 680,000,000 use a mobile app [70], representing
a percentage of use of 69% by the global smartphone
community [69]. Despite these advancements and the
general public’s interest in these social services, their
current functionality does not yet reflect the true dynamic
of people’s relationships and personal lives. Instead of
being pre-determined and unique events in time, social
group activities can, in fact, happen very frequently and,
most of the time, spontaneously. Current systems are
not capable of providing this “real-time” component to
social networking, which diminishes its true potential. In
a sense, we can classify current social networks as still
very “static” when compared to a more complete system
capable of truly following the extent of human social
interactions. While the use of collaborative contributions
is still an important part of social applications and can
provide meaningful and useful data, sensing systems can
provide a more reliable and responsive feedback that may
crucial in achieving this “automatic real-time” social-
networking. In fact, a HiTL approach to social networking
may well come to prove a technological leap over
current social-networking of the same magnitude of the
one provided by mobile phones over traditional telephones.

We can already see an increase in the number of social
applications available for mobile devices that are beginning
to touch the border between the virtual and the physical
worlds. Although most of them do not depend on the use of
sensors or actuators, many applications fetch environmental
data from collaborative feedback provided by their users.
Users can provide feedback on the weather conditions in
a city, the environment of nightlife establishments or even
traffic congestion. Waze [71] is a community-driven GPS
navigation software that learns from user’s driving times
and from user reports on accidents and traffic jams to
provide routing and real-time traffic updates. Foursquare
[72] is a highly popular mobile social networking applica-
tion that allows users to “check in” at various locations.
Location is based on GPS hardware in the mobile device
or network location provided by the application, and can
also be selected using a mobile website or from a list of
venues located nearby.

Highlight [73] is a social application that allows users to
learn more about the people around them. People using
Highlight can have the profile of other users, within a
football field or so of their location, show up on their phone.
The application presents several types of data, namely
names, photos, mutual friends and other information users
have chosen to share, as well as a tiny map that shows
their recent location. The closer a person is to the user (the
more interests, friends or history they have in common)
the more likely the user will be notified of their presence.
Thus, Highlight hopes to increase synchronicity and reduce
the friction in meeting new people, allowing users to know
a few things about one another in advance.
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The SceneTap [74] application is another example of
an even more flexible and complex detection of people
for social networking purposes. The application uses
anonymous facial detection software to approximate the
age and gender of people entering a nightclub environment.
By counting the number of people entering and leaving a
venue, the application can estimate and report crowd size,
gender ratios, and the average age of people in a given
location. This information is shared among users, allowing
them to better plan their night outs and decide which
nightlife establishments are a better fit for their desires.

While the previous examples show how mobile
applications are becoming increasingly more pervasive,
we still have not reached a stage where HiTL and social
networking have been successfully joined. Nevertheless,
the large interest in social networking by the masses, the
increasing sharing of personal information and the surge of
mobile social applications mark a very pronounced trend
that points out to a future where sensing and mobility will
most likely become more important and well-accepted.
This line of thought has been present in research as
early as 2008, with an important research work that
has considerably shaped research in the area. CenceME
[75] was an innovative people-centric sensing framework
where sensors embedded in commercial smartphones were
used to extrapolate the user’s real-world activities that in
turn were reproduced in virtual settings: the long term
goal was to provide virtual representations of humans,
their surroundings and social interactions, sharing this
information amongst groups of friends in order to facilitate
social activities and to introduce a real-time component
to social networking. The user’s smartphone ran activity
recognition algorithms that extracted patterns from the
obtained data, such as the current user status (e.g, as
sitting, walking, standing, dancing, meeting friends) while
GPS was used to detect a user’s logical location (e.g, the
gym, coffee shop, work or other significant places). This
information was reflected on a virtual world, Second Life
[76], where the user’s friends could see what activities
he was performing at any given moment as well as his
current geographical position. The use of smartphones as
means of sensing and communicating with virtual realities
is an important aspect of this work, as relying on common
and easily accessible technologies foments the adoption of
these new systems by more users.

Despite the innovation and potential shown by these
HiTL social-networking applications, they have also been
met with a considerable amount of skepticism. In regards
to Highlight, it has been argued that encounters between
people are sometimes best “left to fate” and that the
application “may tell others too much about you” [77].
As for SceneTap, skeptics advocate privacy concerns and
have raised questions around the facial detection technolo-
gies used to collect information, since they are employed
without people’s consent. The application met a troubling
launch in May 2012, where it was supposed to be supported

by twenty-five San Francisco bars, of which ten dropped
out after angry calls and an editorial that called the service
”creepy”. The app has also been criticized for its gender
filtering options, letting people find bars with a larger
proportion of men or women in a certain age range [78].
Accuracy problems in the facial recognition software have
also been pointed out, resulting in several bars showing
high capacity percentages when in fact they were “as dead
as can be” [79].

CenceME’s implementation and release was also met
with some reservation. As the authors themselves admit,
user reviews can be brutal and the impact of such reviews
may be negative for the application reputation [80]. While
several users praised CenceME claiming it was “something
fresh and new” and “the best way to keep up with your
friends”, many saw it merely as a quirky application that,
albeit interesting, was slow and filled with bugs. Other users
were unsure if it was “very cool or useless”, showing some
apprehension towards a “Big Brother scenario”, seeing it as
an “invasion of privacy” and questioning the usefulness of
letting others “know if you’re running or walking or not”
[81].

III. TAXONOMIC VIEW OF THE HITL PARADIGM

The previous sections have shown that the field of HiTL
has immense potential and yet, it is still mostly unexplored
and there are massive challenges to be surmounted. As
proposed by [20] there is a need for attaining an understand-
ing of the spectrum of HiTL applications, their underlying
principles, requirements and models.

In order to better comprehend the dimension of such an
expansive field as HiTLCPSs, it is important to perform
taxonomies that allow us to better structure our ideas
and concepts. Stankovic et al. [20] have already begun
to establish a taxonomic foundation for HiTLCPSs appli-
cations, presented in subsection III-A. In this document,
we will expand this taxonomic exercise to also consider
the possible roles of humans in these systems, as well as
their general requirements. We believe such a distinction
is important, since it will allow us to better answer some
of the previously proposed challenges, such as determining
how to incorporate human behavior into the methodology
of feedback control [20].

A. Taxonomic view of current HiTL applications

According to Stankovic et al. [20], it is possible to
organize existing HiTL applications into three types: (i)
applications where humans directly control the system, (ii)
applications where the system passively monitors humans
and takes appropriate actions, and (iii) a hybrid of (i) and
(ii).

Human Control – there are two main scenarios where
humans directly control the CPS. In supervisory control
scenarios, human operators oversee an otherwise mainly
autonomous process. The operators are responsible for
adjusting certain set points that may influence the system.
This is the case on, for example, industrial scenarios
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Fig. 2. Taxonomy of Human-in-the-Loop applications

where operators mainly set or adjust certain target metrics
that are then accomplished by the autonomous robotic
CPS. If the human has a more direct command over the
process, we are in the presence of direct control scenarios.
These are typical master-slave scenarios where humans
issue commands to the cyber-physical system, which then
carries the necessary actions and reports back the results.
An example of such a system can be seen in the previously
introduced [63], where a wheelchair-mounted robotic arm
is controlled by a disabled person to retrieve objects.

Human Monitoring – applications that passively
monitor humans, also known as ”people-centric sensing”
applications, use their monitoring data to take appropriate
actions. In the scope of CPSs, these can be of two
types: open-loop and closed-loop systems. Open-loop
systems monitor information about humans regarding
several aspects (e.g. sleep quality, physical activity,
attention-level) and report these results. One example
is Look4MySounds, a remote monitoring platform for
auscultation of cardiac sounds and automatic detection
of pathologies [48]. The platform uses an integrated
stethoscope with which auscultation sounds are recorded
and processed to automatically detect pathologies. The
sound samples and obtained diagnosis are thereafter
remotely sent to a clinician. Despite the human being
in the loop, the system does not take any proactive
actions and simply relays the results to a specialized
medical practitioner. On the other hand, closed-loop
systems use their sensory data and processing results to
actively contribute towards a specific goal. For example,
a smartshirt may monitor a human’s exercise levels on a
gym, while a sensor placed on the wall monitors room
temperature. When the human is exercising, the HiTL
control may signal the HVAC system to reduce the room’s
temperature in order to make the exercise more pleasurable.

Hybrid Systems – hybrid systems take people-centric
sensing information as feedback to their control-loops while
also taking direct human inputs into consideration. Let us
expand our smartshirt example to include a smartphone

application that allows the user to keep track of their
exercise and also to set a desired room temperature. The
hybrid system could take the user’s desired temperature
as input while using the activity information to fine-tune
the absolute temperature value, or to control the rate of
temperature change.

B. Taxonomic view of Human roles within the HiTL

The goal of this section is to contribute to the establish-
ment of a reference for the classification of the role of a
Human in the future IoT as we envision it: using a HiTL
paradigm. We also want to define a set of requirements
that fully characterize this new type of systems. From now
on we will call this reference model the Internet of All
(IoA), meaning that it includes not only the (traditional)
IoT but also the Human as a fundamental element. This
way, we emphasize that this Internet is made by Humans,
for Humans and with Humans. IoA is built from spatially
distributed devices that are considered by standard IoT,
like laptops, mobile phones, computers, sensors, actuators,
”classical” network elements (we mean all passive elements
like routers, switches, access points, etc.), RFID tags,
readers, cars, intelligent clothes, wearable devices, furniture
and home machines. . . the possibilities are endless. As
previously inferred, IoA also includes robotics and its
interaction with intelligent devices and sensors into its
scope. However, on top of these man-made devices, we also
consider human beings themselves as part of the system:
their actions, drives, desires and emotions.

Stankovic et al. [20] have identified the incorporation of
human behavior into the methodology of feedback control
as a crucial challenged to be addressed by future research
in HiTLCPSs. This is a difficult challenge since human
presence manifests in different ways in various HiTL
scenarios. For example, in open-loop monitoring systems,
humans are in the loop but are not giving nor receiving
any active feedback, while in more sophisticated systems,
humans may directly influence control-loop parameters and
even actuate on the system. We would like to reflect on
this challenge through a different perspective, evaluating
not simply where to place the model of human behavior on
the control loop, but considering where to place the human
as a whole on the entire HiTLCPS.

1) Data Acquisition: Human as a set of sensors -
taking advantage of the sensors that he carries, the human
becomes an integral part of the sensing network. As we
explained before, in today’s world the mobile phone is an
indispensable element of everyday life that is progressively
becoming richer in terms of processing power, memory
and sensing capabilities. Other wearable devices, such as
intelligent clothes and shoes, can also become important
elements in the future Internet. Nano-technology is also
an important element in this aspect; in the near future,
it will also bring intra-body elements to this IoA [82].
Nano-networks have been receiving a lot of attention from
the scientific community and very soon, new studies and
prototypes will emerge that will result in very advanced
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applications in the biomedical area. However, the different
types of communications for these technologies, most of
them based on nano-machines and nano-tubes, are out of
the scope of this document. Another source of data is
present in the world of social-networking. Sensor nodes
placed in a major shopping center can help and support
the shopping of human beings who use Google glasses
by, for example, overlaying price-tags on the products of
their interest (e.g. that they ”like”). However, some people
might find this intrusive and, therefore, disable the sharing
of social information.

Human as a communication node - multi-hop is a very
common technique used by tiny devices to save energy.
Intermediate nodes can be used in a communication process
between a sender node and a receiver node to reduce the
required signal power. In this context, human devices such
as smartphones and body-area-sensors may also be used
as intermediate nodes in the ”hopping” process, taking
advantage of human mobility and intelligence to more
effectively distribute information in the network. This may
be particularly useful in, for example, metropolitan-wide
collaboration systems where human presence and mobility
may be crucial in re-passing non-critical information
about the environment. Instead of using multi-hopping or
long-distance communication between sensor nodes to, for
example, monitor temperature, this information might be
aggregated and stored by human-carried devices as people
move around the city, opportunistically forwarding it when
appropriate, thus, reducing the amount of energy required
for communications.

2) State Inference: Human nature - The combination
of sensors in the human’s body-area-network is capable
of measuring several different aspects of human nature,
including his vital signs (heart rate, ECG, EEG, movement,
etc), but, more interestingly, characterize his actions, detect
his activities and even psychological states and emotions.
These “human nature” phenomena are an integral part of the
control loop in IoA scenarios: the attention level of a driver
affects the cruise control mechanisms of an automobile,
the user’s exercise levels affect the air conditioning of his
house, a human’s emotional state may affect the UI of his
smartphone application. . . humans are no longer an external
entity that simply benefits from the system. Their presence,
actions, and emotion states strongly affect how IoT things
react.

Human as a processing node - although most devices
carried by a human are very simple and have limited
processing capabilities, if we use distributed algorithms
we can take advantage of the huge number of processing
elements and enable collaborative tasks that could not be
fulfilled by any particular node by itself. Smartphones,
which are becoming increasingly more powerful, can be
major participants in this processing, so the human and his
appliances can be an interesting powerful node, comprising
sub-nodes, in the new IoA. Human choices should also play
an important role in this processing.

3) Actuation: Human as actuators - nowadays humans
already act as actuators and as a function of the medium. If
a gas leak is detected in a factory, the responsible employee
quickly goes to the control room to close the respective
valve. If, in a hospital, the blood pressure of a patient
reaches a prohibited value, the nurse on duty, hearing the
alarm signal, goes directly to the patient room to admin-
ister a new drug. In HiTLCPSs, human actuation remains
extremely important, since human conceptualization will
continue to be unmatched by artificial intelligence for, most
likely, many years to come. However, the IoA paradigm
takes human action into consideration in the control-loop,
in the sense that these systems are made for humans, with
humans. Examples of this human role are industrial systems
that may use WSNs and robots to monitor and detect
problems, and then require specialized actuation of humans
to fix the problem. On our social-networking shopping
mall example, users may consider product suggestions from
other clients with similar interests and psychological states,
who collaboratively suggest products of their own interest.
In this way, IoA systems are not “devoid of human soul”,
but make human actuation as an integral part of their
functioning.

IV. REQUIREMENTS FOR IOA APPLICATIONS

In this section, we will attempt to identify several re-
quirements that need to be addressed in future HiTLCPSs,
in the same perspective of the several processes associated
with HiTL control.

A. Resilience

It is important to extend current research by provid-
ing resilient and performance controlled solutions for IoA
environmental interactions. Performance controlled solu-
tions have been previously achieved through planned and
controlled deployments, even in critical scenarios such as
oil refineries [83]. For HiTLCPSs, instead of targeting
previously planned, static deployments, new performance
controlled systems will need to be designed in an adaptable
way, in order to operate in dynamic environments and to
enable coordinated HiTL control, while keeping the system
performance under acceptable levels, even in the presence
of mobility and a diversity of faults. These requirements
raise a number of new challenges that must be addressed
to enable the successful implementation of the underlying
paradigm in critical environments.

As some recent works have suggested, for enabling per-
formance controlled systems to meet dependability targets,
it is necessary to incorporate fault tolerant and self-healing
mechanisms into the design, deployment and execution
tasks [84]. These mechanisms will ensure end-to-end per-
formance control in HiTLCPS environments where that
control is an important feature. Key innovations need to be
produced on performance-aware models and mechanisms
for enhancing the performance and management of the
system. The inherent ability of handling faults in a dis-
tributed environment also needs to be considered. When
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sensitive data retrieved by sensors is transmitted through
critical environments, security challenges are also raised.
If not protected, transmission of data may be accessed,
corrupted, or even destroyed, reducing the safety required
[85]. Consequently, security mechanisms should also be
investigated and added to the design. We consider resilience
as a combination of a number of features, as shown in
figure 3, which include dependability, security and privacy,
as well as the required means to provide overall robustness
and performance to the system.

Fig. 3. The resilience paradigm

Dependability is achieved by integrating, during
development-time, static approaches based on fault toler-
ance mechanisms and techniques and by providing, at run-
time, dynamic approaches based on self-healing. Security
and Privacy are also important aspects in the IoA. Security
has long been addressed in academic research, with several
secure protocols having been proposed over the years [86].
Most of these protocols have only been evaluated in an
isolated fashion and not in the context of HiTL application
security, often because of the lack of concrete applications
or deployment scenarios. Therefore, most of the current
state-of-the art IoT security protocols are purely academic,
as they are based on theoretical or simulation results. Thus,
security in the IoA can be achieved by developing new
protocols that cater to the specific needs of HiTL scenarios
and applications. As for privacy, there is a need to define
models and architectures for HiTLCPSs for supporting
dynamic policies that are adapted and tailored to each
individual. As different applications of IoA have different
security and privacy requirements, an architecture should be
able to guarantee distinct desired levels. As the desired level
might change even during the deployment of an IoA system,
it should be possible to configure and control both the
security level and the privacy dynamically. Thus, we believe
the major challenge security and privacy is to define an
adaptable and manageable architecture for use in real-time
scenarios that combine humans, robots and IoT. Instead of
an isolated analysis of different protocols or communication
layers, this architecture should consider the security and
privacy of real application deployments.

Future work should, therefore, to define, implement and
evaluate a set of resilient protocols, techniques and tools for
performance-controlled supervision of cooperating robots,
humans and environments based on WSNs with HiTL
control. The devised resilient supervision based on WSNs
should be designed for providing safe and mobile HiTL
interaction and cooperation in various scenarios, including
safety-critical environments. This work should rely on the
complementary use of design-time and run-time approaches

for obtaining compliant solutions that enable the provision
of performance controlled services even in the presence of
changes that may occur to the system, its environment or
its requirements.

B. Standard Communications

In the current Internet there is a high heterogeneity in
devices and communication protocols. This heterogeneity
will be more pronounced if we consider all the human
elements (Human as a set of sensors, Human nature, Human
as actuators, Human as a communication node and Human
as a processing node) described in the previous section.
In fact, it is important to find processes and protocols that
would support communication between all these elements,
human and otherwise. These heterogeneous processes and
protocols must be able to allow communication between
devices that are highly different in processing capabilities,
size and function, such as robotic elements, wireless sensor
nodes, body-coupled sensors, smartphones, etc. [87]. Ad-
ditionally, this communication must remain reliable even
in face of the highly crowded wireless spectrum, where
different kinds of communication technologies (e.g. Wi-FI,
3G, LTE, ZigBee, Bluetooth) co-exist. Supporting persistent
and reliable connections while supporting mobility, and
different kinds of wireless mediums is a very demanding
challenge [88].

Therefore, future research works will need to consider
the existing communication processes and protocols at the
different OSI layers to evaluate their feasibility into real
HiTLCPSs. If existing solutions are unable to support
seamless interfacing between robots, WSNs, Humans and
smartphones while supporting reliability and mobility, new
kinds of protocols and communication paradigms might
have to be considered.

C. Localization

Determining the positions of elements of the CPS, espe-
cially mobile nodes or humans, is critical for some types
of applications in the IoA. Indeed, many types of data are
meaningless without knowing the location where they were
generated. Thus, localization supports HiTL control-loop
decisions by allowing the identification of the location of
collected data, coming from both people, animals, robots or
vehicles. It plays an important role in many types of HiTL-
CPS scenarios, ranging from healthcare patients’ monitor-
ing, people-centric sensing mobile applications, monitoring
of workers within hazardous environments, robotic drones’
positioning, smart homes, etc. The localization problem
has long been considered since the 1960s resulting in a
location system that is widely in use today, the Global
Positioning System (GPS) [89]. While GPS is an excellent
solution for outdoor localization, it is not adequate for many
types of devices. For example, cost and energy consumption
constraints in wireless sensor nodes makes localization
using GPS inefficient in most WSNs. In addition, there
are some cases in which GPS is not feasible such as
indoor locations, underground tunnels or places with a lot
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of obstacles. The accuracy of civil GPS units may also
not satisfy the requirements of HiTL applications. Despite
some previous attempts at embedding GPS receivers into
constrained devices [90] by offloading processing to the
cloud, the accuracy achieved is still low (35m). Numerous
other approaches for achieving localization have previously
been proposed, notably those based on the ”closest bea-
con principle” [91], Wi-Fi-based positioning systems [92],
Kalman Filters [93], multilateration [94] and even machine-
learning techniques [95] [96].

A critical problem in localization is the accuracy and the
stability of the measurement methods, which is even more
exacerbated in HiTLCPSs since these values may influence
the result of the entire control-loop decision. Consequently,
it is necessary to have scalable, low cost, and near real-
time localization systems which can produce an acceptable
accuracy using measurements commonly available to con-
trol HiTLCPSs. Thus, future research will need to study
current localization methods in order to find appropriate
solutions for measuring location in different situations (out-
door, indoor) and for different elements (humans, robots,
smartphones, sensor nodes).

D. State Inference

The accuracy and reliability of the inference of human
states is critical for HiTLCPSs [20]. This is a very broad
requirement that includes the detection of all states related
to the human, be it activities or actions, commands, in-
tents, attention level, physiological parameters, psycholog-
ical states or emotions. Some of these aspects of human
nature are more challenging than others. For example, the
detection of physiological parameters is a topic that has
long been debated in research and we have plenty devices
that are capable of detecting a wide range of parameters,
ranging from the heart’s rate to the electromagnetic waves
resultant from brain activity.

On the other hand, the quantitative detection of more
abstract aspects of human nature such as activities and
emotions is less established. In terms of activity detection,
current approaches can achieve high levels of accuracy for
narrow ranges of activities in specific scenarios, such as
medical environments or daily activities [36] [29]. How-
ever, despite many activity detection solutions reaching
high levels of accuracy, these results are only valid for a
limited number of activities and for a limited audience.
The standard practice in most sensing systems is the
use of unchanging classification models trained prior to
deployment. When dealing with large-scale HiTLCPSs, this
poses a big problem, since the target audience is highly
heterogenic: an old person walks in a very different way
than a younger person. Recent research has attempted to
address these issues by personalizing existing classification
models through manually provided training data [97], and
by incorporating inter-person similarity into the process
of classifier training, allowing crowd-sourced sensor data
to personalize classifiers [35]. Another gap in current
activity recognition research is the problem of flexibility

of activities. The way a certain activity is performed may
change over time: a person may develop quirks or get more
efficient without even realizing it. From a usability and per-
vasiveness perspective, the personalization of existing clas-
sification models should not depend on manually provided
training examples or labeling: it should be a transparent
process that happens during daily life. Additionally, most
research focuses on achieving high accuracy rates for a
limited number of activities. In HiTLCPSs the number of
activities of interest may be very high and change over
time: it is limiting to develop a system that only handles
few activities. A more interesting solution would allow
the collaborative identification of new activities by users.
This requires HiTL control to detect new types of activities
that are not envisioned at the time of deployment. On the
other hand, this brings a number of challenges yet to be
addressed: how to scale the introduction of activities? How
to avoid redundant labeling? How to perform lightweight
classifier training in a fashion not too taxing on mobile
hardware? These are important challenges that need to be
addressed to achieve good contextual analysis in future
HiTLCPSs.

The emotions and psychological states are crucial aspects
for improving relations, learning, health and quality of life
of human beings. These emotional processes have a crucial
value for determining humans’ behavior in HiTLCPSs
because they are a primary source of human motivation
[42]. Literature in emotion is very extensive, and there
have been controversies even in it definition. The word
emotion has its foundations in Latin emovere, a word that
derives from movi, which means to ”put in motion”. Thus,
emotion means first of all movement and without emotions
nothing progresses. A more scientific definition of emotion
can be that it is a psychological construction where cog-
nitive, physiological and subjective components interact.
Several psychology researchers focused on this problem
of emotion definition. Early researchers proposed various
models that grouped emotions into several categories. For
example, Ortony et al. [98] established an architecture of
conditions and variables which influenced emotions. On
another attempt of emotion classification, Ekman studied
human facial expressions and associated them with a set
of six basic emotions, through the Facial Action Coding
System (FACS) [99] which is now widely used in the field
of psychology, animation and robotics. A circumplex model
of emotion was first proposed by Russell [100], where
emotions were distributed in a two-dimensional circular
space, ranging from ”miserable” to ”pleased” and from
”sleepy” to ”aroused”. The work of psychologist Magda
Arnold, then followed by Richard Lazarus [101] resulted
on the ”appraisal theory”, which states that emotions derive
from our own evaluation of physical events, which then
cause different reactions in different people. For example,
if a certain event is perceived as positive, that event will
manifest a response that will evoke positive emotions; on
the other hand, negative perceptions of reality will result in
negative emotions.

The area of HiTLCPSs will have to consider these
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fundamental works in psychology as a basis for accurate
and reliable emotional classification, relating each emotion
to associated physiological signals such as skin conduc-
tivity, blood pressure, heart rate, breathing rate, etc. Such
areas are currently very active in computer science and
engineering. Body and wireless sensors that measure these
vital signs, video-cameras for facial recognition, and several
other devices are normally used to capture the emotion of
a person. Nowadays, even the use of EEG sensors in a
non unobtrusive way is a realistic possibility for measuring
emotions, thanks to portable EEG devices such as the
Emotiv [102]. Unfortunately, associating quantitative emo-
tional states to these physical parameters is a considerably
complex task, being, in fact, one of the most demanding
challenges for future HiTLCPS research.

E. Safety

Historically, robots are designed and programmed for
relatively static and structured environments. Once pro-
grammed, it is usually expected for the robot’s environ-
ment and interactions to remain within a very constrained
range of variance. Anything unaccounted for in the robot’s
configuration is essentially invisible and only minimal
feedback is traditionally available, such as joint position
measurements. These primitive sensory capabilities require
robots to operate in isolated ”work cells”, free from people
and other interferences. Thus, current robots, including
mobile and manipulator ones, are far away from being
integrated in HiTLCPSs, still mainly using collision sensors
that halt operation whenever something unaccounted for
happens or whenever somebody enters their workspace,
to prevent accidents. This continues to enforce the need
to have areas for workers and areas for robots which are
mutually exclusive and preclude any type of human-robot
cooperation, typically found in HiTLCPSs [103]. Apart
from safety reasons, there is also the lack of trust that
workers put on robots. People prefer to work along with
teleoperated robots than with autonomous ones [104]. The
reason for this mistrust is that people cannot predict the
robot’s intentions or behavior due to the lack of body
language signs, common in humans. A second reason for
mistrusting robots is that people do not know if the robot
“sees them” (lack of presence awareness). Without HiTL
behavior modeling, robots of many automated factories
remain isolated in both physical and sensorial senses [105].

While robots were initially used in repetitive tasks where
all human commands are given a priori, they are becoming
progressively integrated in HiTLCPSs and involved in in-
creasingly more complex and less structured environments
and activities, including interaction with people for task
execution. This means that there is a critical need for novel
safety mechanisms that can ensure a safe and effective
cooperation between human elements and robot elements,
that is, robots need to start considering the ”human-in-the-
loop” of working tasks.

V. TOWARDS AN INTERNET OF ALL

Now that the major concepts and current trends of
HiTLCPSs have been explored, we would like to provide a
chronological overview of the development in the field as
well as summarize the learned lessons to help the reader
avoiding pitfalls in his own work.

A. Chronological overview

Our exposition of the area has shown how the concept
of Cyber Physical Systems has evolved together with the
Internet of Things and how these are closely related. It is
possible to observe a certain ”direction” of these types of
systems, in terms of sensing, state inference and actuation,
that has begun in the scope of simple ”things”, to large
environments and, more recently, human beings.

In fact, early works began by proposing the use of
physical tokens (such as barcodes or electronic tags)
to relate objects to the web [106]. For example, the
Cooltown project [107] provided an infrastructure for
human interaction with mobile and ubiquitous devices,
pushing web technology into common digital appliances
such as printers, radios and automobiles, and also to
non-electronic things like CDs, books and paintings. The
idea was to extend the concept of a web page to every
physical entity, creating a ”web presence” with information
and services for every entity of the physical world. In
their ”Cooltown Museum” test environment, both infra-red
beacons and tag identifiers supplied user PDAs with the
URL of the ”web presence” of each work of art.

Sensing and actuation in environments, namely through
WSNs, has also long been considered. The work in
the Economic Weather Map project [108], for instance,
supported the concept of ”reality mining”, the data mining
of sensor streams that monitor specific environments. The
manipulation of massive amounts of sensory data was
used in detection and action systems, allowing users to
use sensor data in valuable ways. The authors designed
a prototype of a sensor information system that used
geographic information software, mission planning/terrain
visualization systems and sensor networks in conjunction
with a photo-realistic, 3D visualization of the prototype’s
environment. One of these prototypes consisted on a
fire-detection system, which used sensors to monitor
temperature in order to help anticipating the initial
spread of fires and promote a more effective actuation of
firefighters.

Only more recently did research began to focus on
the human-side of sensing, inference and actuation, often
within a social networking context. Sensor nodes have been
used as means of transmitting mobility into virtual worlds.
In [109] a framework was proposed which mapped a sensor
node to an object in the popular social network, Second
Life [76]. The location of the sensor mode, which was
calculated from the RSSI values from three or more fixed
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reference nodes, was reflected on a virtual avatar, which
moved according to the real-world movement of the node.

CAALYX [110] was a research work that intended
to develop a wearable light device directed towards the
monitoring of elderly people. The device was able to
measure specific vital signs, detect falls and communicate
automatically, in real-time, with assistance services that
would actuate in case of emergency. The CAALYX project
also developed an initial simulation of its workings in the
Second Life virtual world, as a means of disseminating
and showcasing the project’s concepts to wider audiences.
There are two interesting aspects of this work, its use of
mobile phones as gateways for anywhere communication
and its early attempts at integrating health monitoring with
virtual environments.

The work of Lifton, J. et al. at the MIT media laboratory
coined the term ”dual reality” to indicate the ability to
merge the real and virtual realities through sensor networks.
They designed several prototypes where they performed
experiences in merging a real world location, the Media
Lab’s third floor, and virtual worlds, in this case Second
Life. One of these prototypes is described in [111], where
the authors present the ShadowLab, a Second Life map
of the Media Lab’s third floor animated by data collected
from a network of several sensor / actuator nodes. A two-
way cross-reality experience and communication was also
achieved, from the user’s environment to ShadowLab, and
from ShadowLab into the real world, through a monitor
display and a controllable camera, giving the virtual world
control of a gaze into the real one and vice-versa.

This awareness of the human condition has also become
an increasing concern for corporations, in particular
with the wellbeing and happiness of their employees.
In [112] it is discussed how technological advances in
computers and telecommunications have brought about
tremendous gains in productivity but also made the work
lives of professionals highly saturated with distractions.
Based on the premise that a happy employee is a more
productive one, this work explored how technology might
be applied to increase overall their happiness and reduce
stress. Through a small wearable badge the wearer’s body
movements, voice level, location as well as the ambient
air temperature and illumination, were measured. When
these transceivers detect another badge within 2 meters,
the two badges exchange IDs and each badge then records
the time, duration, and location of the interaction. This
allows the collection of data about the type of social
exchanges that took place in the workplace. This data
was then used in conjunction with studies from the field
of positive psychology, which focuses on desired mental
states (including happiness), to improve people’s personal
and professional lives. One advantage of measuring activity
is that once people become aware of their daily patterns,
they can better schedule their work to take advantage
of times when they can most easily achieve a focused
mental state. Documenting social interactions can also
help in identifying the areas in an office which tend to
host the most frequent and active discussions, helping in

the restructuring of office layouts to foment more fruitful
collaborations.

The summarized exposition of the previous illustrative
research shows us a certain evolution in terms of the IoT
and CPSs. While real-world objects began as the initial
targets for the extension of the web into the physical reality,
the development of WSNs later permitted CPSs to monitor
wide geographical locations. Only very recently did we
achieve the necessary advancements in the miniaturization
computational power, sensing and machine-learning tech-
niques that allow us to focus on the most complex aspects
of our reality, including ourselves. People-centric sensing
systems arose from the dissemination of smartphones to
create a whole new world of possible applications, from
the sharing of activities and location in social-networks
[75], to the management of traffic congestion [71], and even
location-based healthcare [110].

Throughout this paper, we intended to acquaint the
reader with yet another step in our technological evolution.
HiTLCPSs will be built on each of these previous ideas to,
not only build systems that monitor humans, but to create
intelligent systems that are aware of their needs, moods
and intents. Our research has led us to expect the next few
years to yield considerable advancements in the areas of
smartphones, robotics and WSNs that will bring our tools
and appliances closer to us and make their use progressively
more intuitive and natural. This has, in turn, the potential
to bring considerable gains in both work productivity and
general quality of living.

B. Lessons learned

As suggested in the previous section, while many of
discussed developments happened in parallel and are over-
lapped with each other, it is quite possible to delineate a cer-
tain convergence. We believe that the technological progress
will always revert back to its origins: the adaptation of the
environment to the human being, may this environment be
an ancient terrain that became a cultivated field, or a world
filled with intelligent devices that begin to work together
to accommodate human needs.

Throughout our exposition, we have observed many
limitations existing in the current state-of-the-art. There
are several limitations of a technical nature, that require
additional research efforts in order to be overcome. How-
ever, there are also limitations of a more ethical nature
that relate with the public’s acceptance of these new types
of technological paradigms. Therefore, we dedicate this
section to the identification of these lessons learned during
our study.

1) Technical limitations: Despite all of these advances
only now are we beginning to observe how sensing,
state inference and actuation can be combined together in
HiTLCPSs, as it is evidenced by all the research projects
described in subsections II-B and II-C. In general, most of
these projects still assume deliberative robot architectures
within environments that are well known and static. These
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architectures rely on techniques such as path planning, in
which conditions are known in advance. We believe that
future IoT environments will be mobile, dynamic and reac-
tive, where robots and humans will have to react to stimulus
from the environment in real time, to guide their actions
[113]. On this end, WSNs allow for the monitoring of
environmental conditions, helping both robots and humans
to react much more effectively to changes.

Additionally, most of current scenarios do not fully
consider the Human, his behavior and psychological
state as an integral part of the system. Humans are
still mostly seen as an external final user and rarely
directly interfere in the control loop of working tasks. As
far as we know, there is no significant work that fully
utilizes the potential of the human element to support
the control-system itself. In all previous projects there
is a very well defined border between Humans and the
system, instead of a tightly coupled integration. In fact,
humans can play various roles ranging from actuators,
co-helped by robots and acting on information collected
by the sensor networks, to intermediate nodes in multi-hop
communication processes. They can also become an
element of environmental monitoring (through the sensors
carried by them, e.g. on smartphones or smartshirts).
While the works presented in [63], [62] and [19] are more
complete demonstrations of the potential of HiTLCPSs,
we believe that their approaches are not feasible for
widespread deployment. The use of vision-based systems
is very prone to noise and limitations in image processing,
only working for very controlled and limited environments
(e.g. objects detected are limited to those programmed
into the system). Brain/computer interfaces based on EEG
signals are difficult for practical use, since electrodes are
usually very cumbersome to wear and thus, not suitable
for day-to-day HiTL applications. Future HiTLCPSs need
to be based on more pervasive and mobile technology.
There is, however, a ubiquitous sensing platform that
is already used by millions of people around the globe,
everyday. Smartphones are devices that give us the sensing
power and computational capabilities that might be key
for massive HiTL deployments in the next few years. Still,
we still have very few actual applications of smartphones
and HiTLCPSs. While [61] did use HiTL concepts to
limit current mobile data demand, the actuation aspect was
limited to suggestions and incentives on a smartphone’s
graphical user interface and aspects such as robotics and
direct actuation are not considered.

We attempt to condense all of these technical limitations
and challenges in a model, shown in figure 4.

This model presents the various processes associated
with HiTL control. According to our research, a human
is integrated into a CPS through “Human-in-the-Loop
Intelligence”, responsible for receiving input from the
human sensors and also for influencing the system’s
control loop depending on the inferred context. This
intelligence’s specific implementation should follow the
general principles and requirements introduced in section

Fig. 4. Lessons learned towards Human-in-the-Loop Control

IV, to guarantee reliable and secure human-context
monitoring. In particular, we consider the issues of privacy
and reliability as two of the most important requirements
responsible for the current lack of HiTLCPSs in real
scenarios.

On a first step, determining a human’s state requires the
acquisition of data, through sensors or even information
gathered from social networks. This information can relate
to several aspects of physical reality, such as the human’s
thought patterns through EEG, who their friends are, their
heart-rate, movement through accelerometers, positioning
through GPS, facial expressions through video-cameras,
among others. Seeing physical reality through sensory data
is the cornerstone of HiTL control, since every other aspect
of the system is related to the raw data acquired from the
sensors.

The history, or memory, is another important aspect that
closely relates to the acquisition of data. In fact, research
has shown how previous human states may offer important
insights for inference mechanisms [114]. This historical
data can also be used by delay tolerant mechanisms in non-
critical applications, setting a meaningful state whenever
the real-time connection to sensory data is interrupted.

Perhaps one of the most critical aspects of HiTLCPSs
is the reliable inference of human state. State inference
mechanisms need to adapt to the current context as well as
the human’s preferences and historical behavior, integrat-
ing this information into the control-loop as feedback to
determine the actions of the HiTLCPS. This is incredibly
difficult and implies a need for reliable and secure mech-
anisms for modeling, detecting and possibly predicting
human nature, as discussed in section II-A2.

There are two types of actuation in HiTL controls. A
system actuation is based on the system’s current status
and the inference of human state. For example, a HiTL-
enabled HVAC system may only adapt room temperature
in the presence of humans. Human actuation relates to
the actions of humans within the HiTL system, since they
can themselves actuate whenever necessary. Motivation is a
crucial aspect of this type of actuation and one of the most
important research challenges. Future HiTLCPSs need to
provide the necessary motivation and benefits for humans
to act in a way that benefits the overall system and refrain
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from adopting greedy or prejudicial attitudes.
Finally, noise shows how real world environments are far

from idealized academic-controlled testbeds. For example,
HiTLCPSs based on speech and video-captured gestures
have to deal with challenges such as ambient noise, moving
background clutter or object segmentation. The acquisition
of human vital signs is also prone to problems in terms of
signal-to-noise ratios, where many signal frequencies are
resultant from internal physiological functions that have
nothing to do with what needs to be acquired.

Another source of noise is related to human variability.
The human species has a high genetic variance and thrives
in many different environments with highly disparate cul-
tural backgrounds, which results in many possible pheno-
types. Age, physical disabilities and inter-person variability
also need to be accounted for. While current research in
HiTL state-inference can reach high levels of accuracy, as
discussed in II-A2, these results are mostly limited in terms
of number of human activities, psychological states and
audience. On the other hand, future HiTLCPSs will most
likely address a highly heterogeneous target audience. This
personalization of existing state inference models should
follow a ubiquitous approach and not depend on manually
providing training examples or on the collaborative labeling
by the system user. To promote usability, it should be a
transparent process that happens naturally, as the user lives
his daily life.

The identification of new human states that were not
predicted at the time of deployment may also be important.
However, this brings yet another realm of unresolved chal-
lenges. It is necessary to scale the learning of new states,
avoid redundant labeling, perform training in a lightweight
fashion, ensure security and privacy and take advantage
of collaboration between users while avoiding overlapping
efforts.

All of these are important challenges for HiTLCPSs that
have yet to be properly addressed by the research in the
field.

2) Ethical limitations: As discussed in section
II-A, much of the necessary technology for supporting
HiTLCPSs is already in place. But then again, why are
current IoT and CPSs still unable to integrate the human
element into the control-loop? As previously discussed,
we believe that reliability is one of the major factors that
influences the current lack of real-world deployments.
Reliable and consistent inference of a human’s state is
essential to the adoption of HiTLCPS in real industrial,
medical or social scenarios. The inability to do so can
have severe consequences on the effectiveness of the entire
system. The reliable networking of sensed data is also
crucial for HiTLCPS, since these systems are often large
and distributed.

There is, however, another important factor that needs
to be taken into consideration: the introduction of radically
new technologies is usually accompanied by a considerable
dose of skepticism. Thus, reliability is only relevant if the
market accepts the underlying technology. This is crucial,

since this new paradigm of human-centric technologies has
already been previously met with considerable skepticism.
As evidenced by section II-C, current attempts at creating
social-networking HiTLCPSs show that users place a high
importance on their privacy and in the security of their
personal information. In fact, these privacy concerns have
been present since the beginning of social networking.
Facebook, for example, has been the target of criticism
since its early beginnings due to its reliance on the users’
willingness to share information as the key point of its
business. In fact, according to an AP-CNBC pool [115] with
a sample of 1004 people, 59% of Facebook users have little
to no trust in Facebook to keep their information private.
This apparent lack of trust reflects just how closely people
follow intrusive practices, further exemplifying how privacy
concerns are one of the biggest obstacles to the growth of
social networking and, by extension, to HiTLCPSs. Still,
it would have been, perhaps, unthinkable in a pre-social
networking era, that people would enjoy publishing their
personal information in a public database for their peers to
see and comment on. Yet, step-by-step, we have reached
a level where huge social networks and photo-sharing are
norm. Despite all the past and ongoing privacy concerns
and surrounding criticism, both the number of users and
their engagement in Social Networks continues to increase
[69].

Putting skepticism aside, it is difficult to deny that the
idea of someone else monitoring our every step and activity
is very disturbing. However, it is also true that this problem
does not reside entirely on the existence of HiTLCPS
frameworks. For example, Sauvik, et al. [33] have
discussed the possibility of current smartphones posing a
security threat to the user, claiming that accelerometers
and other sensors within the device can be used without
the users consent. They have also shown how activity
recognition algorithms can be used to obtain sensitive
information about the user without their knowledge by
having them identify pre-defined general activities or
even make the user’s phone learn to identify new ones.
Hence, the existence of smartphone-based HiTLCPSs
does not impede this type of privacy-invasion, although
it might make it easier to accomplish. Thus, security and
privacy are two other critical requirements, in addition to
reliability, for HiTLCPSs. Industrial processes, medical
data or sensitive personal information need to be protected
from unauthorized exploitation. As discussed, protecting
confidential information is often not only a business
requirement but, in many cases, also an ethical and legal
requirement.

Another important ethical consideration relates to the use
of robotics in HiTLCPSs. As introduced in section II-A3,
robotics is growing at a progressively faster pace and there
are some who believe its role in future HiTLCPSs may
not be completely optimistic. For example, while robotics
enables automation, this may in turn result in human
unemployment. In fact, futuristic journalist Kevin Kelly
predicts that a wave of automation centered on artificial
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cognition, cheap sensors, machine learning and distributed
smarts will result in 70 percent of today’s occupations
being likely replaced by automation before the end of this
century. Starting with assembly line and warehouse work,
agriculture picking, cleaning, ”it doesn’t matter if you are
a doctor, lawyer, architect, reporter, or even programmer:
The robot takeover will be epic” [103].

E. Brynjolfsson and A. McAffee provide an interesting
insight on this matter, arguing that despite the improvement
of technology in areas that used to be typically human-
oriented, such as pattern recognition, people will still have
vital roles to play [17]. As an example, they refer to Garry
Kasparov’s experience in ”freestyle” chess tournaments,
where teams combining average-skilled humans and ma-
chines dominated both strong computers and human grand-
masters [116]. As pointed out in Diego Rasskin-Gutman’s
book, ”Chess Metaphors”, what computers are good at is
where humans are weak, and vice versa [117]. This is
evidence of the importance of human-machine collabora-
tion in the years to come, the cornerstone of HiTLCPSs.
Brynjolfsson and McAffee continue their discussion on
these ”uniquely human” abilities that will remain essential,
even in the face of the continued automation of routine tasks
by the technological advancement. Despite their impressive
calculation capabilities, there has yet to exist a machine that
is capable of human creativity and intuition. The ability to
create and innovate through new and meaningful ideas is
the forefront of artificial intelligence research, and the one
task that humans still excel in comparison to machines.
Additionally, evolution has shaped humans into highly
responsive beings that can quickly adapt to new situations,
while current machines simply cannot react outside of the
frame of their programming. As evidenced by Brynjolfsson
and McAffee, ”[The supercomputer] Watson is an amazing
Jeopardy! player, but would be defeated by a child at
Wheel of Fortune, The Price is Right, or any other TV
game show unless it was substantially reprogrammed by its
human creators” [17]. Thus, human-machine collaboration
will most likely become increasingly critical in the next
few decades, at least until machines evolve to a point where
they reach (or surpass) ”human-like” intelligence. As mem-
orization skills become increasingly redundant due to the
assistance of modern search engines, it is this human ability
to quickly combine information from different sources and
to react to new situations that will remain essential in future
HiTLCPSs.

Precursors of this human-robot interaction are already
among us. Baxter, a workbot from Rethink Robotics is
an early example of a new class of industrial robots
created to work alongside humans [118]. Baxter has several
characteristics that make it more ”human-aware” than most
of its ancestors. It is capable of showing where it is
looking by shifting drawn eyes on its ”head”. It is also
capable of perceiving humans and avoid injuring them,
using force-feedback mechanisms that tell it is colliding
with a person or another bot. This ”human-like” body-
language is an innovation that allows humans to understand
and predict the robot’s intentions, which may in turn

reduce the previous mistrust placed in robotic companions
[104] [105]. Equally important is Baxter’s capability of
learning through imitation: to train it, one simply grabs
its arms and guides them through the correct motions and
sequence. This mode of operation is remarkably different
than traditional industrial robotics, which requires highly
educated personnel to program even the simplest tasks.
Considering all of these tendencies, it is very likely that, in
the future, people will be payed ”based on how well they
work with robots” [103].

Nevertheless, expecting artificial intelligence to evolve
until it becomes ”humanlike” is ”the same flawed logic as
demanding that artificial flying be birdlike, with flapping
wings” [17]. In fact, it has already been proven that
tremendously complex programs, despite being based on
simple instructions, are already able to outperform human
thinking. Intelligent HiTLCPSs will most certainly think
very differently from us and the long-term consequences
of such systems remain to be seen.

VI. CONCLUSION

In the future, humans will combine elements from
robotics, wireless sensor networks, mobile computing and
the Internet of Things to achieve highly monitored, easily
controlled and adaptable environments. In this survey paper,
we have explored the field of HiTL, in particular its appli-
cability in future CPSs and the IoT. These HiTLCPSs still
have many multidisciplinary unresolved research questions.
In order to contribute to their development, we need a
general understanding of their underlying requirements,
principles and theory. Thus, we discussed the current state-
of-the-art of HiTLCPSs, together with a critical overview
of the current taxonomies. On top of this research, we
extended the field’s knowledge with a novel taxonomic
exercise focused not on HiTL applications but on the
general roles of the human element in HiTLCPSs, together
with a requirement analysis for these types of systems. As
far as we know, this is the first effort towards a general,
in-depth overview of the existing solutions, projects and
taxonomic analysis, as well as the first taxonomic exercise
that considered this problem from the point of view of the
human roles in HiTLCPSs.

We now begin to understand why current IoT-based CPSs
have yet to integrate the Human component in order to
achieve an Internet of All: humans, things and robots.
There are several technical and ethical limitations that have
yet to be completely resolved by current research efforts.
Reliability in data-acquisition, state-inference and actua-
tion are issues of great importance towards the adoption
of true IoA systems. It is also important to note how
cognitive dissonance may affect the market when these
HiTL concepts are introduced to people’s daily-lives. This
is particularly important when considering HiTL social
networking applications, which may rely on the use of sen-
sitive personal data. On this matter, security and privacy are
important concerns that may directly affect the acceptance
of HiTLCPSs.
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During our exposition, we have come to expect that HiTL
concepts will become increasingly more common in the
next few years. Despite being on their infancy, we have
found promising research in the area of state-inference,
data acquisition and actuation that indicate how we may
be reaching a tipping point in our technological evolution.
More than having intelligent IoT and CPS systems that
autonomously control our environment, these systems will,
more importantly, adapt to the human will. In a very real
sense, we may be on the verge of achieving a sort of supra-
human grip on our environment, one that our ancestors
could only conceive in their wildest dreams.
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